Degradación de contaminantes presentes en las aguas residuales de la industria petrolera usando un biorreactor anaerobio de flujo ascendente (UASB) a escala laboratorio
ilustraciones, fotografías a color
- Autores:
-
Ramos Pachón, Lina Rocío
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/84148
- Palabra clave:
- 540 - Química y ciencias afines::547 - Química orgánica
540 - Química y ciencias afines::543 - Química analítica
620 - Ingeniería y operaciones afines::628 - Ingeniería sanitaria
Aguas residuales
Calidad del agua
Tratamiento del agua
Sewage
Water quality
Water treatment
Agua producida
Biorreactor UASB
Biodegradación anaerobia
Salinidad
Tolueno
Fenol
Produced water
UASB bioreactor
Anaerobic biodegradation
Salinity
Toluene
Phenol
- Rights
- openAccess
- License
- Atribución-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_688acf5519156335468622999bd85ed8 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/84148 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Degradación de contaminantes presentes en las aguas residuales de la industria petrolera usando un biorreactor anaerobio de flujo ascendente (UASB) a escala laboratorio |
dc.title.translated.eng.fl_str_mv |
Degradation of contaminants in oil industry wastewater using an Upflow Anaerobic Sludge Blanket Reactor (UASB) at laboratory scale |
title |
Degradación de contaminantes presentes en las aguas residuales de la industria petrolera usando un biorreactor anaerobio de flujo ascendente (UASB) a escala laboratorio |
spellingShingle |
Degradación de contaminantes presentes en las aguas residuales de la industria petrolera usando un biorreactor anaerobio de flujo ascendente (UASB) a escala laboratorio 540 - Química y ciencias afines::547 - Química orgánica 540 - Química y ciencias afines::543 - Química analítica 620 - Ingeniería y operaciones afines::628 - Ingeniería sanitaria Aguas residuales Calidad del agua Tratamiento del agua Sewage Water quality Water treatment Agua producida Biorreactor UASB Biodegradación anaerobia Salinidad Tolueno Fenol Produced water UASB bioreactor Anaerobic biodegradation Salinity Toluene Phenol |
title_short |
Degradación de contaminantes presentes en las aguas residuales de la industria petrolera usando un biorreactor anaerobio de flujo ascendente (UASB) a escala laboratorio |
title_full |
Degradación de contaminantes presentes en las aguas residuales de la industria petrolera usando un biorreactor anaerobio de flujo ascendente (UASB) a escala laboratorio |
title_fullStr |
Degradación de contaminantes presentes en las aguas residuales de la industria petrolera usando un biorreactor anaerobio de flujo ascendente (UASB) a escala laboratorio |
title_full_unstemmed |
Degradación de contaminantes presentes en las aguas residuales de la industria petrolera usando un biorreactor anaerobio de flujo ascendente (UASB) a escala laboratorio |
title_sort |
Degradación de contaminantes presentes en las aguas residuales de la industria petrolera usando un biorreactor anaerobio de flujo ascendente (UASB) a escala laboratorio |
dc.creator.fl_str_mv |
Ramos Pachón, Lina Rocío |
dc.contributor.advisor.none.fl_str_mv |
Ramírez Franco, José Herney Valderrama Rincón, Juan Daniel |
dc.contributor.author.none.fl_str_mv |
Ramos Pachón, Lina Rocío |
dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Investigación en Materiales, Catálisis y Medio Ambiente |
dc.contributor.cvlac.spa.fl_str_mv |
RAMOS PACHÓN , LINA ROCÍO |
dc.subject.ddc.spa.fl_str_mv |
540 - Química y ciencias afines::547 - Química orgánica 540 - Química y ciencias afines::543 - Química analítica 620 - Ingeniería y operaciones afines::628 - Ingeniería sanitaria |
topic |
540 - Química y ciencias afines::547 - Química orgánica 540 - Química y ciencias afines::543 - Química analítica 620 - Ingeniería y operaciones afines::628 - Ingeniería sanitaria Aguas residuales Calidad del agua Tratamiento del agua Sewage Water quality Water treatment Agua producida Biorreactor UASB Biodegradación anaerobia Salinidad Tolueno Fenol Produced water UASB bioreactor Anaerobic biodegradation Salinity Toluene Phenol |
dc.subject.lemb.spa.fl_str_mv |
Aguas residuales Calidad del agua Tratamiento del agua |
dc.subject.lemb.eng.fl_str_mv |
Sewage Water quality Water treatment |
dc.subject.proposal.spa.fl_str_mv |
Agua producida Biorreactor UASB Biodegradación anaerobia Salinidad Tolueno Fenol |
dc.subject.proposal.eng.fl_str_mv |
Produced water UASB bioreactor Anaerobic biodegradation Salinity Toluene Phenol |
description |
ilustraciones, fotografías a color |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-07-05T19:30:44Z |
dc.date.available.none.fl_str_mv |
2023-07-05T19:30:44Z |
dc.date.issued.none.fl_str_mv |
