Design and analysis of a multi-stage control for power multi-converters in a DC microgrid
ilustraciones, diagramas
- Autores:
-
Monsalve Rueda, Miguel Eduardo
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2023
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/84899
- Palabra clave:
- 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulica
Redes eléctricas
Electric networks
Análisis de redes eléctricas
Electric network analysis
Sliding mode control
Microgrid
Higher order control
Buck converter
Constant power load
Control deslizante
Microred
Convertidor Buck
Control de alto orden
Cargas de potencia constante
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_6894274a3e910204443f8cfb27087545 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/84899 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Design and analysis of a multi-stage control for power multi-converters in a DC microgrid |
dc.title.translated.spa.fl_str_mv |
Diseño y análisis de un control multietapa para multiconvertidores de potencia en una microrred DC |
title |
Design and analysis of a multi-stage control for power multi-converters in a DC microgrid |
spellingShingle |
Design and analysis of a multi-stage control for power multi-converters in a DC microgrid 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería 620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulica Redes eléctricas Electric networks Análisis de redes eléctricas Electric network analysis Sliding mode control Microgrid Higher order control Buck converter Constant power load Control deslizante Microred Convertidor Buck Control de alto orden Cargas de potencia constante |
title_short |
Design and analysis of a multi-stage control for power multi-converters in a DC microgrid |
title_full |
Design and analysis of a multi-stage control for power multi-converters in a DC microgrid |
title_fullStr |
Design and analysis of a multi-stage control for power multi-converters in a DC microgrid |
title_full_unstemmed |
Design and analysis of a multi-stage control for power multi-converters in a DC microgrid |
title_sort |
Design and analysis of a multi-stage control for power multi-converters in a DC microgrid |
dc.creator.fl_str_mv |
Monsalve Rueda, Miguel Eduardo |
dc.contributor.advisor.none.fl_str_mv |
Hoyos Velasco, Fredy Edimer Candelo Becerra, John Edwin |
dc.contributor.author.none.fl_str_mv |
Monsalve Rueda, Miguel Eduardo |
dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Control y Procesamiento Digital de Señales |
dc.contributor.orcid.spa.fl_str_mv |
Monsalve Rueda, Miguel Eduardo [0000-0003-2401-8822] Candelo Becerra, John Edwin [0000-0002-9784-9494] |
dc.subject.ddc.spa.fl_str_mv |
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería 620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulica |
topic |
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería 620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulica Redes eléctricas Electric networks Análisis de redes eléctricas Electric network analysis Sliding mode control Microgrid Higher order control Buck converter Constant power load Control deslizante Microred Convertidor Buck Control de alto orden Cargas de potencia constante |
dc.subject.lemb.none.fl_str_mv |
Redes eléctricas Electric networks Análisis de redes eléctricas Electric network analysis |
dc.subject.proposal.eng.fl_str_mv |
Sliding mode control Microgrid Higher order control Buck converter Constant power load |
dc.subject.proposal.spa.fl_str_mv |
Control deslizante Microred Convertidor Buck Control de alto orden Cargas de potencia constante |
description |
ilustraciones, diagramas |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-11-07T19:02:48Z |
dc.date.available.none.fl_str_mv |
2023-11-07T19:02:48Z |
dc.date.issued.none.fl_str_mv |
2023-11-01 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/84899 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/84899 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.indexed.spa.fl_str_mv |
RedCol LaReferencia |
dc.relation.references.spa.fl_str_mv |
Cabana-Jiménez, K.; Candelo-Becerra, J.E.; Sousa Santos, V.; Santos, V.S. Comprehensive Analysis of Microgrids Configurations and Topologies. Sustainability 2022, 14, 1056, doi:10.3390/su14031056. Tahim, A.P.N.; Pagano, D.J.; Heldwein, M.L.; Ponce, E. Control of Interconnected Power Electronic Converters in Dc Distribution Systems. COBEP 2011 - 11th Brazilian Power Electronics Conference 2011, 269–274, doi:10.1109/COBEP.2011.6085269. Grigore, V.; Hatonen, J.; Kyyra, J.; Suntio, T. Dynamics of a Buck Converter with a Constant Power Load. PESC Record - IEEE Annual Power Electronics Specialists Conference 1998, 1, 72–78, doi:10.1109/PESC.1998.701881. Hossain, E.; Perez, R.; Nasiri, A.; Padmanaban, S. A Comprehensive Review on Constant Power Loads Compensation Techniques. IEEE Access 2018, 6, 33285–33305, doi:10.1109/ACCESS.2018.2849065. Dong, Y.; Liu, W.; Gao, Z.; Zhang, X. New Simulation Model of Ac Constant Power Load. Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica 2009, 30, 115–120, doi:10.1109/TENCON.2008.4766537. Pagano, D.J.; Ponce, E. On the Robustness of the DC-DC Boost Converter under Washout SMC. 2009 Brazilian Power Electronics Conference, COBEP2009 2009, 110–115, doi:10.1109/COBEP.2009.5347639. Yue, Z.; Wei, Q. A Third-Order Sliding-Mode Controller for DC/DC Converters with Constant Power Loads. Conference Record - IAS Annual Meeting (IEEE Industry Applications Society) 2011, 1–8, doi:10.1109/IAS.2011.6074347. Bandyopadhyay, B.; Deepak, F.; Kim, K.S. Sliding Mode Control Using Novel Sliding Surfaces; 2009; Vol. 392; ISBN 9783642034473. Rivetta, C.H.; Emadi, A.; Williamson, G.A.; Jayabalan, R.; Fahimi, B. Analysis and Control of a Buck DC-DC Converter Operating with Constant Power Load in Sea and Undersea Vehicles. IEEE Trans Ind Appl 2006, 42, 559–572, doi:10.1109/TIA.2005.863903. Kakigano, H.; Nishino, A.; Miura, Y.; Ise, T. Distribution Voltage Control for DC Microgrid by Converters of Energy Storages Considering the Stored Energy. 2010 IEEE Energy Conversion Congress and Exposition, ECCE 2010 - Proceedings 2010, 2851–2856, doi:10.1109/ECCE.2010.5618178. Utkin, V. Variable Structure Systems with Sliding Modes. IEEE Trans Automat Contr 1977, AC-22, 212–222. Shtessel, Y.; Edwards, C.; Fridman, L. Sliding Mode Control and Observation, Series: Control Engineering; Birkhauser, 2016; Vol. 10; ISBN 978-0-81764-8923. Venkataramanan, G.; Marnay, C. A larger role for microgrids. IEEE Power Energy Mag. 2008, 6, 78–82. Badal, F.R.; Das, P.; Sarker, S.K.; Das, S.K. A survey on control issues in renewable energy integration and microgrid. Prot. Control Mod. Power Syst. 2019, 4, 8. García Vera, Y.E.; Dufo-López, R.; Bernal-Agustín, J.L. Energy Management in Microgrids with Renewable Energy Sources: A Literature Review. Appl. Sci. 2019, 9, 3854. Bouzid, A.M.; Guerrero, J.M.; Cheriti, A.; Bouhamida, M.; Sicard, P.; Benghanem, M. A survey on control of electric power distributed generation systems for microgrid applications. Renew. Sustain. Energy Rev. 2015, 44, 751–766. Rocabert, J.; Luna, A.; Blaabjerg, F.; Rodríguez, P. Control of Power Converters in AC Microgrids. IEEE Trans. Power Electron. 2012, 27, 4734–4749. Dragicevic, T.; Lu, X.; Vasquez, J.C.; Guerrero, J.M. DC Microgrids—Part II: A Review of Power Architectures, Applications, and Standardization Issues. IEEE Trans. Power Electron. 2016, 31, 3528–3549. Dragicevic, T.; Lu, X.; Vasquez, J.C.; Guerrero, J.M. DC Microgrids–Part I: A Review of Control Strategies and Stabilization Techniques. IEEE Trans. Power Electron. 2015, 31, 4876–4891. Zinober, A.S.I. An introduction to sliding mode variable structure control. In Variable Structure and Lyapunov Control; Springer: London, UK, 1994; pp. 1–22. Tahim, A.P.N.; Pagano, D.J.; Ponce, E. Nonlinear control of dc-dc bidirectional converters in stand-alone dc Microgrids. In Proceedings of the 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), Maui, HI, USA, 10–13 December 2012; pp. 3068–3073. Kwasinski, A.; Onwuchekwa, C.N. Dynamic Behavior and Stabilization of DC Microgrids With Instantaneous Constant-Power Loads. IEEE Trans. Power Electron. 2011, 26, 822–834. Zhao, Y.; Qiao, W.; Ha, D. A sliding-mode duty-ratio controller for DC/DC buck converters with constant power loads. IEEE Trans. Ind. Appl. 2014, 50, 1448–1458. Grigore, V.; Hatonen, J.; Kyyra, J.; Suntio, T. Dynamics of a buck converter with a constant power load. In Proceedings of the PESC 98 Record. 29th Annual IEEE Power Electronics Specialists Conference, Fukuoka, Japan, 22–22 May 1998; Volume 1, pp. 72–78. Hossain, E.; Perez, R.; Nasiri, A.; Padmanaban, S. A Comprehensive Review on Constant Power Loads Compensation Techniques. IEEE Access 2018, 6, 33285–33305. AL-Nussairi, M.K.; Bayindir, R.; Padmanaban, S.; Mihet-Popa, L.; Siano, P. Constant power loads (CPL) with Microgrids: Problem definition, stability analysis and compensation techniques. Energies 2017, 10, 1656. Hoyos, F.E.; Candelo-Becerra, J.E.; Toro, N. Numerical and experimental validation with bifurcation diagrams for a controlled DC–DC converter with quasi-sliding control. TecnoLógicas 2018, 21, 147–167. Hoyos, F.; Candelo, J.; Silva, J. Performance evaluation of a DC-AC inverter controlled with ZAD-FPIC. INGE CUC 2018, 14, 9–18. Ponce, E.; Pagano, D.J. Sliding Dynamics Bifurcations in the Control of Boost Converters*. IFAC Proc. Vol. 2011, 44, 13293–13298. Hoyos, F.E.; Burbano, D.; Angulo, F.; Olivar, G.; Toro, N.; Taborda, J.A. Effects of Quantization, Delay and Internal Resistances in Digitally ZAD-Controlled Buck Converter. Int. J. Bifurc. Chaos 2012, 22, 1250245. Fossas, E.; Griñó, R.; Biel, D. Quasi-Sliding control based on pulse width modulation, zero averaged dynamics and the L2 norm. In Proceedings of the Advances in Variable Structure Systems-6th IEEE International Workshop on Variable Structure Systems, Gold Coast, Australia, 7–9 December 2000; pp. 335–344. Ashita, S.; Uma, G.; Deivasundari, P. Chaotic dynamics of a zero average dynamics controlled DC–DC Ćuk converter. IET Power Electron. 2014, 7, 289–298. Hoyos, F.E.; Candelo-Becerra, J.E.; Hoyos Velasco, C.I. Model-Based Quasi-Sliding Mode Control with Loss Estimation Applied to DC–DC Power Converters. Electronics 2019, 8, 1086. Hoyos, F.E.; Toro, N.; Garcés-Gómez, Y. Numerical and Experimental Comparison of the Control Techniques Quasi-Sliding, Sliding and PID, in a DC-DC Buck Converter. Sci. Tech. 2018, 23, 25–33. G. Venkataramanan and C. Marnay, A larger role for microgrids, IEEE Power Energy Mag., vol. 6, no. 3, pp. 78–82, May 2008. doi: 10.1109/MPE.2008.918720. Y. Xu, C.