Evaluación de la microbiota del tracto gastrointestinal del biotipo de maíz de Spodoptera frugiperda en presencia de endotoxinas del Bacillus thuringiensis

ilustraciones, diagramas, tablas

Autores:
Castañeda Molina, Yuliana del Pilar
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/82152
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/82152
https://repositorio.unal.edu.co/
Palabra clave:
570 - Biología::577 - Ecología
570 - Biología::576 - Genética y evolución
570 - Biología::572 - Bioquímica
Maíz - Enfermedades y plagas
Spodoptera frugiperda
Arsenophonus
Biotipo maíz
Endotoxinas BT
Microbiota intestinal
Resistencia
Corn Strain
Bt toxins
Gut microbiota
Resistance
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_6900e5da541c8118ec9bf312560b641c
oai_identifier_str oai:repositorio.unal.edu.co:unal/82152
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Evaluación de la microbiota del tracto gastrointestinal del biotipo de maíz de Spodoptera frugiperda en presencia de endotoxinas del Bacillus thuringiensis
dc.title.translated.eng.fl_str_mv Evaluation of Spodoptera frugiperda (corn strain) gut microbiota in presence of Bacillus thuringiensis endotoxins
title Evaluación de la microbiota del tracto gastrointestinal del biotipo de maíz de Spodoptera frugiperda en presencia de endotoxinas del Bacillus thuringiensis
spellingShingle Evaluación de la microbiota del tracto gastrointestinal del biotipo de maíz de Spodoptera frugiperda en presencia de endotoxinas del Bacillus thuringiensis
570 - Biología::577 - Ecología
570 - Biología::576 - Genética y evolución
570 - Biología::572 - Bioquímica
Maíz - Enfermedades y plagas
Spodoptera frugiperda
Arsenophonus
Biotipo maíz
Endotoxinas BT
Microbiota intestinal
Resistencia
Corn Strain
Bt toxins
Gut microbiota
Resistance
title_short Evaluación de la microbiota del tracto gastrointestinal del biotipo de maíz de Spodoptera frugiperda en presencia de endotoxinas del Bacillus thuringiensis
title_full Evaluación de la microbiota del tracto gastrointestinal del biotipo de maíz de Spodoptera frugiperda en presencia de endotoxinas del Bacillus thuringiensis
title_fullStr Evaluación de la microbiota del tracto gastrointestinal del biotipo de maíz de Spodoptera frugiperda en presencia de endotoxinas del Bacillus thuringiensis
title_full_unstemmed Evaluación de la microbiota del tracto gastrointestinal del biotipo de maíz de Spodoptera frugiperda en presencia de endotoxinas del Bacillus thuringiensis
title_sort Evaluación de la microbiota del tracto gastrointestinal del biotipo de maíz de Spodoptera frugiperda en presencia de endotoxinas del Bacillus thuringiensis
dc.creator.fl_str_mv Castañeda Molina, Yuliana del Pilar
dc.contributor.advisor.none.fl_str_mv Cadavid Restrepo, Gloria Ester
Saldamando Benjumea, Clara Inés
dc.contributor.author.none.fl_str_mv Castañeda Molina, Yuliana del Pilar
dc.contributor.educationalvalidator.none.fl_str_mv Moreno Herrera, Claudia Ximena
dc.contributor.researchgroup.spa.fl_str_mv Microbiodiversidad y Bioprospección
dc.subject.ddc.spa.fl_str_mv 570 - Biología::577 - Ecología
570 - Biología::576 - Genética y evolución
570 - Biología::572 - Bioquímica
topic 570 - Biología::577 - Ecología
570 - Biología::576 - Genética y evolución
570 - Biología::572 - Bioquímica
Maíz - Enfermedades y plagas
Spodoptera frugiperda
Arsenophonus
Biotipo maíz
Endotoxinas BT
Microbiota intestinal
Resistencia
Corn Strain
Bt toxins
Gut microbiota
Resistance
dc.subject.lemb.none.fl_str_mv Maíz - Enfermedades y plagas
dc.subject.proposal.none.fl_str_mv Spodoptera frugiperda
Arsenophonus
dc.subject.proposal.spa.fl_str_mv Biotipo maíz
Endotoxinas BT
Microbiota intestinal
Resistencia
dc.subject.proposal.eng.fl_str_mv Corn Strain
Bt toxins
Gut microbiota
Resistance
description ilustraciones, diagramas, tablas
publishDate 2021
dc.date.issued.none.fl_str_mv 2021
dc.date.accessioned.none.fl_str_mv 2022-08-26T22:04:40Z
dc.date.available.none.fl_str_mv 2022-08-26T22:04:40Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/82152
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/82152
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Adamczyk, John J, Jonathan W Holloway, Billy R Leonard, and Jerry B Graves. 1997. “Susceptibility of Fall Armyworm Collected from Different Plant Hosts to Selected.” 28(August): 21–28.
Abdelhadi AA, Elarabi NI, Salim RG, Sharaf AN, Abosereh NA (2016) Identification, characterization and genetic improvement of bacteriocin producing lactic acid bacteria. Biotechnology 15(3-4):76–85. https://doi.org/10.3923/biotech.2016.76.85
Adang, M. J., Crickmore, N., & Jurat-Fuentes, J. L. (2014). Diversity of Bacillus thuringiensis crystal toxins and mechanism of action. In Advances in insect physiology (Vol. 47, pp. 39-87). Academic Press.
Allen, Heather K et al. 2009. “Resident Microbiota of the Gypsy Moth Midgut Harbors Antibiotic Resistance Determinants.” 28(3): 109–17.
Almeida, L. G. D., Moraes, L. A. B. D., Trigo, J. R., Omoto, C., & Consoli, F. L. (2017). The gut microbiota of insecticide-resistant insects houses insecticide-degrading bacteria: A potential source for biotechnological exploitation. PloS one, 12(3), e0174754.
Ashley, T O M R. 1986. “Geographical Distributions and Parasitization Levels for Parasitoids of the Fall Armyworm , Spodoptera Frugiperda Author ( S ): Tom R . Ashley Published by : Florida Entomological Society September , 1986 DISTRIBUTIONS AND PARASITIZATION GEOGRAPHICAL LEVE.” 69(3): 516–24.
Assefa, F., & Ayalew, D. (2019). Status and control measures of fall armyworm (Spodoptera frugiperda) infestations in maize fields in Ethiopia: A review. Cogent Food & Agriculture, 5(1), 1641902.
Bel, Y., Ferré, J., & Hernández-Martínez, P. (2020). Bacillus thuringiensis toxins: functional characterization and mechanism of action. Toxins, 12(12), 785.
Brinkmann, N., Martens, R., and Tebbe, C. C. (2008). Origin and diversity of metabolically active gut bacteria from laboratory-bred larvae of Manduca sexta (Sphingidae, Lepidoptera, Insecta). Appl. Environ. Microbiol. 74, 7189–7196. doi: 10.1128/AEM.01464-08
Broderick, Nichole A et al. 2004. “Census of the Bacterial Community of the Gypsy Moth Larval Midgut by Using Culturing and Culture-Independent Methods.” 70(1): 293–300.
Broderick, N. A., Raffa, K. F., & Handelsman, J. (2006). Midgut bacteria required for Bacillus thuringiensis insecticidal activity. Proceedings of the National Academy of Sciences, 103(41), 15196-15199.
Broderick, N. A., Robinson, C. J., McMahon, M. D., Holt, J., Handelsman, J., & Raffa, K. F. (2009). Contributions of gut bacteria to Bacillus thuringiensis-induced mortality vary across a range of Lepidoptera. BMC biology, 7(1), 1-9.
Busato, Gustavo et al. 2014. “Analysis of the Molecular Structure and Diversity of Spodoptera frugiperda SYSTEMATICS , MORPHOLOGY AND PHYSIOLOGY Análise Da Estrutura E Diversidade Molecular de Populações de Spodoptera frugiperda (J . E. Smith) (Lepidoptera : Noctuidae) Associadas.”
Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J., & Holmes, S. P. (2016). DADA2: High-resolution sample inference from Illumina amplicon data. Nature methods, 13(7), 581–583. https://doi.org/10.1038/nmeth.3869
Cano-Calle, Daniela, Rafael Arango-Isaza, and Clara Saldamando-Benjumea. 2015. “Molecular Identification of Spodoptera frugiperda ( Lepidoptera : Noctuidae ) Corn and Rice Strains in Colombia by Using a PCR-RFLP of the Mitochondrial Gene Cytochrome Oxydase I ( COI ) and a PCR of the Gene FR ( For Rice ).”
Cañas-Hoyos, N., Lobo-Echeverri, T., & Saldamando-Benjumea, C. I. (2017). Chemical Composition of Female Sexual Glands of Spodoptera frugiperda 1 Corn and Rice Strains from Tolima, Colombia. Southwestern Entomologist, 42(2), 375-394.
Capinera, J. L. (2002). Fall Armyworm, Spodoptera frugiperda (JE Smith) (Insecta: Lepidoptera: Noctuidae): EENY098/IN255, rev. 7/2000. EDIS, 2002(7).
Caporaso, J Gregory et al. 2011. “QIIME Allows Analysis of High-Throughput Community Sequencing Data.” 7(5): 335–36.
Cardenas, Estrella. 1993. “ESPECIES DE TRIPS (THYSANOPTERA : THRIPIDAE) MAS COMUNES EN INVERNADEROS DE FLORES DE LA SABANA DE BOGOTA. Thrips Species (Thysanoptera Thripidae) More Common in Cut Flower Greenhouse in Bogotá Plateau .”
Caruso, V., Song, X., Asquith, M., & Karstens, L. (2019). Performance of microbiome sequence inference methods in environments with varying biomass. MSystems, 4(1), e00163-18.
Chen, Bosheng et al. 2016. “Biodiversity and Activity of the Gut Microbiota across the Life History of the Insect Herbivore Spodoptera littoralis.” Nature (July): 1–14. http://dx.doi.org/10.1038/srep29505.
Chen, X., Peiffer, M., Tan, C. W., & Felton, G. W. (2020). Fungi from the black cutworm Agrotis ipsilon oral secretions mediate plant–insect interactions. Arthropod-Plant Interactions, 14(4), 423-432.