2023 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/84148 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/84148 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Abas, N., Kalair, A., & Khan, N. (2015). Review of fossil fuels and future energy technologies. Futures, 69(299), 31–49. https://doi.org/10.1016/j.futures.2015.03.003 Abbasi, T., & Abbasi, S. A. (2012). Formation and impact of granules in fostering clean energy production and wastewater treatment in upflow anaerobic sludge blanket (UASB) reactors. Renewable and Sustainable Energy Reviews, 16(3), 1696–1708. https://doi.org/10.1016/j.rser.2011.11.017 Achimugu, P., Selamat, A., Ibrahim, R., & Mahrin, M. N. (2014). A systematic literature review of software requirements prioritization research. Information and Software Technology, 56(6), 568–585. Agencia para Sustancias Tóxicas y el Registro de Enfermedades. (2008). Resumen de Salud Pública. División de Toxicología y Medicina Ambiental, 11. https://www.atsdr.cdc.gov/es/phs/es_phs115.pdf Al-Ghouti, M. A., Al-Kaabi, M. A., Ashfaq, M. Y., & Da’na, D. A. (2019). Produced water characteristics, treatment and reuse: A review. Journal of Water Process Engineering, 28(January), 222–239. https://doi.org/10.1016/j.jwpe.2019.02.001 Al-Khalid, T., & El-Naas, M. H. (2018). Organic Contaminants in Refinery Wastewater: Characterization and Novel Approaches for Biotreatment. Recent Insights in Petroleum Science and Engineering. https://doi.org/10.5772/intechopen.72206 Aljuboury, D. A. D. A., Palaniandy, P., Abdul Aziz, H. B., & Feroz, S. (2017). Treatment of petroleum wastewater by conventional and new technologies - A review. Global Nest Journal, 19(3), 439–452. https://doi.org/10.30955/gnj.002239 Alley, B., Beebe, A., Rodgers, J., & Castle, J. W. (2011). Chemical and physical characterization of produced waters from conventional and unconventional fossil fuel resources. Chemosphere, 85(1), 74–82. https://doi.org/10.1016/j.chemosphere.2011.05.043 Angelidaki, I., Karakashev, D., Batstone, D. J., Plugge, C. M., & Stams, A. J. M. (2011). Biomethanation and its potential. In Methods in Enzymology (1st ed., Vol. 494). Elsevier Inc. https://doi.org/10.1016/B978-0-12-385112-3.00016-0 APHA. (2017). Standard methods for the examination of water and wastewater (R. Baird & L. Bridgewater (eds.); 23rd edition). Arthur, J. D., Langhus, B. G., & Patel, C. (2005). Technical summary of oil and gas produced water treatment technologies. ALL Consulting, LLC. http://www.all-llc.com/publicdownloads/ALLConsulting-WaterTreatmentOptionsReport.pdf Asociación Colombiana del Petróleo y Gas. (2021). Aporte fiscal de la cadena de hidrocarburos en Colombia 2020 - 2021(p). https://acp.com.co/web2017/en/publicaciones-e-informes/economicos/841-informe-economico-aporte-fiscal-de-la-cadena-de-hidrocarburos-2020-2021/file Bakke, T., Klungsøyr, J., & Sanni, S. (2013). Environmental impacts of produced water and drilling waste discharges from the Norwegian offshore petroleum industry. Marine Environmental Research, 92, 154–169. https://doi.org/10.1016/j.marenvres.2013.09.012 Bhandari, P. (2020). How to Find Interquartile Range (IQR). Calculator & Examples. https://www.scribbr.com/statistics/interquartile-range/ Camacho Triana, J. L. (2020). Evaluación del manejo del agua en la extracción y producción de hidrocarburos con miras a la definición de alternativas de tratamiento y reúso [Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/78636%0A Castañeda Jiménez, A. C., & Romero Rojas, J. (2014). Procesos de Oxidación Avanzada Aplicados en el Tratamiento de Aguas de la Industria del Petróleo. 1–47. Castillo-Carvajal, L. C., Sanz-Martín, J. L., & Barragán-Huerta, B. E. (2014). Biodegradation of organic pollutants in saline wastewater by halophilic microorganisms: A review. Environmental Science and Pollution Research, 21(16), 9578–9588. https://doi.org/10.1007/s11356-014-3036-z Cruz, S. L., Rivera-García, M. T., & Woodward, J. J. (2014). Review of Toluene Actions: Clinical Evidence, Animal Studies, and Molecular Targets. Journal of Drug and Alcohol Research, 3(October), 1–8. https://doi.org/10.4303/jdar/235840 D. Atoufi, H., & Lampert, D. J. (2020). Impacts of Oil and Gas Production on Contaminant Levels in Sediments. Current Pollution Reports, 6(2), 43–53. https://doi.org/10.1007/s40726-020-00137-5 Daud, M. K., Rizvi, H., Akram, M. F., Ali, S., Rizwan, M., Nafees, M., & Jin, Z. S. (2018). Review of upflow anaerobic sludge blanket reactor technology: Effect of different parameters and developments for domestic wastewater treatment. Journal of Chemistry, 2018. https://doi.org/10.1155/2018/1596319 De La Rubia, M. A., Villamil, J. A., & Mohedano, A. F. (2019). Anaerobic digestion for methane and hydrogen production. In Wastewater Treatment Residues as Resources for Biorefinery Products and Biofuels. Elsevier Inc. https://doi.org/10.1016/B978-0-12-816204-0.00004-7 Díaz-Báez, M. C., Espitia Vargas, S. E., & Molina Pérez, F. (2002). Anaerobic digestion an approach to technology / Digestión anaerobia una aproximación a la tecnología. Universidad Nacional de Colombia. https://books.google.com.co/books?id=A0RvuAAACAAJ Díaz-Báez, María Consuelo, & Valderrama-Rincon, J. D. (2017). Rapid restoration of methanogenesis in an acidified UASB reactor treating 2,4,6-trichlorophenol (TCP). Journal of Hazardous Materials, 324, 599–604. https://doi.org/10.1016/j.jhazmat.2016.11.031 Dutta, A., Davies, C., & Ikumi, D. S. (2018). Performance of upflow anaerobic sludge blanket (UASB) reactor and other anaerobic reactor configurations for wastewater treatment: A comparative review and critical updates. Journal of Water Supply: Research and Technology - AQUA, 67(8), 858–884. https://doi.org/10.2166/aqua.2018.090 Ecopetrol S.A. (2020). Reporte integrado de gestión sostenible. Ersahin, M. E., Ozgun, H., Kaya, R., Kose Mutlu, B., Kinaci, C., & Koyuncu, I. (2018). Treatment of produced water originated from oil and gas production wells: a pilot study and cost analysis. Environmental Science and Pollution Research, 25(7), 6398–6406. https://doi.org/10.1007/s11356-017-0961-7 European Chemicals Agency. (2022). Ethanol. https://echa.europa.eu/registration-dossier/-/registered-dossier/16105/7/8 Fakhru’l-Razi, A., Pendashteh, A., Abdullah, L. C., Biak, D. R. A., Madaeni, S. S., & Abidin, Z. Z. (2009). Review of technologies for oil and gas produced water treatment. Journal of Hazardous Materials, 170(2–3), 530–551. https://doi.org/10.1016/j.jhazmat.2009.05.044 Fathepure, B. Z. (2014). Recent studies in microbial degradation of petroleum hydrocarbons in hypersaline environments. Frontiers in Microbiology, 5(APR). https://doi.org/10.3389/fmicb.2014.00173 Fernández - Polanco, F., & Seghezzo, L. (2015). Diseño de reactores Upflow Anaerobic Sludge Blanket (UASB). Mejora de Las Economías Regionales y Desarrollo Local, 1–124. http://www.ue-inti.gob.ar/pdf/publicaciones/cuadernillo15.pdf Folkerts, E. J., Blewett, T. A., Delompré, P., Mehler, W. T., Flynn, S. L., Sun, C., Zhang, Y., Martin, J. W., Alessi, D. S., & Goss, G. G. (2019). Toxicity in aquatic model species exposed to a temporal series of three different flowback and produced water samples collected from a horizontal hydraulically fractured well. Ecotoxicology and Environmental Safety, 180(May), 600–609. https://doi.org/10.1016/j.ecoenv.2019.05.054 Hedar, Y., & Budiyono. (2018). Pollution Impact and Alternative Treatment for Produced Water. E3S Web of Conferences, 31, 1–12. https://doi.org/10.1051/e3sconf/20183103004 Horner, J. E., Castle, J. W., & Rodgers, J. H. (2011). A risk assessment approach to identifying constituents in oilfield produced water for treatment prior to beneficial use. Ecotoxicology and Environmental Safety, 74(4), 989–999. https://doi.org/10.1016/j.ecoenv.2011.01.012 Igunnu, E. T., & Chen, G. Z. (2014). Produced water treatment technologies. International Journal of Low-Carbon Technologies, 9(3), 157–177. https://doi.org/10.1093/ijlct/cts049 Ishak, S., Malakahmad, A., & Isa, M. H. (2012). Refinery wastewater biological treatment: A short review. Journal of Scientific and Industrial Research, 71(4), 251–256. Jafarinejad, S. (2017). Pollutions and Wastes From the Petroleum Industry. In Petroleum Waste Treatment and Pollution Control. https://doi.org/10.1016/b978-0-12-809243-9.00002-x Jain, M., Majumder, A., Ghosal, P. S., & Gupta, A. K. (2020). A review on treatment of petroleum refinery and petrochemical plant wastewater: A special emphasis on constructed wetlands. Journal of Environmental Management, 272(July), 111057. https://doi.org/10.1016/j.jenvman.2020.111057 Jain, P., Sharma, M., Dureja, P., Sarma, P. M., & Lal, B. (2017). Bioelectrochemical approaches for removal of sulfate, hydrocarbon and salinity from produced water. Chemosphere, 166, 96–108. https://doi.org/10.1016/j.chemosphere.2016.09.081 Jiménez, S., Micó, M. M., Arnaldos, M., Medina, F., & Contreras, S. (2018). State of the art of produced water treatment. Chemosphere, 192, 186–208. https://doi.org/10.1016/j.chemosphere.2017.10.139 Khanal, S. K. (2009). Overview of anaerobic biotechnology. Anaerobic Biotechnology for Bioenergy Production: Principles and Applications, 1–27. https://doi.org/10.1002/9780813804545.ch1 Kitchenham, B., & Charters, S. M. (2007). Guidelines for performing Systematic Literature Reviews in Software Engineering. Kong, Z., Li, L., Xue, Y., Yang, M., & Li, Y. Y. (2019). Challenges and prospects for the anaerobic treatment of chemical-industrial organic wastewater: A review. Journal of Cleaner Production, 231, 913–927. https://doi.org/10.1016/j.jclepro.2019.05.233 Latif, M. A., Ghufran, R., Wahid, Z. A., & Ahmad, A. (2011). Integrated application of upflow anaerobic sludge blanket reactor for the treatment of wastewaters. Water Research, 45(16), 4683–4699. https://doi.org/10.1016/j.watres.2011.05.049 Lefebvre, O., & Moletta, R. (2006). Treatment of organic pollution in industrial saline wastewater: A literature review. Water Research, 40(20), 3671–3682. https://doi.org/10.1016/j.watres.2006.08.027 Li, H., Meng, F., Duan, W., Lin, Y., & Zheng, Y. (2019). Biodegradation of phenol in saline or hypersaline environments by bacteria: A review. Ecotoxicology and Environmental Safety, 184(March), 109658. https://doi.org/10.1016/j.ecoenv.2019.109658 Liden, T., Santos, I. C., Hildenbrand, Z. L., & Schug, K. A. (2018). Treatment modalities for the reuse of produced waste from oil and gas development. Science of the Total Environment, 643, 107–118. https://doi.org/10.1016/j.scitotenv.2018.05.386 Lim, S. J., & Kim, T. H. (2014). Applicability and trends of anaerobic granular sludge treatment processes. Biomass and Bioenergy, 60, 189–202. https://doi.org/10.1016/j.biombioe.2013.11.011 Lusinier, N., Seyssiecq, I., Sambusiti, C., Jacob, M., Lesage, N., & Roche, N. (2019). Biological treatments of oilfield produced water: A comprehensive review. SPE Journal, 24(5), 2135–2147. https://doi.org/10.2118/195677-PA Ma, X., & Gao, Y. (2010). Determination of chemical oxygen demand for saline wastewater. 