Simulación del comportamiento micromecánico de aceros de fase dual por medio del método de elementos finitos
This work encompasses a DP600 steel mechanical behavior characterization by using micro indentation test simulations. To simulate the microindentation was used methodologies to generate bidimensional and tridimensional artificial representative volume elements (RVE) based on material's statisti...
- Autores:
-
Cuervo Basurto, Anyerson
- Tipo de recurso:
- Work document
- Fecha de publicación:
- 2020
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/77866
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/77866
- Palabra clave:
- 620 - Ingeniería y operaciones afines
dual Phase
microindentation
nanoindentation
DP steel
simulation
computational
FEM
GTN
fase dual
microindentación
nanoindentación
acero DP
simulación
computacional
FEM
GTN
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_68bcdd2f3bd7148395f37be610289b93 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/77866 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Simulación del comportamiento micromecánico de aceros de fase dual por medio del método de elementos finitos |
title |
Simulación del comportamiento micromecánico de aceros de fase dual por medio del método de elementos finitos |
spellingShingle |
Simulación del comportamiento micromecánico de aceros de fase dual por medio del método de elementos finitos 620 - Ingeniería y operaciones afines dual Phase microindentation nanoindentation DP steel simulation computational FEM GTN fase dual microindentación nanoindentación acero DP simulación computacional FEM GTN |
title_short |
Simulación del comportamiento micromecánico de aceros de fase dual por medio del método de elementos finitos |
title_full |
Simulación del comportamiento micromecánico de aceros de fase dual por medio del método de elementos finitos |
title_fullStr |
Simulación del comportamiento micromecánico de aceros de fase dual por medio del método de elementos finitos |
title_full_unstemmed |
Simulación del comportamiento micromecánico de aceros de fase dual por medio del método de elementos finitos |
title_sort |
Simulación del comportamiento micromecánico de aceros de fase dual por medio del método de elementos finitos |
dc.creator.fl_str_mv |
Cuervo Basurto, Anyerson |
dc.contributor.advisor.spa.fl_str_mv |
Rodríguez Baracaldo, Rodolfo Narváez Tovar, Carlos Alberto |
dc.contributor.author.spa.fl_str_mv |
Cuervo Basurto, Anyerson |
dc.contributor.corporatename.spa.fl_str_mv |
Universidad Nacional de Colombia Departamento de Ingeniería Mecánica y Mecatrónica |
dc.contributor.researchgroup.spa.fl_str_mv |
Innovación en Procesos de Manufactura e Ingeniería de Materiales (IPMIM) |
dc.subject.ddc.spa.fl_str_mv |
620 - Ingeniería y operaciones afines |
topic |
620 - Ingeniería y operaciones afines dual Phase microindentation nanoindentation DP steel simulation computational FEM GTN fase dual microindentación nanoindentación acero DP simulación computacional FEM GTN |
dc.subject.proposal.eng.fl_str_mv |
dual Phase microindentation nanoindentation DP steel simulation computational FEM GTN |
dc.subject.proposal.spa.fl_str_mv |
fase dual microindentación nanoindentación acero DP simulación computacional FEM GTN |
description |
This work encompasses a DP600 steel mechanical behavior characterization by using micro indentation test simulations. To simulate the microindentation was used methodologies to generate bidimensional and tridimensional artificial representative volume elements (RVE) based on material's statistical data. There were selected micromechanical models to predict its phases' behavior. The experimental data to validate the behavior was found on literature then it was introduced on nano indentation and micro indentation simulations. Nano indentations were used to validate the individual phases' mechanical behavior later Micro indentations were made to study the effect of second phase particles immersed in the volume. The distribution of second phase particles shows an effect over the mechanical behavior on the simulation explaining the curves differences. |
publishDate |
2020 |
dc.date.accessioned.spa.fl_str_mv |
2020-07-29T02:47:38Z |
dc.date.available.spa.fl_str_mv |
2020-07-29T02:47:38Z |
dc.date.issued.spa.fl_str_mv |
2020-06-16 |
dc.type.spa.fl_str_mv |
Documento de trabajo |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/workingPaper |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_8042 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/WP |
format |
http://purl.org/coar/resource_type/c_8042 |
status_str |
acceptedVersion |
dc.identifier.citation.spa.fl_str_mv |
A. Cuervo Basurto, Simulación del comportamiento micromecánico de aceros de fase dual por medio del método de elementos finitos, Bogotá: Universidad Nacional de Colombia, 2020. Cuervo Basurto, A. (2020). Simulación del comportamiento micromecánico de aceros de fase dual por medio del método de elementos finitos. Bogotá, Colombia: Universidad Nacional de Colombia. |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/77866 |
identifier_str_mv |
A. Cuervo Basurto, Simulación del comportamiento micromecánico de aceros de fase dual por medio del método de elementos finitos, Bogotá: Universidad Nacional de Colombia, 2020. Cuervo Basurto, A. (2020). Simulación del comportamiento micromecánico de aceros de fase dual por medio del método de elementos finitos. Bogotá, Colombia: Universidad Nacional de Colombia. |
url |
https://repositorio.unal.edu.co/handle/unal/77866 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
H. S. Valberg, Applied Metal Forming: Including FEM Analysis. Applied Metal For- ming: Including FEM Analysis, Cambridge University Press, 2010. N. Fonstein, “Advanced High Strength Sheet Steels,” in Adv. High Strength Sheet Steels (R. Rana and S. B. B. T. A. S. Singh, eds.), Woodhead Publishing, 2015. C. C. Tasan, J. P. Hoefnagels, L. C. Louws, and M. G. Geers, “Experimental-numerical analysis of the indentation-based damage characterization methodology,” Appl. Mech. Mater., vol. 13-14, pp. 151–160, 2008. R. Peierls, “The size of a dislocation,” Proc. Phys. Soc., vol. 52, pp. 34–37, jan 1940. R. Hill, “The Elastic Behaviour of a Crystalline Aggregate,” Proc. Phys. Soc. Sect. A, vol. 65, pp. 349–354, may 1952. R. Hill and J. Rice, “Constitutive analysis of elastic-plastic crystals at arbitrary strain,” J. Mech. Phys. Solids, vol. 20, pp. 401–413, dec 1972. A. Arsenlis and D. M. Parks, “Modeling the evolution of crystallographic dislocation density in crystal plasticity,” J. Mech. Phys. Solids, vol. 50, no. 9, pp. 1979–2009, 2002. K. Yoshida, R. Brenner, B. Bacroix, and S. Bouvier, “Micromechanical modeling of the work-hardening behavior of single- and dual-phase steels under two-stage loading paths,” Mater. Sci. Eng. A, vol. 528, no. 3, pp. 1037–1046, 2011. C. N. N’Guyen, F. Barbe, N. Osipov, G. Cailletaud, B. Marini, and C. Petry, “Micro- mechanical local approach to brittle failure in bainite high resolution polycrystals: A short presentation,” Comput. Mater. Sci., vol. 64, pp. 62–65, 2012. F. Roters, P. Eisenlohr, C. Kords, D. D. Tjahjanto, M. Diehl, and D. Raabe, “DA- MASK: The dusseldorf advanced material simulation kit for studying crystal plasticity using an fe based or a spectral numerical solver,” Procedia IUTAM, vol. 3, pp. 3–10, 2012. C. A. Sweeney, P. E. McHugh, J. P. McGarry, and S. B. Leen, “Micromechanical methodology for fatigue in cardiovascular stents,” Int. J. Fatigue, vol. 44, pp. 202–216, 2012. A. Tahimi, F. Barbe, L. Taleb, R. Quey, and A. Guillet, “Evaluation of microstructure- based transformation plasticity models from experiments on 100C6 steel,” Comput. Mater. Sci., vol. 52, no. 1, pp. 55–60, 2012. W. Woo, V. T. Em, E. Y. Kim, S. H. Han, Y. S. Han, and S. H. Choi, “Stress- strain relationship between ferrite and martensite in a dual-phase steel studied by in situ neutron diffraction and crystal plasticity theories,” Acta Mater., vol. 60, no. 20, pp. 6972–6981, 2012. D. F. Li, C. M. Davies, S. Y. Zhang, C. Dickinson, and N. P. O’Dowd, “The effect of prior deformation on subsequent microplasticity and damage evolution in an austenitic stainless steel at elevated temperature,” Acta Mater., vol. 61, no. 10, pp. 3575–3584, 2013. P. Chen, H. Ghassemi-Armaki, S. Kumar, A. Bower, S. Bhat, and S. Sadagopan, “Microscale-calibrated modeling of the deformation response of dual-phase steels,” Acta Mater., vol. 65, pp. 133–149, 2014. E. B. Marin, “On the formulation of a crystal plasticity model.,” pp. 1–62, 2006. F. Roters, P. Eisenlohr, L. Hantcherli, D. D. Tjahjanto, T. R. Bieler, and D. Raabe, “Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications,” Acta Mater., vol. 58, no. 4, pp. 1152–1211, 2010. F. Roters, P. Eisenlohr, T. R. Bieler, and D. Raabe, Crystal Plasticity Finite Element Methods: in Materials Science and Engineering. Wiley, 2011. M. Knezevic, B. Drach, M. Ardeljan, and I. J. Beyerlein, “Three dimensional pre- dictions of grain scale plasticity and grain boundaries using crystal plasticity finite element models,” Comput. Methods Appl. Mech. Eng., vol. 277, pp. 239–259, 2014. C. Pu and Y. Gao, “Crystal Plasticity Analysis of Stress Partitioning Mechanisms and Their Microstructural Dependence in Advanced Steels,” J. Appl. Mech., vol. 82, no. 3, p. 031003, 2015. J. K. Mackenzie, “The elastic constants of a material containing spherical coated ho- les,” Proc. Phys. Soc, vol. 63, pp. 223–246, 1950. R. Hill, “Continuum micro-mechanics of elastoplastic polycrystals,” J. Mech. Phys. Solids, vol. 13, no. 2, pp. 89–101, 1965. A. Paquin, S. Berbenni, V. Favier, X. Lemoine, and M. Berveiller, “Micromechanical modeling of the elastic-viscoplastic behavior of polycrystalline steels,” Int. J. Plast., vol. 17, no. 9, pp. 1267–1302, 2001. S. Berbenni, V. Favier, X. Lemoine, and M. Berveiller, “Micromechanical modeling of the elastic-viscoplastic behavior of polycrystalline steels having different microstructu- res,” Mater. Sci. Eng. A, vol. 372, no. 1-2, pp. 128–136, 2004. N. Jia, R. Lin Peng, Y. D. Wang, S. Johansson, and P. K. Liaw, “Micromechanical behavior and texture evolution of duplex stainless steel studied by neutron diffraction and self-consistent modeling,” Acta Mater., vol. 56, no. 4, pp. 782–793, 2008. N. Jia, Z. H. Cong, X. Sun, S. Cheng, Z. H. Nie, Y. Ren, P. K. Liaw, and Y. D. Wang, “An in situ high-energy X-ray diffraction study of micromechanical behavior of multiple phases in advanced high-strength steels,” Acta Mater., vol. 57, no. 13, pp. 3965–3977, 2009. D. Barbier, V. Favier, and B. Bolle, “Modeling the deformation textures and micros- tructural evolutions of a Fe-Mn-C TWIP steel during tensile and shear testing,” Mater. Sci. Eng. A, vol. 540, pp. 212–225, 2012. A. Molinari, G. R. Canova, and S. Ahzi, “A self consistent approach of the large deformation polycrystal viscoplasticity,” Acta Metall., vol. 35, no. 12, pp. 2983–2994, 1987. R. A. Lebensohn and C. N. Tom´e, “A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: Application to zirconium alloys,” Acta Metall. Mater., vol. 41, no. 9, pp. 2611–2624, 1993. A. A. Saleh, C. Haase, E. V. Pereloma, D. A. Molodov, and A. A. Gazder, “On the evolution and modelling of brass-type texture in cold-rolled twinning-induced plasticity steel,” Acta Mater., vol. 70, pp. 259–271, 2014. C. D. Schwindt, M. A. Bertinetti, L. Iurman, C. A. Rossit, and J. W. Signorelli, “Numerical study of the effect of martensite plasticity on the forming limits of a dual- phase steel sheet,” Int. J. Mater. Form., vol. 9, no. 4, pp. 499–517, 2016. D. H. Kim, S. J. Kim, S. H. Kim, A. D. Rollett, K. H. Oh, and H. N. Han, “Microtex- ture development during equibiaxial tensile deformation in monolithic and dual phase steels,” Acta Mater., vol. 59, no. 14, pp. 5462–5471, 2011. J. W. Hutchinson, “Bounds and Self-Consistent Estimates for Creep of Polycrystalline Materials,” Proc. R. Soc. A Math. Phys. Eng. Sci., vol. 348, no. 1652, pp. 101–127, 1976. A. L. Gurson, “Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media,” J. Eng. Mater. Technol., vol. 99, no. 1, p. 2, 1977. D. Peirce, R. J. Asaro, and A. Needleman, “an Analysis of Nonuniform and Localized Deformation,” Acta Metall., vol. 30, pp. 1087–1119, 1982. M. Mear and J. Hutchinson, “Influence of yield surface curvature on flow localization in dilatant plasticity,” Mech. Mater., vol. 4, pp. 395–407, dec 1985. F. M. Al-Abbasi and J. A. Nemes, “Predicting the ductile failure of DP-steels using micromechanical modeling of cells,” Int. J. Damage Mech., vol. 17, no. 5, pp. 447–472, 2008. V. Uthaisangsuk, U. Prahl, and W. Bleck, “Micromechanical modelling of damage behaviour of multiphase steels,” Comput. Mater. Sci., vol. 43, no. 1, pp. 27–35, 2008. V. Uthaisangsuk, U. Prahl, and W. Bleck, “Characterisation of formability behaviour of multiphase steels by micromechanical modelling,” Int. J. Fract., vol. 157, pp. 55–69, may 2009. S. K. Paul, “Micromechanics based modeling of Dual Phase steels: Prediction of duc- tility and failure modes,” Comput. Mater. Sci., vol. 56, pp. 34–42, 2012. M. Nygards and P. Gudmundson, “Three-dimensional periodic Voronoi grain mo- dels and micromechanical FE-simulations of a two-phase steel,” Comput. Mater. Sci., vol. 24, no. 4, pp. 513–519, 2002. F. M. Al-Abbasi and J. A. Nemes, “Micromechanical modeling of dual phase steels,” Int. J. Mech. Sci., vol. 45, no. 9, pp. 1449–1465, 2003. S. R. Bordet, B. Tanguy, J. Besson, S. Bugat, D. Moinereau, and A. Pineau, “Clea- vage fracture of RPV steel following warm pre-stressing: Micromechanical analysis and interpretation through a new model,” Fatigue Fract. Eng. Mater. Struct., vol. 29, no. 9-10, pp. 799–816, 2006. J. H. Kim, M. G. Lee, D. Kim, D. K. Matlock, and R. H. Wagoner, “Hole-expansion formability of dual-phase steels using representative volume element approach with boundary-smoothing technique,” Mater. Sci. Eng. A, vol. 527, no. 27-28, pp. 7353– 7363, 2010. S. K. Paul, “Real microstructure based micromechanical model to simulate microstruc- tural level deformation behavior and failure initiation in DP 590 steel,” Mater. Des., vol. 44, pp. 397–406, 2013. A. Ramazani, A. Schwedt, A. Aretz, U. Prahl, and W. Bleck, “Characterization and modelling of failure initiation in DP steel,” Comput. Mater. Sci., vol. 75, pp. 35–44, 2013. V. Uthaisangsuk, U. Prahl, and W. Bleck, “Modelling of damage and failure in mul- tiphase high strength DP and TRIP steels,” Eng. Fract. Mech., vol. 78, pp. 469–486, feb 2011. S. K. Paul and A. Kumar, “Micromechanics based modeling to predict flow behavior and plastic strain localization of dual phase steels,” Comput. Mater. Sci., vol. 63, pp. 66–74, 2012. S. Katani, S. Ziaei-Rad, N. Nouri, N. Saeidi, J. Kadkhodapour, N. Torabian, and S. Schmauder, “Microstructure Modelling of Dual-Phase Steel Using SEM Micrographs and Voronoi Polycrystal Models,” Metallogr. Microstruct. Anal., vol. 2, no. 3, pp. 156– 169, 2013. X. Hu, P. Van Houtte, M. Liebeherr, A. Walentek, M. Seefeldt, and H. Vandekinderen, “Modeling work hardening of pearlitic steels by phenomenological and Taylor-type micromechanical models,” Acta Mater., vol. 54, no. 4, pp. 1029–1040, 2006. B. Petit, N. Gey, M. Cherkaoui, B. Bolle, and M. Humbert, “Deformation behavior and microstructure/texture evolution of an annealed 304 AISI stainless steel sheet. Experimental and micromechanical modeling,” Int. J. Plast., vol. 23, no. 2, pp. 323– 341, 2007. S. Shi and J. Liang, “Thermal Decomposition Behavior of Silica-Phenolic Composi- te Exposed to One-Sided Radiant Heating,” Polym. Polym. Compos., vol. 16, no. 2, pp. 101–113, 2008. R. Kiran and K. Khandelwal, “A micromechanical model for ductile fracture prediction in ASTM A992 steels,” Eng. Fract. Mech., vol. 102, pp. 101–117, 2013. F. Dunne and N. Petrinic, Introduction to Computational Plasticity. OUP Oxford, 2005. M. Achouri, G. Germain, P. Dal Santo, and D. Saidane, “Numerical integration of an advanced Gurson model for shear loading: Application to the blanking process,” Comput. Mater. Sci., vol. 72, no. Ea 1427, pp. 62–67, 2013. S. Hao, W. K. Liu, B. Moran, F. Vernerey, and G. B. Olson, “Multi-scale constitutive model and computational framework for the design of ultra-high strength, high tough- ness steels,” Comput. Methods Appl. Mech. Eng., vol. 193, no. 17-20, pp. 1865–1908, 2004. K. Pongmorakot, S. Nambu, and T. Koseki, “Numerical analysis of effects of compres- sive strain on the evolution of interfacial strength of steel/nickel solid-state bonding,” Mater. Trans., vol. 59, no. 4, pp. 568–574, 2018. E. N. Hahn and M. A. Meyers, “Grain-size dependent mechanical behavior of nanocrys- talline metals,” Mater. Sci. Eng. A, vol. 646, pp. 101–134, 2015. S. Altintas, K. Hanson, and J. W. Morris, “Computer Simulation of Plastic Deforma- tion Through Planar Glide in an Idealized Crystal,” J. Eng. Mater. Technol., vol. 98, no. 1, p. 86, 1974. P. Seeleuthner, J. Bai, D. Baptiste, and D. Francois, “Micromechanical modeling of damage initiation in glass/epoxy laminates,” Trans. Eng. Sci., vol. 6, 1994. L. Delannay, I. Doghri, and O. Pierard, “Prediction of tension-compression cycles in multiphase steel using a modified incremental mean-field model,” Int. J. Solids Struct., vol. 44, no. 22-23, pp. 7291–7306, 2007. B. G. Schaffer and D. F. Adams, “NONLINEAR VISCOELASTIC- BEHAVIOR of a COMPOSITE MATERIAL USING a FINITE ELEMENT MICROMECHANICAL ANALYSIS,” tech. rep., University of Wyoming, 1980. J. S. Poulsen and E. Byskov, “Micromechanical modelling of inclined localized kink band in clear wood,” Trans. Eng. Sci., vol. 13, pp. 435–442\r963, 1996. M. Nygards and P. Gudmundson, “Micromechanical modeling of ferritic/pearlitic steels,” Mater. Sci. Eng. A, vol. 325, pp. 435–443, feb 2002. J. Bouquerel, K. Verbeken, and B. C. De Cooman, “Microstructure-based model for the static mechanical behaviour of multiphase steels,” Acta Mater., vol. 54, no. 6, pp. 1443–1456, 2006. F. M. Al-Abbasi and J. A. Nemes, “Characterizing DP-steels using micromechanical modeling of cells,” Comput. Mater. Sci., vol. 39, no. 2, pp. 402–415, 2007. K. S. Choi, W. N. Liu, X. Sun, and M. A. Khaleel, “Influence of Martensite Mechanical Properties on Failure Mode and Ductility of Dual-Phase Steels,” Metall. Mater. Trans. A, vol. 40, pp. 796–809, apr 2009. N. Esmaeili, J. L. Alves, and C. Teodosiu, “Simulation of Vickers Micro- Indentation Tests on Dual- Phase Steel utilizing VCAD-based Software,” in Proc. VCAD Symp., no. January 2015, pp. 66–68, 2009. C. Thomser, V. Uthaisangsuk, and W. Bleck, “Influence of martensite distribution on the mechanical properties of dual phase steels: experiments and simulation,” Steel Res., vol. 80, no. 8, pp. 582–587, 2009. J. H. Kim, M. G. Lee, and R. H. Wagoner, “A boundary smoothing algorithm for image-based modeling and its application to micromechanical analysis of multi-phase materials,” Comput. Mater. Sci., vol. 47, no. 3, pp. 785–795, 2010. J. Kadkhodapour, S. Schmauder, D. Raabe, S. Ziaei-Rad, U. Weber, and M. Calcag- notto, “Experimental and numerical study on geometrically necessary dislocations and non-homogeneous mechanical properties of the ferrite phase in dual phase steels,” Acta Mater., vol. 59, no. 11, pp. 4387–4394, 2011. J. R. Cho, Y. J. Kang, K. Y. Jeong, Y. J. Noh, and O. K. Lim, “Homogenization and thermoelastic analysis of heterogenous materials with regular and random microstruc- tures,” Compos. Part B Eng., vol. 43, no. 5, pp. 2313–2323, 2012. A. Ramazani, K. Mukherjee, U. Prahl, and W. Bleck, “Modelling the effect of micros- tructural banding on the flow curve behaviour of dual-phase (DP) steels,” Comput. Mater. Sci., vol. 52, no. 1, pp. 46–54, 2012. A. Ramazani, K. Mukherjee, U. Prahl, and W. Bleck, “Transformation-induced, geo- metrically necessary, dislocation-based flow curve modeling of dual-phase steels: Effect of grain size,” Metall. Mater. Trans. A Phys. Metall. Mater. Sci., vol. 43, no. 10, pp. 3850–3869, 2012. S. Sodjit and V. Uthaisangsuk, “Microstructure based prediction of strain hardening behavior of dual phase steels,” Mater. Des., vol. 41, pp. 370–379, 2012. N. Vajragupta, V. Uthaisangsuk, B. Schmaling, S. M¨unstermann, A. Hartmaier, and W. Bleck, “A micromechanical damage simulation of dual phase steels using XFEM,” Comput. Mater. Sci., vol. 54, no. 1, pp. 271–279, 2012. O. West, J. Lian, S. M¨unstermann, and W. Bleck, “Numerical Determination of the Damage Parameters of a Dual-phase Sheet Steel,” ISIJ Int., vol. 52, no. 4, pp. 743–752, 2012. S. K. Paul, “Effect of material inhomogeneity on the cyclic plastic deformation beha- vior at the microstructural level: Micromechanics-based modeling of dual-phase steel,” Model. Simul. Mater. Sci. Eng., vol. 21, no. 5, 2013. A. Ramazani, P. T. Pinard, S. Richter, A. Schwedt, and U. Prahl, “Characterisation of microstructure and modelling of flow behaviour of bainite-aided dual-phase steel,” Comput. Mater. Sci., vol. 80, pp. 134–141, 2013. A. Ramazani, K. Mukherjee, A. Schwedt, P. Goravanchi, U. Prahl, and W. Bleck, “Quantification of the effect of transformation-induced geometrically necessary dis- locations on the flow-curve modelling of dual-phase steels,” Int. J. Plast., vol. 43, pp. 128–152, 2013. A. Ramazani, K. Mukherjee, H. Quade, U. Prahl, and W. Bleck, “Correlation bet- ween 2D and 3D flow curve modelling of DP steels using a microstructure-based RVE approach,” Mater. Sci. Eng. A, vol. 560, pp. 129–139, 2013. A. ASGARI, B. F. ROLFE, and P. D. HODGSON, “MICROSTRUCTURE MODE- LING AND PREDICTION OF THE MECHANICAL PROPERTIES OF ADVAN- CED HIGH STRENGTH STEELS,” Int. J. Comput. Methods, vol. 11, p. 1344009, nov 2014. E. Fereiduni and S. S. Ghasemi Banadkouki, “Reliability/unreliability of mixture rule in a low alloy ferrite-martensite dual phase steel,” J. Alloys Compd., vol. 577, pp. 351– 359, 2013. K. S. Choi, W. N. Liu, X. Sun, M. A. Khaleel, Y. Ren, and Y. D. Wang, “Advanced micromechanical model for transformation-induced plasticity steels with application of In-Situ high-energy x-ray diffraction method,” Metall. Mater. Trans. A Phys. Metall. Mater. Sci., vol. 39, no. 13, pp. 3089–3096, 2008. C. Tasan, M. Diehl, D. Yan, M. Bechtold, F. Roters, L. Schemmann, C. Zheng, N. Pe- ranio, D. Ponge, M. Koyama, K. Tsuzaki, and D. Raabe, “An Overview of Dual-Phase Steels: Advances in Microstructure-Oriented Processing and Micromechanically Gui- ded Design,” Annu. Rev. Mater. Res., vol. 45, no. 1, pp. 391–431, 2015. G. Moeini, A. Ramazani, S. Myslicki, V. Sundararaghavan, and C. K¨onke, “Low Cycle Fatigue Behaviour of DP Steels: Micromechanical Modelling vs. Validation,” Metals (Basel)., vol. 7, no. 7, p. 265, 2017. A. P. Pierman, O. Bouaziz, T. Pardoen, P. J. Jacques, and L. Brassart, “The influence of microstructure and composition on the plastic behaviour of dual-phase steels,” Acta Mater., vol. 73, pp. 298–311, 2014. Q. Lai, O. Bouaziz, M. Goun´e, L. Brassart, M. Verdier, G. Parry, A. Perlade, Y. Br´echet, and T. Pardoen, “Damage and fracture of dual-phase steels: Influence of martensite volume fraction,” Mater. Sci. Eng. A, vol. 646, pp. 322–331, 2015. Q. Lai, L. Brassart, O. Bouaziz, M. Goun´e, M. Verdier, G. Parry, A. Perlade, Y. Br´echet, and T. Pardoen, “Influence of martensite volume fraction and hardness on the plastic behavior of dual-phase steels: Experiments and micromechanical modeling,” Int. J. Plast., vol. 80, pp. 187–203, 2016. J. Zhou, A. M. Gokhale, A. Gurumurthy, and S. P. Bhat, “Realistic microstructu- ral RVE-based simulations of stress-strain behavior of a dual-phase steel having high martensite volume fraction,” Mater. Sci. Eng. A, vol. 630, pp. 107–115, 2015. Y. Li, X. Pan, G. Wu, and G. Wang, “Shape-instability life scatter prediction of 40Cr steel: Damage-coupled crystal plastic probabilistic finite element method,” Int. J. Plast., vol. 79, pp. 1–18, 2016. M. Liu, C. Lu, K. A. Tieu, C. T. Peng, and C. Kong, “A combined experimental- numerical approach for determining mechanical properties of aluminum subjects to nanoindentation,” Sci. Rep., vol. 5, no. January, pp. 1–16, 2015. G. Sun, F. Xu, G. Li, X. Huang, and Q. Li, “Determination of mechanical properties of the weld line by combining micro-indentation with inverse modeling,” Comput. Mater. Sci., vol. 85, pp. 347–362, 2014. K. Bandyopadhyay, S. K. Panda, P. Saha, V. H. Baltazar-Hernandez, and Y. N. Zhou, “Microstructures and failure analyses of DP980 laser welded blanks in formability context,” Mater. Sci. Eng. A, vol. 652, pp. 250–263, 2016. R. KUZIAK, R. KAWALLA, and S. WAENGLER, “Advanced high strength steels for automotive industry,” Rev. Metal., vol. 48, no. 2, pp. 118–131, 2008. N. Fonstein, “Dual-phase steels,” in Automot. Steels Des. Metall. Process. Appl. (R. Rana and S. B. B. T. A. S. Singh, eds.), ch. Dual-phase, pp. 169–216, Woodhead Publishing, 2017. A. Kumar, S. B. Singh, and K. K. Ray, “Influence of bainite/martensite-content on the tensile properties of low carbon dual-phase steels,” Mater. Sci. Eng. A, vol. 474, no. 1-2, pp. 270–282, 2008. S. Sun and M. Pugh, “Properties of thermomechanically processed dual-phased steels containing fibrous martensite,” Mater. Sci. Eng. A, vol. 335, no. 1-2, pp. 298–308, 2002. J. L. Dossett and H. E. Boyer, Practical heat treating. Asm International, 2006. C. A. N. Lanzillotto and F. B. Pickering, “Structure–property relationships in dual- phase steels,” Met. Sci., vol. 16, pp. 371–382, aug 1982. T. L. Anderson and T. L. Anderson, Fracture Mechanics: Fundamentals and Applica- tions, Third Edition. CRC Press, 2005. M. Calcagnotto, Y. Adachi, D. Ponge, and D. Raabe, “Deformation and fracture me- chanisms in fine- and ultrafine-grained ferrite/martensite dual-phase steels and the effect of aging,” Acta Mater., vol. 59, no. 2, pp. 658–670, 2011. B. Anbarlooie, H. Hosseini-Toudeshky, and J. Kadkhodapour, “High cycle fatigue mi- cromechanical behavior of dual phase steel: Damage initiation, propagation and final failure,” Mech. Mater., vol. 106, pp. 8–19, 2017. D. W. Beardsmore, M. A. Wilkes, and A. Shterenlikht, “An Implementation of the Gurson-Tvergaard-Needleman Plasticity Model for ABAQUS Standard Using a Trust Region Method,” in Vol. 6 Mater. Fabr., vol. 2006, pp. 615–623, ASME, 2006. N. Bonora, A. Ruggiero, L. Esposito, and D. Gentile, “CDM modeling of ductile failure in ferritic steels: Assessment of the geometry transferability of model parameters,” Int. J. Plast., vol. 22, no. 11, pp. 2015–2047, 2006. J. N. Reddy, An Introduction to Continuum Mechanics. Cambridge University Press, 2007. G. T. Mase, R. E. Smelser, and G. E. Mase, Continuum Mechanics for Engineers. Computational Mechanics and Applied Analysis, CRC Press, 2009. A. J. M. Spencer, Continuum Mechanics. Dover Books on Physics, Dover Publications, 2012. O. Gonzalez and A. M. Stuart, A First Course in Continuum Mechanics. A First Course in Continuum Mechanics, Cambridge University Press, 2008. A. F. Bower, Applied Mechanics of Solids. CRC Press, 2009. O. C. Zienkiewicz, R. L. Taylor, R. L. Taylor, and R. L. Taylor, The Finite Element Method: The basis. Fluid Dynamics, Butterworth-Heinemann, 2000. M. A. Meyers and K. K. Chawla, Mechanical Behavior of Materials. Cambridge Uni- versity Press, 2008. ASTM International, “ASTM E3-11 Standard guide for preparation of metallographic specimens,” 2011. C. Zhang, B. Gong, C. Deng, and D. Wang, “Computational prediction of mechanical properties of a C-Mn weld metal based on the microstructures and micromechanical properties,” Mater. Sci. Eng. A, vol. 685, no. November 2016, pp. 310–316, 2017. A. Ramazani, Z. Ebrahimi, and U. Prahl, “Study the effect of martensite banding on the failure initiation in dual-phase steel,” Comput. Mater. Sci., vol. 87, pp. 241–247, 2014. C. D. Schwindt, M. Stout, L. Iurman, and J. W. Signorelli, “Forming Limit Curve Determination of a DP-780 Steel Sheet,” Procedia Mater. Sci., vol. 8, pp. 978–985, 2015. A. International, “ASTM E112-13 Standard Test Methods for Determining Average Grain Size,” 2013. The GIMP Team, “GNU Image Manipulation Program 2.8.10,” 2018. C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods, vol. 9, no. 7, p. 671, 2012. Minitab, “Distribución de Weibull en el análisis de fiabilidad,” 2017. C. Rycroft, “Voro++: A three-dimensional Voronoi cell library in C++,” tech. rep., 2009. R. Quey, “Neper: software package for polycrystal generation and meshing,” 2016. M. A. Groeber and M. A. Jackson, “DREAM. 3D: a digital representation environment for the analysis of microstructure in 3D,” Integr. Mater. Manuf. Innov., vol. 3, no. 1, p. 5, 2014. M. Delincé, P. J. Jacques, and T. Pardoen, “Separation of size-dependent strengthe- ning contributions in fine-grained Dual Phase steels by nanoindentation,” Acta Mater., vol. 54, no. 12, pp. 3395–3404, 2006. M. Liu, C. Lu, K. Tieu, and H. Yu, “Numerical comparison between Berkovich and conical nano-indentations: Mechanical behaviour and micro-texture evolution,” Mater. Sci. Eng. A, vol. 619, pp. 57–65, 2014. H. Toda, A. Takijiri, M. Azuma, S. Yabu, K. Hayashi, D. Seo, M. Kobayashi, K. Hi- rayama, A. Takeuchi, and K. Uesugi, “Damage micromechanisms in dual-phase steel investigated with combined phase- and absorption-contrast tomography,” Acta Mater., vol. 126, pp. 401–412, 2017. V. Tvergaard, “On localization in ductile materials containing spherical voids,” Int. J. Fract., vol. 18, no. 4, pp. 237–252, 1982. A. Needleman and V. Tvergaard, “An analysis of ductile rupture modes at a crack tip,” J. Mech. Phys. Solids, vol. 35, pp. 151–183, jan 1987. N. Aravas, “On the numerical integration of a class of pressure-dependent plasticity models,” Int. J. Numer. Methods Eng., vol. 24, pp. 1395–1416, jul 1987. T. Sirinakorn, S. Wongwises, and V. Uthaisangsuk, “A study of local deformation and damage of dual phase steel,” Mater. Des., vol. 64, pp. 729–742, dec 2014. K. Isik, G. Gerstein, T. Clausmeyer, F. N¨urnberger, A. E. Tekkaya, and H. J. Maier, “Evaluation of Void Nucleation and Development during Plastic Deformation of Dual- Phase Steel DP600,” Steel Res. Int., vol. 87, no. 12, pp. 1583–1591, 2016. M. Djouabi, A. Ati, and P. Y. Manach, “Identification strategy influence of elastoplas- tic behavior law parameters on Gurson–Tvergaard–Needleman damage parameters: Application to DP980 steel,” Int. J. Damage Mech., vol. 28, no. 3, pp. 427–454, 2019. R.-M. Rodriguez and I. Gutiérrez, “Unified Formulation to Predict the Tensile Curves of Steels with Different Microstructures,” Mater. Sci. Forum, vol. 426-432, pp. 4525– 4530, aug 2003. A. Ramazani, M. Abbasi, S. Kazemiabnavi, S. Schmauder, R. Larson, and U. Prahl, “Development and application of a microstructure-based approach to characterize and model failure initiation in DP steels using XFEM,” Mater. Sci. Eng. A, vol. 660, pp. 181–194, 2016. X. Wei, S. A. Asgari, J. T. Wang, B. F. Rolfe, H. C. Zhu, and P. D. Hodgson, “Micro- mechanical modelling of bending under tension forming behaviour of dual phase steel 600,” Comput. Mater. Sci., vol. 108, no. PA, pp. 72–79, 2015. Y. Hou, S. Cai, T. Sapanathan, A. Dumon, and M. Rachik, “Micromechanical modeling of the effect of phase distribution topology on the plastic behavior of dual-phase steels,” Comput. Mater. Sci., vol. 158, no. November 2018, pp. 243–254, 2019. S. Huang, C. F. He, and Y. X. Zhao, “Microstructure-Based RVE Approach for Stretch- Bending of Dual-Phase Steels,” J. Mater. Eng. Perform., vol. 25, no. 3, pp. 966–976, 2016. F. Rieger and T. B¨ohlke, “Microstructure based prediction and homogenization of the strain hardening behavior of dual-phase steel,” Arch. Appl. Mech., vol. 85, no. 9-10, pp. 1439–1458, 2015. J. Krier, J. Breuils, L. Jacomine, and H. Pelletier, “Introduction of the real tip defect of Berkovich indenter to reproduce with FEM nanoindentation test at shallow penetration depth,” J. Mater. Res., vol. 27, no. 1, pp. 28–38, 2012. C. Guo, L. Hao, Y. Kang, S. Li, and Y. An, “Method of obtaining the constitutive relation in DP steel based on nanoindentation and finite element modeling,” Mater. Res. Express, vol. 6, p. 096585, jul 2019. Z. Chen, X. Wang, A. Atkinson, and N. Brandon, “Spherical indentation of porous ceramics: Elasticity and hardness,” J. Eur. Ceram. Soc., vol. 36, no. 6, pp. 1435–1445, 2016. Y. Li, R. Song, L. Jiang, and Z. Zhao, “Deformation response of 1200 MPa gra- de martensite-ferrite dual-phase steel under high strain rates,” Mater. Sci. Eng. A, vol. 750, pp. 40–44, mar 2019. R. B. Gou, W. J. Dan, W. G. Zhang, and M. Yu, “Research on flow behaviors of the constituent grains in ferrite-martensite dual phase steels based on nanoindentation measurements,” Mater. Res. Express, vol. 4, no. 7, 2017. Y. L. Song, L. Hua, and F. Z. Meng, “Inhomogeneous constructive modelling of laser welded bead based on nanoindentation test,” Ironmak. Steelmak., vol. 39, pp. 95–103, feb 2012. M. Nasser, A. Chamekh, G. Guillemot, M. Nasri, and A. Iost, “Modélisation du com- portement élastoplastique d ’ un revêtement Fe-Zn par nanoindentation : Approche inverse basée sur les plans d ’ expériences et les algorithmes génétiques multiobjectifs Résumé,” Test, pp. 1–6, 2011. Z. Yuan, F. Li, P. Zhang, B. Chen, and F. Xue, “Mechanical properties study of particles reinforced aluminum matrix composites by micro-indentation experiments,” Chinese J. Aeronaut., vol. 27, no. 2, pp. 397–406, 2014. I. Barényi and J. Majererík, “QUASI-STATIC NANOINDENTATION STUDY OF PHERITE-MARTENSITE DUAL PHASE STEEL,” vol. 12, no. 2, pp. 1–5, 2018. K. K. Tseng and L. Wang, “Modeling and simulation of mechanical properties of nano- particle filled materials,” J. Nanoparticle Res., vol. 6, no. 5, pp. 489–494, 2004. A. Karimzadeh, S. S. R. Koloor, M. R. Ayatollahi, A. R. Bushroa, and M. Y. Yahya, “Assessment of Nano-Indentation Method in Mechanical Characterization of Heteroge- neous Nanocomposite Materials Using Experimental and Computational Approaches,” Sci. Rep., vol. 9, no. 1, pp. 1–14, 2019. Y. Q. Peng, L. X. Cai, D. Yao, H. Chen, and G. Z. Han, “A Novel Method to Predict the Mechanical Properties of DP600,” Key Eng. Mater., vol. 795, pp. 22–28, mar 2019. M. K. Apalak, R. Ekici, M. Yildirim, and F. Nair, “Effects of random particle disper- sion and particle volume fraction on the indentation behavior of sic particle-reinforced metal-matrix composites,” J. Compos. Mater., vol. 43, no. 26, pp. 3191–3210, 2009. Y. Chen, C. Zhang, and C. Var´e, “An extended GTN model for indentation-induced damage,” Comput. Mater. Sci., vol. 128, pp. 229–235, 2017. Y. L. Shen and Y. L. Guo, “Indentation modelling of heterogeneous materials,” Model. Simul. Mater. Sci. Eng., vol. 9, no. 5, pp. 391–398, 2001. |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.spa.spa.fl_str_mv |
Acceso abierto |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia Acceso abierto http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
128 |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ingeniería - Maestría en Ingeniería - Materiales y Procesos |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/77866/2/license.txt https://repositorio.unal.edu.co/bitstream/unal/77866/3/license_rdf https://repositorio.unal.edu.co/bitstream/unal/77866/1/1024537277.2020.pdf https://repositorio.unal.edu.co/bitstream/unal/77866/4/1024537277.2020.pdf.jpg |
bitstream.checksum.fl_str_mv |
6f3f13b02594d02ad110b3ad534cd5df 217700a34da79ed616c2feb68d4c5e06 53d1bac63427b6f21527e8be2c70f806 3d8f9d4c337ad6072d866e40dca7cc99 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089315500687360 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 InternacionalDerechos reservados - Universidad Nacional de ColombiaAcceso abiertohttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Rodríguez Baracaldo, Rodolfo64e8017e-a647-45c9-8a1a-b2250b561279-1Narváez Tovar, Carlos Alberto97a0550c-1673-4fe9-98ff-33f4f1676304-1Cuervo Basurto, Anyerson1befe2e5-db86-454e-bd24-5d9242e43dd6Universidad Nacional de ColombiaDepartamento de Ingeniería Mecánica y MecatrónicaInnovación en Procesos de Manufactura e Ingeniería de Materiales (IPMIM)2020-07-29T02:47:38Z2020-07-29T02:47:38Z2020-06-16A. Cuervo Basurto, Simulación del comportamiento micromecánico de aceros de fase dual por medio del método de elementos finitos, Bogotá: Universidad Nacional de Colombia, 2020.Cuervo Basurto, A. (2020). Simulación del comportamiento micromecánico de aceros de fase dual por medio del método de elementos finitos. Bogotá, Colombia: Universidad Nacional de Colombia.https://repositorio.unal.edu.co/handle/unal/77866This work encompasses a DP600 steel mechanical behavior characterization by using micro indentation test simulations. To simulate the microindentation was used methodologies to generate bidimensional and tridimensional artificial representative volume elements (RVE) based on material's statistical data. There were selected micromechanical models to predict its phases' behavior. The experimental data to validate the behavior was found on literature then it was introduced on nano indentation and micro indentation simulations. Nano indentations were used to validate the individual phases' mechanical behavior later Micro indentations were made to study the effect of second phase particles immersed in the volume. The distribution of second phase particles shows an effect over the mechanical behavior on the simulation explaining the curves differences.El presente estudio comprende la simulación por elementos finitos del comportamiento micromecánico de un acero de fase dual DP600 utilizando la técnica de ensayos de microindentación. Para tal fin, fueron usadas metodologías para generar elementos de volumen representativo (RVE) artificiales, bidimensionales y tridimensionales basados en su representación estadística, y seleccionados modelos teóricos micromecánicos que permitan predecir el comportamiento de las fases que lo conforman. Los parámetros el acero DP fueron obtenidos de la revisión de literatura, estos fueron ubicados dentro de los modelos e implementados en las simulaciones de nanoindentación, para validar el comportamiento de cada fase, y microindentación, con el fin de estudiar el efecto de las partículas de segunda fase. Se encontró que el efecto de las partículas de segunda fase sobre la respuesta global depende de la distancia de separación de estas partículas, explicando las diferencias en las curvas de respuesta.Magíster en Medio Ambiente y Desarrollo . Línea de Investigación: Estudios Ambientales Agrarios .Maestría128application/pdfspa620 - Ingeniería y operaciones afinesdual PhasemicroindentationnanoindentationDP steelsimulationcomputationalFEMGTNfase dualmicroindentaciónnanoindentaciónacero DPsimulacióncomputacionalFEMGTNSimulación del comportamiento micromecánico de aceros de fase dual por medio del método de elementos finitosDocumento de trabajoinfo:eu-repo/semantics/workingPaperinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_8042Texthttp://purl.org/redcol/resource_type/WPBogotá - Ingeniería - Maestría en Ingeniería - Materiales y ProcesosUniversidad Nacional de Colombia - Sede BogotáH. S. Valberg, Applied Metal Forming: Including FEM Analysis. Applied Metal For- ming: Including FEM Analysis, Cambridge University Press, 2010.N. Fonstein, “Advanced High Strength Sheet Steels,” in Adv. High Strength Sheet Steels (R. Rana and S. B. B. T. A. S. Singh, eds.), Woodhead Publishing, 2015.C. C. Tasan, J. P. Hoefnagels, L. C. Louws, and M. G. Geers, “Experimental-numerical analysis of the indentation-based damage characterization methodology,” Appl. Mech. Mater., vol. 13-14, pp. 151–160, 2008.R. Peierls, “The size of a dislocation,” Proc. Phys. Soc., vol. 52, pp. 34–37, jan 1940.R. Hill, “The Elastic Behaviour of a Crystalline Aggregate,” Proc. Phys. Soc. Sect. A, vol. 65, pp. 349–354, may 1952.R. Hill and J. Rice, “Constitutive analysis of elastic-plastic crystals at arbitrary strain,” J. Mech. Phys. Solids, vol. 20, pp. 401–413, dec 1972.A. Arsenlis and D. M. Parks, “Modeling the evolution of crystallographic dislocation density in crystal plasticity,” J. Mech. Phys. Solids, vol. 50, no. 9, pp. 1979–2009, 2002.K. Yoshida, R. Brenner, B. Bacroix, and S. Bouvier, “Micromechanical modeling of the work-hardening behavior of single- and dual-phase steels under two-stage loading paths,” Mater. Sci. Eng. A, vol. 528, no. 3, pp. 1037–1046, 2011.C. N. N’Guyen, F. Barbe, N. Osipov, G. Cailletaud, B. Marini, and C. Petry, “Micro- mechanical local approach to brittle failure in bainite high resolution polycrystals: A short presentation,” Comput. Mater. Sci., vol. 64, pp. 62–65, 2012.F. Roters, P. Eisenlohr, C. Kords, D. D. Tjahjanto, M. Diehl, and D. Raabe, “DA- MASK: The dusseldorf advanced material simulation kit for studying crystal plasticity using an fe based or a spectral numerical solver,” Procedia IUTAM, vol. 3, pp. 3–10, 2012.C. A. Sweeney, P. E. McHugh, J. P. McGarry, and S. B. Leen, “Micromechanical methodology for fatigue in cardiovascular stents,” Int. J. Fatigue, vol. 44, pp. 202–216, 2012.A. Tahimi, F. Barbe, L. Taleb, R. Quey, and A. Guillet, “Evaluation of microstructure- based transformation plasticity models from experiments on 100C6 steel,” Comput. Mater. Sci., vol. 52, no. 1, pp. 55–60, 2012.W. Woo, V. T. Em, E. Y. Kim, S. H. Han, Y. S. Han, and S. H. Choi, “Stress- strain relationship between ferrite and martensite in a dual-phase steel studied by in situ neutron diffraction and crystal plasticity theories,” Acta Mater., vol. 60, no. 20, pp. 6972–6981, 2012.D. F. Li, C. M. Davies, S. Y. Zhang, C. Dickinson, and N. P. O’Dowd, “The effect of prior deformation on subsequent microplasticity and damage evolution in an austenitic stainless steel at elevated temperature,” Acta Mater., vol. 61, no. 10, pp. 3575–3584, 2013.P. Chen, H. Ghassemi-Armaki, S. Kumar, A. Bower, S. Bhat, and S. Sadagopan, “Microscale-calibrated modeling of the deformation response of dual-phase steels,” Acta Mater., vol. 65, pp. 133–149, 2014.E. B. Marin, “On the formulation of a crystal plasticity model.,” pp. 1–62, 2006.F. Roters, P. Eisenlohr, L. Hantcherli, D. D. Tjahjanto, T. R. Bieler, and D. Raabe, “Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications,” Acta Mater., vol. 58, no. 4, pp. 1152–1211, 2010.F. Roters, P. Eisenlohr, T. R. Bieler, and D. Raabe, Crystal Plasticity Finite Element Methods: in Materials Science and Engineering. Wiley, 2011.M. Knezevic, B. Drach, M. Ardeljan, and I. J. Beyerlein, “Three dimensional pre- dictions of grain scale plasticity and grain boundaries using crystal plasticity finite element models,” Comput. Methods Appl. Mech. Eng., vol. 277, pp. 239–259, 2014.C. Pu and Y. Gao, “Crystal Plasticity Analysis of Stress Partitioning Mechanisms and Their Microstructural Dependence in Advanced Steels,” J. Appl. Mech., vol. 82, no. 3, p. 031003, 2015.J. K. Mackenzie, “The elastic constants of a material containing spherical coated ho- les,” Proc. Phys. Soc, vol. 63, pp. 223–246, 1950.R. Hill, “Continuum micro-mechanics of elastoplastic polycrystals,” J. Mech. Phys. Solids, vol. 13, no. 2, pp. 89–101, 1965.A. Paquin, S. Berbenni, V. Favier, X. Lemoine, and M. Berveiller, “Micromechanical modeling of the elastic-viscoplastic behavior of polycrystalline steels,” Int. J. Plast., vol. 17, no. 9, pp. 1267–1302, 2001.S. Berbenni, V. Favier, X. Lemoine, and M. Berveiller, “Micromechanical modeling of the elastic-viscoplastic behavior of polycrystalline steels having different microstructu- res,” Mater. Sci. Eng. A, vol. 372, no. 1-2, pp. 128–136, 2004.N. Jia, R. Lin Peng, Y. D. Wang, S. Johansson, and P. K. Liaw, “Micromechanical behavior and texture evolution of duplex stainless steel studied by neutron diffraction and self-consistent modeling,” Acta Mater., vol. 56, no. 4, pp. 782–793, 2008.N. Jia, Z. H. Cong, X. Sun, S. Cheng, Z. H. Nie, Y. Ren, P. K. Liaw, and Y. D. Wang, “An in situ high-energy X-ray diffraction study of micromechanical behavior of multiple phases in advanced high-strength steels,” Acta Mater., vol. 57, no. 13, pp. 3965–3977, 2009.D. Barbier, V. Favier, and B. Bolle, “Modeling the deformation textures and micros- tructural evolutions of a Fe-Mn-C TWIP steel during tensile and shear testing,” Mater. Sci. Eng. A, vol. 540, pp. 212–225, 2012.A. Molinari, G. R. Canova, and S. Ahzi, “A self consistent approach of the large deformation polycrystal viscoplasticity,” Acta Metall., vol. 35, no. 12, pp. 2983–2994, 1987.R. A. Lebensohn and C. N. Tom´e, “A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: Application to zirconium alloys,” Acta Metall. Mater., vol. 41, no. 9, pp. 2611–2624, 1993.A. A. Saleh, C. Haase, E. V. Pereloma, D. A. Molodov, and A. A. Gazder, “On the evolution and modelling of brass-type texture in cold-rolled twinning-induced plasticity steel,” Acta Mater., vol. 70, pp. 259–271, 2014.C. D. Schwindt, M. A. Bertinetti, L. Iurman, C. A. Rossit, and J. W. Signorelli, “Numerical study of the effect of martensite plasticity on the forming limits of a dual- phase steel sheet,” Int. J. Mater. Form., vol. 9, no. 4, pp. 499–517, 2016.D. H. Kim, S. J. Kim, S. H. Kim, A. D. Rollett, K. H. Oh, and H. N. Han, “Microtex- ture development during equibiaxial tensile deformation in monolithic and dual phase steels,” Acta Mater., vol. 59, no. 14, pp. 5462–5471, 2011.J. W. Hutchinson, “Bounds and Self-Consistent Estimates for Creep of Polycrystalline Materials,” Proc. R. Soc. A Math. Phys. Eng. Sci., vol. 348, no. 1652, pp. 101–127, 1976.A. L. Gurson, “Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media,” J. Eng. Mater. Technol., vol. 99, no. 1, p. 2, 1977.D. Peirce, R. J. Asaro, and A. Needleman, “an Analysis of Nonuniform and Localized Deformation,” Acta Metall., vol. 30, pp. 1087–1119, 1982.M. Mear and J. Hutchinson, “Influence of yield surface curvature on flow localization in dilatant plasticity,” Mech. Mater., vol. 4, pp. 395–407, dec 1985.F. M. Al-Abbasi and J. A. Nemes, “Predicting the ductile failure of DP-steels using micromechanical modeling of cells,” Int. J. Damage Mech., vol. 17, no. 5, pp. 447–472, 2008.V. Uthaisangsuk, U. Prahl, and W. Bleck, “Micromechanical modelling of damage behaviour of multiphase steels,” Comput. Mater. Sci., vol. 43, no. 1, pp. 27–35, 2008.V. Uthaisangsuk, U. Prahl, and W. Bleck, “Characterisation of formability behaviour of multiphase steels by micromechanical modelling,” Int. J. Fract., vol. 157, pp. 55–69, may 2009.S. K. Paul, “Micromechanics based modeling of Dual Phase steels: Prediction of duc- tility and failure modes,” Comput. Mater. Sci., vol. 56, pp. 34–42, 2012.M. Nygards and P. Gudmundson, “Three-dimensional periodic Voronoi grain mo- dels and micromechanical FE-simulations of a two-phase steel,” Comput. Mater. Sci., vol. 24, no. 4, pp. 513–519, 2002.F. M. Al-Abbasi and J. A. Nemes, “Micromechanical modeling of dual phase steels,” Int. J. Mech. Sci., vol. 45, no. 9, pp. 1449–1465, 2003.S. R. Bordet, B. Tanguy, J. Besson, S. Bugat, D. Moinereau, and A. Pineau, “Clea- vage fracture of RPV steel following warm pre-stressing: Micromechanical analysis and interpretation through a new model,” Fatigue Fract. Eng. Mater. Struct., vol. 29, no. 9-10, pp. 799–816, 2006.J. H. Kim, M. G. Lee, D. Kim, D. K. Matlock, and R. H. Wagoner, “Hole-expansion formability of dual-phase steels using representative volume element approach with boundary-smoothing technique,” Mater. Sci. Eng. A, vol. 527, no. 27-28, pp. 7353– 7363, 2010.S. K. Paul, “Real microstructure based micromechanical model to simulate microstruc- tural level deformation behavior and failure initiation in DP 590 steel,” Mater. Des., vol. 44, pp. 397–406, 2013.A. Ramazani, A. Schwedt, A. Aretz, U. Prahl, and W. Bleck, “Characterization and modelling of failure initiation in DP steel,” Comput. Mater. Sci., vol. 75, pp. 35–44, 2013.V. Uthaisangsuk, U. Prahl, and W. Bleck, “Modelling of damage and failure in mul- tiphase high strength DP and TRIP steels,” Eng. Fract. Mech., vol. 78, pp. 469–486, feb 2011.S. K. Paul and A. Kumar, “Micromechanics based modeling to predict flow behavior and plastic strain localization of dual phase steels,” Comput. Mater. Sci., vol. 63, pp. 66–74, 2012.S. Katani, S. Ziaei-Rad, N. Nouri, N. Saeidi, J. Kadkhodapour, N. Torabian, and S. Schmauder, “Microstructure Modelling of Dual-Phase Steel Using SEM Micrographs and Voronoi Polycrystal Models,” Metallogr. Microstruct. Anal., vol. 2, no. 3, pp. 156– 169, 2013.X. Hu, P. Van Houtte, M. Liebeherr, A. Walentek, M. Seefeldt, and H. Vandekinderen, “Modeling work hardening of pearlitic steels by phenomenological and Taylor-type micromechanical models,” Acta Mater., vol. 54, no. 4, pp. 1029–1040, 2006.B. Petit, N. Gey, M. Cherkaoui, B. Bolle, and M. Humbert, “Deformation behavior and microstructure/texture evolution of an annealed 304 AISI stainless steel sheet. Experimental and micromechanical modeling,” Int. J. Plast., vol. 23, no. 2, pp. 323– 341, 2007.S. Shi and J. Liang, “Thermal Decomposition Behavior of Silica-Phenolic Composi- te Exposed to One-Sided Radiant Heating,” Polym. Polym. Compos., vol. 16, no. 2, pp. 101–113, 2008.R. Kiran and K. Khandelwal, “A micromechanical model for ductile fracture prediction in ASTM A992 steels,” Eng. Fract. Mech., vol. 102, pp. 101–117, 2013.F. Dunne and N. Petrinic, Introduction to Computational Plasticity. OUP Oxford, 2005.M. Achouri, G. Germain, P. Dal Santo, and D. Saidane, “Numerical integration of an advanced Gurson model for shear loading: Application to the blanking process,” Comput. Mater. Sci., vol. 72, no. Ea 1427, pp. 62–67, 2013.S. Hao, W. K. Liu, B. Moran, F. Vernerey, and G. B. Olson, “Multi-scale constitutive model and computational framework for the design of ultra-high strength, high tough- ness steels,” Comput. Methods Appl. Mech. Eng., vol. 193, no. 17-20, pp. 1865–1908, 2004.K. Pongmorakot, S. Nambu, and T. Koseki, “Numerical analysis of effects of compres- sive strain on the evolution of interfacial strength of steel/nickel solid-state bonding,” Mater. Trans., vol. 59, no. 4, pp. 568–574, 2018.E. N. Hahn and M. A. Meyers, “Grain-size dependent mechanical behavior of nanocrys- talline metals,” Mater. Sci. Eng. A, vol. 646, pp. 101–134, 2015.S. Altintas, K. Hanson, and J. W. Morris, “Computer Simulation of Plastic Deforma- tion Through Planar Glide in an Idealized Crystal,” J. Eng. Mater. Technol., vol. 98, no. 1, p. 86, 1974.P. Seeleuthner, J. Bai, D. Baptiste, and D. Francois, “Micromechanical modeling of damage initiation in glass/epoxy laminates,” Trans. Eng. Sci., vol. 6, 1994.L. Delannay, I. Doghri, and O. Pierard, “Prediction of tension-compression cycles in multiphase steel using a modified incremental mean-field model,” Int. J. Solids Struct., vol. 44, no. 22-23, pp. 7291–7306, 2007.B. G. Schaffer and D. F. Adams, “NONLINEAR VISCOELASTIC- BEHAVIOR of a COMPOSITE MATERIAL USING a FINITE ELEMENT MICROMECHANICAL ANALYSIS,” tech. rep., University of Wyoming, 1980.J. S. Poulsen and E. Byskov, “Micromechanical modelling of inclined localized kink band in clear wood,” Trans. Eng. Sci., vol. 13, pp. 435–442\r963, 1996.M. Nygards and P. Gudmundson, “Micromechanical modeling of ferritic/pearlitic steels,” Mater. Sci. Eng. A, vol. 325, pp. 435–443, feb 2002.J. Bouquerel, K. Verbeken, and B. C. De Cooman, “Microstructure-based model for the static mechanical behaviour of multiphase steels,” Acta Mater., vol. 54, no. 6, pp. 1443–1456, 2006.F. M. Al-Abbasi and J. A. Nemes, “Characterizing DP-steels using micromechanical modeling of cells,” Comput. Mater. Sci., vol. 39, no. 2, pp. 402–415, 2007.K. S. Choi, W. N. Liu, X. Sun, and M. A. Khaleel, “Influence of Martensite Mechanical Properties on Failure Mode and Ductility of Dual-Phase Steels,” Metall. Mater. Trans. A, vol. 40, pp. 796–809, apr 2009.N. Esmaeili, J. L. Alves, and C. Teodosiu, “Simulation of Vickers Micro- Indentation Tests on Dual- Phase Steel utilizing VCAD-based Software,” in Proc. VCAD Symp., no. January 2015, pp. 66–68, 2009.C. Thomser, V. Uthaisangsuk, and W. Bleck, “Influence of martensite distribution on the mechanical properties of dual phase steels: experiments and simulation,” Steel Res., vol. 80, no. 8, pp. 582–587, 2009.J. H. Kim, M. G. Lee, and R. H. Wagoner, “A boundary smoothing algorithm for image-based modeling and its application to micromechanical analysis of multi-phase materials,” Comput. Mater. Sci., vol. 47, no. 3, pp. 785–795, 2010.J. Kadkhodapour, S. Schmauder, D. Raabe, S. Ziaei-Rad, U. Weber, and M. Calcag- notto, “Experimental and numerical study on geometrically necessary dislocations and non-homogeneous mechanical properties of the ferrite phase in dual phase steels,” Acta Mater., vol. 59, no. 11, pp. 4387–4394, 2011.J. R. Cho, Y. J. Kang, K. Y. Jeong, Y. J. Noh, and O. K. Lim, “Homogenization and thermoelastic analysis of heterogenous materials with regular and random microstruc- tures,” Compos. Part B Eng., vol. 43, no. 5, pp. 2313–2323, 2012.A. Ramazani, K. Mukherjee, U. Prahl, and W. Bleck, “Modelling the effect of micros- tructural banding on the flow curve behaviour of dual-phase (DP) steels,” Comput. Mater. Sci., vol. 52, no. 1, pp. 46–54, 2012.A. Ramazani, K. Mukherjee, U. Prahl, and W. Bleck, “Transformation-induced, geo- metrically necessary, dislocation-based flow curve modeling of dual-phase steels: Effect of grain size,” Metall. Mater. Trans. A Phys. Metall. Mater. Sci., vol. 43, no. 10, pp. 3850–3869, 2012.S. Sodjit and V. Uthaisangsuk, “Microstructure based prediction of strain hardening behavior of dual phase steels,” Mater. Des., vol. 41, pp. 370–379, 2012.N. Vajragupta, V. Uthaisangsuk, B. Schmaling, S. M¨unstermann, A. Hartmaier, and W. Bleck, “A micromechanical damage simulation of dual phase steels using XFEM,” Comput. Mater. Sci., vol. 54, no. 1, pp. 271–279, 2012.O. West, J. Lian, S. M¨unstermann, and W. Bleck, “Numerical Determination of the Damage Parameters of a Dual-phase Sheet Steel,” ISIJ Int., vol. 52, no. 4, pp. 743–752, 2012.S. K. Paul, “Effect of material inhomogeneity on the cyclic plastic deformation beha- vior at the microstructural level: Micromechanics-based modeling of dual-phase steel,” Model. Simul. Mater. Sci. Eng., vol. 21, no. 5, 2013.A. Ramazani, P. T. Pinard, S. Richter, A. Schwedt, and U. Prahl, “Characterisation of microstructure and modelling of flow behaviour of bainite-aided dual-phase steel,” Comput. Mater. Sci., vol. 80, pp. 134–141, 2013.A. Ramazani, K. Mukherjee, A. Schwedt, P. Goravanchi, U. Prahl, and W. Bleck, “Quantification of the effect of transformation-induced geometrically necessary dis- locations on the flow-curve modelling of dual-phase steels,” Int. J. Plast., vol. 43, pp. 128–152, 2013.A. Ramazani, K. Mukherjee, H. Quade, U. Prahl, and W. Bleck, “Correlation bet- ween 2D and 3D flow curve modelling of DP steels using a microstructure-based RVE approach,” Mater. Sci. Eng. A, vol. 560, pp. 129–139, 2013.A. ASGARI, B. F. ROLFE, and P. D. HODGSON, “MICROSTRUCTURE MODE- LING AND PREDICTION OF THE MECHANICAL PROPERTIES OF ADVAN- CED HIGH STRENGTH STEELS,” Int. J. Comput. Methods, vol. 11, p. 1344009, nov 2014.E. Fereiduni and S. S. Ghasemi Banadkouki, “Reliability/unreliability of mixture rule in a low alloy ferrite-martensite dual phase steel,” J. Alloys Compd., vol. 577, pp. 351– 359, 2013.K. S. Choi, W. N. Liu, X. Sun, M. A. Khaleel, Y. Ren, and Y. D. Wang, “Advanced micromechanical model for transformation-induced plasticity steels with application of In-Situ high-energy x-ray diffraction method,” Metall. Mater. Trans. A Phys. Metall. Mater. Sci., vol. 39, no. 13, pp. 3089–3096, 2008.C. Tasan, M. Diehl, D. Yan, M. Bechtold, F. Roters, L. Schemmann, C. Zheng, N. Pe- ranio, D. Ponge, M. Koyama, K. Tsuzaki, and D. Raabe, “An Overview of Dual-Phase Steels: Advances in Microstructure-Oriented Processing and Micromechanically Gui- ded Design,” Annu. Rev. Mater. Res., vol. 45, no. 1, pp. 391–431, 2015.G. Moeini, A. Ramazani, S. Myslicki, V. Sundararaghavan, and C. K¨onke, “Low Cycle Fatigue Behaviour of DP Steels: Micromechanical Modelling vs. Validation,” Metals (Basel)., vol. 7, no. 7, p. 265, 2017.A. P. Pierman, O. Bouaziz, T. Pardoen, P. J. Jacques, and L. Brassart, “The influence of microstructure and composition on the plastic behaviour of dual-phase steels,” Acta Mater., vol. 73, pp. 298–311, 2014.Q. Lai, O. Bouaziz, M. Goun´e, L. Brassart, M. Verdier, G. Parry, A. Perlade, Y. Br´echet, and T. Pardoen, “Damage and fracture of dual-phase steels: Influence of martensite volume fraction,” Mater. Sci. Eng. A, vol. 646, pp. 322–331, 2015.Q. Lai, L. Brassart, O. Bouaziz, M. Goun´e, M. Verdier, G. Parry, A. Perlade, Y. Br´echet, and T. Pardoen, “Influence of martensite volume fraction and hardness on the plastic behavior of dual-phase steels: Experiments and micromechanical modeling,” Int. J. Plast., vol. 80, pp. 187–203, 2016.J. Zhou, A. M. Gokhale, A. Gurumurthy, and S. P. Bhat, “Realistic microstructu- ral RVE-based simulations of stress-strain behavior of a dual-phase steel having high martensite volume fraction,” Mater. Sci. Eng. A, vol. 630, pp. 107–115, 2015.Y. Li, X. Pan, G. Wu, and G. Wang, “Shape-instability life scatter prediction of 40Cr steel: Damage-coupled crystal plastic probabilistic finite element method,” Int. J. Plast., vol. 79, pp. 1–18, 2016.M. Liu, C. Lu, K. A. Tieu, C. T. Peng, and C. Kong, “A combined experimental- numerical approach for determining mechanical properties of aluminum subjects to nanoindentation,” Sci. Rep., vol. 5, no. January, pp. 1–16, 2015.G. Sun, F. Xu, G. Li, X. Huang, and Q. Li, “Determination of mechanical properties of the weld line by combining micro-indentation with inverse modeling,” Comput. Mater. Sci., vol. 85, pp. 347–362, 2014.K. Bandyopadhyay, S. K. Panda, P. Saha, V. H. Baltazar-Hernandez, and Y. N. Zhou, “Microstructures and failure analyses of DP980 laser welded blanks in formability context,” Mater. Sci. Eng. A, vol. 652, pp. 250–263, 2016.R. KUZIAK, R. KAWALLA, and S. WAENGLER, “Advanced high strength steels for automotive industry,” Rev. Metal., vol. 48, no. 2, pp. 118–131, 2008.N. Fonstein, “Dual-phase steels,” in Automot. Steels Des. Metall. Process. Appl. (R. Rana and S. B. B. T. A. S. Singh, eds.), ch. Dual-phase, pp. 169–216, Woodhead Publishing, 2017.A. Kumar, S. B. Singh, and K. K. Ray, “Influence of bainite/martensite-content on the tensile properties of low carbon dual-phase steels,” Mater. Sci. Eng. A, vol. 474, no. 1-2, pp. 270–282, 2008.S. Sun and M. Pugh, “Properties of thermomechanically processed dual-phased steels containing fibrous martensite,” Mater. Sci. Eng. A, vol. 335, no. 1-2, pp. 298–308, 2002.J. L. Dossett and H. E. Boyer, Practical heat treating. Asm International, 2006.C. A. N. Lanzillotto and F. B. Pickering, “Structure–property relationships in dual- phase steels,” Met. Sci., vol. 16, pp. 371–382, aug 1982.T. L. Anderson and T. L. Anderson, Fracture Mechanics: Fundamentals and Applica- tions, Third Edition. CRC Press, 2005.M. Calcagnotto, Y. Adachi, D. Ponge, and D. Raabe, “Deformation and fracture me- chanisms in fine- and ultrafine-grained ferrite/martensite dual-phase steels and the effect of aging,” Acta Mater., vol. 59, no. 2, pp. 658–670, 2011.B. Anbarlooie, H. Hosseini-Toudeshky, and J. Kadkhodapour, “High cycle fatigue mi- cromechanical behavior of dual phase steel: Damage initiation, propagation and final failure,” Mech. Mater., vol. 106, pp. 8–19, 2017.D. W. Beardsmore, M. A. Wilkes, and A. Shterenlikht, “An Implementation of the Gurson-Tvergaard-Needleman Plasticity Model for ABAQUS Standard Using a Trust Region Method,” in Vol. 6 Mater. Fabr., vol. 2006, pp. 615–623, ASME, 2006.N. Bonora, A. Ruggiero, L. Esposito, and D. Gentile, “CDM modeling of ductile failure in ferritic steels: Assessment of the geometry transferability of model parameters,” Int. J. Plast., vol. 22, no. 11, pp. 2015–2047, 2006.J. N. Reddy, An Introduction to Continuum Mechanics. Cambridge University Press, 2007.G. T. Mase, R. E. Smelser, and G. E. Mase, Continuum Mechanics for Engineers. Computational Mechanics and Applied Analysis, CRC Press, 2009.A. J. M. Spencer, Continuum Mechanics. Dover Books on Physics, Dover Publications, 2012.O. Gonzalez and A. M. Stuart, A First Course in Continuum Mechanics. A First Course in Continuum Mechanics, Cambridge University Press, 2008.A. F. Bower, Applied Mechanics of Solids. CRC Press, 2009.O. C. Zienkiewicz, R. L. Taylor, R. L. Taylor, and R. L. Taylor, The Finite Element Method: The basis. Fluid Dynamics, Butterworth-Heinemann, 2000.M. A. Meyers and K. K. Chawla, Mechanical Behavior of Materials. Cambridge Uni- versity Press, 2008.ASTM International, “ASTM E3-11 Standard guide for preparation of metallographic specimens,” 2011.C. Zhang, B. Gong, C. Deng, and D. Wang, “Computational prediction of mechanical properties of a C-Mn weld metal based on the microstructures and micromechanical properties,” Mater. Sci. Eng. A, vol. 685, no. November 2016, pp. 310–316, 2017.A. Ramazani, Z. Ebrahimi, and U. Prahl, “Study the effect of martensite banding on the failure initiation in dual-phase steel,” Comput. Mater. Sci., vol. 87, pp. 241–247, 2014.C. D. Schwindt, M. Stout, L. Iurman, and J. W. Signorelli, “Forming Limit Curve Determination of a DP-780 Steel Sheet,” Procedia Mater. Sci., vol. 8, pp. 978–985, 2015.A. International, “ASTM E112-13 Standard Test Methods for Determining Average Grain Size,” 2013.The GIMP Team, “GNU Image Manipulation Program 2.8.10,” 2018.C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods, vol. 9, no. 7, p. 671, 2012.Minitab, “Distribución de Weibull en el análisis de fiabilidad,” 2017.C. Rycroft, “Voro++: A three-dimensional Voronoi cell library in C++,” tech. rep., 2009.R. Quey, “Neper: software package for polycrystal generation and meshing,” 2016.M. A. Groeber and M. A. Jackson, “DREAM. 3D: a digital representation environment for the analysis of microstructure in 3D,” Integr. Mater. Manuf. Innov., vol. 3, no. 1, p. 5, 2014.M. Delincé, P. J. Jacques, and T. Pardoen, “Separation of size-dependent strengthe- ning contributions in fine-grained Dual Phase steels by nanoindentation,” Acta Mater., vol. 54, no. 12, pp. 3395–3404, 2006.M. Liu, C. Lu, K. Tieu, and H. Yu, “Numerical comparison between Berkovich and conical nano-indentations: Mechanical behaviour and micro-texture evolution,” Mater. Sci. Eng. A, vol. 619, pp. 57–65, 2014.H. Toda, A. Takijiri, M. Azuma, S. Yabu, K. Hayashi, D. Seo, M. Kobayashi, K. Hi- rayama, A. Takeuchi, and K. Uesugi, “Damage micromechanisms in dual-phase steel investigated with combined phase- and absorption-contrast tomography,” Acta Mater., vol. 126, pp. 401–412, 2017.V. Tvergaard, “On localization in ductile materials containing spherical voids,” Int. J. Fract., vol. 18, no. 4, pp. 237–252, 1982.A. Needleman and V. Tvergaard, “An analysis of ductile rupture modes at a crack tip,” J. Mech. Phys. Solids, vol. 35, pp. 151–183, jan 1987.N. Aravas, “On the numerical integration of a class of pressure-dependent plasticity models,” Int. J. Numer. Methods Eng., vol. 24, pp. 1395–1416, jul 1987.T. Sirinakorn, S. Wongwises, and V. Uthaisangsuk, “A study of local deformation and damage of dual phase steel,” Mater. Des., vol. 64, pp. 729–742, dec 2014.K. Isik, G. Gerstein, T. Clausmeyer, F. N¨urnberger, A. E. Tekkaya, and H. J. Maier, “Evaluation of Void Nucleation and Development during Plastic Deformation of Dual- Phase Steel DP600,” Steel Res. Int., vol. 87, no. 12, pp. 1583–1591, 2016.M. Djouabi, A. Ati, and P. Y. Manach, “Identification strategy influence of elastoplas- tic behavior law parameters on Gurson–Tvergaard–Needleman damage parameters: Application to DP980 steel,” Int. J. Damage Mech., vol. 28, no. 3, pp. 427–454, 2019.R.-M. Rodriguez and I. Gutiérrez, “Unified Formulation to Predict the Tensile Curves of Steels with Different Microstructures,” Mater. Sci. Forum, vol. 426-432, pp. 4525– 4530, aug 2003.A. Ramazani, M. Abbasi, S. Kazemiabnavi, S. Schmauder, R. Larson, and U. Prahl, “Development and application of a microstructure-based approach to characterize and model failure initiation in DP steels using XFEM,” Mater. Sci. Eng. A, vol. 660, pp. 181–194, 2016.X. Wei, S. A. Asgari, J. T. Wang, B. F. Rolfe, H. C. Zhu, and P. D. Hodgson, “Micro- mechanical modelling of bending under tension forming behaviour of dual phase steel 600,” Comput. Mater. Sci., vol. 108, no. PA, pp. 72–79, 2015.Y. Hou, S. Cai, T. Sapanathan, A. Dumon, and M. Rachik, “Micromechanical modeling of the effect of phase distribution topology on the plastic behavior of dual-phase steels,” Comput. Mater. Sci., vol. 158, no. November 2018, pp. 243–254, 2019.S. Huang, C. F. He, and Y. X. Zhao, “Microstructure-Based RVE Approach for Stretch- Bending of Dual-Phase Steels,” J. Mater. Eng. Perform., vol. 25, no. 3, pp. 966–976, 2016.F. Rieger and T. B¨ohlke, “Microstructure based prediction and homogenization of the strain hardening behavior of dual-phase steel,” Arch. Appl. Mech., vol. 85, no. 9-10, pp. 1439–1458, 2015.J. Krier, J. Breuils, L. Jacomine, and H. Pelletier, “Introduction of the real tip defect of Berkovich indenter to reproduce with FEM nanoindentation test at shallow penetration depth,” J. Mater. Res., vol. 27, no. 1, pp. 28–38, 2012.C. Guo, L. Hao, Y. Kang, S. Li, and Y. An, “Method of obtaining the constitutive relation in DP steel based on nanoindentation and finite element modeling,” Mater. Res. Express, vol. 6, p. 096585, jul 2019.Z. Chen, X. Wang, A. Atkinson, and N. Brandon, “Spherical indentation of porous ceramics: Elasticity and hardness,” J. Eur. Ceram. Soc., vol. 36, no. 6, pp. 1435–1445, 2016.Y. Li, R. Song, L. Jiang, and Z. Zhao, “Deformation response of 1200 MPa gra- de martensite-ferrite dual-phase steel under high strain rates,” Mater. Sci. Eng. A, vol. 750, pp. 40–44, mar 2019.R. B. Gou, W. J. Dan, W. G. Zhang, and M. Yu, “Research on flow behaviors of the constituent grains in ferrite-martensite dual phase steels based on nanoindentation measurements,” Mater. Res. Express, vol. 4, no. 7, 2017.Y. L. Song, L. Hua, and F. Z. Meng, “Inhomogeneous constructive modelling of laser welded bead based on nanoindentation test,” Ironmak. Steelmak., vol. 39, pp. 95–103, feb 2012.M. Nasser, A. Chamekh, G. Guillemot, M. Nasri, and A. Iost, “Modélisation du com- portement élastoplastique d ’ un revêtement Fe-Zn par nanoindentation : Approche inverse basée sur les plans d ’ expériences et les algorithmes génétiques multiobjectifs Résumé,” Test, pp. 1–6, 2011.Z. Yuan, F. Li, P. Zhang, B. Chen, and F. Xue, “Mechanical properties study of particles reinforced aluminum matrix composites by micro-indentation experiments,” Chinese J. Aeronaut., vol. 27, no. 2, pp. 397–406, 2014.I. Barényi and J. Majererík, “QUASI-STATIC NANOINDENTATION STUDY OF PHERITE-MARTENSITE DUAL PHASE STEEL,” vol. 12, no. 2, pp. 1–5, 2018.K. K. Tseng and L. Wang, “Modeling and simulation of mechanical properties of nano- particle filled materials,” J. Nanoparticle Res., vol. 6, no. 5, pp. 489–494, 2004.A. Karimzadeh, S. S. R. Koloor, M. R. Ayatollahi, A. R. Bushroa, and M. Y. Yahya, “Assessment of Nano-Indentation Method in Mechanical Characterization of Heteroge- neous Nanocomposite Materials Using Experimental and Computational Approaches,” Sci. Rep., vol. 9, no. 1, pp. 1–14, 2019.Y. Q. Peng, L. X. Cai, D. Yao, H. Chen, and G. Z. Han, “A Novel Method to Predict the Mechanical Properties of DP600,” Key Eng. Mater., vol. 795, pp. 22–28, mar 2019.M. K. Apalak, R. Ekici, M. Yildirim, and F. Nair, “Effects of random particle disper- sion and particle volume fraction on the indentation behavior of sic particle-reinforced metal-matrix composites,” J. Compos. Mater., vol. 43, no. 26, pp. 3191–3210, 2009.Y. Chen, C. Zhang, and C. Var´e, “An extended GTN model for indentation-induced damage,” Comput. Mater. Sci., vol. 128, pp. 229–235, 2017.Y. L. Shen and Y. L. Guo, “Indentation modelling of heterogeneous materials,” Model. Simul. Mater. Sci. Eng., vol. 9, no. 5, pp. 391–398, 2001.LICENSElicense.txtlicense.txttext/plain; charset=utf-83991https://repositorio.unal.edu.co/bitstream/unal/77866/2/license.txt6f3f13b02594d02ad110b3ad534cd5dfMD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.unal.edu.co/bitstream/unal/77866/3/license_rdf217700a34da79ed616c2feb68d4c5e06MD53ORIGINAL1024537277.2020.pdf1024537277.2020.pdfapplication/pdf13827882https://repositorio.unal.edu.co/bitstream/unal/77866/1/1024537277.2020.pdf53d1bac63427b6f21527e8be2c70f806MD51THUMBNAIL1024537277.2020.pdf.jpg1024537277.2020.pdf.jpgGenerated Thumbnailimage/jpeg4676https://repositorio.unal.edu.co/bitstream/unal/77866/4/1024537277.2020.pdf.jpg3d8f9d4c337ad6072d866e40dca7cc99MD54unal/77866oai:repositorio.unal.edu.co:unal/778662024-07-20 23:11:25.911Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHBvciB1biBwbGF6byBkZSA1IGHDsW9zLCBxdWUgc2Vyw6FuIHByb3Jyb2dhYmxlcyBpbmRlZmluaWRhbWVudGUgcG9yIGVsIHRpZW1wbyBxdWUgZHVyZSBlbCBkZXJlY2hvIHBhdHJpbW9uaWFsIGRlbCBhdXRvci4gRWwgYXV0b3IgcG9kcsOhIGRhciBwb3IgdGVybWluYWRhIGxhIGxpY2VuY2lhIHNvbGljaXTDoW5kb2xvIGEgbGEgVW5pdmVyc2lkYWQgY29uIHVuYSBhbnRlbGFjacOzbiBkZSBkb3MgbWVzZXMgYW50ZXMgZGUgbGEgY29ycmVzcG9uZGllbnRlIHByw7Nycm9nYS4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCg== |