-C. Liu, K. P. Schneider, F. K. Tuffner, and D. T. Ton, Microgrids for Service Restoration to Critical Load in a Resilient Distribution System, IEEE Trans. Smart Grid, vol. 9, no. 1, pp. 426–437, Jan. 2018. doi: 10.1109/TSG.2016.2591531. S. K. Sahoo, A. K. Sinha, and N. K. Kishore, Control Techniques in AC, DC, and Hybrid AC–DC Microgrid: A Review, IEEE J. Emerg. Sel. Top. Power Electron., vol. 6, no. 2, pp. 738–759, Jun. 2018. doi: 10.1109/JESTPE.2017.2786588. I. Gadoura, V. Grigore, J. Hatonen, J. Kyyra, P. Vallittu, and T. Suntio, Stabilizing a telecom power supply feeding a constant power load, in INTELEC - Twentieth International Telecommunications Energy Conference (Cat. No.98CH36263), pp. 243–248. doi: 10.1109/INTLEC.1998.793506. R. W. Erickson, D. Maksimović, R. W. Erickson, and D. Maksimović, Converter Circuits, in Fundamentals of Power Electronics, Springer US, 2001, pp. 131–184. Q. Xu, C. Zhang, C. Wen, and P. Wang, A Novel Composite Nonlinear Controller for Stabilization of Constant Power Load in DC Microgrid, IEEE Trans. Smart Grid, vol. 10, no. 1, pp. 752– 761, Jan. 2019. doi: 10.1109/TSG.2017.2751755. M. WU and D. D.-C. LU, Active stabilization methods of electric power systems with constant power loads: a review, J. Mod. Power Syst. Clean Energy, vol. 2, no. 3, pp. 233–243, Sep. 2014. doi: 10.1007/s40565-014-0066-y. S. Pang et al., Interconnection and Damping Assignment Passivity-Based Control Applied to On-Board DC–DC Power Converter System Supplying Constant Power Load, IEEE Trans. Ind. Appl., vol. 55, no. 6, pp. 6476–6485, Nov. 2019. doi: 10.1109/TIA.2019.2938149. P. Liutanakul, A.-B. Awan, S. Pierfederici, B. Nahid-Mobarakeh, and F. Meibody-Tabar, Linear Stabilization of a DC Bus Supplying a Constant Power Load: A General Design Approach, IEEE Trans. Power Electron., vol. 25, no. 2, pp. 475–488, Feb. 2010. doi: 10.1109/TPEL.2009.2025274. M. Su, Z. Liu, Y. Sun, H. Han, and X. Hou, Stability analysis and stabilization methods of DC microgrid with multiple parallel- connected DC-DC converters loaded by CPLs, IEEE Trans. Smart Grid, vol. 9, no. 1, pp. 132–142, Jan. 2016. doi: 10.1109/TSG.2016.2546551. R. S. Balog, W. W. Weaver, and P. T. Krein, The Load as an Energy Asset in a Distributed DC SmartGrid Architecture, IEEE Trans. Smart Grid, vol. 3, no. 1, pp. 253–260, Mar. 2012. doi: 10.1109/TSG.2011.2167722. A. Kwasinski and C. N. Onwuchekwa, Dynamic Behavior and Stabilization of DC Microgrids With Instantaneous Constant- Power Loads, IEEE Trans. Power Electron., vol. 26, no. 3, pp. 822–834, Mar. 2011. doi: 10.1109/TPEL.2010.2091285. S. Singh and D. Fulwani, Constant power loads: A solution using sliding mode control, in IECON Proceedings (Industrial Electronics Conference), 2014, pp. 1989–1995. doi: 10.1109/IECON.2014.7048775. V. Stramosk and D. J. Pagano, Nonlinear control of a bidirectional dc-dc converter operating with boost-type Constant- Power Loads, in 2013 Brazilian Power Electronics Conference, COBEP 2013 - Proceedings, 2013, pp. 305–310. doi: 10.1109/COBEP.2013.6785132. U. K. Kalla, B. Singh, S. S. Murthy, C. Jain, and K. Kant, Adaptive Sliding Mode Control of Standalone Single-Phase Microgrid Using Hydro, Wind, and Solar PV Array-Based Generation, IEEE Trans. Smart Grid, vol. 9, no. 6, pp. 6806– 6814, Nov. 2018. doi: 10.1109/TSG.2017.2723845. W. Qi, S. Li, S.-C. Tan, and S. Y. R. Hui, Parabolic-Modulated Sliding-Mode Voltage Control of a Buck Converter, IEEE Trans. Ind. Electron., vol. 65, no. 1, pp. 844–854, Jan. 2018. doi: 10.1109/TIE.2017.2716859. B. A. Martinez-Treviño, A. El Aroudi, E. Vidal-Idiarte, A. Cid- Pastor, and L. Martinez-Salamero, Sliding-mode control of a boost converter under constant power loading conditions, IET Power Electron., vol. 12, no. 3, pp. 521–529, Mar. 2019. doi: 10.1049/iet-pel.2018.5098. Y. M. Alsmadi et al., Sliding mode control of photovoltaic based power generation systems for microgrid applications, Int. J. Control, pp. 1–12, Jan. 2020. doi: 10.1080/00207179.2019.1664762. C. A. Ramos-Paja, J. D. Bastidas-Rodríguez, D. González, S. Acevedo, and J. Peláez-Restrepo, Design and control of a buck- boost charger-discharger for DC-bus regulation in microgrids, Energies, vol. 10, no. 11, 2017. doi: 10.3390/en10111847. M. Monsalve-Rueda, J. E. Candelo-Becerra, and F. E. Hoyos, Dynamic Behavior of a Sliding-Mode Control Based on a Washout Filter with Constant Impedance and Nonlinear Constant Power Loads, Appl. Sci., vol. 9, no. 21, p. 4548, Oct. 2019. doi: 10.3390/app9214548. E. Ponce and D. J. Pagano, Sliding Dynamics Bifurcations in the Control of Boost Converters, IFAC Proc. Vol., vol. 44, no. 1, pp. 13293–13298, Jan. 2011. doi: 10.3182/20110828-6-IT-1002.02603. Khongkhachat, S., Khomfoi, S., A Sliding Mode Control Strategy for a Grid-Supporting and Grid-Forming Power Converter in Autonomous AC Microgrids, (2019) International Review of Electrical Engineering (IREE), 14 (2), pp. 118-132. doi: https://doi.org/10.15866/iree.v14i2.16331. Ouadi, H., Et-taoussi, M., Bouhlal, A., Nonlinear Control of Multilevel Inverter for Grid Connected Photovoltaic System with Power Quality Improvement, (2017) International Review of Electrical Engineering (IREE), 12 (1), pp. 43-59. doi: https://doi.org/10.15866/iree.v12i1.10685. Di Noia, L., Del Pizzo, A., Meo, S., Reduced-Order Averaged Model and Non-Linear Control of a Dual Active Bridge DC-DC Converter for Aerospace Applications, (2017) International Review of Aerospace Engineering (IREASE), 10 (5), pp. 259-266. doi: https://doi.org/10.15866/irease.v10i5.13818. Rached, B., Elharoussi, M., Abdelmounim, E., DSP in the Loop Implementation of Sliding Mode and Super Twisting Sliding Mode Controllers Combined with an Extended Kalman Observer for Wind Energy System Involving a DFIG, (2020) International Journal on Energy