Cherif, A.; Rezgui, W.; Raddadi, N.; Daffonchio, D.; Boudabous, A. Characterization and partial purification of entomocin 110, a newly identified bacteriocin from Bacillus thuringiensis subsp. Entomocidus HD110.Microbiol. Res. 2008, 163, 684–692.
Chong, J., Liu, P., Zhou, G., and Xia. J. (2020) "Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data" Nature Protocols (DOI: 10.1038/s41596-019-0264-1)
Cock, Matthew J W et al. 2017. “Molecular Methods to Detect Spodoptera Frugiperda in Ghana , and Implications for Monitoring the Spread of Invasive Species in Developing Countries.” (February): 1–10.
Cole, J R et al. 2009. “The Ribosomal Database Project : Improved Alignments and New Tools for rRNA Analysis.” 37(November 2008): 141–45.
Combe, B.E.; Defaye, A.; Bozonnet, N.; Puthier, D.; Royet, J.; Leulier, F. Drosophila microbiota modulates host metabolic gene expression via IMD/NF-kappa B signaling. PLoS ONE 2014, 9, e94729.
Cruz-Esteban, S., Hernández-Ledesma, P., Malo, E. A., & Rojas, J. C. (2020). Cebos feromonales para la captura de Spodoptera frugiperda (JE Smith)(Lepidoptera: Noctuidae) en cultivos de maíz adyacentes a cultivos de fresas. Acta zoológica mexicana, 36.
Cuellar Castro, Y. C. (2015). Análisis normativo de los cultivos transgénicos en Colombia y propuesta de un modelo agroalimentario protector de los derechos de los campesinos y consumidores.
Dangal, Vikash. 2014. “Characterization of Cry1F Resistance in Fall Armyworm , Spodoptera Frugiperda ( J . E . Smith ) Obtained from Puerto Rico and Florida.”
Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: more models, new heuristics and parallel computing. Nat Methods. 2012;9(8):772. Doi:10.1038/nmeth.2109
Demanèche, S., Sanguin, H., Poté, J., Navarro, E., Bernillon, D., Mavingui, P., ... & Simonet, P. (2008). Antibiotic-resistant soil bacteria in transgenic plant fields. Proceedings of the National Academy of Sciences, 105(10), 3957-3962.
Deshmukh, Sharanabasappa et al. 2018. “First Report of the Fall Armyworm, Spodoptera Frugiperda (J E Smith) (Lepidoptera: Noctuidae), an Alien Invasive Pest on Maize in India.” (September).
Dhariwal, A., Chong, J., Habib, S., King, I., Agellon, LB., and Xia. J. (2017) "MicrobiomeAnalyst - a web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data" Nucleic Acids Research 45 W180-188 (DOI: 10.1093/nar/gkx295)
Dillon, R J, and V M Dillon. 2004. “T HE G UT B ACTERIA OF I NSECTS : Nonpathogenic Interactions.” (98): 71–92.
Dubovskiy, I. M., Grizanova, E. V., Whitten, M. M., Mukherjee, K., Greig, C., Alikina, T., et al. (2016). Immuno-physiological adaptations confer wax moth Galleria mellonella resistance to Bacillus thuringiensis. Virulence 7, 860–870.doi: 10.1080/21505594.2016.1164367
Dumas, Pascaline, Fabrice Legeai, Claire Lemaitre, and Erwan Scaon. 2015. “Spodoptera Frugiperda (Lepidoptera : Noctuidae ) Host-Plant Variants : Two Host Strains or Two Distinct Species ?” : 305–16.
Duplouy, A., & Hornett, E. A. (2018). Uncovering the hidden players in Lepidoptera biology: the heritable microbial endosymbionts. PeerJ, 6, e4629.
Pioneer Du Pont. Manejo de Gusano Cogollero en cultivos de Maíz.Boletín. (Internet). 2014, set. Disponible en: https://www.pioneer.com/CMRoot/international/Argentina_Intl/AGRONOMIA/MANEJO_DE_GUSANO_COGOLLERO_EN_MAIZ.pdf
Echeverri florez, Fernando, Carlos Eduardo Loaiza Marin, and Magnolia del Pilar Cano Ortiz. 2004. “Reconocimiento E Identificacion de Trips Fitofagos (Thysanoptera: Thripidae) Y Depredadores (Thysanoptera: Phlaeothripidae) Asociados a Cultivos Comerciales de Aguacate.”
Emery, O., Schmidt, K., & Engel, P. (2017). Immune system stimulation by the gut symbiont Frischella perrara in the honey bee (Apis mellifera). Molecular ecology, 26(9), 2576-2590.
Ferree, P. M., Avery, A., Azpurua, J., Wilkes, T., & Werren, J. H. (2008). A bacterium targets maternally inherited centrosomes to kill males in Nasonia. Current Biology, 18(18), 1409-1414.
Frago, Enric, Marcel Dicke, and H Charles J Godfray. 2012. “Insect Symbionts as Hidden Players in Insect – Plant Interactions.” Trends in Ecology & Evolution 27(12): 705–11. http://dx.doi.org/10.1016/j.tree.2012.08.013.
Fraher, Marianne H, Paul W O Toole, and Eamonn M M Quigley. 2012. “Techniques Used to Characterize the Gut Microbiota : A Guide for the Clinician.” Nature Reviews Gastroenterology & Hepatology 9(6): 312–22. http://dx.doi.org/10.1038/nrgastro.2012.44.
Franz, C. M., Stiles, M. E., Schleifer, K. H., & Holzapfel, W. H. (2003). Enterococci in foods—a conundrum for food safety. International journal of food microbiology, 88(2-3), 105-122.
Farnsworth, C. A., M. A. Teese, G. Yuan, Y. Li, C. Scott, X. Zhang, Y. Wu, R. J. Russell, and J. G. Oakeshott. 2010. Esterase-based metabolic resistance in heliothine and spodopteran pest. J. Pestic. Sci.
Funke, M., Büchler, R., Mahobia, V., Schneeberg, A., Ramm, M., & Boland, W. (2008). Rapid hydrolysis of quorum‐sensing molecules in the gut of lepidopteran larvae. ChemBioChem, 9(12), 1953-1959.
Gaurav S. Kandlikar ranacapa: An R package and Shiny web app to explore environmental DNA data with exploratory statistics and interactive visualizations., 2018.
Gomez, A. M., Yannarell, A. C., Sims, G. K., Cadavid-Restrepo, G., & Moreno Herrera, C. X. (2011). Characterization of bacterial diversity at different depths in the Moravia Hill landfill site at Medellín, Colombia. Soil Biology and Biochemistry, 43, 1275– 1284. https://doi.org/10.1016/j.soilbio.2011.02.018
Graham, R. I., Grzywacz, D., Mushobozi, W. L., & Wilson, K. (2012). W olbachia in a major African crop pest increases susceptibility to viral disease rather than protects. Ecology letters, 15(9), 993-1000.
Grau, T., Vilcinskas, A., & Joop, G. (2017). Probiotic Enterococcus mundtii isolate protects the model insect Tribolium castaneum against Bacillus thuringiensis. Frontiers in microbiology, 8, 1261.
Harumoto, T., Anbutsu, H., Lemaitre, B., & Fukatsu, T. (2016). Male-killing symbiont damages host’s dosage-compensated sex chromosome to induce embryonic apoptosis. Nature communications, 7(1), 1-12.
Hasegawa M, Kishino H, Yano T. Dating of human-ape splitting by a molecular clock of mitochondrial DNA, J. Mol. Evol., 1985, vol. 22 (pg. 160-174)
Heckel, D. G. (2020). How do toxins from Bacillus thuringiensis kill insects? An evolutionary perspective. Archives of insect biochemistry and physiology, 104(2), e21673.
Hernandez-Martinez, P.; Naseri, B.; Navarro-Cerrillo, G.; Escriche, B.; Ferre, J.; Herrero, S. Increase in midgutmicrobiota load induces an apparent immune priming and increases tolerance to Bacillus thuringiensis. Environ. Microbiol. 2010,12, 2730–2737
Higuita Palacio, M. F., Montoya, O. I., Saldamando, C. I., García-Bonilla, E., Junca, H., Cadavid-Restrepo, G. E., & Moreno-Herrera, C. X. (2021). Dry and Rainy Seasons Significantly Alter the Gut Microbiome Composition and Reveal a Key Enterococcus sp.(Lactobacillales: Enterococcaceae) Core Component in Spodoptera frugiperda (Lepidoptera: Noctuidae) Corn Strain From Northwestern Colombia. Journal of Insect Science, 21(6), 10.
Huang, F., Qureshi, J. A., Meagher Jr, R. L., Reisig, D. D., Head, G. P., Andow, D. A., ... & Dangal, V. (2014). Cry1F resistance in fall armyworm Spodoptera frugiperda: single gene versus pyramided Bt maize. PloS one, 9(11), e112958.
Huelsenbeck, J. P. and F. Ronquist. 2001. MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17:754-755.
Ibrahim, M.A.; Griko, N.; Junker, M.; Bulla, L.A. Bacillus thuringiensis: A genomics and proteomics perspective.Bioeng. Bugs 2010, 1, 31–50.
Instituto Colombiano Agropecuario ICA, 2012. REsolucion 232 autorizacion al ICA para utilizar el maiz BT11*MIR162*MIR604*GA21
Jensen, P R, and W Fenical. 1994. “Strategies for the Discovery of Secondary Metabolites from Marine Bacteria: Ecological Perspectives.” Annual Review of Microbiology 48(1): 559–84.
Johnson, J. S., Spakowicz, D. J., Hong, B. Y., Petersen, L. M., Demkowicz, P., Chen, L., ... & Weinstock, G. M. (2019). Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nature communications, 10(1), 1-11.
Jones, C. M., Lim, K. S., Chapman, J. W., and Bass, C. (2018). Genome-wide characterization of DNA methylation in an invasive lepidopteran pest, the cotton bollworm Helicoverpa armigera. G3 (Bethesda). 8, 779–787. doi: 10. 1534/g3.117.1112
Joos, L., Beirinckx, S., Haegeman, A., Debode, J., Vandecasteele, B., Baeyen, S., & De Tender, C. (2020). Daring to be differential: metabarcoding analysis of soil and plant-related microbial communities using amplicon sequence variants and operational taxonomical units. BMC genomics, 21(1), 1-17.