2010 4th International Conference on Bioinformatics and Biomedical Engineering, ICBBE 2010, 1. https://doi.org/10.1109/ICBBE.2010.5517026 Mainardis, M., Buttazzoni, M., & Goi, D. (2020). Up-flow anaerobic sludge blanket (Uasb) technology for energy recovery: A review on state-of-the-art and recent technological advances. Bioengineering, 7(2). https://doi.org/10.3390/bioengineering7020043 Mikhak, Y., Torabi, M. M. A., & Fouladitajar, A. (2019). Refinery and petrochemical wastewater treatment. In Sustainable Water and Wastewater Processing. Elsevier Inc. https://doi.org/10.1016/B978-0-12-816170-8.00003-X Morales, A. (2010). Inyección de surfactantes en yacimientos. http://www.petroleoamerica.com/2011/02/inyeccion-de-surfactantes-en.html Moreno, M. T. V. (2011). Manual de Biogás. Organización de las Naciones Unidas para la Agricultura y la Alimentación (FAO). https://books.google.com.co/books?id=ACvotwEACAAJ Mosca Angelucci, D., Clagnan, E., Brusetti, L., & Tomei, M. C. (2020). Anaerobic phenol biodegradation: kinetic study and microbial community shifts under high-concentration dynamic loading. Applied Microbiology and Biotechnology, 104(15), 6825–6838. https://doi.org/10.1007/s00253-020-10696-8 Nasiri, M., Jafari, I., & Parniankhoy, B. (2017). Oil and Gas Produced Water Management: A Review of Treatment Technologies, Challenges, and Opportunities. Chemical Engineering Communications, 204(8), 990–1005. https://doi.org/10.1080/00986445.2017.1330747 Nesic, S., & Streletskaya, V. V. (2018). An integrated approach for produced water treatment and injection. Georesursy, 20(1), 25–31. https://doi.org/10.18599/grs.2018.1.25-31 Nishio, N., & Nakashimada, Y. (2004). High rate production of hydrogen/methane from various substrates and wastes. Advances in Biochemical Engineering/Biotechnology, 90, 63–87. https://doi.org/10.1007/b94192 Nnaji, C. C. (2013). A review of the upflow anaerobic sludge blanket reactor. Desalination and Water Treatment, 52(22–24), 4122–4143. https://doi.org/10.1080/19443994.2013.800809 Pereira, J. (2012). Estado del arte sobre efecto de los alcoholes en las propiedades interfaciales de los surfactantes. Revista INGENIERÍA UC, 19(2), 76–85. Pichtel, J. (2016). Oil and gas production wastewater: Soil contamination and pollution prevention. Applied and Environmental Soil Science, 2016, 1–74. https://doi.org/10.1155/2016/2707989 Subramanyam, R. (2013). Physicochemical and morphological characteristics of granular sludge in upflow anaerobic sludge blanket reactors. Environmental Engineering Science, 30(5), 201–212. https://doi.org/10.1089/ees.2012.0347 Tan, X., Acquah, I., Liu, H., Li, W., & Tan, S. (2019). A critical review on saline wastewater treatment by membrane bioreactor (MBR) from a microbial perspective. Chemosphere, 220, 1150–1162. https://doi.org/10.1016/j.chemosphere.2019.01.027 U.S Environmental Protection Agency. (2012). Toluene. 1, 1–5. https://19january2017snapshot.epa.gov/sites/production/files/2016-09/documents/toluene.pdf US Enviromental Protection Agency. (2000). Phenol. Phenol, 1(1), 95–108. Valderrama Rincón, J. D., Luna Wandurraga, H. J., Valderrama Rincón, J. A., & Martínez Rojas, A. J. (2018). Bomba peristáltica con cabezal tipo rodamiento y portamanguera para desgaste reducido (Patent No. 20180008436). Valderrama Rincón, J. D., Luna Wandurraga, H. J., Valderrama Rincón, J. A., Martínez Rojas, A. J., & Arango Oviedo, J. A. (2019). Medidor de flujo de gas por desplazamiento de líquido (Patent No. 20190003208). Veeresh, G. S., Kumar, P., & Mehrotra, I. (2005). Treatment of phenol and cresols in upflow anaerobic sludge blanket (UASB) process: A review. Water Research, 39(1), 154–170. https://doi.org/10.1016/j.watres.2004.07.028 Vidal, G., & Diez, M. C. (2005). Methanogenic toxicity and continuous anaerobic treatment of wood processing effluents. Journal of Environmental Management, 74(4), 317–325. https://doi.org/10.1016/j.jenvman.2004.09.008 Xu, X., Zhang, X., Carrillo, G., Zhong, Y., Kan, H., & Zhang, B. (2019). A systematic assessment of carcinogenicity of chemicals in hydraulic-fracturing fluids and flowback water. Environmental Pollution, 251, 128–136. https://doi.org/10.1016/j.envpol.2019.04.016 Yang, J., Spanjers, H., Jeison, D., & Van Lier, J. B. (2013). Impact of Na+ on biological wastewater treatment and the potential of anaerobic membrane bioreactors: A review. Critical Reviews in Environmental Science and Technology, 43(24), 2722–2746. https://doi.org/10.1080/10643389.2012.694335 Zhao, Y., Zhuang, X., Ahmad, S., Sung, S., & Ni, S. Q. (2020). Biotreatment of high-salinity wastewater: current methods and future directions. World Journal of Microbiology and Biotechnology, 36(3), 1–11. https://doi.org/10.1007/s11274-020-02815-4 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xv, 141páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Química |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.place.spa.fl_str_mv |
Bogotá,Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/84148/4/1053344287.2023.pdf https://repositorio.unal.edu.co/bitstream/unal/84148/3/license.txt https://repositorio.unal.edu.co/bitstream/unal/84148/5/1053344287.2023.pdf.jpg |
bitstream.checksum.fl_str_mv |
2b739e423b28c989d0c1856a053c7d2b eb34b1cf90b7e1103fc9dfd26be24b4a a66bb57d43b6f855a5a20732de6e800a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089272156749824 |
spelling |