Conversion (IRECON), 8 (1), pp. 26-37. doi: https://doi.org/10.15866/irecon.v8i1.18432. Merabet, L., Chaker, A., Kouzou, A., Boulouiha, H., Elaguab, M., Investigation on the Control of DFIG Used in Power Generation Based on Sliding Mode Control and SV-PWM, (2019) International Journal on Energy Conversion (IRECON), 7 (4), pp. 148-161. doi: https://doi.org/10.15866/irecon.v7i4.17844. Tesfahunegn, S., Hajizadeh, A., Undeland, T., Ulleberg, O., Vie, P., Modelling and Control of Grid-Connected PV/Fuel Cell/Battery Hybrid Power System, (2018) International Journal on Energy Conversion (IRECON), 6 (5), pp. 168-177. doi: https://doi.org/10.15866/irecon.v6i5.16652. Gursoy, M.; Zhuo, G.; Lozowski, A.G.; Wang, X. Photovoltaic Energy Conversion Systems with Sliding Mode Control. Energies 330 2021, 14, 6071. Ding, S.; Zheng, W.X.; Sun, J.; Wang, J. Second-Order Sliding-Mode Controller Design and Its Implementation for Buck Converters. IEEE Trans. Ind. Inf. 2018, 14, 1990–2000. RakhtAla, S.M.; Yasoubi, M.; HosseinNia, H. Design of second order sliding mode and sliding mode algorithms: a practical insight to DC-DC buck converter. IEEE/CAA J. Autom. Sin. 2017, 4, 483–497. Cucuzzella, M.; Incremona, G.P.; Ferrara, A. Design of Robust Higher Order Sliding Mode Control for Microgrids. IEEE Journal on Emerging and Selected Topics in Circuits and Systems 2015, 5, 393–401. Le Nhu Ngoc Thanh, H.; Hong, S.K. Quadcopter Robust Adaptive Second Order Sliding Mode Control Based on PID Sliding Surface. IEEE Access 2018, 6, 66850–66860. Rakhtala, S.M.; Casavola, A. Real-Time Voltage Control Based on a Cascaded Super Twisting Algorithm Structure for DC–DC Converters. IEEE Trans. Ind. Electron. 2022, 69, 633–641. Du, W.; Zhang, J.; Zhang, Y.; Qian, Z. Stability Criterion for Cascaded System With Constant Power Load. IEEE Trans. Power Electron. 2013, 28, 1843–1851. Songbin, L.; Zhiyuan, F.; Yang, G.; Hai, K.L.; Peng, W. Second-order sliding-mode control of synchronous buck converter based on sub-optimal algorithm. In Proceedings of the 2017 Asian Conference on Energy, Power and Transportation Electrification (ACEPT), 2017, pp. 1–6. Kaplan, O.; Bodur, F. Second-order sliding mode controller design of buck converter with constant power load. Int. J. Control 2023, 96, 1210–1226. Cucuzzella, M.; Lazzari, R.; Trip, S.; Sandroni, C.; Ferrara, A. Robust voltage regulation of boost converters in DC microgrids. In Proceedings of the 2018 European Control Conference (ECC), 2018, pp. 2350–2355. Incremona, G.P.; Cucuzzella, M.; Ferrara, A. Adaptive suboptimal second-order sliding mode control for microgrids. Int. J. Control 2016, 89, 1849–1867. Han, Y.; Ma, R.; Cui, J. Adaptive Higher-Order Sliding Mode Control for Islanding and Grid-Connected Operation of a Microgrid. Energies 2018, 11, 1459. Wu, J.; Yang, L.; Lu, Z.; Wang, Q. Robust adaptive composite control of DC–DC boost converter with constant power load in DC microgrid. Energy Reports 2023, 9, 855–865. Selected papers from 2022 International Conference on Frontiers of Energy and Environment Engineering, https://doi.org/https://doi.org/10.1016/j.egyr.2023.04.199. Yi, S.; Zhai, J. Adaptive second-order fast nonsingular terminal sliding mode control for robotic manipulators. ISA Transactions 2019, 90, 41–51. https://doi.org/https://doi.org/10.1016/j.isatra.2018.12.046. Chen, S.Y.; Chiang, H.H.; Liu, T.S.; Chang, C.H. Precision Motion Control of Permanent Magnet Linear Synchronous Motors Using Adaptive Fuzzy Fractional-Order Sliding-Mode Control. IEEE/ASME Transactions on Mechatronics 2019, 24, 741–752. https://doi.org/10.1109/TMECH.2019.2892401. Khooban, M.H.; Gheisarnejad, M.; Farsizadeh, H.; Masoudian, A.; Boudjadar, J. A New Intelligent Hybrid Control Approach for DC–DC Converters in Zero-Emission Ferry Ships. IEEE Transactions on Power Electronics 2020, 35, 5832–5841. https: //doi.org/10.1109/TPEL.2019.2951183. Levaggi, L. Sliding modes in Banach spaces. Differential and Integral Equations 2002, 15, 167 – 189. https://doi.org/10.57262/die/ 1356060871. Triggiani, R. On the stabilizability problem in Banach space. Journal of Mathematical Analysis and Applications 1975, 52, 383–403. https://doi.org/https://doi.org/10.1016/0022-247X(75)90067-0. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
102 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Medellín - Minas - Doctorado en Ingeniería - Sistemas Energéticos |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Minas |
dc.publisher.place.spa.fl_str_mv |
Medellín, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/84899/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/84899/2/13870453-2023.pdf https://repositorio.unal.edu.co/bitstream/unal/84899/3/13870453-2023.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a 0c2f9b7accff528c38380b6a9c7ab665 daac098852bd14eab47a21611d3eabca |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089844098334720 |
spelling |
Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Hoyos Velasco, Fredy Edimer2bd54df5944804cfb25acc31d0e260c0Candelo Becerra, John Edwinfd4d5bf051edb598a68e51ecc9561bc5Monsalve Rueda, Miguel Eduardo1036280e2c953736ad4c630d88b2b8c8Grupo de Control y Procesamiento Digital de SeñalesMonsalve Rueda, Miguel Eduardo [0000-0003-2401-8822]Candelo Becerra, John Edwin [0000-0002-9784-9494]2023-11-07T19:02:48Z2023-11-07T19:02:48Z2023-11-01https://repositorio.unal.edu.co/handle/unal/84899Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasMicrogrids are designed to connect different types of ac and dc loads, which require robust power controllers to achieve efficient energy transfer. However, the effects of AC and DC disturbances on a single type of controller make achieving such stability in a microgrid a design challenge. Additionally, in multistage systems and loads where disturbances affect both upstream and downstream of the microgrid, these controllers demand greater robustness. This thesis presents an analysis of a sliding mode control (SMC) applied to a multistage microgrid with direct current (DC) and alternating current (AC) power converters. The goal was to implement sliding mode controllers for converters that supply constant power loads DC-DC and DC-AC. The controller was tested considering a unique sliding surface facing external disturbances, such as variations in the frequency of AC converters, sudden changes in upstream voltages, and constant power loads (CPL). Initially, the simple first-order controller was analyzed, then with a washout filter, and subsequently experimentally validated. Next, a second-order controller was analyzed. The influence on the response and stability of the gain values (k) of the controller's sliding surface was also studied. The results show that the controller is robust in terms of sensitivity to external disturbances and steady-state error. However, it was observed that there are limiting values for the sliding surface constant 'k,' where if 'k' is too low, deceleration occurs, and the response to disturbances is critical, and if it is too high, undesired overshoot occurs in the output voltage. This way, it was observed that it is possible to find a single controller that offers some robustness to typical disturbances in a microgrid with commercial voltages.Las microrredes están diseñadas para conectar diferentes tipos de cargas de CA y CC que requieren controladores de potencia robustos para lograr una transferencia de energía eficiente. Sin embargo, los efectos de las perturbaciones de CA y CC en un único tipo de controlador hacen que lograr dicha estabilidad en una microred sea un desafío de diseño. Adicionalmente, en sistemas de múltiples etapas y cargas donde las perturbaciones afectan tanto aguas arriba como aguas abajo de la microred estos controladores exigen mayor robustez. Esta tesis presenta un análisis de un control de modo deslizante (SMC) aplicado a una microrred de múltiples etapas con convertidores de potencia de corriente continua (DC) y corriente alterna (AC). El objetivo fue implementar controladores de modo deslizante a convertidores que alimentan cargas de potencia constantes CC-CC y CC-CA. El controlador fue probado considerando una superficie deslizante única que enfrenta perturbaciones externas, como variaciones en la frecuencia de los convertidores de CA, cambios repentinos en los voltajes aguas arriba y cargas de potencia constante (CPL). Inicialmente se analizó el controlador de primer orden sencillo, luego con filtro washout y posteriormente se validó experimentalmente. Luego se analizó un controlador de segundo orden. También se analizó la influencia en la respuesta y estabilidad de los valores de ganancia (k) de la superficie de deslizamiento del controlador. Los resultados muestran que el controlador es robusto en cuanto a sensibilidad a perturbaciones externas y error de estado estacionario. Sin embargo, se observó que existen valores de constantes de superficie de deslizamiento “k” límites donde si "k" es demasiado bajo se presenta una desaceleración y la respuesta ante perturbaciones es crítica, y si es demasiado alto vi se presenta un sobrepaso indeseado en el voltaje de salida. De esta manera se observó que es posible encontrar un único controlador que ofreciera cierta robustez a las perturbaciones típicas de una microrred con voltajes comerciales. (Texto tomado de la fuente)Recursos del proyecto provenientes de la beca de doctorados nacionales 727 de Minciencias.DoctoradoDoctor en IngenieríaRedes Inteligentes - SmartgridsÁrea curricular de Ingeniería Química e Ingeniería de Petróleos102 páginasapplication/pdfengUniversidad Nacional de ColombiaMedellín - Minas - Doctorado en Ingeniería - Sistemas EnergéticosFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulicaRedes eléctricasElectric networksAnálisis de redes eléctricasElectric network analysisSliding mode controlMicrogridHigher order controlBuck converterConstant power loadControl deslizanteMicroredConvertidor BuckControl de alto ordenCargas de potencia constanteDesign and analysis of a multi-stage control for power multi-converters in a DC microgridDiseño y análisis de un control multietapa para multiconvertidores de potencia en una microrred DCTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDRedColLaReferenciaCabana-Jiménez, K.; Candelo-Becerra, J.E.; Sousa Santos, V.; Santos, V.S. Comprehensive Analysis of Microgrids Configurations and Topologies. Sustainability 2022, 14, 1056, doi:10.3390/su14031056.Tahim, A.P.N.; Pagano, D.J.; Heldwein, M.L.; Ponce, E. Control of Interconnected Power Electronic Converters in Dc Distribution Systems. COBEP 2011 - 11th Brazilian Power Electronics Conference 2011, 269–274, doi:10.1109/COBEP.2011.6085269.Grigore, V.; Hatonen, J.; Kyyra, J.; Suntio, T. Dynamics of a Buck Converter with a Constant Power Load. PESC Record - IEEE Annual Power Electronics Specialists Conference 1998, 1, 72–78, doi:10.1109/PESC.1998.701881.Hossain, E.; Perez, R.; Nasiri, A.; Padmanaban, S. A Comprehensive Review on Constant Power Loads Compensation Techniques. IEEE Access 2018, 6, 33285–33305, doi:10.1109/ACCESS.2018.2849065.Dong, Y.; Liu, W.; Gao, Z.; Zhang, X. New Simulation Model of Ac Constant Power Load. Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica 2009, 30, 115–120, doi:10.1109/TENCON.2008.4766537.Pagano, D.J.; Ponce, E. On the Robustness of the DC-DC Boost Converter under Washout SMC. 2009 Brazilian Power Electronics Conference, COBEP2009 2009, 110–115, doi:10.1109/COBEP.2009.5347639.Yue, Z.; Wei, Q. A Third-Order Sliding-Mode Controller for DC/DC Converters with Constant Power Loads. Conference Record - IAS Annual Meeting (IEEE Industry Applications Society) 2011, 1–8, doi:10.1109/IAS.2011.6074347.Bandyopadhyay, B.; Deepak, F.; Kim, K.S. Sliding Mode Control Using Novel Sliding Surfaces; 2009; Vol. 392; ISBN 9783642034473.Rivetta, C.H.; Emadi, A.; Williamson, G.A.; Jayabalan, R.; Fahimi, B. Analysis and Control of a Buck DC-DC Converter Operating with Constant Power Load in Sea and Undersea Vehicles. IEEE Trans Ind Appl 2006, 42, 559–572, doi:10.1109/TIA.2005.863903.Kakigano, H.; Nishino, A.; Miura, Y.; Ise, T. Distribution Voltage Control for DC Microgrid by Converters of Energy Storages Considering the Stored Energy. 2010 IEEE Energy Conversion Congress and Exposition, ECCE 2010 - Proceedings 2010, 2851–2856, doi:10.1109/ECCE.2010.5618178.Utkin, V. Variable Structure Systems with Sliding Modes. IEEE Trans Automat Contr 1977, AC-22, 212–222.Shtessel, Y.; Edwards, C.; Fridman, L. Sliding Mode Control and Observation, Series: Control Engineering; Birkhauser, 2016; Vol. 10; ISBN 978-0-81764-8923.Venkataramanan, G.; Marnay, C. A larger role for microgrids. IEEE Power Energy Mag. 2008, 6, 78–82.Badal, F.R.; Das, P.; Sarker, S.K.; Das, S.K. A survey on control issues in renewable energy integration and microgrid. Prot. Control Mod. Power Syst. 2019, 4, 8.García Vera, Y.E.; Dufo-López, R.; Bernal-Agustín, J.L. Energy Management in Microgrids with Renewable Energy Sources: A Literature Review. Appl. Sci. 2019, 9, 3854.Bouzid, A.M.; Guerrero, J.M.; Cheriti, A.; Bouhamida, M.; Sicard, P.; Benghanem, M. A survey on control of electric power distributed generation systems for microgrid applications. Renew. Sustain. Energy Rev. 2015, 44, 751–766.Rocabert, J.; Luna, A.; Blaabjerg, F.; Rodríguez, P. Control of Power Converters in AC Microgrids. IEEE Trans. Power Electron. 2012, 27, 4734–4749.Dragicevic, T.; Lu, X.; Vasquez, J.C.; Guerrero, J.M. DC Microgrids—Part II: A Review of Power Architectures, Applications, and Standardization Issues. IEEE Trans. Power Electron. 2016, 31, 3528–3549.Dragicevic, T.; Lu, X.; Vasquez, J.C.; Guerrero, J.M. DC Microgrids–Part I: A Review of Control Strategies and Stabilization Techniques. IEEE Trans. Power Electron. 2015, 31, 4876–4891.Zinober, A.S.I. An introduction to sliding mode variable structure control. In Variable Structure and Lyapunov Control; Springer: London, UK, 1994; pp. 1–22.Tahim, A.P.N.; Pagano, D.J.; Ponce, E. Nonlinear control of dc-dc bidirectional converters in stand-alone dc Microgrids. In Proceedings of the 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), Maui, HI, USA, 10–13 December 2012; pp. 3068–3073.Kwasinski, A.; Onwuchekwa, C.N. Dynamic Behavior and Stabilization of DC Microgrids With Instantaneous Constant-Power Loads. IEEE Trans. Power Electron. 2011, 26, 822–834.Zhao, Y.; Qiao, W.; Ha, D. A sliding-mode duty-ratio controller for DC/DC buck converters with constant power loads. IEEE Trans. Ind. Appl. 2014, 50, 1448–1458.Grigore, V.; Hatonen, J.; Kyyra, J.; Suntio, T. Dynamics of a buck converter with a constant power load. In Proceedings of the PESC 98 Record. 29th Annual IEEE Power Electronics Specialists Conference, Fukuoka, Japan, 22–22 May 1998; Volume 1, pp. 72–78.Hossain, E.; Perez, R.; Nasiri, A.; Padmanaban, S. A Comprehensive Review on Constant Power Loads Compensation Techniques. IEEE Access 2018, 6, 33285–33305.AL-Nussairi, M.K.; Bayindir, R.; Padmanaban, S.; Mihet-Popa, L.; Siano, P. Constant power loads (CPL) with Microgrids: Problem definition, stability analysis and compensation techniques. Energies 2017, 10, 1656.Hoyos, F.E.; Candelo-Becerra, J.E.; Toro, N. Numerical and experimental validation with bifurcation diagrams for a controlled DC–DC converter with quasi-sliding control. TecnoLógicas 2018, 21, 147–167.Hoyos, F.; Candelo, J.; Silva, J. Performance evaluation of a DC-AC inverter controlled with ZAD-FPIC. INGE CUC 2018, 14, 9–18.Ponce, E.; Pagano, D.J. Sliding Dynamics Bifurcations in the Control of Boost Converters*. IFAC Proc. Vol. 2011, 44, 13293–13298.Hoyos, F.E.; Burbano, D.; Angulo, F.; Olivar, G.; Toro, N.; Taborda, J.A. Effects of Quantization, Delay and Internal Resistances in Digitally ZAD-Controlled Buck Converter. Int. J. Bifurc. Chaos 2012, 22, 1250245.Fossas, E.; Griñó, R.; Biel, D. Quasi-Sliding control based on pulse width modulation, zero averaged dynamics and the L2 norm. In Proceedings of the Advances in Variable Structure Systems-6th IEEE International Workshop on Variable Structure Systems, Gold Coast, Australia, 7–9 December 2000; pp. 335–344.Ashita, S.; Uma, G.; Deivasundari, P. Chaotic dynamics of a zero average dynamics controlled DC–DC Ćuk converter. IET Power Electron. 2014, 7, 289–298.Hoyos, F.E.; Candelo-Becerra, J.E.; Hoyos Velasco, C.I. Model-Based Quasi-Sliding Mode Control with Loss Estimation Applied to DC–DC Power Converters. Electronics 2019, 8, 1086.Hoyos, F.E.; Toro, N.; Garcés-Gómez, Y. Numerical and Experimental Comparison of the Control Techniques Quasi-Sliding, Sliding and PID, in a DC-DC Buck Converter. Sci. Tech. 2018, 23, 25–33.G. Venkataramanan and C. Marnay, A larger role for microgrids, IEEE Power Energy Mag., vol. 6, no. 3, pp. 78–82, May 2008. doi: 10.1109/MPE.2008.918720.Y. Xu, C.-C. Liu, K. P. Schneider, F. K. Tuffner, and D. T. Ton, Microgrids for Service Restoration to Critical Load in a Resilient Distribution System, IEEE Trans. Smart Grid, vol. 9, no. 1, pp. 426–437, Jan. 2018. doi: 10.1109/TSG.2016.2591531.S. K. Sahoo, A. K. Sinha, and N. K. Kishore, Control Techniques in AC, DC, and Hybrid AC–DC Microgrid: A Review, IEEE J. Emerg. Sel. Top. Power Electron., vol. 6, no. 2, pp. 738–759, Jun. 2018. doi: 10.1109/JESTPE.2017.2786588.I. Gadoura, V. Grigore, J. Hatonen, J. Kyyra, P. Vallittu, and T. Suntio, Stabilizing a telecom power supply feeding a constant power load, in INTELEC - Twentieth International Telecommunications Energy Conference (Cat. No.98CH36263), pp. 243–248. doi: 10.1109/INTLEC.1998.793506.R. W. Erickson, D. Maksimović, R. W. Erickson, and D. Maksimović, Converter Circuits, in Fundamentals of Power Electronics, Springer US, 2001, pp. 131–184.Q. Xu, C. Zhang, C. Wen, and P. Wang, A Novel Composite Nonlinear Controller for Stabilization of Constant Power Load in DC Microgrid, IEEE Trans. Smart Grid, vol. 10, no. 1, pp. 752– 761, Jan. 2019. doi: 10.1109/TSG.2017.2751755.M. WU and D. D.-C. LU, Active stabilization methods of electric power systems with constant power loads: a review, J. Mod. Power Syst. Clean Energy, vol. 2, no. 3, pp. 233–243, Sep. 2014. doi: 10.1007/s40565-014-0066-y.S. Pang et al., Interconnection and Damping Assignment Passivity-Based Control Applied to On-Board DC–DC Power Converter System Supplying Constant Power Load, IEEE Trans. Ind. Appl., vol. 55, no. 6, pp. 6476–6485, Nov. 2019. doi: 10.1109/TIA.2019.2938149.P. Liutanakul, A.-B. Awan, S. Pierfederici, B. Nahid-Mobarakeh, and F. Meibody-Tabar, Linear Stabilization of a DC Bus Supplying a Constant Power Load: A General Design Approach, IEEE Trans. Power Electron., vol. 25, no. 2, pp. 475–488, Feb. 2010. doi: 10.1109/TPEL.2009.2025274.M. Su, Z. Liu, Y. Sun, H. Han, and X. Hou, Stability analysis and stabilization methods of DC microgrid with multiple parallel- connected DC-DC converters loaded by CPLs, IEEE Trans. Smart Grid, vol. 9, no. 1, pp. 132–142, Jan. 2016. doi: 10.1109/TSG.2016.2546551.R. S. Balog, W. W. Weaver, and P. T. Krein, The Load as an Energy Asset in a Distributed DC SmartGrid Architecture, IEEE Trans. Smart Grid, vol. 3, no. 1, pp. 253–260, Mar. 2012. doi: 10.1109/TSG.2011.2167722.A. Kwasinski and C. N. Onwuchekwa, Dynamic Behavior and Stabilization of DC Microgrids With Instantaneous Constant- Power Loads, IEEE Trans. Power Electron., vol. 26, no. 3, pp. 822–834, Mar. 2011. doi: 10.1109/TPEL.2010.2091285.S. Singh and D. Fulwani, Constant power loads: A solution using sliding mode control, in IECON Proceedings (Industrial Electronics Conference), 2014, pp. 1989–1995. doi: 10.1109/IECON.2014.7048775.V. Stramosk and D. J. Pagano, Nonlinear control of a bidirectional dc-dc converter operating with boost-type Constant- Power Loads, in 2013 Brazilian Power Electronics Conference, COBEP 2013 - Proceedings, 2013, pp. 305–310. doi: 10.1109/COBEP.2013.6785132.U. K. Kalla, B. Singh, S. S. Murthy, C. Jain, and K. Kant, Adaptive Sliding Mode Control of Standalone Single-Phase Microgrid Using Hydro, Wind, and Solar PV Array-Based Generation, IEEE Trans. Smart Grid, vol. 9, no. 6, pp. 6806– 6814, Nov. 2018. doi: 10.1109/TSG.2017.2723845.W. Qi, S. Li, S.-C. Tan, and S. Y. R. Hui, Parabolic-Modulated Sliding-Mode Voltage Control of a Buck Converter, IEEE Trans. Ind. Electron., vol. 65, no. 1, pp. 844–854, Jan. 2018. doi: 10.1109/TIE.2017.2716859.B. A. Martinez-Treviño, A. El Aroudi, E. Vidal-Idiarte, A. Cid- Pastor, and L. Martinez-Salamero, Sliding-mode control of a boost converter under constant power loading conditions, IET Power Electron., vol. 12, no. 3, pp. 521–529, Mar. 2019. doi: 10.1049/iet-pel.2018.5098.Y. M. Alsmadi et al., Sliding mode control of photovoltaic based power generation systems for microgrid applications, Int. J. Control, pp. 1–12, Jan. 2020. doi: 10.1080/00207179.2019.1664762.C. A. Ramos-Paja, J. D. Bastidas-Rodríguez, D. González, S. Acevedo, and J. Peláez-Restrepo, Design and control of a buck- boost charger-discharger for DC-bus regulation in microgrids, Energies, vol. 10, no. 11, 2017. doi: 10.3390/en10111847.M. Monsalve-Rueda, J. E. Candelo-Becerra, and F. E. Hoyos, Dynamic Behavior of a Sliding-Mode Control Based on a Washout Filter with Constant Impedance and Nonlinear Constant Power Loads, Appl. Sci., vol. 9, no. 21, p. 4548, Oct. 2019. doi: 10.3390/app9214548.E. Ponce and D. J. Pagano, Sliding Dynamics Bifurcations in the Control of Boost Converters, IFAC Proc. Vol., vol. 44, no. 1, pp. 13293–13298, Jan. 2011. doi: 10.3182/20110828-6-IT-1002.02603.Khongkhachat, S., Khomfoi, S., A Sliding Mode Control Strategy for a Grid-Supporting and Grid-Forming Power Converter in Autonomous AC Microgrids, (2019) International Review of Electrical Engineering (IREE), 14 (2), pp. 118-132. doi: https://doi.org/10.15866/iree.v14i2.16331.Ouadi, H., Et-taoussi, M., Bouhlal, A., Nonlinear Control of Multilevel Inverter for Grid Connected Photovoltaic System with Power Quality Improvement, (2017) International Review of Electrical Engineering (IREE), 12 (1), pp. 43-59. doi: https://doi.org/10.15866/iree.v12i1.10685.Di Noia, L., Del Pizzo, A., Meo, S., Reduced-Order Averaged Model and Non-Linear Control of a Dual Active Bridge DC-DC Converter for Aerospace Applications, (2017) International Review of Aerospace Engineering (IREASE), 10 (5), pp. 259-266. doi: https://doi.org/10.15866/irease.v10i5.13818.Rached, B., Elharoussi, M., Abdelmounim, E., DSP in the Loop Implementation of Sliding Mode and Super Twisting Sliding Mode Controllers Combined with an Extended Kalman Observer for Wind Energy System Involving a DFIG, (2020) International Journal on Energy Conversion (IRECON), 8 (1), pp. 26-37. doi: https://doi.org/10.15866/irecon.v8i1.18432.Merabet, L., Chaker, A., Kouzou, A., Boulouiha, H., Elaguab, M., Investigation on the Control of DFIG Used in Power Generation Based on Sliding Mode Control and SV-PWM, (2019) International Journal on Energy Conversion (IRECON), 7 (4), pp. 148-161. doi: https://doi.org/10.15866/irecon.v7i4.17844.Tesfahunegn, S., Hajizadeh, A., Undeland, T., Ulleberg, O., Vie, P., Modelling and Control of Grid-Connected PV/Fuel Cell/Battery Hybrid Power System, (2018) International Journal on Energy Conversion (IRECON), 6 (5), pp. 168-177. doi: https://doi.org/10.15866/irecon.v6i5.16652.Gursoy, M.; Zhuo, G.; Lozowski, A.G.; Wang, X. Photovoltaic Energy Conversion Systems with Sliding Mode Control. Energies 330 2021, 14, 6071.Ding, S.; Zheng, W.X.; Sun, J.; Wang, J. Second-Order Sliding-Mode Controller Design and Its Implementation for Buck Converters. IEEE Trans. Ind. Inf. 2018, 14, 1990–2000.RakhtAla, S.M.; Yasoubi, M.; HosseinNia, H. Design of second order sliding mode and sliding mode algorithms: a practical insight to DC-DC buck converter. IEEE/CAA J. Autom. Sin. 2017, 4, 483–497.Cucuzzella, M.; Incremona, G.P.; Ferrara, A. Design of Robust Higher Order Sliding Mode Control for Microgrids. IEEE Journal on Emerging and Selected Topics in Circuits and Systems 2015, 5, 393–401.Le Nhu Ngoc Thanh, H.; Hong, S.K. Quadcopter Robust Adaptive Second Order Sliding Mode Control Based on PID Sliding Surface. IEEE Access 2018, 6, 66850–66860.Rakhtala, S.M.; Casavola, A. Real-Time Voltage Control Based on a Cascaded Super Twisting Algorithm Structure for DC–DC Converters. IEEE Trans. Ind. Electron. 2022, 69, 633–641.Du, W.; Zhang, J.; Zhang, Y.; Qian, Z. Stability Criterion for Cascaded System With Constant Power Load. IEEE Trans. Power Electron. 2013, 28, 1843–1851.Songbin, L.; Zhiyuan, F.; Yang, G.; Hai, K.L.; Peng, W. Second-order sliding-mode control of synchronous buck converter based on sub-optimal algorithm. In Proceedings of the 2017 Asian Conference on Energy, Power and Transportation Electrification (ACEPT), 2017, pp. 1–6.Kaplan, O.; Bodur, F. Second-order sliding mode controller design of buck converter with constant power load. Int. J. Control 2023, 96, 1210–1226.Cucuzzella, M.; Lazzari, R.; Trip, S.; Sandroni, C.; Ferrara, A. Robust voltage regulation of boost converters in DC microgrids. In Proceedings of the 2018 European Control Conference (ECC), 2018, pp. 2350–2355.Incremona, G.P.; Cucuzzella, M.; Ferrara, A. Adaptive suboptimal second-order sliding mode control for microgrids. Int. J. Control 2016, 89, 1849–1867.Han, Y.; Ma, R.; Cui, J. Adaptive Higher-Order Sliding Mode Control for Islanding and Grid-Connected Operation of a Microgrid. Energies 2018, 11, 1459.Wu, J.; Yang, L.; Lu, Z.; Wang, Q. Robust adaptive composite control of DC–DC boost converter with constant power load in DC microgrid. Energy Reports 2023, 9, 855–865. Selected papers from 2022 International Conference on Frontiers of Energy and Environment Engineering, https://doi.org/https://doi.org/10.1016/j.egyr.2023.04.199.Yi, S.; Zhai, J. Adaptive second-order fast nonsingular terminal sliding mode control for robotic manipulators. ISA Transactions 2019, 90, 41–51. https://doi.org/https://doi.org/10.1016/j.isatra.2018.12.046.Chen, S.Y.; Chiang, H.H.; Liu, T.S.; Chang, C.H. Precision Motion Control of Permanent Magnet Linear Synchronous Motors Using Adaptive Fuzzy Fractional-Order Sliding-Mode Control. IEEE/ASME Transactions on Mechatronics 2019, 24, 741–752. https://doi.org/10.1109/TMECH.2019.2892401.Khooban, M.H.; Gheisarnejad, M.; Farsizadeh, H.; Masoudian, A.; Boudjadar, J. A New Intelligent Hybrid Control Approach for DC–DC Converters in Zero-Emission Ferry Ships. IEEE Transactions on Power Electronics 2020, 35, 5832–5841. https: //doi.org/10.1109/TPEL.2019.2951183.Levaggi, L. Sliding modes in Banach spaces. Differential and Integral Equations 2002, 15, 167 – 189. https://doi.org/10.57262/die/ 1356060871.Triggiani, R. On the stabilizability problem in Banach space. Journal of Mathematical Analysis and Applications 1975, 52, 383–403. https://doi.org/https://doi.org/10.1016/0022-247X(75)90067-0.MincienciasInvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84899/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL13870453-2023.pdf13870453-2023.pdfTesis doctoralapplication/pdf4235558https://repositorio.unal.edu.co/bitstream/unal/84899/2/13870453-2023.pdf0c2f9b7accff528c38380b6a9c7ab665MD52THUMBNAIL13870453-2023.pdf.jpg13870453-2023.pdf.jpgGenerated Thumbnailimage/jpeg4482https://repositorio.unal.edu.co/bitstream/unal/84899/3/13870453-2023.pdf.jpgdaac098852bd14eab47a21611d3eabcaMD53unal/84899oai:repositorio.unal.edu.co:unal/848992023-11-07 23:06:00.196Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |