Método para la ortorrectificación de imágenes satelitales monoscópicas de muy alta resolución espacial empleando algoritmos evolutivos

ilustraciones, fotografías, gráficas, tablas

Autores:
Ramírez Gutiérrez, Miguel Angel
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/78800
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/78800
https://repositorio.unal.edu.co/
Palabra clave:
000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
Imágenes por satélites
Tratamiento de imágenes
Algoritmos
satellite imagery
image processing
algorithms
Orthorectification
VHR
RFM
PSO
Cartography
OLS
Satellite images
High resolution
Ortorrectificación
VHR
RFM
PSO
Cartografía
OLS
Imágenes satelitales
Alta resolución
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_68b4f5e23930345547b3a331382a6a10
oai_identifier_str oai:repositorio.unal.edu.co:unal/78800
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Método para la ortorrectificación de imágenes satelitales monoscópicas de muy alta resolución espacial empleando algoritmos evolutivos
title Método para la ortorrectificación de imágenes satelitales monoscópicas de muy alta resolución espacial empleando algoritmos evolutivos
spellingShingle Método para la ortorrectificación de imágenes satelitales monoscópicas de muy alta resolución espacial empleando algoritmos evolutivos
000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
Imágenes por satélites
Tratamiento de imágenes
Algoritmos
satellite imagery
image processing
algorithms
Orthorectification
VHR
RFM
PSO
Cartography
OLS
Satellite images
High resolution
Ortorrectificación
VHR
RFM
PSO
Cartografía
OLS
Imágenes satelitales
Alta resolución
title_short Método para la ortorrectificación de imágenes satelitales monoscópicas de muy alta resolución espacial empleando algoritmos evolutivos
title_full Método para la ortorrectificación de imágenes satelitales monoscópicas de muy alta resolución espacial empleando algoritmos evolutivos
title_fullStr Método para la ortorrectificación de imágenes satelitales monoscópicas de muy alta resolución espacial empleando algoritmos evolutivos
title_full_unstemmed Método para la ortorrectificación de imágenes satelitales monoscópicas de muy alta resolución espacial empleando algoritmos evolutivos
title_sort Método para la ortorrectificación de imágenes satelitales monoscópicas de muy alta resolución espacial empleando algoritmos evolutivos
dc.creator.fl_str_mv Ramírez Gutiérrez, Miguel Angel
dc.contributor.advisor.spa.fl_str_mv Upegui Cardona, Erika Sofía
Leon Sanchez, Camilo Alexander
dc.contributor.author.spa.fl_str_mv Ramírez Gutiérrez, Miguel Angel
dc.contributor.researchgroup.spa.fl_str_mv GEFEM: Grupo de Estudio en temas de la Física, de la Estadística y la Matemática
dc.subject.ddc.spa.fl_str_mv 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
topic 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
Imágenes por satélites
Tratamiento de imágenes
Algoritmos
satellite imagery
image processing
algorithms
Orthorectification
VHR
RFM
PSO
Cartography
OLS
Satellite images
High resolution
Ortorrectificación
VHR
RFM
PSO
Cartografía
OLS
Imágenes satelitales
Alta resolución
dc.subject.agrovoc.spa.fl_str_mv Imágenes por satélites
Tratamiento de imágenes
Algoritmos
dc.subject.agrovoc.eng.fl_str_mv satellite imagery
image processing
algorithms
dc.subject.proposal.eng.fl_str_mv Orthorectification
VHR
RFM
PSO
Cartography
OLS
Satellite images
High resolution
dc.subject.proposal.spa.fl_str_mv Ortorrectificación
VHR
RFM
PSO
Cartografía
OLS
Imágenes satelitales
Alta resolución
description ilustraciones, fotografías, gráficas, tablas
publishDate 2020
dc.date.issued.spa.fl_str_mv 2020-12-17
dc.date.accessioned.spa.fl_str_mv 2021-01-18T19:54:29Z
dc.date.available.spa.fl_str_mv 2021-01-18T19:54:29Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/78800
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.none.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/78800
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv [Aber et al., 2019] Aber, J. S., Marzolff, I., Ries, J. B., and Aber, S. E. (2019). Principles of Photogrammetry. In Small-Format Aerial Photography and UAS Imagery, pages 19–38
[Aguilar et al., 2007] Aguilar, M. A., Aguilar, F. J., Agüera, F., and Sánchez, J. A. (2007). Geometric accuracy assessment of QuickBird basic imagery using different operational approaches. Photogrammetric Engineering and Remote Sensing, 73(12):1321–1332
[Aguilar et al., 2006] Aguilar, M. A., Aguilar, F. J., Carvajal, F., Agüera, F., and Estrada, L. (2006). Geometric accuracy of IKONOS geo panchromatic orthoimage products. Revue Francaise de Photogrammetrie et de Teledetection, (184):5–10.
[Aguilar et al., 2012a] Aguilar, M. A., Aguilar, F. J., Saldaña, M. d. M., and Fernández, I. (2012a). Geopositioning accuracy assessment of GeoEye-1 panchromatic and multispectral imagery. Photogrammetric Engineering and Remote Sensing, 78(3):247–257.
[Aguilar et al., 2017] Aguilar, M. A., Nemmaoui, A., Aguilar, F. J., Novelli, A., and García Lorca, A. (2017). Improving georeferencing accuracy of Very High Resolution satellite imagery using freely available ancillary data at global coverage. International Journal of Digital Earth, 10(10):1055–1069
Aguilar et al., 2012b] Aguilar, M. A., Saldaña, M. d. M., and Aguilar, F. J. (2012b). Assessing geometric accuracy of the orthorectification process from GeoEye-1 and WorldView-2 panchromatic images. International Journal of Applied Earth Observation and Geoinformation, 21(1):427–435.
[Alizadeh Moghaddam et al., 2018] Alizadeh Moghaddam, S. H., Mokhtarzade, M., and Moghaddam, S. A. A. (2018). Optimization of RFM’s structure based on PSO algorithm and figure condition analysis. IEEE Geoscience and Remote Sensing Letters, 15(8):1179–1183.
[Alizadeh Naeini et al., 2019] Alizadeh Naeini, A., Fatemi, S. B., Babadi, M., Mirzadeh, S. M. J., and Homayouni, S. (2019). Application of 30-meter global digital elevation models for compensating rational polynomial coefficients biases. Geocarto International, 0(0):1–16.
[Altena and Kääb, 2017] Altena, B. and Kääb, A. (2017). Elevation change and improved velocity retrieval using orthorectified optical satellite data from different orbits. Remote Sensing, 9(3):1–22
[Ariza-López et al., 2018] Ariza-López, F. J., García-Balboa, J., Rodríguez-Avi, J., and Robledo, J. (2018). Guía para evaluación de la exactitud posicional de datos espaciales. Technical report, Instituto panamericano de geografía e historia, Montevideo, Uruguay.
Artusi et al., 2002] Artusi, R., Verderio, P., and Marubini, E. (2002). Bravais-Pearson and Spearman correlation coefficients: meaning, test of hypothesis and confidence interval. The International Journal of Biological Markers, 17 no. 2:148–151
[Baltsavias, 1996] Baltsavias, E. P. (1996). Digital ortho-images - A powerful tool for the extraction of spatial- and geo-information. ISPRS Journal of Photogrammetry and Remote Sensing, 51(2):63–77.
[Barazzetti et al., 2016] Barazzetti, L., Roncoroni, F., Brumana, R., and Previtali, M. (2016). Georeferencing accuracy analysis of a single worldview-3 image collected over milan. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 2016-Janua(July):429– 434.
[Belfiore and Parente, 2016] Belfiore, O. R. and Parente, C. (2016). Comparison of Different Algorithms to Orthorectify WorldView-2 Satellite Imagery. Algorithms, 9(4)
[Bian et al., 2017] Bian, J., Li, A., Zhao, W., Yin, G., Ioh, D. Q. G., Prgxoh, L., Txdolw, L., Vwxglhv, H., Dffxudf, R., Duh, W., Vrph, D., Txdqwlw, D. Q. G., Lv, L. W., Wr, G., Wkh, R., Dffxudf, K., Lpdjhv, V., Prxqwdlq, R., and Qhz, D. D. (2017). an Automatic Orthorectification Approach for the Time Series Gf 4. In IGARSS, pages 546–549
[Câmara, 2015] Câmara, D. (2015). Evolution and Evolutionary Algorithms. In Bio-inspired Networking, pages 1–30. Elsevier.
[Cámara de Comercio de Bogotá, 2010] Cámara de Comercio de Bogotá (2010). Caracterización económica y empresarial de las provincias de cobertura de la CCB: Guavio. Technical report
[Cameron et al., 2000] Cameron, A. D., Miller, D. R., Ramsay, F., Nikolaou, I., and Clarke, G. C. (2000). Temporal measurement of the loss of native pinewood in Scotland through the analysis of orthorectified aerial photographs. Journal of Environmental Management, 58(September 1999):33–43.
[Cao, 2018] Cao, J. (2018). Estimation of rational polynomial coefficients based on singular value decomposition. Journal of Applied Remote Sensing, 12(04):1.
[Clark, 2017] Clark, T. (2017). Search Algorithm Series: PSO - Terry Clark - Medium.
[Cornelius Raasveldt, 2017] Cornelius Raasveldt, H. (2017). Las glaciaciones de la Sierra Nevada de Santa Marta. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 41(Suplemento):450.
[Correa et al., 2006] Correa, J. C., Iral, R., and Rojas, L. (2006). Estudio de potencia de pruebas de homogeneidad de varianza. Revista Colombiana de Estadistica, 29(1):57–76.
[Cuarteto and Felicísimo, 2003] Cuarteto, A. and Felicísimo, A. (2003). Rectificación y ortorrectificación de imágenes de satélite: análisis comparativo y discusión. Revista Internacional de Ciencia y Tecnología de la Información Geográfica, 3:45–57.
[Cyriac and Rastogi, 2013] Cyriac, R. and Rastogi, A. K. (2013). An overview of the applications of particle swarm in water resources optimization. In Advances in Intelligent Systems and Computing, volume 202 AISC, pages 41–52.
De la Calle et al., 2016] De la Calle, H., Jaramillo, J., Mora, J., Naranjo, O., Pearl, F., Restrepo, G., Holguín, M., Barreras, R., Marquez, I., Catatumbo, P., Álape, P., Gómez, J., Téllez, R., Santrich, J., Sandino, V., Carvajal, C., and Nylander, H. (2016). Acuerdo final proceso de paz. Technical report.
[de Planeación, 2016] de Planeación, D. N. (2016). CONPES 3859: Politica para la adopción e implementación de un catastro multipropósito rural-urbano. Technical report.
[Dupuy et al., 2020] Dupuy, S., Gaetano, R., and Le Mézo, L. (2020). Mapping land cover on Reunion Island in 2017 using satellite imagery and geospatial ground data. Data in Brief, 28:104934
[European Space Imaging, 2018] European Space Imaging (2018). IKONOS.
[Farr et al., 2007] Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., and Alsdorf, D. E. (2007). The shuttle radar topography mission. Reviews of Geophysics, 45(2):RG2004.
Firdaus et al., 2017] Firdaus, Y., Akerman, A., and Buono, H. (2017). Satellite image processing for precision agriculture and agroindustry using convolutional neural network and genetic algorithm. In IOP Conference Series: Earth and Environmental Science, page 7.
[Fraser et al., 2006] Fraser, C. S., Dial, G., and Grodecki, J. (2006). Sensor orientation via RPCs. ISPRS Journal of Photogrammetry and Remote Sensing, 60(3):182–194.
[Geng et al., 2019] Geng, X., Xing, S., and Xu, Q. (2019). A generic rigorous sensor model for photogrammetric processing of pushbroom planetary images. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 42(2/W13):1389–1396
[Gobbi et al., 2018] Gobbi, S., Maimeri, G., Tattoni, C., Cantiani, M. G., Rocchini, D., La Porta, N., Ciolli, M., and Zatelli, P. (2018). Orthorectification of a large dataset of historical aerial images: Procedure and precision assessment in an open source environment. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 42(4W8):53–59.
[Gobierno de Colombia, 2019] Gobierno de Colombia, C. N. d. P. E. y. S. (2019). CONPES 3958
[Gomez and Deccechis, 2008] Gomez, M. and Deccechis, F. (2008). Evaluación De Los Modelos Digitales De Elevación Srtm- C / X Y Aster Gdem Y Su Relación Con Los Errores Planimétricos De Datos Pancromáticos Quickbird. (2007):1–10.
[Grochala and Kedzierski, 2017] Grochala, A. and Kedzierski, M. (2017). A method of panchromatic image modification for satellite imagery data fusion. Remote Sensing, 9(6):11–13
[Guérin, 2017] Guérin, C. (2017). EFFECT OF THE DTM QUALITY ON THE BUNDLE BLOCK ADJUSTMENT AND ORTHORECTIFICATION PROCESS WITHOUT GCP: EXEMPLE ON A STEEP AREA. In IGARSS, volume 8670, pages 1067–1070.
[Hariyanto et al., 2019] Hariyanto, T., Kurniawan, A., Pribadi, C. B., and Amin, R. A. (2019). Optimization of Ground Control Point (GCP) and Independent Control Point (ICP) on Orthorectification of High Resolution Satellite Imagery. E3S Web of Conferences, 94:1–5.
[Heidemann et al., 2013] Heidemann, K., Survey, U. S. G., Smith, D., and Mapping, D. S. (2013). ASPRS Accuracy Standards for Digital Geospatial Data. (March).
[Heipke, 1997] Heipke, C. (1997). Automation of interior, relative, and absolute orientation. ISPRS Journal of Photogrammetry and Remote Sensing, 52(1):1–19.
[Helder et al., 2003] Helder, D., Coan, M., Patrick, K., and Gaska, P. (2003). IKONOS geometric characterization. Remote Sensing of Environment, 88(1-2):69–79.
[Holland et al., 2006] Holland, D. A., Boyd, D. S., and Marshall, P. (2006). Updating topographic mapping in Great Britain using imagery from high-resolution satellite sensors. ISPRS Journal of Photogrammetry and Remote Sensing, 60(3):212–223.
[Hong et al., 2015] Hong, Z., Tong, X., Liu, S., Chen, P., Xie, H., and Jin, Y. (2015). A comparison of the performance of bias-corrected RSMs and RFMs for the geo-positioning of high-resolution satellite stereo imagery. Remote Sensing, 7(12):16815–16830.
[Hu et al., 2004] Hu, Y., Tao, V., and Croitoru, A. (2004). Understanding the rational function model: methods and applications. International Archives of Photogrammetry and Remote Sensing, 35(B4):663– 668.
[Huang et al., 2016] Huang, Z., Cheng, G., Wang, H., Li, H., Shi, L., and Pan, C. (2016). BUILDING EXTRACTION FROM MULTI-SOURCE REMOTE SENSING IMAGES VIA DEEP DECONVOLUTION NEURAL NETWORKS Zuming Huang , Guangliang Cheng , Hongzhen Wang , Haichang Li , Limin Shi , Chunhong Pan National Laboratory of Pattern Recognition ( NLPR ) Institute of Au. 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pages 1835–1838.
[IGAC, 1997] IGAC (1997). GUÍA METODOLÓGICA PARA LA OBTENCIÓN DE ALTURAS SOBRE EL NIVEL MEDIO DEL MAR UTILIZANDO EL SISTEMA GPS. Technical report.
[IGAC, 2005] IGAC (2005). Resolución 068 de 2005: Datum MAGNA-SIRGAS. Technical report
[IGAC, 2016a] IGAC (2016a). Catalogo de representación de cartografía básica digital IGAC Escala 1:10000. Technical report.
[IGAC, 2016b] IGAC (2016b). Especificaciones Técnicas de Cartografía Básica.
[IGAC, 2017] IGAC (2017). Plan Nacional de Cartografía Basica.
[IGAC, 2018] IGAC (2018). Marco Geocentrico Nacional.
[IGAC, 2020] IGAC (2020). Resolución 471 de 2020: Especificación técnica cartografía básica. Technical report.
[Im et al., 2019] Im, C., Jeong, J. H., and Jeong, C. S. (2019). Parallel Large-Scale Image Processing for Orthorectification. IEEE Region 10 Annual International Conference, Proceedings/TENCON, 2018- Octob(October):2153–2157.
[Imani, 2019] Imani, M. (2019). Adaptive signal representation and multi-scale decomposition for panchromatic and multispectral image fusion. Future Generation Computer Systems, 99:410–424.
[Instituto Humboldt and Fundación Erigaie, 2015] Instituto Humboldt and Fundación Erigaie (2015). Caracterización socioeconómica y cultural del complejo de páramos sierra nevada de santa marta en jurisdicción de corpamag y corpocesar con énfasis en caracterización de actores, análisis de redes y de servicios ecosistémicos. Technical report, Bogotá D.C.
[ISO 19157:2013, 2013]ISO 19157:2013 (2013). Geographic information — Data quality. Standard, Interna-tional Organization for Standardization, Geneva, CH.
[Jannati and Valadan Zoej, 2015]Jannati, M. and Valadan Zoej, M. J. (2015). Introducing genetic modifica-tion concept to optimize rational function models (RFMs) for georeferencing of satellite imagery.GIScienceand Remote Sensing, 52(4):510–525.
[Jawak and Luis, 2013]Jawak, S. D. and Luis, A. J. (2013). A spectral index ratio-based Antarctic land-covermapping using hyperspatial 8-band WorldView-2 imagery.Polar Science, 7(1):18–38.
[Jeong, 2017] Jeong, J. (2017). IMAGING GEOMETRY and POSITIONING ACCURACY of DUALSATELLITE STEREO IMAGES: A REVIEW.ISPRS Annals of the Photogrammetry, Remote Sensingand Spatial Information Sciences, 4(2W4):235–242.
[Kartal et al., 2018] Kartal, H., Alganci, U., and Sertel, E. (2018). Automated Orthorectification of VHRSatellite Images by SIFT-Based RPC Refinement.ISPRS International Journal of Geo-Information,7(6):229.
[Kennedy et al., 1995]Kennedy, J., Eberhart, R., and bls Gov (1995). Particle Swarm Optimization. InIEEE International Conference on Neural Networks, pages 1942–1948, Perth, Australia. IEEE ServiceCenter.
[Kobler et al., 2007] Kobler, A., Pfeifer, N., Ogrinc, P., Todorovski, L., Oštir, K., and Džeroski, S. (2007).Repetitive interpolation: A robust algorithm for DTM generation from Aerial Laser Scanner Data inforested terrain.Remote Sensing of Environment, 108(1):9–23.
[Konugurthi et al., 2016] Konugurthi, P. K., Kune, R., Nooka, R., and Sarma, V. (2016). Autonomousortho-rectification of very high resolution imagery using SIFT and genetic algorithm.PhotogrammetricEngineering and Remote Sensing, 82(5):377–388.
[Korsgaard et al., 2016] Korsgaard, N. J., Nuth, C., Khan, S. A., Kjeldsen, K. K., Bjørk, A. A., Schomacker, A., and Kjær, K. H. (2016). Digital elevation model and orthophotographs of Greenland based on aerial photographs from 1978-1987. Scientific Data, 3:1–15.
[Kravchenko et al., 2014] Kravchenko, O., Lavrenyuk, M., and Kussul, N. (2014). Orthorectification of Sich-2 satellite images using elastic models. International Geoscience and Remote Sensing Symposium (IGARSS), (December):2281–2284.
[Kurczynski et al., 2018] Kurczynski, Z., Rózycki, S., and Bylina, P. (2018). Mapping of Polar Areas Based on High-Resolution Satellite Images: The Example of the Henryk Arctowski Polish Antarctic Station. Reports on Geodesy and Geoinformatics, 104(1):65–78.
[LaForest et al., 2019] LaForest, Hasheminasab, Zhou, Flatt, and Habib (2019). New Strategies for Time Delay Estimation During System Calibration for UAV-Based GNSS/INS-Assisted Imaging Systems. Remote Sensing, 11(15):1811.
[Lee et al., 2017] Lee, K., Kim, E., and Kim, Y. (2017). Orthorectification of KOMPSAT Optical Images Using Various Ground Reference Data and Accuracy Assessment. Journal of Sensors, 2017.
[Lencinas and Díaz, 2011] Lencinas, J. and Díaz, G. (2011). Corrección geométrica de datos satelitales QuickBird, incidencia de los modelos digitales de elevación SRTM-C/X y ASTER GDEM. Geofocus. Revista Internacional de Ciencia y Tecnología de la Información Geográfica, 0(11):431–454.
[Lerma et al., 2013] Lerma, J. L., Navarro, S., Cabrelles, M., Seguí, A. E., and Hernández, D. (2013). Automatic orientation and 3D modelling from markerless rock art imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 76:64–75.
[Li et al., 2018a] Li, C., Liu, J., Wang, X., Liu, X., and Wu, Y. (2018a). Stepwise-then-intelligent algorithm (STIA) for optimizing remotely sensed image rectification. International Journal of Remote Sensing, 39(21):7350–7369.
[Li et al., 2018b] Li, Y., Sakamoto, M., Shinohara, T., and Satoh, T. (2018b). Object detection from mms imagery using deep learning for generation of road orthophotos. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 42(2):573–577.
[Liang et al., 2009] Liang, J., Tang, M. L., and Chan, P. S. (2009). A generalized Shapiro-Wilk W statistic for testing high-dimensional normality. Computational Statistics and Data Analysis, 53(11):3883–3891.
[Lollino et al., 2015] Lollino, G., Giordan, D., Crosta, G. B., Corominas, J., Azzam, R., Wasowski, J., and Sciarra, N. (2015). Engineering geology for society and territory – Volume 2: Landslide processes. Engineering Geology for Society and Territory - Volume 2: Landslide Processes, 2:1–2177.
[Maglione, 2016] Maglione, P. (2016). Very High Resolution Optical Satellites: An Overview of the Most Commonly used. American Journal of Applied Sciences, 13(1):91–99.
[Marek et al., 2015] Marek, L., Mirijovský, J., and Tucek, P. (2015). Monitoring of the shallow landslide using UAV photogrammetry and geodetic measurements. In Engineering Geology for Society and Territory - Volume 2: Landslide Processes, pages 113–116. Springer International Publishing, Cham.
[Marsetic et al., 2015] Marsetic, A., Oštir, K., and Fras, M. K. (2015). Automatic orthorectification of high-resolution optical satellite images using vector roads. IEEE Transactions on Geoscience and Remote Sensing, 53(11):6035–6047.
[Mediavilla et al., 2004] Mediavilla, F., Pavo López, M. F., Alonso, C., Moreno, V., and Arozarena, A. (2004). Ortorrectificación de imágenes del satélite Ikonos 2. Revista de Teledetección, 21:61–65.
[Meng et al., 2019] Meng, X., Shen, H., Li, H., Zhang, L., and Fu, R. (2019). Review of the pansharpening methods for remote sensing images based on the idea of meta-analysis: Practical discussion and challenges. Information Fusion, 46(October 2017):102–113.
[Moghaddam et al., 2018] Moghaddam, S. H. A., Mokhtarzade, M., Naeini, A. A., and Amiri-Simkooei, A. (2018). A Statistical Variable Selection Solution for RFM Ill-Posedness and Overparameterization Problems. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, pages 1–12.
[Mozas and Ariza, 2011] Mozas, A. T. and Ariza, F. J. (2011). New method for positional quality control in cartography based on lines. A comparative study of methodologies. International Journal of Geographical Information Science, 25(10):1681–1695.
[Naeini et al., 2017] Naeini, A. A., Moghaddam, S. H. A., Mirzadeh, S. M. J., Homayouni, S., and Fatemi, S. B. (2017). Multiobjective genetic optimization of terrain-independent RFMs for VHSR satellite images. IEEE Geoscience and Remote Sensing Letters, 14(8):1368–1372.
[Naeini et al., 2019] Naeini, A. A., Moghaddam, S. H. A., Sheikholeslami, M. M., and Amiri-Simkooei, A. (2019). Application of PCA Analysis and QR Decomposition to Address RFM’s Ill-Posedness. Photogrammetric Engineering & Remote Sensing, 86(1):17–21.
[Nemmaoui et al., 2019] Nemmaoui, A., Aguilar, F. J., Aguilar, M. A., and Qin, R. (2019). DSM and DTM generation from VHR satellite stereo imagery over plastic covered greenhouse areas. Computers and Electronics in Agriculture, 164(August):104903.
[Ningthoujam et al., 2018] Ningthoujam, R. K., Joshi, P. K., and Roy, P. S. (2018). Retrieval of forest biomass for tropical deciduous mixed forest using ALOS PALSAR mosaic imagery and field plot data. International Journal of Applied Earth Observation and Geoinformation, 69:206–216.
[Ningthoujam et al., 2018] Ningthoujam, R. K., Joshi, P. K., and Roy, P. S. (2018). Retrieval of forest biomass for tropical deciduous mixed forest using ALOS PALSAR mosaic imagery and field plot data. International Journal of Applied Earth Observation and Geoinformation, 69:206–216.
[NTC 5043:2010, 2010] NTC 5043:2010 (2010). Información geográfica. Conceptos básicos de calidad de los datos geográficos. Standard, ICONTEC, Bogota, CO.
[NTC 5660:2010, 2010] NTC 5660:2010 (2010). Información geográfica. Evaluación de la calidad. procesos y medidas. Standard, ICONTEC, Bogota, CO.
[NTC 5662:2010, 2010] NTC 5662:2010 (2010). Especificaciones técnicas de productos geográficos. Standard, ICONTEC, Bogota, CO.
[Pérez et al., 2005] Pérez, C., Sanchez, N., and Carpegu, Á. (2005). Experiencias en la corrección geométrica de imágenes de alta resolución: metodología rigurosa versus empírica. In XI Congreso Nacional de Teledetección.
[Poli and Toutin, 2012] Poli, D. and Toutin, T. (2012). Review of developments in geometric modelling for high resolution satellite pushbroom sensors. Photogrammetric Record, 27(137):58–73.
[Ramírez and Alcalde, 2016] Ramírez, A. D. and Alcalde, U. (2016). Plan de Desarrollo Municipal de Valledupar 2016-2019. Technical report, Valledupar, César.
[Reinartz et al., 2011] Reinartz, P., Müller, R., Schwind, P., Suri, S., and Bamler, R. (2011). Orthorectification of VHR optical satellite data exploiting the geometric accuracy of TerraSAR-X data. ISPRS Journal of Photogrammetry and Remote Sensing, 66(1):124–132.
[Ressl and Pfeifer, 2018] Ressl, C. and Pfeifer, N. (2018). Evaluation of the elevation model influence on the orthorectification of Sentinel-2 satellite images over Austria. European Journal of Remote Sensing, 51(1):693–709.
[Rigden et al., 2005] Rigden, T. C., Soroka, A. J., and Binns, L. A. (2005). Comparison of overlay metrology with analogue and digital cameras. Metrology, Inspection, and Process Control for Microlithography XIX, 5752:1060–1068.
[Rizeei and Pradhan, 2019] Rizeei, H. and Pradhan, B. (2019). Urban Mapping Accuracy Enhancement in High-Rise Built-Up Areas Deployed by 3D-Orthorectification Correction from WorldView-3 and LiDAR Imageries. Remote Sensing, 11(6):692.
[Rondón et al., 2010] Rondón, C. A. R., Zapata, A. M., and Rondón, J. C. D. (2010). Estudio morfométrico del lago Guatavita (Colombia). Acta Biologica Colombiana, 15(3):131–144.
[Saito and Miura, 2019] Saito, H. and Miura, Y. (2019). Skew Detection and Ortho-rectification for System Corrected Landsat TM Images. In Progress in Electromagnetics Research Symposium, volume 2019-June, pages 2789–2794. Institute of Electrical and Electronics Engineers Inc.
[Salach, 2017] Salach, A. (2017). SAPC - Application for adapting scanned analogue photographs to use them in structure from motion technology. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 42(1W1):197–204.
[Sánchez and Drewes, 2020] Sánchez, L. and Drewes, H. (2020). Geodetic Monitoring of the Variable Surface Deformation in Latin America. pages 1–12. Springer, Berlin, Heidelberg.
[Schowengerdt, 2007] Schowengerdt, R. A. (2007). Image Registration and Fusion. In Remote Sensing, pages 355–XXVI. Academic Press.
[Shen et al., 2017] Shen, X., Li, Q., Wu, G., and Zhu, J. (2017). Bias compensation for rational polynomial coefficients of high-resolution satellite imagery by local polynomial modeling. Remote Sensing, 9(3).
[Sjöberg, 2013] Sjöberg, L. E. (2013). The geoid or quasigeoid – which reference surface should be preferred for a national height system? Journal of Geodetic Science, 3(2).
[Tarko et al., 2015] Tarko, A., de Bruin, S., Fasbender, D., Devos, W., and Bregt, A. K. (2015). Users’ assessment of orthoimage photometric quality for visual interpretation of agricultural fields. Remote Sensing, 7(4):4919–4936.
[Terrail and Jurie, 2018] Terrail, J. O. D. and Jurie, F. (2018). On the use of deep neural networks for the detection of small vehicles in ortho-images. Proceedings - International Conference on Image Processing, ICIP, 2017-Septe:4212–4216.
[Topan, 2013] Topan, H. (2013). First Experience with Figure Condition Analysis Aided Bias Compensated Rational Function Model for Georeferencing of High Resolution Satellite Images. Journal of the Indian Society of Remote Sensing, 41(4):807–818.
[Topan and Kutoglu, 2009] Topan, H. and Kutoglu, H. S. (2009). Georeferencing accuracy assessment of high-resolution satellite images using figure condition method. IEEE Transactions on Geoscience and Remote Sensing, 47(4):1256–1261.
[Toutin, 2004] Toutin, T. (2004). Geometric processing of remote sensing images: Models, algorithms and methods. International Journal of Remote Sensing, 25(10):1893–1924.
[Tsirikoglou et al., 2020] Tsirikoglou, P., Kyprianidis, K., Kalfas, A. I., and Contino, F. (2020). Optimization in probabilistic domains: an engineering approach. In Nature-Inspired Computation and Swarm Intelligence, pages 391–414. Elsevier.
[Tu et al., 2012] Tu, T. M., Hsu, C. L., Tu, P. Y., and Lee, C. H. (2012). An adjustable pan-sharpening approach for IKONOS/QuickBird/GeoEye-1/ WorldView-2 imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5(1):125–134.
[Urrea, 2017] Urrea, A. R. (2017). DOCUMENTACIÓN, ACTUALIZACIÓN Y VALIDACIÓN DEL MODULO DE CÁLCULO DE VELOCIDADES DEL SOFTWARE MAGNA SIRGAS PRO 3.0. Technical report.
[Valadan Zoej et al., 2007] Valadan Zoej, M. J., Mokhtarzade, M., Mansourian, A., Ebadi, H., and Sadeghian, S. (2007). Rational function optimization using genetic algorithms. International Journal of Applied Earth Observation and Geoinformation, 9(4):403–413.
[Valbuena et al., 2008] Valbuena, R., Sevilla, T. F. D., Mauro, F., Pascual, C., García-abril, A., Martín, S., Manzanera, J. A., Forestry, T., and Ciudad, F. (2008). Lidar and true-orthorectification of infrared aerial imagery of high Pinus sylvestris forest in mountainous relief Technical University of Madrid ( UPM ). Research Group for Sustainable Management. pages 596–605.
[Venkateswarlu and Jujjavarapu, 2020] Venkateswarlu, C. and Jujjavarapu, S. E. (2020). Stochastic and evolutionary optimization algorithms. In Stochastic Global Optimization Methods and Applications to Chemical, Biochemical, Pharmaceutical and Environmental Processes, pages 87–123. Elsevier.
[Villa and Herrera, 2016] Villa, J. M. and Herrera, F. (2016). La pobreza y el postconflicto en Valledupar: Análisis y propuestas. Technical report.
[Wang and Zhao, 2018] Wang, J. X. and Zhao, J. J. (2018). Orthorectification of remote sensing image based on rational function model. Proceedings of 2017 9th International Conference On Modelling, Identification and Control, ICMIC 2017, 2018-March(Icmic):723–727.
[Wang et al., 2016] Wang, M., Zhu, Y., Jin, S., Pan, J., and Zhu, Q. (2016). Correction of ZY-3 image distortion caused by satellite jitter via virtual steady reimaging using attitude data. ISPRS Journal of Photogrammetry and Remote Sensing, 119:108–123.
[Westin and Forsgren, 2001] Westin, T. and Forsgren, J. (2001). Orthorectification of EROS A1 images. IEEE/ISPRS Joint Workshop on Remote Sensing and Data Fusion over Urban Areas, DFUA 2001, pages 1–4.
[Whitley, 1994] Whitley, D. (1994). A genetic algorithm tutorial. Statistics and Computing, 4(2):65–85.
[Widyaningrum et al., 2016] Widyaningrum, E., Fajari, M., and Octariady, J. (2016). Accuracy comparison of VHR systematic-ortho satellite imageries against VHR orthorectified imageries using GCP. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 2016-Janua(March 2017):305–309.
[Yavari et al., 2013] Yavari, S., Valadan Zoej, M. J., Mohammadzadeh, A., and Mokhtarzade, M. (2013). Particle swarm optimization of RFM for georeferencing of satellite images. IEEE Geoscience and Remote Sensing Letters, 10(1):135–139.
[Yavari et al., 2018] Yavari, S., Valadan Zoej, M. J., and Salehi, B. (2018). An automatic optimum number of well-distributed ground control lines selection procedure based on genetic algorithm. ISPRS Journal of Photogrammetry and Remote Sensing, 139:46–56.
[Ye et al., 2017] Ye, J., Lin, X., and Xu, T. (2017). Mathematical Modeling and Accuracy Testing of WorldView-2 Level-1B Stereo Pairs without Ground Control Points. Remote Sensing, 9(7):737.
[Yepes Rodríguez, 2018] Yepes Rodríguez, F. (2018). La coproducción de un GDEM de alta resolución: El programa TREx y la participación española The co-production of a high resolution GDEM: The TREx program and the Spanish participation. 27:28–31.
[Yepes Rodríguez, 2018] Yepes Rodríguez, F. (2018). La coproducción de un GDEM de alta resolución: El programa TREx y la participación española The co-production of a high resolution GDEM: The TREx program and the Spanish participation. 27:28–31.
[Zhang et al., 2016] Zhang, H., Pu, R., and Liu, X. (2016). A new image processing procedure integrating PCI-RPC and ArcGIS-spline tools to improve the orthorectification accuracy of high-resolution satellite imagery. Remote Sensing, 8(10).
[Zhang et al., 2012] Zhang, L., Balz, T., and Liao, M. (2012). Satellite SAR geocoding with refined RPC model. ISPRS Journal of Photogrammetry and Remote Sensing, 69:37–49.
[Zhang et al., 2018] Zhang, R., Zhou, G., Zhang, G., Zhou, X., and Huang, J. (2018). RPC-based orthorectification for satellite images using FPGA. Sensors (Switzerland), 18(8).
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xix, 82 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias Agrarias - Maestría en Geomática
dc.publisher.department.spa.fl_str_mv Escuela de posgrados
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Agrarias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/78800/7/license.txt
https://repositorio.unal.edu.co/bitstream/unal/78800/6/license_rdf
https://repositorio.unal.edu.co/bitstream/unal/78800/1/Documento.pdf
https://repositorio.unal.edu.co/bitstream/unal/78800/2/Anexos%20A-C.pdf
https://repositorio.unal.edu.co/bitstream/unal/78800/3/Anexos%20D-E.pdf
https://repositorio.unal.edu.co/bitstream/unal/78800/4/Anexos%20F-M%20Bibliograf%c3%ada.pdf
https://repositorio.unal.edu.co/bitstream/unal/78800/8/Documento.pdf.jpg
https://repositorio.unal.edu.co/bitstream/unal/78800/9/Anexos%20A-C.pdf.jpg
https://repositorio.unal.edu.co/bitstream/unal/78800/10/Anexos%20D-E.pdf.jpg
https://repositorio.unal.edu.co/bitstream/unal/78800/11/Anexos%20F-M%20Bibliograf%c3%ada.pdf.jpg
bitstream.checksum.fl_str_mv cccfe52f796b7c63423298c2d3365fc6
42fd4ad1e89814f5e4a476b409eb708c
2e4b9f6b6661147db4dc2d720791a437
a1cfd21d3f0d85990ae3cc24da9ee3d2
47df091c1f24e1cb7c7339b6271b48fe
5b8959b22f2ffd747234b66d4ae4aaab
0d5605ae26740a1e6cf6ae5c636dc1a9
1bd3bbe6ce08993f06ad90e128c5a950
f7c0004ad330c51266e2a54eae65ed9a
53ea431aad3fdd3fe47a55f99c6b2d9f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089535529680896
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Upegui Cardona, Erika Sofía8a0e54b0af60fb7f6e9a3b5241476f3cLeon Sanchez, Camilo Alexander1e3ecda639909af229f8e6cf11923156Ramírez Gutiérrez, Miguel Angel030848fa-d167-4abe-b5d7-5938940952eaGEFEM: Grupo de Estudio en temas de la Física, de la Estadística y la Matemática2021-01-18T19:54:29Z2021-01-18T19:54:29Z2020-12-17https://repositorio.unal.edu.co/handle/unal/78800Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, fotografías, gráficas, tablasLa ortorrectificación de imágenes satelitales monoscópicas de muy alta resolución (VHR, por sus siglas en inglés) espacial es un proceso fundamental para asegurar la interoperabilidad de la información espacial obtenida a partir de ellas y más si se desea generar cartografía básica. Por lo anterior, estudios previos han utilizado distintos tipos de insumos entre los que se destacan múltiples fuentes de puntos de control y modelos digitales de elevación (DEM) de todo tipo, además de probar distintos métodos de optimización. Este trabajo de investigación tiene como objetivo usar de manera conjunta y evaluar la utilización de algoritmo evolutivo Particle Swarm Optimization (PSO, por sus siglas en inglés), puntos estereoscópicos provenientes de bloques fotogramétricos y DEM de distintas fuentes, para la obtención de productos cartográficos de escala 1:10.000 comparando sus resultados con lo obtenido por mínimos cuadrados ordinarios (OLS, por sus siglas en inglés) que ofrece las soluciones comerciales más utilizadas en el mercado. La metodología se compone de tres etapas. La primera corresponde al procedimiento de evaluación de DEM disponibles, generación de bloques fotogramétricos y puntos estereoscópicos junto al aseguramiento de la calidad de estos productos desde un enfoque fotogramétrico. La segunda etapa fue realizada la ortorrectificación de las imágenes monoscópicas VHR utilizando los módulos especializados de las soluciones comerciales (OLS) más utilizadas seleccionando el grado del apropiado del modelo de disposición espacial Rational Functional Model (RFM, por sus siglas en inglés) con su correspondiente evaluación. La tercera y última etapa corresponde a los procesos necesarios para la estimación y selección de los coeficientes del modelo de disposición espacial RFM usando PSO y el método Feature Condition Analysis junto a todo el flujo necesario para la generación de la ortoimagen final junto a una validación de los supuestos estadísticos sobre los residuales. Como resultado de los experimentos con OLS se observa que el uso de los puntos estereoscópicos es adecuado, pero el DEM influencia significativamente la exactitud posicional del producto final, a pesar de no ser adecuados para la escala objetivo. Además, cada algoritmo posee su propio procesamiento traducido en el resultado final y diferente modelo seleccionado, razón de la diferencia en los resultados, por lo que es necesario profundizar con mayor rigor en estos experimentos si se desea estudiar otros tipos de métodos de optimización. Mientras que con el uso del algoritmo PSO se observó mejora en promedio en un 3% la exactitud posicional de la ortoimagen sin embargo su utilización requiere de elevados recursos computacionales y además este tipo de método de optimización no se encuentra disponible aún en software especializado siendo difícil su implementación en masa de procesos productivos cartográficos. (Texto tomado de la fuente).The orthorectification of very high resolution (VHR) monoscopic spatial satellite images is a fundamental process to ensure the interoperability of the spatial information obtained from them. Therefore, previous studies have used different types of inputs, among which multiple sources of control points and digital elevation models (DEM) of all kinds stand out, in addition to testing different optimization methods. This research work aims to jointly use and evaluate the use of the evolutionary algorithm Particle Swarm Optimization (PSO), stereoscopic points from photogrammetric blocks and DEM from different sources, to obtain cartographic products of scale 1:10.000 comparing its results with that obtained by Ordinary Least Squares (OLS) that offers the most used commercial solutions. The methodology is made up of three stages. The first stage corresponds to the available DEM evaluation procedure, generation of photogrammetric blocks and stereoscopic points, together with the quality assurance of these products from a photogrammetric approach. The second stage was performed the orthorectification of the monoscopic VHR images using the specialized modules of the most used commercial solutions (OLS), selecting the degree of the appropriate spatial arrangement model Rational Functional Model (RFM) with its corresponding evaluation. The third and last stage corresponds to the processes necessary for the estimation and selection of the coefficients of the RFM spatial arrangement model using PSO and the Feature Condition Analysis method together with all the necessary flow for the generation of the final orthoimage together to a validation of the statistical assumptions about the residuals. As a result of the OLS experiments, it is observed that the use of stereoscopic points is adequate, but the DEM significantly influences the positional accuracy of the final product, despite not being suitable for the target scale. In addition, each algorithm has its own processing translated into the final result and a different selected model, which is the reason for the difference in the results, so it is necessary to delve more rigorously into these experiments if you want to study other types of optimization methods. While with the use of the PSO algorithm, an average 3 \% improvement in the positional accuracy of the orthoimage was observed; however, its use requires high computational resources and, furthermore, this type of optimization method is not yet available in specialized software. difficult its mass implementation of cartographic production processes.Incluye anexosMaestríaMagíster en GeomáticaTecnologías geoespacialesCiencias Agronómicasxix, 82 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias Agrarias - Maestría en GeomáticaEscuela de posgradosFacultad de Ciencias AgrariasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadoresImágenes por satélitesTratamiento de imágenesAlgoritmossatellite imageryimage processingalgorithmsOrthorectificationVHRRFMPSOCartographyOLSSatellite imagesHigh resolutionOrtorrectificaciónVHRRFMPSOCartografíaOLSImágenes satelitalesAlta resoluciónMétodo para la ortorrectificación de imágenes satelitales monoscópicas de muy alta resolución espacial empleando algoritmos evolutivosTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TM[Aber et al., 2019] Aber, J. S., Marzolff, I., Ries, J. B., and Aber, S. E. (2019). Principles of Photogrammetry. In Small-Format Aerial Photography and UAS Imagery, pages 19–38[Aguilar et al., 2007] Aguilar, M. A., Aguilar, F. J., Agüera, F., and Sánchez, J. A. (2007). Geometric accuracy assessment of QuickBird basic imagery using different operational approaches. Photogrammetric Engineering and Remote Sensing, 73(12):1321–1332[Aguilar et al., 2006] Aguilar, M. A., Aguilar, F. J., Carvajal, F., Agüera, F., and Estrada, L. (2006). Geometric accuracy of IKONOS geo panchromatic orthoimage products. Revue Francaise de Photogrammetrie et de Teledetection, (184):5–10.[Aguilar et al., 2012a] Aguilar, M. A., Aguilar, F. J., Saldaña, M. d. M., and Fernández, I. (2012a). Geopositioning accuracy assessment of GeoEye-1 panchromatic and multispectral imagery. Photogrammetric Engineering and Remote Sensing, 78(3):247–257.[Aguilar et al., 2017] Aguilar, M. A., Nemmaoui, A., Aguilar, F. J., Novelli, A., and García Lorca, A. (2017). Improving georeferencing accuracy of Very High Resolution satellite imagery using freely available ancillary data at global coverage. International Journal of Digital Earth, 10(10):1055–1069Aguilar et al., 2012b] Aguilar, M. A., Saldaña, M. d. M., and Aguilar, F. J. (2012b). Assessing geometric accuracy of the orthorectification process from GeoEye-1 and WorldView-2 panchromatic images. International Journal of Applied Earth Observation and Geoinformation, 21(1):427–435.[Alizadeh Moghaddam et al., 2018] Alizadeh Moghaddam, S. H., Mokhtarzade, M., and Moghaddam, S. A. A. (2018). Optimization of RFM’s structure based on PSO algorithm and figure condition analysis. IEEE Geoscience and Remote Sensing Letters, 15(8):1179–1183.[Alizadeh Naeini et al., 2019] Alizadeh Naeini, A., Fatemi, S. B., Babadi, M., Mirzadeh, S. M. J., and Homayouni, S. (2019). Application of 30-meter global digital elevation models for compensating rational polynomial coefficients biases. Geocarto International, 0(0):1–16.[Altena and Kääb, 2017] Altena, B. and Kääb, A. (2017). Elevation change and improved velocity retrieval using orthorectified optical satellite data from different orbits. Remote Sensing, 9(3):1–22[Ariza-López et al., 2018] Ariza-López, F. J., García-Balboa, J., Rodríguez-Avi, J., and Robledo, J. (2018). Guía para evaluación de la exactitud posicional de datos espaciales. Technical report, Instituto panamericano de geografía e historia, Montevideo, Uruguay.Artusi et al., 2002] Artusi, R., Verderio, P., and Marubini, E. (2002). Bravais-Pearson and Spearman correlation coefficients: meaning, test of hypothesis and confidence interval. The International Journal of Biological Markers, 17 no. 2:148–151[Baltsavias, 1996] Baltsavias, E. P. (1996). Digital ortho-images - A powerful tool for the extraction of spatial- and geo-information. ISPRS Journal of Photogrammetry and Remote Sensing, 51(2):63–77.[Barazzetti et al., 2016] Barazzetti, L., Roncoroni, F., Brumana, R., and Previtali, M. (2016). Georeferencing accuracy analysis of a single worldview-3 image collected over milan. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 2016-Janua(July):429– 434.[Belfiore and Parente, 2016] Belfiore, O. R. and Parente, C. (2016). Comparison of Different Algorithms to Orthorectify WorldView-2 Satellite Imagery. Algorithms, 9(4)[Bian et al., 2017] Bian, J., Li, A., Zhao, W., Yin, G., Ioh, D. Q. G., Prgxoh, L., Txdolw, L., Vwxglhv, H., Dffxudf, R., Duh, W., Vrph, D., Txdqwlw, D. Q. G., Lv, L. W., Wr, G., Wkh, R., Dffxudf, K., Lpdjhv, V., Prxqwdlq, R., and Qhz, D. D. (2017). an Automatic Orthorectification Approach for the Time Series Gf 4. In IGARSS, pages 546–549[Câmara, 2015] Câmara, D. (2015). Evolution and Evolutionary Algorithms. In Bio-inspired Networking, pages 1–30. Elsevier.[Cámara de Comercio de Bogotá, 2010] Cámara de Comercio de Bogotá (2010). Caracterización económica y empresarial de las provincias de cobertura de la CCB: Guavio. Technical report[Cameron et al., 2000] Cameron, A. D., Miller, D. R., Ramsay, F., Nikolaou, I., and Clarke, G. C. (2000). Temporal measurement of the loss of native pinewood in Scotland through the analysis of orthorectified aerial photographs. Journal of Environmental Management, 58(September 1999):33–43.[Cao, 2018] Cao, J. (2018). Estimation of rational polynomial coefficients based on singular value decomposition. Journal of Applied Remote Sensing, 12(04):1.[Clark, 2017] Clark, T. (2017). Search Algorithm Series: PSO - Terry Clark - Medium.[Cornelius Raasveldt, 2017] Cornelius Raasveldt, H. (2017). Las glaciaciones de la Sierra Nevada de Santa Marta. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 41(Suplemento):450.[Correa et al., 2006] Correa, J. C., Iral, R., and Rojas, L. (2006). Estudio de potencia de pruebas de homogeneidad de varianza. Revista Colombiana de Estadistica, 29(1):57–76.[Cuarteto and Felicísimo, 2003] Cuarteto, A. and Felicísimo, A. (2003). Rectificación y ortorrectificación de imágenes de satélite: análisis comparativo y discusión. Revista Internacional de Ciencia y Tecnología de la Información Geográfica, 3:45–57.[Cyriac and Rastogi, 2013] Cyriac, R. and Rastogi, A. K. (2013). An overview of the applications of particle swarm in water resources optimization. In Advances in Intelligent Systems and Computing, volume 202 AISC, pages 41–52.De la Calle et al., 2016] De la Calle, H., Jaramillo, J., Mora, J., Naranjo, O., Pearl, F., Restrepo, G., Holguín, M., Barreras, R., Marquez, I., Catatumbo, P., Álape, P., Gómez, J., Téllez, R., Santrich, J., Sandino, V., Carvajal, C., and Nylander, H. (2016). Acuerdo final proceso de paz. Technical report.[de Planeación, 2016] de Planeación, D. N. (2016). CONPES 3859: Politica para la adopción e implementación de un catastro multipropósito rural-urbano. Technical report.[Dupuy et al., 2020] Dupuy, S., Gaetano, R., and Le Mézo, L. (2020). Mapping land cover on Reunion Island in 2017 using satellite imagery and geospatial ground data. Data in Brief, 28:104934[European Space Imaging, 2018] European Space Imaging (2018). IKONOS.[Farr et al., 2007] Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., and Alsdorf, D. E. (2007). The shuttle radar topography mission. Reviews of Geophysics, 45(2):RG2004.Firdaus et al., 2017] Firdaus, Y., Akerman, A., and Buono, H. (2017). Satellite image processing for precision agriculture and agroindustry using convolutional neural network and genetic algorithm. In IOP Conference Series: Earth and Environmental Science, page 7.[Fraser et al., 2006] Fraser, C. S., Dial, G., and Grodecki, J. (2006). Sensor orientation via RPCs. ISPRS Journal of Photogrammetry and Remote Sensing, 60(3):182–194.[Geng et al., 2019] Geng, X., Xing, S., and Xu, Q. (2019). A generic rigorous sensor model for photogrammetric processing of pushbroom planetary images. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 42(2/W13):1389–1396[Gobbi et al., 2018] Gobbi, S., Maimeri, G., Tattoni, C., Cantiani, M. G., Rocchini, D., La Porta, N., Ciolli, M., and Zatelli, P. (2018). Orthorectification of a large dataset of historical aerial images: Procedure and precision assessment in an open source environment. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 42(4W8):53–59.[Gobierno de Colombia, 2019] Gobierno de Colombia, C. N. d. P. E. y. S. (2019). CONPES 3958[Gomez and Deccechis, 2008] Gomez, M. and Deccechis, F. (2008). Evaluación De Los Modelos Digitales De Elevación Srtm- C / X Y Aster Gdem Y Su Relación Con Los Errores Planimétricos De Datos Pancromáticos Quickbird. (2007):1–10.[Grochala and Kedzierski, 2017] Grochala, A. and Kedzierski, M. (2017). A method of panchromatic image modification for satellite imagery data fusion. Remote Sensing, 9(6):11–13[Guérin, 2017] Guérin, C. (2017). EFFECT OF THE DTM QUALITY ON THE BUNDLE BLOCK ADJUSTMENT AND ORTHORECTIFICATION PROCESS WITHOUT GCP: EXEMPLE ON A STEEP AREA. In IGARSS, volume 8670, pages 1067–1070.[Hariyanto et al., 2019] Hariyanto, T., Kurniawan, A., Pribadi, C. B., and Amin, R. A. (2019). Optimization of Ground Control Point (GCP) and Independent Control Point (ICP) on Orthorectification of High Resolution Satellite Imagery. E3S Web of Conferences, 94:1–5.[Heidemann et al., 2013] Heidemann, K., Survey, U. S. G., Smith, D., and Mapping, D. S. (2013). ASPRS Accuracy Standards for Digital Geospatial Data. (March).[Heipke, 1997] Heipke, C. (1997). Automation of interior, relative, and absolute orientation. ISPRS Journal of Photogrammetry and Remote Sensing, 52(1):1–19.[Helder et al., 2003] Helder, D., Coan, M., Patrick, K., and Gaska, P. (2003). IKONOS geometric characterization. Remote Sensing of Environment, 88(1-2):69–79.[Holland et al., 2006] Holland, D. A., Boyd, D. S., and Marshall, P. (2006). Updating topographic mapping in Great Britain using imagery from high-resolution satellite sensors. ISPRS Journal of Photogrammetry and Remote Sensing, 60(3):212–223.[Hong et al., 2015] Hong, Z., Tong, X., Liu, S., Chen, P., Xie, H., and Jin, Y. (2015). A comparison of the performance of bias-corrected RSMs and RFMs for the geo-positioning of high-resolution satellite stereo imagery. Remote Sensing, 7(12):16815–16830.[Hu et al., 2004] Hu, Y., Tao, V., and Croitoru, A. (2004). Understanding the rational function model: methods and applications. International Archives of Photogrammetry and Remote Sensing, 35(B4):663– 668.[Huang et al., 2016] Huang, Z., Cheng, G., Wang, H., Li, H., Shi, L., and Pan, C. (2016). BUILDING EXTRACTION FROM MULTI-SOURCE REMOTE SENSING IMAGES VIA DEEP DECONVOLUTION NEURAL NETWORKS Zuming Huang , Guangliang Cheng , Hongzhen Wang , Haichang Li , Limin Shi , Chunhong Pan National Laboratory of Pattern Recognition ( NLPR ) Institute of Au. 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pages 1835–1838.[IGAC, 1997] IGAC (1997). GUÍA METODOLÓGICA PARA LA OBTENCIÓN DE ALTURAS SOBRE EL NIVEL MEDIO DEL MAR UTILIZANDO EL SISTEMA GPS. Technical report.[IGAC, 2005] IGAC (2005). Resolución 068 de 2005: Datum MAGNA-SIRGAS. Technical report[IGAC, 2016a] IGAC (2016a). Catalogo de representación de cartografía básica digital IGAC Escala 1:10000. Technical report.[IGAC, 2016b] IGAC (2016b). Especificaciones Técnicas de Cartografía Básica.[IGAC, 2017] IGAC (2017). Plan Nacional de Cartografía Basica.[IGAC, 2018] IGAC (2018). Marco Geocentrico Nacional.[IGAC, 2020] IGAC (2020). Resolución 471 de 2020: Especificación técnica cartografía básica. Technical report.[Im et al., 2019] Im, C., Jeong, J. H., and Jeong, C. S. (2019). Parallel Large-Scale Image Processing for Orthorectification. IEEE Region 10 Annual International Conference, Proceedings/TENCON, 2018- Octob(October):2153–2157.[Imani, 2019] Imani, M. (2019). Adaptive signal representation and multi-scale decomposition for panchromatic and multispectral image fusion. Future Generation Computer Systems, 99:410–424.[Instituto Humboldt and Fundación Erigaie, 2015] Instituto Humboldt and Fundación Erigaie (2015). Caracterización socioeconómica y cultural del complejo de páramos sierra nevada de santa marta en jurisdicción de corpamag y corpocesar con énfasis en caracterización de actores, análisis de redes y de servicios ecosistémicos. Technical report, Bogotá D.C.[ISO 19157:2013, 2013]ISO 19157:2013 (2013). Geographic information — Data quality. Standard, Interna-tional Organization for Standardization, Geneva, CH.[Jannati and Valadan Zoej, 2015]Jannati, M. and Valadan Zoej, M. J. (2015). Introducing genetic modifica-tion concept to optimize rational function models (RFMs) for georeferencing of satellite imagery.GIScienceand Remote Sensing, 52(4):510–525.[Jawak and Luis, 2013]Jawak, S. D. and Luis, A. J. (2013). A spectral index ratio-based Antarctic land-covermapping using hyperspatial 8-band WorldView-2 imagery.Polar Science, 7(1):18–38.[Jeong, 2017] Jeong, J. (2017). IMAGING GEOMETRY and POSITIONING ACCURACY of DUALSATELLITE STEREO IMAGES: A REVIEW.ISPRS Annals of the Photogrammetry, Remote Sensingand Spatial Information Sciences, 4(2W4):235–242.[Kartal et al., 2018] Kartal, H., Alganci, U., and Sertel, E. (2018). Automated Orthorectification of VHRSatellite Images by SIFT-Based RPC Refinement.ISPRS International Journal of Geo-Information,7(6):229.[Kennedy et al., 1995]Kennedy, J., Eberhart, R., and bls Gov (1995). Particle Swarm Optimization. InIEEE International Conference on Neural Networks, pages 1942–1948, Perth, Australia. IEEE ServiceCenter.[Kobler et al., 2007] Kobler, A., Pfeifer, N., Ogrinc, P., Todorovski, L., Oštir, K., and Džeroski, S. (2007).Repetitive interpolation: A robust algorithm for DTM generation from Aerial Laser Scanner Data inforested terrain.Remote Sensing of Environment, 108(1):9–23.[Konugurthi et al., 2016] Konugurthi, P. K., Kune, R., Nooka, R., and Sarma, V. (2016). Autonomousortho-rectification of very high resolution imagery using SIFT and genetic algorithm.PhotogrammetricEngineering and Remote Sensing, 82(5):377–388.[Korsgaard et al., 2016] Korsgaard, N. J., Nuth, C., Khan, S. A., Kjeldsen, K. K., Bjørk, A. A., Schomacker, A., and Kjær, K. H. (2016). Digital elevation model and orthophotographs of Greenland based on aerial photographs from 1978-1987. Scientific Data, 3:1–15.[Kravchenko et al., 2014] Kravchenko, O., Lavrenyuk, M., and Kussul, N. (2014). Orthorectification of Sich-2 satellite images using elastic models. International Geoscience and Remote Sensing Symposium (IGARSS), (December):2281–2284.[Kurczynski et al., 2018] Kurczynski, Z., Rózycki, S., and Bylina, P. (2018). Mapping of Polar Areas Based on High-Resolution Satellite Images: The Example of the Henryk Arctowski Polish Antarctic Station. Reports on Geodesy and Geoinformatics, 104(1):65–78.[LaForest et al., 2019] LaForest, Hasheminasab, Zhou, Flatt, and Habib (2019). New Strategies for Time Delay Estimation During System Calibration for UAV-Based GNSS/INS-Assisted Imaging Systems. Remote Sensing, 11(15):1811.[Lee et al., 2017] Lee, K., Kim, E., and Kim, Y. (2017). Orthorectification of KOMPSAT Optical Images Using Various Ground Reference Data and Accuracy Assessment. Journal of Sensors, 2017.[Lencinas and Díaz, 2011] Lencinas, J. and Díaz, G. (2011). Corrección geométrica de datos satelitales QuickBird, incidencia de los modelos digitales de elevación SRTM-C/X y ASTER GDEM. Geofocus. Revista Internacional de Ciencia y Tecnología de la Información Geográfica, 0(11):431–454.[Lerma et al., 2013] Lerma, J. L., Navarro, S., Cabrelles, M., Seguí, A. E., and Hernández, D. (2013). Automatic orientation and 3D modelling from markerless rock art imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 76:64–75.[Li et al., 2018a] Li, C., Liu, J., Wang, X., Liu, X., and Wu, Y. (2018a). Stepwise-then-intelligent algorithm (STIA) for optimizing remotely sensed image rectification. International Journal of Remote Sensing, 39(21):7350–7369.[Li et al., 2018b] Li, Y., Sakamoto, M., Shinohara, T., and Satoh, T. (2018b). Object detection from mms imagery using deep learning for generation of road orthophotos. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 42(2):573–577.[Liang et al., 2009] Liang, J., Tang, M. L., and Chan, P. S. (2009). A generalized Shapiro-Wilk W statistic for testing high-dimensional normality. Computational Statistics and Data Analysis, 53(11):3883–3891.[Lollino et al., 2015] Lollino, G., Giordan, D., Crosta, G. B., Corominas, J., Azzam, R., Wasowski, J., and Sciarra, N. (2015). Engineering geology for society and territory – Volume 2: Landslide processes. Engineering Geology for Society and Territory - Volume 2: Landslide Processes, 2:1–2177.[Maglione, 2016] Maglione, P. (2016). Very High Resolution Optical Satellites: An Overview of the Most Commonly used. American Journal of Applied Sciences, 13(1):91–99.[Marek et al., 2015] Marek, L., Mirijovský, J., and Tucek, P. (2015). Monitoring of the shallow landslide using UAV photogrammetry and geodetic measurements. In Engineering Geology for Society and Territory - Volume 2: Landslide Processes, pages 113–116. Springer International Publishing, Cham.[Marsetic et al., 2015] Marsetic, A., Oštir, K., and Fras, M. K. (2015). Automatic orthorectification of high-resolution optical satellite images using vector roads. IEEE Transactions on Geoscience and Remote Sensing, 53(11):6035–6047.[Mediavilla et al., 2004] Mediavilla, F., Pavo López, M. F., Alonso, C., Moreno, V., and Arozarena, A. (2004). Ortorrectificación de imágenes del satélite Ikonos 2. Revista de Teledetección, 21:61–65.[Meng et al., 2019] Meng, X., Shen, H., Li, H., Zhang, L., and Fu, R. (2019). Review of the pansharpening methods for remote sensing images based on the idea of meta-analysis: Practical discussion and challenges. Information Fusion, 46(October 2017):102–113.[Moghaddam et al., 2018] Moghaddam, S. H. A., Mokhtarzade, M., Naeini, A. A., and Amiri-Simkooei, A. (2018). A Statistical Variable Selection Solution for RFM Ill-Posedness and Overparameterization Problems. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, pages 1–12.[Mozas and Ariza, 2011] Mozas, A. T. and Ariza, F. J. (2011). New method for positional quality control in cartography based on lines. A comparative study of methodologies. International Journal of Geographical Information Science, 25(10):1681–1695.[Naeini et al., 2017] Naeini, A. A., Moghaddam, S. H. A., Mirzadeh, S. M. J., Homayouni, S., and Fatemi, S. B. (2017). Multiobjective genetic optimization of terrain-independent RFMs for VHSR satellite images. IEEE Geoscience and Remote Sensing Letters, 14(8):1368–1372.[Naeini et al., 2019] Naeini, A. A., Moghaddam, S. H. A., Sheikholeslami, M. M., and Amiri-Simkooei, A. (2019). Application of PCA Analysis and QR Decomposition to Address RFM’s Ill-Posedness. Photogrammetric Engineering & Remote Sensing, 86(1):17–21.[Nemmaoui et al., 2019] Nemmaoui, A., Aguilar, F. J., Aguilar, M. A., and Qin, R. (2019). DSM and DTM generation from VHR satellite stereo imagery over plastic covered greenhouse areas. Computers and Electronics in Agriculture, 164(August):104903.[Ningthoujam et al., 2018] Ningthoujam, R. K., Joshi, P. K., and Roy, P. S. (2018). Retrieval of forest biomass for tropical deciduous mixed forest using ALOS PALSAR mosaic imagery and field plot data. International Journal of Applied Earth Observation and Geoinformation, 69:206–216.[Ningthoujam et al., 2018] Ningthoujam, R. K., Joshi, P. K., and Roy, P. S. (2018). Retrieval of forest biomass for tropical deciduous mixed forest using ALOS PALSAR mosaic imagery and field plot data. International Journal of Applied Earth Observation and Geoinformation, 69:206–216.[NTC 5043:2010, 2010] NTC 5043:2010 (2010). Información geográfica. Conceptos básicos de calidad de los datos geográficos. Standard, ICONTEC, Bogota, CO.[NTC 5660:2010, 2010] NTC 5660:2010 (2010). Información geográfica. Evaluación de la calidad. procesos y medidas. Standard, ICONTEC, Bogota, CO.[NTC 5662:2010, 2010] NTC 5662:2010 (2010). Especificaciones técnicas de productos geográficos. Standard, ICONTEC, Bogota, CO.[Pérez et al., 2005] Pérez, C., Sanchez, N., and Carpegu, Á. (2005). Experiencias en la corrección geométrica de imágenes de alta resolución: metodología rigurosa versus empírica. In XI Congreso Nacional de Teledetección.[Poli and Toutin, 2012] Poli, D. and Toutin, T. (2012). Review of developments in geometric modelling for high resolution satellite pushbroom sensors. Photogrammetric Record, 27(137):58–73.[Ramírez and Alcalde, 2016] Ramírez, A. D. and Alcalde, U. (2016). Plan de Desarrollo Municipal de Valledupar 2016-2019. Technical report, Valledupar, César.[Reinartz et al., 2011] Reinartz, P., Müller, R., Schwind, P., Suri, S., and Bamler, R. (2011). Orthorectification of VHR optical satellite data exploiting the geometric accuracy of TerraSAR-X data. ISPRS Journal of Photogrammetry and Remote Sensing, 66(1):124–132.[Ressl and Pfeifer, 2018] Ressl, C. and Pfeifer, N. (2018). Evaluation of the elevation model influence on the orthorectification of Sentinel-2 satellite images over Austria. European Journal of Remote Sensing, 51(1):693–709.[Rigden et al., 2005] Rigden, T. C., Soroka, A. J., and Binns, L. A. (2005). Comparison of overlay metrology with analogue and digital cameras. Metrology, Inspection, and Process Control for Microlithography XIX, 5752:1060–1068.[Rizeei and Pradhan, 2019] Rizeei, H. and Pradhan, B. (2019). Urban Mapping Accuracy Enhancement in High-Rise Built-Up Areas Deployed by 3D-Orthorectification Correction from WorldView-3 and LiDAR Imageries. Remote Sensing, 11(6):692.[Rondón et al., 2010] Rondón, C. A. R., Zapata, A. M., and Rondón, J. C. D. (2010). Estudio morfométrico del lago Guatavita (Colombia). Acta Biologica Colombiana, 15(3):131–144.[Saito and Miura, 2019] Saito, H. and Miura, Y. (2019). Skew Detection and Ortho-rectification for System Corrected Landsat TM Images. In Progress in Electromagnetics Research Symposium, volume 2019-June, pages 2789–2794. Institute of Electrical and Electronics Engineers Inc.[Salach, 2017] Salach, A. (2017). SAPC - Application for adapting scanned analogue photographs to use them in structure from motion technology. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 42(1W1):197–204.[Sánchez and Drewes, 2020] Sánchez, L. and Drewes, H. (2020). Geodetic Monitoring of the Variable Surface Deformation in Latin America. pages 1–12. Springer, Berlin, Heidelberg.[Schowengerdt, 2007] Schowengerdt, R. A. (2007). Image Registration and Fusion. In Remote Sensing, pages 355–XXVI. Academic Press.[Shen et al., 2017] Shen, X., Li, Q., Wu, G., and Zhu, J. (2017). Bias compensation for rational polynomial coefficients of high-resolution satellite imagery by local polynomial modeling. Remote Sensing, 9(3).[Sjöberg, 2013] Sjöberg, L. E. (2013). The geoid or quasigeoid – which reference surface should be preferred for a national height system? Journal of Geodetic Science, 3(2).[Tarko et al., 2015] Tarko, A., de Bruin, S., Fasbender, D., Devos, W., and Bregt, A. K. (2015). Users’ assessment of orthoimage photometric quality for visual interpretation of agricultural fields. Remote Sensing, 7(4):4919–4936.[Terrail and Jurie, 2018] Terrail, J. O. D. and Jurie, F. (2018). On the use of deep neural networks for the detection of small vehicles in ortho-images. Proceedings - International Conference on Image Processing, ICIP, 2017-Septe:4212–4216.[Topan, 2013] Topan, H. (2013). First Experience with Figure Condition Analysis Aided Bias Compensated Rational Function Model for Georeferencing of High Resolution Satellite Images. Journal of the Indian Society of Remote Sensing, 41(4):807–818.[Topan and Kutoglu, 2009] Topan, H. and Kutoglu, H. S. (2009). Georeferencing accuracy assessment of high-resolution satellite images using figure condition method. IEEE Transactions on Geoscience and Remote Sensing, 47(4):1256–1261.[Toutin, 2004] Toutin, T. (2004). Geometric processing of remote sensing images: Models, algorithms and methods. International Journal of Remote Sensing, 25(10):1893–1924.[Tsirikoglou et al., 2020] Tsirikoglou, P., Kyprianidis, K., Kalfas, A. I., and Contino, F. (2020). Optimization in probabilistic domains: an engineering approach. In Nature-Inspired Computation and Swarm Intelligence, pages 391–414. Elsevier.[Tu et al., 2012] Tu, T. M., Hsu, C. L., Tu, P. Y., and Lee, C. H. (2012). An adjustable pan-sharpening approach for IKONOS/QuickBird/GeoEye-1/ WorldView-2 imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5(1):125–134.[Urrea, 2017] Urrea, A. R. (2017). DOCUMENTACIÓN, ACTUALIZACIÓN Y VALIDACIÓN DEL MODULO DE CÁLCULO DE VELOCIDADES DEL SOFTWARE MAGNA SIRGAS PRO 3.0. Technical report.[Valadan Zoej et al., 2007] Valadan Zoej, M. J., Mokhtarzade, M., Mansourian, A., Ebadi, H., and Sadeghian, S. (2007). Rational function optimization using genetic algorithms. International Journal of Applied Earth Observation and Geoinformation, 9(4):403–413.[Valbuena et al., 2008] Valbuena, R., Sevilla, T. F. D., Mauro, F., Pascual, C., García-abril, A., Martín, S., Manzanera, J. A., Forestry, T., and Ciudad, F. (2008). Lidar and true-orthorectification of infrared aerial imagery of high Pinus sylvestris forest in mountainous relief Technical University of Madrid ( UPM ). Research Group for Sustainable Management. pages 596–605.[Venkateswarlu and Jujjavarapu, 2020] Venkateswarlu, C. and Jujjavarapu, S. E. (2020). Stochastic and evolutionary optimization algorithms. In Stochastic Global Optimization Methods and Applications to Chemical, Biochemical, Pharmaceutical and Environmental Processes, pages 87–123. Elsevier.[Villa and Herrera, 2016] Villa, J. M. and Herrera, F. (2016). La pobreza y el postconflicto en Valledupar: Análisis y propuestas. Technical report.[Wang and Zhao, 2018] Wang, J. X. and Zhao, J. J. (2018). Orthorectification of remote sensing image based on rational function model. Proceedings of 2017 9th International Conference On Modelling, Identification and Control, ICMIC 2017, 2018-March(Icmic):723–727.[Wang et al., 2016] Wang, M., Zhu, Y., Jin, S., Pan, J., and Zhu, Q. (2016). Correction of ZY-3 image distortion caused by satellite jitter via virtual steady reimaging using attitude data. ISPRS Journal of Photogrammetry and Remote Sensing, 119:108–123.[Westin and Forsgren, 2001] Westin, T. and Forsgren, J. (2001). Orthorectification of EROS A1 images. IEEE/ISPRS Joint Workshop on Remote Sensing and Data Fusion over Urban Areas, DFUA 2001, pages 1–4.[Whitley, 1994] Whitley, D. (1994). A genetic algorithm tutorial. Statistics and Computing, 4(2):65–85.[Widyaningrum et al., 2016] Widyaningrum, E., Fajari, M., and Octariady, J. (2016). Accuracy comparison of VHR systematic-ortho satellite imageries against VHR orthorectified imageries using GCP. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 2016-Janua(March 2017):305–309.[Yavari et al., 2013] Yavari, S., Valadan Zoej, M. J., Mohammadzadeh, A., and Mokhtarzade, M. (2013). Particle swarm optimization of RFM for georeferencing of satellite images. IEEE Geoscience and Remote Sensing Letters, 10(1):135–139.[Yavari et al., 2018] Yavari, S., Valadan Zoej, M. J., and Salehi, B. (2018). An automatic optimum number of well-distributed ground control lines selection procedure based on genetic algorithm. ISPRS Journal of Photogrammetry and Remote Sensing, 139:46–56.[Ye et al., 2017] Ye, J., Lin, X., and Xu, T. (2017). Mathematical Modeling and Accuracy Testing of WorldView-2 Level-1B Stereo Pairs without Ground Control Points. Remote Sensing, 9(7):737.[Yepes Rodríguez, 2018] Yepes Rodríguez, F. (2018). La coproducción de un GDEM de alta resolución: El programa TREx y la participación española The co-production of a high resolution GDEM: The TREx program and the Spanish participation. 27:28–31.[Yepes Rodríguez, 2018] Yepes Rodríguez, F. (2018). La coproducción de un GDEM de alta resolución: El programa TREx y la participación española The co-production of a high resolution GDEM: The TREx program and the Spanish participation. 27:28–31.[Zhang et al., 2016] Zhang, H., Pu, R., and Liu, X. (2016). A new image processing procedure integrating PCI-RPC and ArcGIS-spline tools to improve the orthorectification accuracy of high-resolution satellite imagery. Remote Sensing, 8(10).[Zhang et al., 2012] Zhang, L., Balz, T., and Liao, M. (2012). Satellite SAR geocoding with refined RPC model. ISPRS Journal of Photogrammetry and Remote Sensing, 69:37–49.[Zhang et al., 2018] Zhang, R., Zhou, G., Zhang, G., Zhou, X., and Huang, J. (2018). RPC-based orthorectification for satellite images using FPGA. Sensors (Switzerland), 18(8).EstudiantesInvestigadoresPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/78800/7/license.txtcccfe52f796b7c63423298c2d3365fc6MD57CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.unal.edu.co/bitstream/unal/78800/6/license_rdf42fd4ad1e89814f5e4a476b409eb708cMD56ORIGINALDocumento.pdfDocumento.pdfTesis de Maestría en Geomáticaapplication/pdf2322522https://repositorio.unal.edu.co/bitstream/unal/78800/1/Documento.pdf2e4b9f6b6661147db4dc2d720791a437MD51Anexos A-C.pdfAnexos A-C.pdfapplication/pdf9317836https://repositorio.unal.edu.co/bitstream/unal/78800/2/Anexos%20A-C.pdfa1cfd21d3f0d85990ae3cc24da9ee3d2MD52Anexos D-E.pdfAnexos D-E.pdfapplication/pdf12266471https://repositorio.unal.edu.co/bitstream/unal/78800/3/Anexos%20D-E.pdf47df091c1f24e1cb7c7339b6271b48feMD53Anexos F-M Bibliografía.pdfAnexos F-M Bibliografía.pdfapplication/pdf12561639https://repositorio.unal.edu.co/bitstream/unal/78800/4/Anexos%20F-M%20Bibliograf%c3%ada.pdf5b8959b22f2ffd747234b66d4ae4aaabMD54THUMBNAILDocumento.pdf.jpgDocumento.pdf.jpgGenerated Thumbnailimage/jpeg4535https://repositorio.unal.edu.co/bitstream/unal/78800/8/Documento.pdf.jpg0d5605ae26740a1e6cf6ae5c636dc1a9MD58Anexos A-C.pdf.jpgAnexos A-C.pdf.jpgGenerated Thumbnailimage/jpeg7505https://repositorio.unal.edu.co/bitstream/unal/78800/9/Anexos%20A-C.pdf.jpg1bd3bbe6ce08993f06ad90e128c5a950MD59Anexos D-E.pdf.jpgAnexos D-E.pdf.jpgGenerated Thumbnailimage/jpeg7895https://repositorio.unal.edu.co/bitstream/unal/78800/10/Anexos%20D-E.pdf.jpgf7c0004ad330c51266e2a54eae65ed9aMD510Anexos F-M Bibliografía.pdf.jpgAnexos F-M Bibliografía.pdf.jpgGenerated Thumbnailimage/jpeg7957https://repositorio.unal.edu.co/bitstream/unal/78800/11/Anexos%20F-M%20Bibliograf%c3%ada.pdf.jpg53ea431aad3fdd3fe47a55f99c6b2d9fMD511unal/78800oai:repositorio.unal.edu.co:unal/788002023-07-21 23:03:25.534Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==