Atribución-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ramírez Franco, José Herney50c4f1e63d416e6c5aaa0e73a06bd6a3Valderrama Rincón, Juan Daniele57c5caf500f9a367f7d0d0ec6e07b67Ramos Pachón, Lina Rocío6037e878a04ceecd9ab66dca362e7d3bGrupo de Investigación en Materiales, Catálisis y Medio AmbienteRAMOS PACHÓN , LINA ROCÍO2023-07-05T19:30:44Z2023-07-05T19:30:44Z2023https://repositorio.unal.edu.co/handle/unal/84148Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, fotografías a colorEsta investigación evaluó la remoción de dos contaminantes del agua residual petrolera en un biorreactor UASB y para lograrlo, el estudio se dividió en tres etapas. En la primera etapa se determinaron los principales contribuyentes de la toxicidad del agua de producción de hidrocarburos mediante un estudio nacional e internacional de su composición. Los resultados arrojaron que los compuestos aromáticos como el tolueno y el fenol, la salinidad y los fluidos de perforación como el etanol contribuyen en gran medida en la toxicidad del agua producida. En la segunda etapa se evaluó la estabilidad y la eficiencia de un biorreactor UASB durante la adaptación progresiva del lodo granular anaerobio a 17 g/L de cloruro de sodio (NaCl). Los resultados mostraron que el proceso no se vio afectado por concentraciones de NaCl inferiores a 9,0 g/L pero posteriormente la resistencia y la estabilidad del lodo granular se redujo, provocando el deterioro del rendimiento. El biorreactor se estabilizó con una remoción de DQO total y DQO soluble de 58,71% y 75,17%, respectivamente. En la tercera etapa se determinó la eficiencia de remoción de tolueno y fenol en un biorreactor UASB en condiciones salinas y en presencia de etanol. Los resultados revelaron el 100% de remoción de tolueno y el 98% de remoción de fenol, a pesar de que se aproximaba la falla del biorreactor debido a la disminución de las eficiencias de remoción de DQO total y DQO soluble a 25,17% y 34,32%, respectivamente. (Texto tomado de la fuente)This research evaluated the removal of two contaminants from oil wastewater using a UASB bioreactor and to achieve this, the study was divided into three stages. In the first stage, the main contributors to the toxicity of produced water were determined through a national and international study of its composition. The results showed that aromatic compounds such as toluene and phenol, salinity and drilling fluids such as ethanol are major contributors to produced water toxicity. In the second stage, the stability and efficiency of a UASB bioreactor was evaluated during the progressive adaptation of anaerobic granular sludge to 17 g/L sodium chloride (NaCl). The results showed that the process was not affected by NaCl concentrations below 9,0 g/L but subsequently the strength and stability of the granular sludge was reduced, causing the efficiency to decrease. The bioreactor stabilized with a total COD and soluble COD removal of 58,71% and 75,17%, respectively. In the third stage, the removal efficiency of toluene and phenol was determined in a UASB bioreactor under saline conditions and in the presence of ethanol. The results showed 100% toluene removal and 98% phenol removal, despite the approaching bioreactor failure due to the decrease in total COD and soluble COD removal efficiencies to 25,17% and 34,32%, respectively.El proyecto de investigación MEGIA "Modelo Multiescala de Gestión Integral del Agua con Análisis de Incertidumbre de la Información para la realización de la Evaluación Ambiental Estratégica (EAE) del Subsector Hidrocarburos en el Valle Medio del Magdalena". Contrato RC No. FP44842-157-2018 suscrito en el convenio entre la Universidad Nacional de Colombia, el Ministerio de Ciencia, Tecnología e Innovación y la Agencia Nacional de Hidrocarburos.MaestríaMagíster en Ingeniería - Ingeniería QuímicaTratamiento de aguas residuales industrialesxv, 141páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería QuímicaFacultad de IngenieríaBogotá,ColombiaUniversidad Nacional de Colombia - Sede Bogotá540 - Química y ciencias afines::547 - Química orgánica540 - Química y ciencias afines::543 - Química analítica620 - Ingeniería y operaciones afines::628 - Ingeniería sanitariaAguas residualesCalidad del aguaTratamiento del aguaSewageWater qualityWater treatmentAgua producidaBiorreactor UASBBiodegradación anaerobiaSalinidadToluenoFenolProduced waterUASB bioreactorAnaerobic biodegradationSalinityToluenePhenolDegradación de contaminantes presentes en las aguas residuales de la industria petrolera usando un biorreactor anaerobio de flujo ascendente (UASB) a escala laboratorioDegradation of contaminants in oil industry wastewater using an Upflow Anaerobic Sludge Blanket Reactor (UASB) at laboratory scaleTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAbas, N., Kalair, A., & Khan, N. (2015). Review of fossil fuels and future energy technologies. Futures, 69(299), 31–49. https://doi.org/10.1016/j.futures.2015.03.003Abbasi, T., & Abbasi, S. A. (2012). Formation and impact of granules in fostering clean energy production and wastewater treatment in upflow anaerobic sludge blanket (UASB) reactors. Renewable and Sustainable Energy Reviews, 16(3), 1696–1708. https://doi.org/10.1016/j.rser.2011.11.017Achimugu, P., Selamat, A., Ibrahim, R., & Mahrin, M. N. (2014). A systematic literature review of software requirements prioritization research. Information and Software Technology, 56(6), 568–585.Agencia para Sustancias Tóxicas y el Registro de Enfermedades. (2008). Resumen de Salud Pública. División de Toxicología y Medicina Ambiental, 11. https://www.atsdr.cdc.gov/es/phs/es_phs115.pdfAl-Ghouti, M. A., Al-Kaabi, M. A., Ashfaq, M. Y., & Da’na, D. A. (2019). Produced water characteristics, treatment and reuse: A review. Journal of Water Process Engineering, 28(January), 222–239. https://doi.org/10.1016/j.jwpe.2019.02.001Al-Khalid, T., & El-Naas, M. H. (2018). Organic Contaminants in Refinery Wastewater: Characterization and Novel Approaches for Biotreatment. Recent Insights in Petroleum Science and Engineering. https://doi.org/10.5772/intechopen.72206Aljuboury, D. A. D. A., Palaniandy, P., Abdul Aziz, H. B., & Feroz, S. (2017). Treatment of petroleum wastewater by conventional and new technologies - A review. Global Nest Journal, 19(3), 439–452. https://doi.org/10.30955/gnj.002239Alley, B., Beebe, A., Rodgers, J., & Castle, J. W. (2011). Chemical and physical characterization of produced waters from conventional and unconventional fossil fuel resources. Chemosphere, 85(1), 74–82. https://doi.org/10.1016/j.chemosphere.2011.05.043Angelidaki, I., Karakashev, D., Batstone, D. J., Plugge, C. M., & Stams, A. J. M. (2011). Biomethanation and its potential. In Methods in Enzymology (1st ed., Vol. 494). Elsevier Inc. https://doi.org/10.1016/B978-0-12-385112-3.00016-0APHA. (2017). Standard methods for the examination of water and wastewater (R. Baird & L. Bridgewater (eds.); 23rd edition).Arthur, J. D., Langhus, B. G., & Patel, C. (2005). Technical summary of oil and gas produced water treatment technologies. ALL Consulting, LLC. http://www.all-llc.com/publicdownloads/ALLConsulting-WaterTreatmentOptionsReport.pdfAsociación Colombiana del Petróleo y Gas. (2021). Aporte fiscal de la cadena de hidrocarburos en Colombia 2020 - 2021(p). https://acp.com.co/web2017/en/publicaciones-e-informes/economicos/841-informe-economico-aporte-fiscal-de-la-cadena-de-hidrocarburos-2020-2021/fileBakke, T., Klungsøyr, J., & Sanni, S. (2013). Environmental impacts of produced water and drilling waste discharges from the Norwegian offshore petroleum industry. Marine Environmental Research, 92, 154–169. https://doi.org/10.1016/j.marenvres.2013.09.012Bhandari, P. (2020). How to Find Interquartile Range (IQR). Calculator & Examples. https://www.scribbr.com/statistics/interquartile-range/Camacho Triana, J. L. (2020). Evaluación del manejo del agua en la extracción y producción de hidrocarburos con miras a la definición de alternativas de tratamiento y reúso [Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/78636%0ACastañeda Jiménez, A. C., & Romero Rojas, J. (2014). Procesos de Oxidación Avanzada Aplicados en el Tratamiento de Aguas de la Industria del Petróleo. 1–47.Castillo-Carvajal, L. C., Sanz-Martín, J. L., & Barragán-Huerta, B. E. (2014). Biodegradation of organic pollutants in saline wastewater by halophilic microorganisms: A review. Environmental Science and Pollution Research, 21(16), 9578–9588. https://doi.org/10.1007/s11356-014-3036-zCruz, S. L., Rivera-García, M. T., & Woodward, J. J. (2014). Review of Toluene Actions: Clinical Evidence, Animal Studies, and Molecular Targets. Journal of Drug and Alcohol Research, 3(October), 1–8. https://doi.org/10.4303/jdar/235840D. Atoufi, H., & Lampert, D. J. (2020). Impacts of Oil and Gas Production on Contaminant Levels in Sediments. Current Pollution Reports, 6(2), 43–53. https://doi.org/10.1007/s40726-020-00137-5Daud, M. K., Rizvi, H., Akram, M. F., Ali, S., Rizwan, M., Nafees, M., & Jin, Z. S. (2018). Review of upflow anaerobic sludge blanket reactor technology: Effect of different parameters and developments for domestic wastewater treatment. Journal of Chemistry, 2018. https://doi.org/10.1155/2018/1596319De La Rubia, M. A., Villamil, J. A., & Mohedano, A. F. (2019). Anaerobic digestion for methane and hydrogen production. In Wastewater Treatment Residues as Resources for Biorefinery Products and Biofuels. Elsevier Inc. https://doi.org/10.1016/B978-0-12-816204-0.00004-7Díaz-Báez, M. C., Espitia Vargas, S. E., & Molina Pérez, F. (2002). Anaerobic digestion an approach to technology / Digestión anaerobia una aproximación a la tecnología. Universidad Nacional de Colombia. https://books.google.com.co/books?id=A0RvuAAACAAJDíaz-Báez, María Consuelo, & Valderrama-Rincon, J. D. (2017). Rapid restoration of methanogenesis in an acidified UASB reactor treating 2,4,6-trichlorophenol (TCP). Journal of Hazardous Materials, 324, 599–604. https://doi.org/10.1016/j.jhazmat.2016.11.031Dutta, A., Davies, C., & Ikumi, D. S. (2018). Performance of upflow anaerobic sludge blanket (UASB) reactor and other anaerobic reactor configurations for wastewater treatment: A comparative review and critical updates. Journal of Water Supply: Research and Technology - AQUA, 67(8), 858–884. https://doi.org/10.2166/aqua.2018.090Ecopetrol S.A. (2020). Reporte integrado de gestión sostenible.Ersahin, M. E., Ozgun, H., Kaya, R., Kose Mutlu, B., Kinaci, C., & Koyuncu, I. (2018). Treatment of produced water originated from oil and gas production wells: a pilot study and cost analysis. Environmental Science and Pollution Research, 25(7), 6398–6406. https://doi.org/10.1007/s11356-017-0961-7European Chemicals Agency. (2022). Ethanol. https://echa.europa.eu/registration-dossier/-/registered-dossier/16105/7/8Fakhru’l-Razi, A., Pendashteh, A., Abdullah, L. C., Biak, D. R. A., Madaeni, S. S., & Abidin, Z. Z. (2009). Review of technologies for oil and gas produced water treatment. Journal of Hazardous Materials, 170(2–3), 530–551. https://doi.org/10.1016/j.jhazmat.2009.05.044Fathepure, B. Z. (2014). Recent studies in microbial degradation of petroleum hydrocarbons in hypersaline environments. Frontiers in Microbiology, 5(APR). https://doi.org/10.3389/fmicb.2014.00173Fernández - Polanco, F., & Seghezzo, L. (2015). Diseño de reactores Upflow Anaerobic Sludge Blanket (UASB). Mejora de Las Economías Regionales y Desarrollo Local, 1–124. http://www.ue-inti.gob.ar/pdf/publicaciones/cuadernillo15.pdfFolkerts, E. J., Blewett, T. A., Delompré, P., Mehler, W. T., Flynn, S. L., Sun, C., Zhang, Y., Martin, J. W., Alessi, D. S., & Goss, G. G. (2019). Toxicity in aquatic model species exposed to a temporal series of three different flowback and produced water samples collected from a horizontal hydraulically fractured well. Ecotoxicology and Environmental Safety, 180(May), 600–609. https://doi.org/10.1016/j.ecoenv.2019.05.054Hedar, Y., & Budiyono. (2018). Pollution Impact and Alternative Treatment for Produced Water. E3S Web of Conferences, 31, 1–12. https://doi.org/10.1051/e3sconf/20183103004Horner, J. E., Castle, J. W., & Rodgers, J. H. (2011). A risk assessment approach to identifying constituents in oilfield produced water for treatment prior to beneficial use. Ecotoxicology and Environmental Safety, 74(4), 989–999. https://doi.org/10.1016/j.ecoenv.2011.01.012Igunnu, E. T., & Chen, G. Z. (2014). Produced water treatment technologies. International Journal of Low-Carbon Technologies, 9(3), 157–177. https://doi.org/10.1093/ijlct/cts049Ishak, S., Malakahmad, A., & Isa, M. H. (2012). Refinery wastewater biological treatment: A short review. Journal of Scientific and Industrial Research, 71(4), 251–256.Jafarinejad, S. (2017). Pollutions and Wastes From the Petroleum Industry. In Petroleum Waste Treatment and Pollution Control. https://doi.org/10.1016/b978-0-12-809243-9.00002-xJain, M., Majumder, A., Ghosal, P. S., & Gupta, A. K. (2020). A review on treatment of petroleum refinery and petrochemical plant wastewater: A special emphasis on constructed wetlands. Journal of Environmental Management, 272(July), 111057. https://doi.org/10.1016/j.jenvman.2020.111057Jain, P., Sharma, M., Dureja, P., Sarma, P. M., & Lal, B. (2017). Bioelectrochemical approaches for removal of sulfate, hydrocarbon and salinity from produced water. Chemosphere, 166, 96–108. https://doi.org/10.1016/j.chemosphere.2016.09.081Jiménez, S., Micó, M. M., Arnaldos, M., Medina, F., & Contreras, S. (2018). State of the art of produced water treatment. Chemosphere, 192, 186–208. https://doi.org/10.1016/j.chemosphere.2017.10.139Khanal, S. K. (2009). Overview of anaerobic biotechnology. Anaerobic Biotechnology for Bioenergy Production: Principles and Applications, 1–27. https://doi.org/10.1002/9780813804545.ch1Kitchenham, B., & Charters, S. M. (2007). Guidelines for performing Systematic Literature Reviews in Software Engineering.Kong, Z., Li, L., Xue, Y., Yang, M., & Li, Y. Y. (2019). Challenges and prospects for the anaerobic treatment of chemical-industrial organic wastewater: A review. Journal of Cleaner Production, 231, 913–927. https://doi.org/10.1016/j.jclepro.2019.05.233Latif, M. A., Ghufran, R., Wahid, Z. A., & Ahmad, A. (2011). Integrated application of upflow anaerobic sludge blanket reactor for the treatment of wastewaters. Water Research, 45(16), 4683–4699. https://doi.org/10.1016/j.watres.2011.05.049Lefebvre, O., & Moletta, R. (2006). Treatment of organic pollution in industrial saline wastewater: A literature review. Water Research, 40(20), 3671–3682. https://doi.org/10.1016/j.watres.2006.08.027Li, H., Meng, F., Duan, W., Lin, Y., & Zheng, Y. (2019). Biodegradation of phenol in saline or hypersaline environments by bacteria: A review. Ecotoxicology and Environmental Safety, 184(March), 109658. https://doi.org/10.1016/j.ecoenv.2019.109658Liden, T., Santos, I. C., Hildenbrand, Z. L., & Schug, K. A. (2018). Treatment modalities for the reuse of produced waste from oil and gas development. Science of the Total Environment, 643, 107–118. https://doi.org/10.1016/j.scitotenv.2018.05.386Lim, S. J., & Kim, T. H. (2014). Applicability and trends of anaerobic granular sludge treatment processes. Biomass and Bioenergy, 60, 189–202. https://doi.org/10.1016/j.biombioe.2013.11.011Lusinier, N., Seyssiecq, I., Sambusiti, C., Jacob, M., Lesage, N., & Roche, N. (2019). Biological treatments of oilfield produced water: A comprehensive review. SPE Journal, 24(5), 2135–2147. https://doi.org/10.2118/195677-PAMa, X., & Gao, Y. (2010). Determination of chemical oxygen demand for saline wastewater. 2010 4th International Conference on Bioinformatics and Biomedical Engineering, ICBBE 2010, 1. https://doi.org/10.1109/ICBBE.2010.5517026Mainardis, M., Buttazzoni, M., & Goi, D. (2020). Up-flow anaerobic sludge blanket (Uasb) technology for energy recovery: A review on state-of-the-art and recent technological advances. Bioengineering, 7(2). https://doi.org/10.3390/bioengineering7020043Mikhak, Y., Torabi, M. M. A., & Fouladitajar, A. (2019). Refinery and petrochemical wastewater treatment. In Sustainable Water and Wastewater Processing. Elsevier Inc. https://doi.org/10.1016/B978-0-12-816170-8.00003-XMorales, A. (2010). Inyección de surfactantes en yacimientos. http://www.petroleoamerica.com/2011/02/inyeccion-de-surfactantes-en.htmlMoreno, M. T. V. (2011). Manual de Biogás. Organización de las Naciones Unidas para la Agricultura y la Alimentación (FAO). https://books.google.com.co/books?id=ACvotwEACAAJMosca Angelucci, D., Clagnan, E., Brusetti, L., & Tomei, M. C. (2020). Anaerobic phenol biodegradation: kinetic study and microbial community shifts under high-concentration dynamic loading. Applied Microbiology and Biotechnology, 104(15), 6825–6838. https://doi.org/10.1007/s00253-020-10696-8Nasiri, M., Jafari, I., & Parniankhoy, B. (2017). Oil and Gas Produced Water Management: A Review of Treatment Technologies, Challenges, and Opportunities. Chemical Engineering Communications, 204(8), 990–1005. https://doi.org/10.1080/00986445.2017.1330747Nesic, S., & Streletskaya, V. V. (2018). An integrated approach for produced water treatment and injection. Georesursy, 20(1), 25–31. https://doi.org/10.18599/grs.2018.1.25-31Nishio, N., & Nakashimada, Y. (2004). High rate production of hydrogen/methane from various substrates and wastes. Advances in Biochemical Engineering/Biotechnology, 90, 63–87. https://doi.org/10.1007/b94192Nnaji, C. C. (2013). A review of the upflow anaerobic sludge blanket reactor. Desalination and Water Treatment, 52(22–24), 4122–4143. https://doi.org/10.1080/19443994.2013.800809Pereira, J. (2012). Estado del arte sobre efecto de los alcoholes en las propiedades interfaciales de los surfactantes. Revista INGENIERÍA UC, 19(2), 76–85.Pichtel, J. (2016). Oil and gas production wastewater: Soil contamination and pollution prevention. Applied and Environmental Soil Science, 2016, 1–74. https://doi.org/10.1155/2016/2707989Subramanyam, R. (2013). Physicochemical and morphological characteristics of granular sludge in upflow anaerobic sludge blanket reactors. Environmental Engineering Science, 30(5), 201–212. https://doi.org/10.1089/ees.2012.0347Tan, X., Acquah, I., Liu, H., Li, W., & Tan, S. (2019). A critical review on saline wastewater treatment by membrane bioreactor (MBR) from a microbial perspective. Chemosphere, 220, 1150–1162. https://doi.org/10.1016/j.chemosphere.2019.01.027U.S Environmental Protection Agency. (2012). Toluene. 1, 1–5. https://19january2017snapshot.epa.gov/sites/production/files/2016-09/documents/toluene.pdfUS Enviromental Protection Agency. (2000). Phenol. Phenol, 1(1), 95–108.Valderrama Rincón, J. D., Luna Wandurraga, H. J., Valderrama Rincón, J. A., & Martínez Rojas, A. J. (2018). Bomba peristáltica con cabezal tipo rodamiento y portamanguera para desgaste reducido (Patent No. 20180008436).Valderrama Rincón, J. D., Luna Wandurraga, H. J., Valderrama Rincón, J. A., Martínez Rojas, A. J., & Arango Oviedo, J. A. (2019). Medidor de flujo de gas por desplazamiento de líquido (Patent No. 20190003208).Veeresh, G. S., Kumar, P., & Mehrotra, I. (2005). Treatment of phenol and cresols in upflow anaerobic sludge blanket (UASB) process: A review. Water Research, 39(1), 154–170. https://doi.org/10.1016/j.watres.2004.07.028Vidal, G., & Diez, M. C. (2005). Methanogenic toxicity and continuous anaerobic treatment of wood processing effluents. Journal of Environmental Management, 74(4), 317–325. https://doi.org/10.1016/j.jenvman.2004.09.008Xu, X., Zhang, X., Carrillo, G., Zhong, Y., Kan, H., & Zhang, B. (2019). A systematic assessment of carcinogenicity of chemicals in hydraulic-fracturing fluids and flowback water. Environmental Pollution, 251, 128–136. https://doi.org/10.1016/j.envpol.2019.04.016Yang, J., Spanjers, H., Jeison, D., & Van Lier, J. B. (2013). Impact of Na+ on biological wastewater treatment and the potential of anaerobic membrane bioreactors: A review. Critical Reviews in Environmental Science and Technology, 43(24), 2722–2746. https://doi.org/10.1080/10643389.2012.694335Zhao, Y., Zhuang, X., Ahmad, S., Sung, S., & Ni, S. Q. (2020). Biotreatment of high-salinity wastewater: current methods and future directions. World Journal of Microbiology and Biotechnology, 36(3), 1–11. https://doi.org/10.1007/s11274-020-02815-4Proyecto de investigación MEGIA "Modelo Multiescala de Gestión Integral del Agua con Análisis de Incertidumbre de la Información para la realización de la Evaluación Ambiental Estratégica (EAE) del Subsector Hidrocarburos en el Valle Medio del Magdalena".Contrato RC No. FP44842-157-2018 suscrito en el convenio entre la Universidad Nacional de Colombia, Minciencias y la Agencia Nacional de HidrocarburosEstudiantesInvestigadoresPúblico generalORIGINAL1053344287.2023.pdf1053344287.2023.pdfTesis de Maestría en Ingeniería - Ingeniería Químicaapplication/pdf3168077https://repositorio.unal.edu.co/bitstream/unal/84148/4/1053344287.2023.pdf2b739e423b28c989d0c1856a053c7d2bMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84148/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53THUMBNAIL1053344287.2023.pdf.jpg1053344287.2023.pdf.jpgGenerated Thumbnailimage/jpeg6060https://repositorio.unal.edu.co/bitstream/unal/84148/5/1053344287.2023.pdf.jpga66bb57d43b6f855a5a20732de6e800aMD55unal/84148oai:repositorio.unal.edu.co:unal/841482024-08-12 23:11:33.551Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |