A Recurrent Neural Network approach for whole genome bacteria classification
The classification of bacteria plays an essential role in multiple areas of research. Those areas include experimental biology, food and water industries, pathology, microbiology, and evolutionary studies. Although there exist methodologies for classification - such as mass spectrometry, single-nucl...
- Autores:
-
Lugo Martínez, Luis Eduardo
- Tipo de recurso:
- Fecha de publicación:
- 2018
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/68663
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/68663
http://bdigital.unal.edu.co/69758/
- Palabra clave:
- 0 Generalidades / Computer science, information and general works
5 Ciencias naturales y matemáticas / Science
6 Tecnología (ciencias aplicadas) / Technology
62 Ingeniería y operaciones afines / Engineering
Recurrent neural network
Bacteria identification
Whole genome sequence
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_68df3ee10bcacf064826e77403a261d5 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/68663 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Barreto, EmilianoLugo Martínez, Luis Eduardo3f9b7f0c-d5ae-4cb1-b251-0167407de6833002019-07-03T07:26:06Z2019-07-03T07:26:06Z2018-09https://repositorio.unal.edu.co/handle/unal/68663http://bdigital.unal.edu.co/69758/The classification of bacteria plays an essential role in multiple areas of research. Those areas include experimental biology, food and water industries, pathology, microbiology, and evolutionary studies. Although there exist methodologies for classification - such as mass spectrometry, single-nucleotide polymorphisms, microscopic morphology, and neural network approaches - a transition to a whole genome sequence based taxonomy is already undergoing. Next Generation Sequencing helps the transition by producing DNA sequence data efficiently. However, the rate of DNA sequence data generation and the high dimensionality of such data need faster computer methodologies. Machine learning, an area of artificial intelligence, has the ability to analyze high dimensional data in a systematic, fast, and efficient way. Therefore, we propose a sequential deep learning model for bacteria classification. The proposed neural network exploits the vast amounts of information generated by Next Generation Sequencing, in order to extract a classification model for whole genome bacteria sequences. A distributed representation based on k-mers of k={3,4,5} provided an efficient encoding for the bacterial sequences. The classification model relies on a bidirectional recurrent neural network architecture. It generates an accuracy of 0.99455 +/- 0.00281 for 14 species, 0.95031 +/- 0.00469 for 48 species, and 0.89107 +/- 0.00392 for 111 species. After validating the classification model, the bidirectional recurrent neural network outperformed other classification approaches, such as Naive Bayes and Feedforward neural network. The proposed model provides an automated identification method. It infers species for bacterial whole genome sequences and it does not require any manual feature extraction.Maestríaapplication/pdfspaUniversidad Nacional de Colombia Sede Bogotá Facultad de Ingeniería Departamento de Ingeniería de Sistemas e IndustrialDepartamento de Ingeniería de Sistemas e IndustrialLugo Martínez, Luis Eduardo (2018) A Recurrent Neural Network approach for whole genome bacteria classification. Maestría thesis, Universidad Nacional de Colombia - Sede Bogotá.0 Generalidades / Computer science, information and general works5 Ciencias naturales y matemáticas / Science6 Tecnología (ciencias aplicadas) / Technology62 Ingeniería y operaciones afines / EngineeringRecurrent neural networkBacteria identificationWhole genome sequenceA Recurrent Neural Network approach for whole genome bacteria classificationTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMORIGINALMastersFinalProject_LuisLugo.pdfapplication/pdf1009226https://repositorio.unal.edu.co/bitstream/unal/68663/1/MastersFinalProject_LuisLugo.pdf0d135c899f47562df21636d52558e4abMD51THUMBNAILMastersFinalProject_LuisLugo.pdf.jpgMastersFinalProject_LuisLugo.pdf.jpgGenerated Thumbnailimage/jpeg3581https://repositorio.unal.edu.co/bitstream/unal/68663/2/MastersFinalProject_LuisLugo.pdf.jpg25beac6984c4b72ce486a3f6e5d0e4ecMD52unal/68663oai:repositorio.unal.edu.co:unal/686632024-05-28 23:08:52.015Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |
dc.title.spa.fl_str_mv |
A Recurrent Neural Network approach for whole genome bacteria classification |
title |
A Recurrent Neural Network approach for whole genome bacteria classification |
spellingShingle |
A Recurrent Neural Network approach for whole genome bacteria classification 0 Generalidades / Computer science, information and general works 5 Ciencias naturales y matemáticas / Science 6 Tecnología (ciencias aplicadas) / Technology 62 Ingeniería y operaciones afines / Engineering Recurrent neural network Bacteria identification Whole genome sequence |
title_short |
A Recurrent Neural Network approach for whole genome bacteria classification |
title_full |
A Recurrent Neural Network approach for whole genome bacteria classification |
title_fullStr |
A Recurrent Neural Network approach for whole genome bacteria classification |
title_full_unstemmed |
A Recurrent Neural Network approach for whole genome bacteria classification |
title_sort |
A Recurrent Neural Network approach for whole genome bacteria classification |
dc.creator.fl_str_mv |
Lugo Martínez, Luis Eduardo |
dc.contributor.author.spa.fl_str_mv |
Lugo Martínez, Luis Eduardo |
dc.contributor.spa.fl_str_mv |
Barreto, Emiliano |
dc.subject.ddc.spa.fl_str_mv |
0 Generalidades / Computer science, information and general works 5 Ciencias naturales y matemáticas / Science 6 Tecnología (ciencias aplicadas) / Technology 62 Ingeniería y operaciones afines / Engineering |
topic |
0 Generalidades / Computer science, information and general works 5 Ciencias naturales y matemáticas / Science 6 Tecnología (ciencias aplicadas) / Technology 62 Ingeniería y operaciones afines / Engineering Recurrent neural network Bacteria identification Whole genome sequence |
dc.subject.proposal.spa.fl_str_mv |
Recurrent neural network Bacteria identification Whole genome sequence |
description |
The classification of bacteria plays an essential role in multiple areas of research. Those areas include experimental biology, food and water industries, pathology, microbiology, and evolutionary studies. Although there exist methodologies for classification - such as mass spectrometry, single-nucleotide polymorphisms, microscopic morphology, and neural network approaches - a transition to a whole genome sequence based taxonomy is already undergoing. Next Generation Sequencing helps the transition by producing DNA sequence data efficiently. However, the rate of DNA sequence data generation and the high dimensionality of such data need faster computer methodologies. Machine learning, an area of artificial intelligence, has the ability to analyze high dimensional data in a systematic, fast, and efficient way. Therefore, we propose a sequential deep learning model for bacteria classification. The proposed neural network exploits the vast amounts of information generated by Next Generation Sequencing, in order to extract a classification model for whole genome bacteria sequences. A distributed representation based on k-mers of k={3,4,5} provided an efficient encoding for the bacterial sequences. The classification model relies on a bidirectional recurrent neural network architecture. It generates an accuracy of 0.99455 +/- 0.00281 for 14 species, 0.95031 +/- 0.00469 for 48 species, and 0.89107 +/- 0.00392 for 111 species. After validating the classification model, the bidirectional recurrent neural network outperformed other classification approaches, such as Naive Bayes and Feedforward neural network. The proposed model provides an automated identification method. It infers species for bacterial whole genome sequences and it does not require any manual feature extraction. |
publishDate |
2018 |
dc.date.issued.spa.fl_str_mv |
2018-09 |
dc.date.accessioned.spa.fl_str_mv |
2019-07-03T07:26:06Z |
dc.date.available.spa.fl_str_mv |
2019-07-03T07:26:06Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/68663 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/69758/ |
url |
https://repositorio.unal.edu.co/handle/unal/68663 http://bdigital.unal.edu.co/69758/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Sede Bogotá Facultad de Ingeniería Departamento de Ingeniería de Sistemas e Industrial Departamento de Ingeniería de Sistemas e Industrial |
dc.relation.references.spa.fl_str_mv |
Lugo Martínez, Luis Eduardo (2018) A Recurrent Neural Network approach for whole genome bacteria classification. Maestría thesis, Universidad Nacional de Colombia - Sede Bogotá. |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/68663/1/MastersFinalProject_LuisLugo.pdf https://repositorio.unal.edu.co/bitstream/unal/68663/2/MastersFinalProject_LuisLugo.pdf.jpg |
bitstream.checksum.fl_str_mv |
0d135c899f47562df21636d52558e4ab 25beac6984c4b72ce486a3f6e5d0e4ec |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089939213615104 |