Kaur, R., & Singh, D. (2020). MOLECULAR MARKERS A VALUABLE TOOL FOR SPECIES IDENTIFICATION OF INSECTS: A REVIEW. Ann. Entomol, 38(01-02), 01-02.
Kwong, W.K.; Mancenido, A.L.; Moran, N.A. Immune system stimulation by the native gut microbiota of honey bees. R. Soc. Open Sci. 2017, 4, 170003.
Larson, Z., Subramanyam, B., Zurek, L., & Herrman, T. (2008). Diversity and antibiotic resistance of enterococci associated with stored-product insects collected from feed mills. Journal of stored products research, 44(2), 198-203.
Lemaitre, B.; Hoffmann, J. The host defense of Drosophila melanogaster. Annu. Rev. Immunol. 2007, 25, 697–743.
Levy, Hazel C, Alejandra Garcia-maruniak, and James E Maruniak. 2002. “STRAIN IDENTIFICATION OF SPODOPTERA FRUGIPERDA (LEPIDOPTERA: NOCTUIDAE) INSECTS AND CELL LINE: PCR-RFLP OF CYTOCHROME OXIDASE C SUBUNIT I GENE.” 85(1): 186–90.
Li, S., De Mandal, S., Xu, X., & Jin, F. (2020). The Tripartite interaction of host immunity–Bacillus thuringiensis infection–gut microbiota. Toxins, 12(8), 514.
Li, S., Xu, X., De Mandal, S., Shakeel, M., Hua, Y., Shoukat, R. F., & Jin, F. (2021). Gut microbiota mediate Plutella xylostella susceptibility to Bt Cry1Ac protoxin is associated with host immune response. Environmental Pollution, 271, 116271.
Liu, L., Li, Z., Luo, X., Zhang, X., Chou, S. H., Wang, J., & He, J. (2021). Which Is Stronger? A Continuing Battle Between Cry Toxins and Insects. Frontiers in microbiology, 12, 665101. https://doi.org/10.3389/fmicb.2021.665101
Login, F. H., Balmand, S., Vallier, A., Vincent-Monégat, C., Vigneron, A., Weiss-Gayet, M., ... & Heddi, A. (2011). Antimicrobial peptides keep insect endosymbionts under control. Science, 334(6054), 362-365.
López - Edwards, Marilu et al. 1999. “Biological Differences between Five Populations of Fall Armyworm ( Lepidoptera : Noctuidae ) Collected from Corn in Mexico.” (June).
Luginbill, P. (1928). The fall army worm (No. 34). US Department of Agriculture.
Mallet, James, and Michele Dres. 2002. “Host Races in Plant-Feeding Insects and Their Importance in Sympatric Speciation.” (October 2001): 471–92.
McLaren, Michael R., & Callahan, Benjamin J. (2021). Silva 138.1 prokaryotic SSU taxonomic training data formatted for DADA2 [Data set]. Zenodo. https://doi.org/10.5281/zenodo.4587955
Mason, C. J., Ray, S., Shikano, I., Peiffer, M., Jones, A. G., Luthe, D. S.,... & Felton, G. W. (2019). Plant defenses interact with insect enteric bacteria by initiating a leaky gut syndrome. Proceedings of the National Academy of Sciences, 116(32), 15991-15996.
Mason, C. J. (2020). Complex relationships at the intersection of insect gut microbiomes and plant defenses. Journal of Chemical Ecology, 46(8), 793-807.
Mereghetti, V., Chouaia, B., & Montagna, M. (2017). New insights into the microbiota of moth pests. International Journal of Molecular Sciences, 18(11), 2450.
Montoya-Porras, L. M., Omar, T. C., Alzate, J. F., Moreno-Herrera, C. X., & Cadavid-Restrepo, G. E. (2018). 16S rRNA gene amplicon sequencing reveals dominance of Actinobacteria in Rhodnius pallescens compared to Triatoma maculata midgut microbiota in natural populations of vector insects from Colombia. Acta Tropica, 178, 327-332.
Murúa, M G, M T Vera, S Abraham, and M L Juare. 2009. “Fitness and Mating Compatibility of Spodoptera Frugiperda ( Lepidoptera : Noctuidae ) Populations from Different Host Plant Species and Regions in Argentina Fitness and Mating Compatibility of Spodoptera Frugiperda ( Lepidoptera : Noctuidae ) Populations.” (May).
Nagoshi, R. N. (2010). The fall armyworm triose phosphate isomerase (Tpi) gene as a marker of strain identity and interstrain mating. Annals of the Entomological Society of America, 103(2), 283-292.
Nagoshi, R. N. (2012). Improvements in the identification of strains facilitate population studies of fall armyworm subgroups. Annals of the Entomological Society of America, 105(2), 351-358.
Oliveira, N. C. D. Gut microbiota of the rice and corn strains of Spodoptera frugiperda: diversity and function (Doctoral dissertation, Universidade de São Paulo) 2021.
Oliveira, N. C., Rodrigues, P. A., & Cônsoli, F. L. (2021). Host-Adapted Strains of Spodoptera frugiperda Hold and Share a Core Microbial Community Across the Western Hemisphere. bioRxiv.
Orozco-flores, Alonso A et al. 2017. “Regulation by Gut Bacteria of Immune Response , Bacillus Thuringiensis Susceptibility and Hemolin Expression in Plodia Interpunctella.” Journal of Insect Physiology 98: 275–83. http://dx.doi.org/10.1016/j.jinsphys.2017.01.020.
Paddock, K.J., Pereira, A.E., Finke, D.L., Ericsson, A.C., Hibbard, B.E. and Shelby, K.S. (2021), Host resistance to Bacillus thuringiensis is linked to altered bacterial community within a specialist insect herbivore. Mol Ecol, 30: 5438-5453. https://doi.org/10.1111/mec.15875
Pardo-Lopez, L., Soberon, M., & Bravo, A. (2013). Bacillus thuringiensis insecticidal three-domain Cry toxins: mode of action, insect resistance and consequences for crop protection. FEMS microbiology reviews, 37(1), 3-22.
Patil, C. D., Borase, H. P., Salunke, B. K., & Patil, S. V. (2013). Alteration in Bacillus thuringiensis toxicity by curing gut flora: novel approach for mosquito resistance management. Parasitology research, 112(9), 3283-3288.
Paul J. McMurdie phyloseq: An R package for reproducible interactive analysis and graphics of microbiome censos data., 2013, R package version 1.19
Peterson, B., Bezuidenhout, C. C., & Van den Berg, J. (2017). An overview of mechanisms of Cry toxin resistance in lepidopteran insects. Journal of Economic Entomology, 110(2), 362-377.
Peyronnet, O., Vachon, V., Brousseau, R., Baines, D., Schwartz, J. L., & Laprade, R. (1997). Effect of Bacillus thuringiensis toxins on the membrane potential of lepidopteran insect midgut cells. Applied and Environmental Microbiology, 63(5), 1679-1684.
Prowell, Dorothy Pashley, and Margaret M C Michael. 2004. “Multilocus Genetic Analysis of Host Use , Introgression , and Speciation in Host Strains of Fall Armyworm ( Lepidoptera : Noctuidae ).” : 1034–44.
Qu, LY., Lou, YH., Fan, HW. et al. Two endosymbiotic bacteria, Wolbachia and Arsenophonus, in the brown planthopper Nilaparvata lugens . Symbiosis 61, 47–53 (2013). https://doi.org/10.1007/s13199-013-0256-9
Rahman, M., Glatz, R., Roush, R., and Schmidt, O. (2011). Developmental penalties associated with inducible tolerance in Helicoverpa armigera to insecticidal toxins from Bacillus thuringiensis. Appl. Environ. Microbiol. 77, 1443–1448.doi: 10.1128/AEM.01467-10
Rambaut, A. (2010) FigTree v1.3.1. Institute of Evolutionary Biology, University of Edinburgh, Edinburgh. http://tree.bio.ed.ac.uk/software/figtree/
Rao, X.J.; Yu, X.Q. Lipoteichoic acid and lipopolysaccharide can activate antimicrobial peptide expression inthe tobacco hornwormManduca sexta.Dev. Comp. Immunol.2010,34, 1119–1128
Raymann, K., Shaffer, Z., & Moran, N. A. (2017). Antibiotic exposure perturbs the gut microbiota and elevates mortality in honeybees. PLoS biology, 15(3), e2001861.
Raymond, B., Johnston, P. R., Wright, D. J., Ellis, R. J., Crickmore, N., & Bonsall, M. B. (2009). A mid‐gut microbiota is not required for the pathogenicity of Bacillus thuringiensis to diamondback moth larvae. Environmental microbiology, 11(10), 2556-2563.
Razze, J. M., Mason, C. E., & Pizzolato, T. D. (2011). Feeding behavior of neonate Ostrinia nubilalis (Lepidoptera: Crambidae) on Cry1Ab Bt corn: Implications for resistance management. Journal of economic entomology, 104(3), 806-813.
Riesenfeld, C. S., Schloss, P. D., & Handelsman, J. (2004). Metagenomics: genomic analysis of microbial communities. Annu. Rev. Genet., 38, 525-552.
Ríos-Díez, J. D., Siegfried, B., & Saldamando-Benjumea, C. I. (2012). Susceptibility of Spodoptera frugiperda (Lepidoptera: Noctuidae) strains from central Colombia to Cry1Ab and Cry1Ac entotoxins of Bacillus thuringiensis. Southwestern Entomologist, 37(3), 281-293.
Riparbelli, M. G., Giordano, R., Ueyama, M., & Callaini, G. (2012). Wolbachia-mediated male killing is associated with defective chromatin remodeling. PloS one, 7(1), e30045.
Ronquist, F., M. Teslenko, P. van der Mark, D.L. Ayres, A. Darling, S. Höhna, B. Larget, L. Liu, M.A. Suchard, and J.P. Huelsenbeck. 2012. MRBAYES 3.2: Efficient Bayesian phylogenetic inference and model selection across a large model space. Syst. Biol. 61:539-542.
Rosero, D. A., Gutiérrez, L. A., Cienfuegos, A. V., Jaramillo, L. M., & Correa, M. M. (2010). Optimización de un procedimiento de extracción de ADN para mosquitos anofelinos. Rev Colomb Entomol, 36, 260-263.
Salinas-Hernandez, H., & Saldamando-Benjumea, C. I. (2011). Haplotype identification within Spodoptera frugiperda (JE Smith)(Lepidoptera: Noctuidae) corn and rice strains from Colombia. Neotropical Entomology, 40(4), 421-430.
Sarangi, Aditya N, Amit Goel, and Rakesh Aggarwal. 2019. “Methods for Studying Gut Microbiota :” Journal of Clinical and Experimental Hepatology 9(1): 62–73. https://doi.org/10.1016/j.jceh.2018.04.016.
Schnepf, E., Crickmore, N., Van Rie, J., Lereclus, D., Baum, J., Feitelson, J., & Dean, D. (1998). Bacillus thuringiensis and its pesticidal crystal proteins. Microbiology and molecular biology reviews, 62(3), 775-806.
Shao, Y.Q.; Arias-Cordero, E.; Guo, H.J.; Bartram, S.; Boland, W. In Vivo Pyro-SIP Assessing Active GutMicrobiota of the Cotton Leafworm, Spodoptera littoralis.PLoS ONE2014,9, e85948
Shao, Y.; Chen, B.; Sun, C.; Ishida, K.; Hertweck, C.; Boland, W. Symbiont-derived antimicrobials contributeto the control of the lepidopteran gut microbiota.Cell Chem. Biol.2017,24, 66–75
Shi, Weibing, Ryan Syrenne, Jian-zhong Sun, and Joshua S Yuan. 2010. “Molecular Approaches to Study the Insect Gut Symbiotic Microbiota at the ‘ Omics ’ Age.” : 199–219.
Sparks, A. N. (1979). Fall Armyworm Symposium: A review of the biology of the fall armyworm. Florida Entomologist, 62(2), 82-87.
Storelli, G.; Defaye, A.; Erkosar, B.; Hols, P.; Royet, J.; Leulier, F. Lactobacillus plantarum promotes Drosophila systemic growth by modulating hormonal signals through TOR-dependent nutrient sensing. Cell Metab.2011, 14, 403–414
Sweby, D. L., Martin, L. A., Govender, S., Conlong, D. E., & Rutherford, R. S. (2010). The presence of Wolbachia in Eldana saccharina Walker (Lepidoptera: Pyralidae): implications for biological control. In Proc S Afr Sug Technol Ass (Vol. 83, pp. 257-261).
Tabashnik, B., Carrière, Y. Surge in insect resistance to transgenic crops and prospects for sustainability. Nat Biotechnol 35, 926–935 (2017). https://doi.org/10.1038/nbt.3974
Talaei-hassanloui, Reza, Raziyeh Bakhshaei, Vahid Hosseininaveh, and Ayda Khorramnezhad. 2014. “Effect of Midgut Proteolytic Activity on Susceptibility of Lepidopteran Larvae to Bacillus Thuringiensis Subsp . Kurstaki.” 4(January): 4–9.
Tang, X.; Freitak, D.; Vogel, H.; Ping, L.; Shao, Y.; Cordero, E.A.; Andersen, G.; Westermann, M.; Heckel, D.G.;Boland, W.; et al. Complexity and variability of gut commensal microbiota in polyphagous lepidopteran larvae. PLoS ONE 2012, 7, e36978
Tavaré S. Miura RM. Some probabilistic and statistical problems in the analysis of DNA sequences, Lectures on mathematics in the life sciences, 1986, vol. Volume 17 Providence (RI)American Mathematical Society(pg. 57-86)
Tetreau, G., Grizard, S., Patil, C. D., Tran, F. H., Stalinski, R., Laporte, F., & Moro, C. V. (2018). Bacterial microbiota of Aedes aegypti mosquito larvae is altered by intoxication with Bacillus thuringiensis israelensis. Parasites & vectors, 11(1), 1-12.
Thakur A, Dhammi P, Saini HS, Kaur S. Pathogenicity of bacteria isolated from gut of Spodoptera litura (Lepidoptera: Noctuidae) and fitness costs of insect associated with consumption of bacteria. J Invertebr Pathol. 2015 May;127:38-46. doi: 10.1016/j.jip.2015.02.007. Epub 2015 Feb 25. PMID: 25725116.
Thakur, A.; Dhammi, P.; Saini, H.S.; Kaur, S. Effect of antibiotic on survival and development of Spodoptera litura (Lepidoptera: Noctuidae) and its gut microbial diversity. Bull. Entomol. Res. 2016, 106, 387–394.
TORRES, L., & COTES, A. (2005). Efecto de la crioconservación sobre la viabilidad y actividad biocontroladora de Nomuraea rileyi contra Spodoptera frugiperda (Lepidoptera: Noctuidae). Revista Colombiana de Entomología, 31(2), 133-138.
Van Rie, J. Bacillus thuringiensis and its use in transgenic insect control technologies. Int. J. Med. Microbiol.2000, 290, 463–469.
van Lenteren JC, Bolckmans K, Köhl J, Ravensberg WJ, Urbaneja A (2018) Biological control using invertebrates and microorganisms: plenty of new opportunities. BioControl. 63(1):39 –59. https://doi.org/10.1007/s10526-017-9801-4
Vásquez, A., Forsgren, E., Fries, I., Paxton, R. J., Flaberg, E., Szekely, L., & Olofsson, T. C. (2012). Symbionts as major modulators of insect health: lactic acid bacteria and honeybees. PloS one, 7(3), e33188.
Vélez-arango, A N A María et al. 2008. “( Lepidoptera : Noctuidae ) Mediante Marcadores Mitocondriales Y Nucleares.” 34(63): 145–50.
Visweshwar, R., Sharma, H. C., Akbar, S. M. D., & Sreeramulu, K. (2015). Elimination of gut microbes with antibiotics confers resistance to Bacillus thuringiensis toxin proteins in Helicoverpa armigera (Hubner). Applied biochemistry and biotechnology, 177(8), 1621-1637.
Vivero, Rafael José, Natalia Gil Jaramillo, Gloria Cadavid-restrepo, and Sandra I Uribe Soto. 2016. “Structural Differences in Gut Bacteria Communities in Developmental Stages of Natural Populations of Lutzomyia Evansi from Colombia â€TM S Caribbean Coast.” Parasites & Vectors: 1–20. http://dx.doi.org/10.1186/s13071-016-1766-0.
Vries, Egbert J De, Gerrit Jacobs, and Johannes A J Breeuwer. 2011. “Growth and Transmission of Gut Bacteria in the Western Flower Thrips , Frankliniella Occidentalis.” 137(2001): 129–37.
Wang, L. T., Lee, F. L., Tai, C. J., & Kasai, H. (2007). Comparison of gyrB gene sequences, 16S rRNA gene sequences and DNA–DNA hybridization in the Bacillus subtilis group. International journal of systematic and evolutionary microbiology, 57(8), 1846-1850.
Wang, Q.; Ren, M.; Liu, X.; Xia, H.; Chen, K. Peptidoglycan recognition proteins in insect immunity.Mol. Immunol.2019,106, 69–76
Yamamoto, S., & Harayama, S. (1995). PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Applied and environmental microbiology, 61(3), 1104-1109.
Zhu, Y. C., Kramer, K. J., Oppert, B., & Dowdy, A. K. (2000). cDNAs of aminopeptidase-like protein genes from Plodia interpunctella strains with different susceptibilities to Bacillus thuringiensis toxins. Insect Biochemistry and Molecular Biology, 30(3), 215-224
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xx, 142 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Ciencias - Maestría en Ciencias - Biotecnología
dc.publisher.department.spa.fl_str_mv Escuela de biociencias
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/82152/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/82152/2/1033687052_2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/82152/3/1033687052_2021.pdf.jpg
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
30d6ba6cf42a413083ab92cd305fa29e
8e8801aec65532f2ffdd65a734db2b52
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089279011291136
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cadavid Restrepo, Gloria Ester678bdd51eb1e2c1316a16d5074303830600Saldamando Benjumea, Clara Inéseb84ab30edba9019a94e8184c42a2d41600Castañeda Molina, Yuliana del Pilar835da70c24b3c123d000494a5a241de9Moreno Herrera, Claudia XimenaMicrobiodiversidad y Bioprospección2022-08-26T22:04:40Z2022-08-26T22:04:40Z2021https://repositorio.unal.edu.co/handle/unal/82152Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, tablasSpodoptera frugiperda (Lepidoptera, Noctuidae), es reconocida como una plaga polífaga primaria de cultivos de maíz (Zea mays) y arroz (Oryza sativa) en todo el continente americano y recientemente en África, Asia y Australia. En Colombia, esta polilla ha divergido en dos biotipos morfológicamente idénticos en estado de larva, pero morfológicamente diferentes en estado adulto, los cuales se han denominado con base en la asociación al alimento que consumen con mayor preferencia: biotipos de maíz (asociado a los cultivos del maíz, algodón, sorgo y caña de azúcar) y biotipo arroz (asociado a arroz y pasto). Desde hace varias décadas, se ha descrito que en los insectos, las capacidades de defensa, digestión, captación de nutrientes, incluso la degradación de compuestos tóxicos como insecticidas y endotoxinas está fuertemente influenciada por su microbiota intestinal. Se ha encontrado que en Colombia, el biotipo maíz ha desarrollado resistencia a las endotoxinas de Bacillus thuringiensis (Bt) Cry 1Ac y Cry 1Ab, por lo que la microbiota intestinal podría tener un efecto modulador en la toxicidad de las mismas. En este estudio, se llevó a cabo la caracterización de la microbiota intestinal de larvas de S. frugiperda biotipo maíz en presencia/ausencia de endotoxinas de Bt y de antibióticos para determinar el papel de la microbiota en la respuesta del insecto al Bt. Para ello se implementó el uso de métodos cultivo dependientes y cultivo independientes mediante análisis de secuenciación Sanger y NGS (Next Generation Sequence). Adicionalmente se determinó la presencia de microorganismos endosimbiontes con potencial en control biológico como Wolbachia, Arsenophonus, Microsporidia, Spiroplasma, y Cardinium, usando cebadores específicos. Los aislados bacterianos intestinales fueron identificados a partir de caracterización molecular, mediante la secuenciación de los genes RNAr 16S y girasa, previo análisis de la región intergénica ribosomal (ITS) y adicionalmente la caracterización macro y microscópica de las colonias fue realizada. Los resultados indicaron que los 15 aislamientos bacterianos pertenecen a las especies Enterococcus mundtii, Enterococcus sileciacus, Enterococcus gallinarum y Enterococcus casseliflavus. Los resultados de NGS (Illumina Miseq) reportaron que, Firmicutes y Proteobacteria fueron los filos más abundantes en las muestras; un total de 790.011 lecturas fueron analizadas y asignadas por similaridad a 2439 ASVs (Del inglés Amplicon Sequence Variant). Con relación a la presencia de endosimbiontes, se encontró una prevalencia del 100% de Arsenophonus, por métodos de PCR convencional y NGS, en todas las muestras evaluadas; sin embargo, otros simbiontes no fueron detectados en las condiciones evaluadas. En este estudio se reportó la prevalencia del género Enterococcus así como ya se ha descrito en otros estudios anteriores realizados en el mismo biotipo. Adicionalmente se encontró que posterior al ensayo con antibióticos, la diversidad de la microbiota intestinal aumentó, lo cual podría sugerir la actuación de los antibióticos sobre bacterias del género Enterococcus lo que consecuentemente permitió un aumento en la diversidad bacteriana ya que se eliminó el género más competitivo y abundante del tracto intestinal del insecto. Por otro lado, se lograron identificar los géneros Burkholderia e Ileibacterium en aquellos tratamientos con presencia de Bt, sugiriendo que estas bacterias podrían realzar la respuesta del insecto a la endotoxina. Finalmente, este es, el primer reporte del género Arsenophonus en S. frugiperda, este endosimbionte es importante en insectos ya que ha sido relacionado con la respuesta de tolerancia a insecticidas que han sido utilizados para su control. Este trabajo es una primera aproximación al conocimiento de la microbiota de S. frugiperda biotipo maíz y su dinámica en presencia de endotoxinas lo que puede ayudar a comprender su papel potencial en la respuesta del insecto al control por Bt. (Texto tomado de la fuente)Spodoptera frugiperda (Lepidoptera, Noctuidae), is recognized as a polyphagous pest and primary pest of corn (Zea mays) and rice (Oryza sativa) in America and recently in Africa, Asia and Australia. In Colombia, this moth has diverged in two strains that are morphologically identical at the larvae instar but are morphologically different at adult stages. These strains have been named according to the host they preferentially consume that are the corn strain (associated to corn, cotton, sorghum and sugar cane) and the rice strain (associated to rice and pasture grasses). Decades ago, it has been described that the capacity of insects’ defense, digestion, nutrients absorption and even degradation of toxic compounds such as insecticides and endotoxins are influenced by their microbiota. It has been found that in Colombia, the corn strain has developed resistance to Bacillus thuringiensis (Bt) endotoxins Cry1Ac and Cry1Ab and gut microbiota might have a modulatory effect on the response of this insect towards these endotoxins. In this study, the characterization of the gut microbiota of S. frugiperda larvae was carried out un presence/absence of Bt endotoxins and antibiotics to determine the role that microbiota plays in the response of the insect to Bt. For that, the use of cultivate dependent and independent methods were employed by using Sanger and NGS (Next Generation Sequence) sequencing. Additionally, detection of endosymbionts was also done to identify Wolbachia, Arsenophonus, Microsporidia, Spiroplasma, and Cardinium.by using specific primers for them. Bacteria isolates obtanied from the gut were identified based on a molecular characterization by sequencing the genes RNAr 16S, girase and ITS. Also, a macroscopic and microscopic characterization of the colonies was done allowing the identification of 15 different isolates that belong to the species Enterococcus mundtii, Enterococcus sileciacus, Enterococcus gallinarum y Enterococcus casseliflavus. NGS (Illumina Miseq) results reported the presence of the phyla Firmicutes and Proteobacteria as the most abundant groups; a total of 790.011 reads grouped into 2439 ASVs according to their genetic similarities. The presence of endosymbionts analysis showed a prevalence of the genus Arsenophonus in all samples based on conventional PCR and NGS; however, other endosymbionts were not detected. In this study, the prevalence of the genus Enterococcus was demonstrated, same results have been shown in other studies made on the species. Additionally, after the expose of gut microbiota to antibiotics an increment of bacteria diversity was observed, suggesting that these antibiotics eliminated this abundant genus found in S. frugiperda gut, and thus they eliminated the most competitive bacteria genus detected in this insect. On the other hand, the genus Burkholderia and Ileibacterium were mainly found in the bioassay of bacteria and presence of Bt, meaning that these bacteria might enhance the response of this insect to the endotoxin. Finally, this is the first report of the genus Arsenophonus in S. frugiperda and this endosymbiont is important in insects since it is related to the tolerance response of insects to insecticides that have been used for pest control. This work is a first approximation to the knowledge of S. frugiperda gut bacteria corn strain and its dynamics in the presence of endotoxins, which can help to understand its potential role in the response of the insect to control by Bt.MaestríaMagíster en Ciencias - BiotecnologíaEcología MicrobianaÁrea Curricular Biotecnologíaxx, 142 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Ciencias - Maestría en Ciencias - BiotecnologíaEscuela de biocienciasFacultad de CienciasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín570 - Biología::577 - Ecología570 - Biología::576 - Genética y evolución570 - Biología::572 - BioquímicaMaíz - Enfermedades y plagasSpodoptera frugiperdaArsenophonusBiotipo maízEndotoxinas BTMicrobiota intestinalResistenciaCorn StrainBt toxinsGut microbiotaResistanceEvaluación de la microbiota del tracto gastrointestinal del biotipo de maíz de Spodoptera frugiperda en presencia de endotoxinas del Bacillus thuringiensisEvaluation of Spodoptera frugiperda (corn strain) gut microbiota in presence of Bacillus thuringiensis endotoxinsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAdamczyk, John J, Jonathan W Holloway, Billy R Leonard, and Jerry B Graves. 1997. “Susceptibility of Fall Armyworm Collected from Different Plant Hosts to Selected.” 28(August): 21–28.Abdelhadi AA, Elarabi NI, Salim RG, Sharaf AN, Abosereh NA (2016) Identification, characterization and genetic improvement of bacteriocin producing lactic acid bacteria. Biotechnology 15(3-4):76–85. https://doi.org/10.3923/biotech.2016.76.85Adang, M. J., Crickmore, N., & Jurat-Fuentes, J. L. (2014). Diversity of Bacillus thuringiensis crystal toxins and mechanism of action. In Advances in insect physiology (Vol. 47, pp. 39-87). Academic Press.Allen, Heather K et al. 2009. “Resident Microbiota of the Gypsy Moth Midgut Harbors Antibiotic Resistance Determinants.” 28(3): 109–17.Almeida, L. G. D., Moraes, L. A. B. D., Trigo, J. R., Omoto, C., & Consoli, F. L. (2017). The gut microbiota of insecticide-resistant insects houses insecticide-degrading bacteria: A potential source for biotechnological exploitation. PloS one, 12(3), e0174754.Ashley, T O M R. 1986. “Geographical Distributions and Parasitization Levels for Parasitoids of the Fall Armyworm , Spodoptera Frugiperda Author ( S ): Tom R . Ashley Published by : Florida Entomological Society September , 1986 DISTRIBUTIONS AND PARASITIZATION GEOGRAPHICAL LEVE.” 69(3): 516–24.Assefa, F., & Ayalew, D. (2019). Status and control measures of fall armyworm (Spodoptera frugiperda) infestations in maize fields in Ethiopia: A review. Cogent Food & Agriculture, 5(1), 1641902.Bel, Y., Ferré, J., & Hernández-Martínez, P. (2020). Bacillus thuringiensis toxins: functional characterization and mechanism of action. Toxins, 12(12), 785.Brinkmann, N., Martens, R., and Tebbe, C. C. (2008). Origin and diversity of metabolically active gut bacteria from laboratory-bred larvae of Manduca sexta (Sphingidae, Lepidoptera, Insecta). Appl. Environ. Microbiol. 74, 7189–7196. doi: 10.1128/AEM.01464-08Broderick, Nichole A et al. 2004. “Census of the Bacterial Community of the Gypsy Moth Larval Midgut by Using Culturing and Culture-Independent Methods.” 70(1): 293–300.Broderick, N. A., Raffa, K. F., & Handelsman, J. (2006). Midgut bacteria required for Bacillus thuringiensis insecticidal activity. Proceedings of the National Academy of Sciences, 103(41), 15196-15199.Broderick, N. A., Robinson, C. J., McMahon, M. D., Holt, J., Handelsman, J., & Raffa, K. F. (2009). Contributions of gut bacteria to Bacillus thuringiensis-induced mortality vary across a range of Lepidoptera. BMC biology, 7(1), 1-9.Busato, Gustavo et al. 2014. “Analysis of the Molecular Structure and Diversity of Spodoptera frugiperda SYSTEMATICS , MORPHOLOGY AND PHYSIOLOGY Análise Da Estrutura E Diversidade Molecular de Populações de Spodoptera frugiperda (J . E. Smith) (Lepidoptera : Noctuidae) Associadas.”Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J., & Holmes, S. P. (2016). DADA2: High-resolution sample inference from Illumina amplicon data. Nature methods, 13(7), 581–583. https://doi.org/10.1038/nmeth.3869Cano-Calle, Daniela, Rafael Arango-Isaza, and Clara Saldamando-Benjumea. 2015. “Molecular Identification of Spodoptera frugiperda ( Lepidoptera : Noctuidae ) Corn and Rice Strains in Colombia by Using a PCR-RFLP of the Mitochondrial Gene Cytochrome Oxydase I ( COI ) and a PCR of the Gene FR ( For Rice ).”Cañas-Hoyos, N., Lobo-Echeverri, T., & Saldamando-Benjumea, C. I. (2017). Chemical Composition of Female Sexual Glands of Spodoptera frugiperda 1 Corn and Rice Strains from Tolima, Colombia. Southwestern Entomologist, 42(2), 375-394.Capinera, J. L. (2002). Fall Armyworm, Spodoptera frugiperda (JE Smith) (Insecta: Lepidoptera: Noctuidae): EENY098/IN255, rev. 7/2000. EDIS, 2002(7).Caporaso, J Gregory et al. 2011. “QIIME Allows Analysis of High-Throughput Community Sequencing Data.” 7(5): 335–36.Cardenas, Estrella. 1993. “ESPECIES DE TRIPS (THYSANOPTERA : THRIPIDAE) MAS COMUNES EN INVERNADEROS DE FLORES DE LA SABANA DE BOGOTA. Thrips Species (Thysanoptera Thripidae) More Common in Cut Flower Greenhouse in Bogotá Plateau .”Caruso, V., Song, X., Asquith, M., & Karstens, L. (2019). Performance of microbiome sequence inference methods in environments with varying biomass. MSystems, 4(1), e00163-18.Chen, Bosheng et al. 2016. “Biodiversity and Activity of the Gut Microbiota across the Life History of the Insect Herbivore Spodoptera littoralis.” Nature (July): 1–14. http://dx.doi.org/10.1038/srep29505.Chen, X., Peiffer, M., Tan, C. W., & Felton, G. W. (2020). Fungi from the black cutworm Agrotis ipsilon oral secretions mediate plant–insect interactions. Arthropod-Plant Interactions, 14(4), 423-432.Cherif, A.; Rezgui, W.; Raddadi, N.; Daffonchio, D.; Boudabous, A. Characterization and partial purification of entomocin 110, a newly identified bacteriocin from Bacillus thuringiensis subsp. Entomocidus HD110.Microbiol. Res. 2008, 163, 684–692.Chong, J., Liu, P., Zhou, G., and Xia. J. (2020) "Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data" Nature Protocols (DOI: 10.1038/s41596-019-0264-1)Cock, Matthew J W et al. 2017. “Molecular Methods to Detect Spodoptera Frugiperda in Ghana , and Implications for Monitoring the Spread of Invasive Species in Developing Countries.” (February): 1–10.Cole, J R et al. 2009. “The Ribosomal Database Project : Improved Alignments and New Tools for rRNA Analysis.” 37(November 2008): 141–45.Combe, B.E.; Defaye, A.; Bozonnet, N.; Puthier, D.; Royet, J.; Leulier, F. Drosophila microbiota modulates host metabolic gene expression via IMD/NF-kappa B signaling. PLoS ONE 2014, 9, e94729.Cruz-Esteban, S., Hernández-Ledesma, P., Malo, E. A., & Rojas, J. C. (2020). Cebos feromonales para la captura de Spodoptera frugiperda (JE Smith)(Lepidoptera: Noctuidae) en cultivos de maíz adyacentes a cultivos de fresas. Acta zoológica mexicana, 36.Cuellar Castro, Y. C. (2015). Análisis normativo de los cultivos transgénicos en Colombia y propuesta de un modelo agroalimentario protector de los derechos de los campesinos y consumidores.Dangal, Vikash. 2014. “Characterization of Cry1F Resistance in Fall Armyworm , Spodoptera Frugiperda ( J . E . Smith ) Obtained from Puerto Rico and Florida.”Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: more models, new heuristics and parallel computing. Nat Methods. 2012;9(8):772. Doi:10.1038/nmeth.2109Demanèche, S., Sanguin, H., Poté, J., Navarro, E., Bernillon, D., Mavingui, P., ... & Simonet, P. (2008). Antibiotic-resistant soil bacteria in transgenic plant fields. Proceedings of the National Academy of Sciences, 105(10), 3957-3962.Deshmukh, Sharanabasappa et al. 2018. “First Report of the Fall Armyworm, Spodoptera Frugiperda (J E Smith) (Lepidoptera: Noctuidae), an Alien Invasive Pest on Maize in India.” (September).Dhariwal, A., Chong, J., Habib, S., King, I., Agellon, LB., and Xia. J. (2017) "MicrobiomeAnalyst - a web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data" Nucleic Acids Research 45 W180-188 (DOI: 10.1093/nar/gkx295)Dillon, R J, and V M Dillon. 2004. “T HE G UT B ACTERIA OF I NSECTS : Nonpathogenic Interactions.” (98): 71–92.Dubovskiy, I. M., Grizanova, E. V., Whitten, M. M., Mukherjee, K., Greig, C., Alikina, T., et al. (2016). Immuno-physiological adaptations confer wax moth Galleria mellonella resistance to Bacillus thuringiensis. Virulence 7, 860–870.doi: 10.1080/21505594.2016.1164367Dumas, Pascaline, Fabrice Legeai, Claire Lemaitre, and Erwan Scaon. 2015. “Spodoptera Frugiperda (Lepidoptera : Noctuidae ) Host-Plant Variants : Two Host Strains or Two Distinct Species ?” : 305–16.Duplouy, A., & Hornett, E. A. (2018). Uncovering the hidden players in Lepidoptera biology: the heritable microbial endosymbionts. PeerJ, 6, e4629.Pioneer Du Pont. Manejo de Gusano Cogollero en cultivos de Maíz.Boletín. (Internet). 2014, set. Disponible en: https://www.pioneer.com/CMRoot/international/Argentina_Intl/AGRONOMIA/MANEJO_DE_GUSANO_COGOLLERO_EN_MAIZ.pdfEcheverri florez, Fernando, Carlos Eduardo Loaiza Marin, and Magnolia del Pilar Cano Ortiz. 2004. “Reconocimiento E Identificacion de Trips Fitofagos (Thysanoptera: Thripidae) Y Depredadores (Thysanoptera: Phlaeothripidae) Asociados a Cultivos Comerciales de Aguacate.”Emery, O., Schmidt, K., & Engel, P. (2017). Immune system stimulation by the gut symbiont Frischella perrara in the honey bee (Apis mellifera). Molecular ecology, 26(9), 2576-2590.Ferree, P. M., Avery, A., Azpurua, J., Wilkes, T., & Werren, J. H. (2008). A bacterium targets maternally inherited centrosomes to kill males in Nasonia. Current Biology, 18(18), 1409-1414.Frago, Enric, Marcel Dicke, and H Charles J Godfray. 2012. “Insect Symbionts as Hidden Players in Insect – Plant Interactions.” Trends in Ecology & Evolution 27(12): 705–11. http://dx.doi.org/10.1016/j.tree.2012.08.013.Fraher, Marianne H, Paul W O Toole, and Eamonn M M Quigley. 2012. “Techniques Used to Characterize the Gut Microbiota : A Guide for the Clinician.” Nature Reviews Gastroenterology & Hepatology 9(6): 312–22. http://dx.doi.org/10.1038/nrgastro.2012.44.Franz, C. M., Stiles, M. E., Schleifer, K. H., & Holzapfel, W. H. (2003). Enterococci in foods—a conundrum for food safety. International journal of food microbiology, 88(2-3), 105-122.Farnsworth, C. A., M. A. Teese, G. Yuan, Y. Li, C. Scott, X. Zhang, Y. Wu, R. J. Russell, and J. G. Oakeshott. 2010. Esterase-based metabolic resistance in heliothine and spodopteran pest. J. Pestic. Sci.Funke, M., Büchler, R., Mahobia, V., Schneeberg, A., Ramm, M., & Boland, W. (2008). Rapid hydrolysis of quorum‐sensing molecules in the gut of lepidopteran larvae. ChemBioChem, 9(12), 1953-1959.Gaurav S. Kandlikar ranacapa: An R package and Shiny web app to explore environmental DNA data with exploratory statistics and interactive visualizations., 2018.Gomez, A. M., Yannarell, A. C., Sims, G. K., Cadavid-Restrepo, G., & Moreno Herrera, C. X. (2011). Characterization of bacterial diversity at different depths in the Moravia Hill landfill site at Medellín, Colombia. Soil Biology and Biochemistry, 43, 1275– 1284. https://doi.org/10.1016/j.soilbio.2011.02.018Graham, R. I., Grzywacz, D., Mushobozi, W. L., & Wilson, K. (2012). W olbachia in a major African crop pest increases susceptibility to viral disease rather than protects. Ecology letters, 15(9), 993-1000.Grau, T., Vilcinskas, A., & Joop, G. (2017). Probiotic Enterococcus mundtii isolate protects the model insect Tribolium castaneum against Bacillus thuringiensis. Frontiers in microbiology, 8, 1261.Harumoto, T., Anbutsu, H., Lemaitre, B., & Fukatsu, T. (2016). Male-killing symbiont damages host’s dosage-compensated sex chromosome to induce embryonic apoptosis. Nature communications, 7(1), 1-12.Hasegawa M, Kishino H, Yano T. Dating of human-ape splitting by a molecular clock of mitochondrial DNA, J. Mol. Evol., 1985, vol. 22 (pg. 160-174)Heckel, D. G. (2020). How do toxins from Bacillus thuringiensis kill insects? An evolutionary perspective. Archives of insect biochemistry and physiology, 104(2), e21673.Hernandez-Martinez, P.; Naseri, B.; Navarro-Cerrillo, G.; Escriche, B.; Ferre, J.; Herrero, S. Increase in midgutmicrobiota load induces an apparent immune priming and increases tolerance to Bacillus thuringiensis. Environ. Microbiol. 2010,12, 2730–2737Higuita Palacio, M. F., Montoya, O. I., Saldamando, C. I., García-Bonilla, E., Junca, H., Cadavid-Restrepo, G. E., & Moreno-Herrera, C. X. (2021). Dry and Rainy Seasons Significantly Alter the Gut Microbiome Composition and Reveal a Key Enterococcus sp.(Lactobacillales: Enterococcaceae) Core Component in Spodoptera frugiperda (Lepidoptera: Noctuidae) Corn Strain From Northwestern Colombia. Journal of Insect Science, 21(6), 10.Huang, F., Qureshi, J. A., Meagher Jr, R. L., Reisig, D. D., Head, G. P., Andow, D. A., ... & Dangal, V. (2014). Cry1F resistance in fall armyworm Spodoptera frugiperda: single gene versus pyramided Bt maize. PloS one, 9(11), e112958.Huelsenbeck, J. P. and F. Ronquist. 2001. MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17:754-755.Ibrahim, M.A.; Griko, N.; Junker, M.; Bulla, L.A. Bacillus thuringiensis: A genomics and proteomics perspective.Bioeng. Bugs 2010, 1, 31–50.Instituto Colombiano Agropecuario ICA, 2012. REsolucion 232 autorizacion al ICA para utilizar el maiz BT11*MIR162*MIR604*GA21Jensen, P R, and W Fenical. 1994. “Strategies for the Discovery of Secondary Metabolites from Marine Bacteria: Ecological Perspectives.” Annual Review of Microbiology 48(1): 559–84.Johnson, J. S., Spakowicz, D. J., Hong, B. Y., Petersen, L. M., Demkowicz, P., Chen, L., ... & Weinstock, G. M. (2019). Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nature communications, 10(1), 1-11.Jones, C. M., Lim, K. S., Chapman, J. W., and Bass, C. (2018). Genome-wide characterization of DNA methylation in an invasive lepidopteran pest, the cotton bollworm Helicoverpa armigera. G3 (Bethesda). 8, 779–787. doi: 10. 1534/g3.117.1112Joos, L., Beirinckx, S., Haegeman, A., Debode, J., Vandecasteele, B., Baeyen, S., & De Tender, C. (2020). Daring to be differential: metabarcoding analysis of soil and plant-related microbial communities using amplicon sequence variants and operational taxonomical units. BMC genomics, 21(1), 1-17.Kaur, R., & Singh, D. (2020). MOLECULAR MARKERS A VALUABLE TOOL FOR SPECIES IDENTIFICATION OF INSECTS: A REVIEW. Ann. Entomol, 38(01-02), 01-02.Kwong, W.K.; Mancenido, A.L.; Moran, N.A. Immune system stimulation by the native gut microbiota of honey bees. R. Soc. Open Sci. 2017, 4, 170003.Larson, Z., Subramanyam, B., Zurek, L., & Herrman, T. (2008). Diversity and antibiotic resistance of enterococci associated with stored-product insects collected from feed mills. Journal of stored products research, 44(2), 198-203.Lemaitre, B.; Hoffmann, J. The host defense of Drosophila melanogaster. Annu. Rev. Immunol. 2007, 25, 697–743.Levy, Hazel C, Alejandra Garcia-maruniak, and James E Maruniak. 2002. “STRAIN IDENTIFICATION OF SPODOPTERA FRUGIPERDA (LEPIDOPTERA: NOCTUIDAE) INSECTS AND CELL LINE: PCR-RFLP OF CYTOCHROME OXIDASE C SUBUNIT I GENE.” 85(1): 186–90.Li, S., De Mandal, S., Xu, X., & Jin, F. (2020). The Tripartite interaction of host immunity–Bacillus thuringiensis infection–gut microbiota. Toxins, 12(8), 514.Li, S., Xu, X., De Mandal, S., Shakeel, M., Hua, Y., Shoukat, R. F., & Jin, F. (2021). Gut microbiota mediate Plutella xylostella susceptibility to Bt Cry1Ac protoxin is associated with host immune response. Environmental Pollution, 271, 116271.Liu, L., Li, Z., Luo, X., Zhang, X., Chou, S. H., Wang, J., & He, J. (2021). Which Is Stronger? A Continuing Battle Between Cry Toxins and Insects. Frontiers in microbiology, 12, 665101. https://doi.org/10.3389/fmicb.2021.665101Login, F. H., Balmand, S., Vallier, A., Vincent-Monégat, C., Vigneron, A., Weiss-Gayet, M., ... & Heddi, A. (2011). Antimicrobial peptides keep insect endosymbionts under control. Science, 334(6054), 362-365.López - Edwards, Marilu et al. 1999. “Biological Differences between Five Populations of Fall Armyworm ( Lepidoptera : Noctuidae ) Collected from Corn in Mexico.” (June).Luginbill, P. (1928). The fall army worm (No. 34). US Department of Agriculture.Mallet, James, and Michele Dres. 2002. “Host Races in Plant-Feeding Insects and Their Importance in Sympatric Speciation.” (October 2001): 471–92.McLaren, Michael R., & Callahan, Benjamin J. (2021). Silva 138.1 prokaryotic SSU taxonomic training data formatted for DADA2 [Data set]. Zenodo. https://doi.org/10.5281/zenodo.4587955Mason, C. J., Ray, S., Shikano, I., Peiffer, M., Jones, A. G., Luthe, D. S.,... & Felton, G. W. (2019). Plant defenses interact with insect enteric bacteria by initiating a leaky gut syndrome. Proceedings of the National Academy of Sciences, 116(32), 15991-15996.Mason, C. J. (2020). Complex relationships at the intersection of insect gut microbiomes and plant defenses. Journal of Chemical Ecology, 46(8), 793-807.Mereghetti, V., Chouaia, B., & Montagna, M. (2017). New insights into the microbiota of moth pests. International Journal of Molecular Sciences, 18(11), 2450.Montoya-Porras, L. M., Omar, T. C., Alzate, J. F., Moreno-Herrera, C. X., & Cadavid-Restrepo, G. E. (2018). 16S rRNA gene amplicon sequencing reveals dominance of Actinobacteria in Rhodnius pallescens compared to Triatoma maculata midgut microbiota in natural populations of vector insects from Colombia. Acta Tropica, 178, 327-332.Murúa, M G, M T Vera, S Abraham, and M L Juare. 2009. “Fitness and Mating Compatibility of Spodoptera Frugiperda ( Lepidoptera : Noctuidae ) Populations from Different Host Plant Species and Regions in Argentina Fitness and Mating Compatibility of Spodoptera Frugiperda ( Lepidoptera : Noctuidae ) Populations.” (May).Nagoshi, R. N. (2010). The fall armyworm triose phosphate isomerase (Tpi) gene as a marker of strain identity and interstrain mating. Annals of the Entomological Society of America, 103(2), 283-292.Nagoshi, R. N. (2012). Improvements in the identification of strains facilitate population studies of fall armyworm subgroups. Annals of the Entomological Society of America, 105(2), 351-358.Oliveira, N. C. D. Gut microbiota of the rice and corn strains of Spodoptera frugiperda: diversity and function (Doctoral dissertation, Universidade de São Paulo) 2021.Oliveira, N. C., Rodrigues, P. A., & Cônsoli, F. L. (2021). Host-Adapted Strains of Spodoptera frugiperda Hold and Share a Core Microbial Community Across the Western Hemisphere. bioRxiv.Orozco-flores, Alonso A et al. 2017. “Regulation by Gut Bacteria of Immune Response , Bacillus Thuringiensis Susceptibility and Hemolin Expression in Plodia Interpunctella.” Journal of Insect Physiology 98: 275–83. http://dx.doi.org/10.1016/j.jinsphys.2017.01.020.Paddock, K.J., Pereira, A.E., Finke, D.L., Ericsson, A.C., Hibbard, B.E. and Shelby, K.S. (2021), Host resistance to Bacillus thuringiensis is linked to altered bacterial community within a specialist insect herbivore. Mol Ecol, 30: 5438-5453. https://doi.org/10.1111/mec.15875Pardo-Lopez, L., Soberon, M., & Bravo, A. (2013). Bacillus thuringiensis insecticidal three-domain Cry toxins: mode of action, insect resistance and consequences for crop protection. FEMS microbiology reviews, 37(1), 3-22.Patil, C. D., Borase, H. P., Salunke, B. K., & Patil, S. V. (2013). Alteration in Bacillus thuringiensis toxicity by curing gut flora: novel approach for mosquito resistance management. Parasitology research, 112(9), 3283-3288.Paul J. McMurdie phyloseq: An R package for reproducible interactive analysis and graphics of microbiome censos data., 2013, R package version 1.19Peterson, B., Bezuidenhout, C. C., & Van den Berg, J. (2017). An overview of mechanisms of Cry toxin resistance in lepidopteran insects. Journal of Economic Entomology, 110(2), 362-377.Peyronnet, O., Vachon, V., Brousseau, R., Baines, D., Schwartz, J. L., & Laprade, R. (1997). Effect of Bacillus thuringiensis toxins on the membrane potential of lepidopteran insect midgut cells. Applied and Environmental Microbiology, 63(5), 1679-1684.Prowell, Dorothy Pashley, and Margaret M C Michael. 2004. “Multilocus Genetic Analysis of Host Use , Introgression , and Speciation in Host Strains of Fall Armyworm ( Lepidoptera : Noctuidae ).” : 1034–44.Qu, LY., Lou, YH., Fan, HW. et al. Two endosymbiotic bacteria, Wolbachia and Arsenophonus, in the brown planthopper Nilaparvata lugens . Symbiosis 61, 47–53 (2013). https://doi.org/10.1007/s13199-013-0256-9Rahman, M., Glatz, R., Roush, R., and Schmidt, O. (2011). Developmental penalties associated with inducible tolerance in Helicoverpa armigera to insecticidal toxins from Bacillus thuringiensis. Appl. Environ. Microbiol. 77, 1443–1448.doi: 10.1128/AEM.01467-10Rambaut, A. (2010) FigTree v1.3.1. Institute of Evolutionary Biology, University of Edinburgh, Edinburgh. http://tree.bio.ed.ac.uk/software/figtree/Rao, X.J.; Yu, X.Q. Lipoteichoic acid and lipopolysaccharide can activate antimicrobial peptide expression inthe tobacco hornwormManduca sexta.Dev. Comp. Immunol.2010,34, 1119–1128Raymann, K., Shaffer, Z., & Moran, N. A. (2017). Antibiotic exposure perturbs the gut microbiota and elevates mortality in honeybees. PLoS biology, 15(3), e2001861.Raymond, B., Johnston, P. R., Wright, D. J., Ellis, R. J., Crickmore, N., & Bonsall, M. B. (2009). A mid‐gut microbiota is not required for the pathogenicity of Bacillus thuringiensis to diamondback moth larvae. Environmental microbiology, 11(10), 2556-2563.Razze, J. M., Mason, C. E., & Pizzolato, T. D. (2011). Feeding behavior of neonate Ostrinia nubilalis (Lepidoptera: Crambidae) on Cry1Ab Bt corn: Implications for resistance management. Journal of economic entomology, 104(3), 806-813.Riesenfeld, C. S., Schloss, P. D., & Handelsman, J. (2004). Metagenomics: genomic analysis of microbial communities. Annu. Rev. Genet., 38, 525-552.Ríos-Díez, J. D., Siegfried, B., & Saldamando-Benjumea, C. I. (2012). Susceptibility of Spodoptera frugiperda (Lepidoptera: Noctuidae) strains from central Colombia to Cry1Ab and Cry1Ac entotoxins of Bacillus thuringiensis. Southwestern Entomologist, 37(3), 281-293.Riparbelli, M. G., Giordano, R., Ueyama, M., & Callaini, G. (2012). Wolbachia-mediated male killing is associated with defective chromatin remodeling. PloS one, 7(1), e30045.Ronquist, F., M. Teslenko, P. van der Mark, D.L. Ayres, A. Darling, S. Höhna, B. Larget, L. Liu, M.A. Suchard, and J.P. Huelsenbeck. 2012. MRBAYES 3.2: Efficient Bayesian phylogenetic inference and model selection across a large model space. Syst. Biol. 61:539-542.Rosero, D. A., Gutiérrez, L. A., Cienfuegos, A. V., Jaramillo, L. M., & Correa, M. M. (2010). Optimización de un procedimiento de extracción de ADN para mosquitos anofelinos. Rev Colomb Entomol, 36, 260-263.Salinas-Hernandez, H., & Saldamando-Benjumea, C. I. (2011). Haplotype identification within Spodoptera frugiperda (JE Smith)(Lepidoptera: Noctuidae) corn and rice strains from Colombia. Neotropical Entomology, 40(4), 421-430.Sarangi, Aditya N, Amit Goel, and Rakesh Aggarwal. 2019. “Methods for Studying Gut Microbiota :” Journal of Clinical and Experimental Hepatology 9(1): 62–73. https://doi.org/10.1016/j.jceh.2018.04.016.Schnepf, E., Crickmore, N., Van Rie, J., Lereclus, D., Baum, J., Feitelson, J., & Dean, D. (1998). Bacillus thuringiensis and its pesticidal crystal proteins. Microbiology and molecular biology reviews, 62(3), 775-806.Shao, Y.Q.; Arias-Cordero, E.; Guo, H.J.; Bartram, S.; Boland, W. In Vivo Pyro-SIP Assessing Active GutMicrobiota of the Cotton Leafworm, Spodoptera littoralis.PLoS ONE2014,9, e85948Shao, Y.; Chen, B.; Sun, C.; Ishida, K.; Hertweck, C.; Boland, W. Symbiont-derived antimicrobials contributeto the control of the lepidopteran gut microbiota.Cell Chem. Biol.2017,24, 66–75Shi, Weibing, Ryan Syrenne, Jian-zhong Sun, and Joshua S Yuan. 2010. “Molecular Approaches to Study the Insect Gut Symbiotic Microbiota at the ‘ Omics ’ Age.” : 199–219.Sparks, A. N. (1979). Fall Armyworm Symposium: A review of the biology of the fall armyworm. Florida Entomologist, 62(2), 82-87.Storelli, G.; Defaye, A.; Erkosar, B.; Hols, P.; Royet, J.; Leulier, F. Lactobacillus plantarum promotes Drosophila systemic growth by modulating hormonal signals through TOR-dependent nutrient sensing. Cell Metab.2011, 14, 403–414Sweby, D. L., Martin, L. A., Govender, S., Conlong, D. E., & Rutherford, R. S. (2010). The presence of Wolbachia in Eldana saccharina Walker (Lepidoptera: Pyralidae): implications for biological control. In Proc S Afr Sug Technol Ass (Vol. 83, pp. 257-261).Tabashnik, B., Carrière, Y. Surge in insect resistance to transgenic crops and prospects for sustainability. Nat Biotechnol 35, 926–935 (2017). https://doi.org/10.1038/nbt.3974Talaei-hassanloui, Reza, Raziyeh Bakhshaei, Vahid Hosseininaveh, and Ayda Khorramnezhad. 2014. “Effect of Midgut Proteolytic Activity on Susceptibility of Lepidopteran Larvae to Bacillus Thuringiensis Subsp . Kurstaki.” 4(January): 4–9.Tang, X.; Freitak, D.; Vogel, H.; Ping, L.; Shao, Y.; Cordero, E.A.; Andersen, G.; Westermann, M.; Heckel, D.G.;Boland, W.; et al. Complexity and variability of gut commensal microbiota in polyphagous lepidopteran larvae. PLoS ONE 2012, 7, e36978Tavaré S. Miura RM. Some probabilistic and statistical problems in the analysis of DNA sequences, Lectures on mathematics in the life sciences, 1986, vol. Volume 17 Providence (RI)American Mathematical Society(pg. 57-86)Tetreau, G., Grizard, S., Patil, C. D., Tran, F. H., Stalinski, R., Laporte, F., & Moro, C. V. (2018). Bacterial microbiota of Aedes aegypti mosquito larvae is altered by intoxication with Bacillus thuringiensis israelensis. Parasites & vectors, 11(1), 1-12.Thakur A, Dhammi P, Saini HS, Kaur S. Pathogenicity of bacteria isolated from gut of Spodoptera litura (Lepidoptera: Noctuidae) and fitness costs of insect associated with consumption of bacteria. J Invertebr Pathol. 2015 May;127:38-46. doi: 10.1016/j.jip.2015.02.007. Epub 2015 Feb 25. PMID: 25725116.Thakur, A.; Dhammi, P.; Saini, H.S.; Kaur, S. Effect of antibiotic on survival and development of Spodoptera litura (Lepidoptera: Noctuidae) and its gut microbial diversity. Bull. Entomol. Res. 2016, 106, 387–394.TORRES, L., & COTES, A. (2005). Efecto de la crioconservación sobre la viabilidad y actividad biocontroladora de Nomuraea rileyi contra Spodoptera frugiperda (Lepidoptera: Noctuidae). Revista Colombiana de Entomología, 31(2), 133-138.Van Rie, J. Bacillus thuringiensis and its use in transgenic insect control technologies. Int. J. Med. Microbiol.2000, 290, 463–469.van Lenteren JC, Bolckmans K, Köhl J, Ravensberg WJ, Urbaneja A (2018) Biological control using invertebrates and microorganisms: plenty of new opportunities. BioControl. 63(1):39 –59. https://doi.org/10.1007/s10526-017-9801-4Vásquez, A., Forsgren, E., Fries, I., Paxton, R. J., Flaberg, E., Szekely, L., & Olofsson, T. C. (2012). Symbionts as major modulators of insect health: lactic acid bacteria and honeybees. PloS one, 7(3), e33188.Vélez-arango, A N A María et al. 2008. “( Lepidoptera : Noctuidae ) Mediante Marcadores Mitocondriales Y Nucleares.” 34(63): 145–50.Visweshwar, R., Sharma, H. C., Akbar, S. M. D., & Sreeramulu, K. (2015). Elimination of gut microbes with antibiotics confers resistance to Bacillus thuringiensis toxin proteins in Helicoverpa armigera (Hubner). Applied biochemistry and biotechnology, 177(8), 1621-1637.Vivero, Rafael José, Natalia Gil Jaramillo, Gloria Cadavid-restrepo, and Sandra I Uribe Soto. 2016. “Structural Differences in Gut Bacteria Communities in Developmental Stages of Natural Populations of Lutzomyia Evansi from Colombia â€TM S Caribbean Coast.” Parasites & Vectors: 1–20. http://dx.doi.org/10.1186/s13071-016-1766-0.Vries, Egbert J De, Gerrit Jacobs, and Johannes A J Breeuwer. 2011. “Growth and Transmission of Gut Bacteria in the Western Flower Thrips , Frankliniella Occidentalis.” 137(2001): 129–37.Wang, L. T., Lee, F. L., Tai, C. J., & Kasai, H. (2007). Comparison of gyrB gene sequences, 16S rRNA gene sequences and DNA–DNA hybridization in the Bacillus subtilis group. International journal of systematic and evolutionary microbiology, 57(8), 1846-1850.Wang, Q.; Ren, M.; Liu, X.; Xia, H.; Chen, K. Peptidoglycan recognition proteins in insect immunity.Mol. Immunol.2019,106, 69–76Yamamoto, S., & Harayama, S. (1995). PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Applied and environmental microbiology, 61(3), 1104-1109.Zhu, Y. C., Kramer, K. J., Oppert, B., & Dowdy, A. K. (2000). cDNAs of aminopeptidase-like protein genes from Plodia interpunctella strains with different susceptibilities to Bacillus thuringiensis toxins. Insect Biochemistry and Molecular Biology, 30(3), 215-224Código QUIPU: 2020100134MinCienciasEstudiantesInvestigadoresMaestrosLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.unal.edu.co/bitstream/unal/82152/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51ORIGINAL1033687052_2021.pdf1033687052_2021.pdfTesis de Maestría en Ciencias - Biotecnologíaapplication/pdf4431307https://repositorio.unal.edu.co/bitstream/unal/82152/2/1033687052_2021.pdf30d6ba6cf42a413083ab92cd305fa29eMD52THUMBNAIL1033687052_2021.pdf.jpg1033687052_2021.pdf.jpgGenerated Thumbnailimage/jpeg5526https://repositorio.unal.edu.co/bitstream/unal/82152/3/1033687052_2021.pdf.jpg8e8801aec65532f2ffdd65a734db2b52MD53unal/82152oai:repositorio.unal.edu.co:unal/821522023-08-08 23:04:02.72Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=