Evaluación del campo de esfuerzos mediante el análisis, descripción y clasificación de la dinámica temporal de secuencias de imágenes de fotoelasticidad
La evaluación experimental del campo de esfuerzos es de importancia en múltiples áreas de la ingeniería porque describe la respuesta mecánica que exhibe una estructura al ser sometida a cargas de distinta naturaleza. En este campo de trabajo, los estudios de fotoelasticidad digital sobresalen entre...
- Autores:
-
Briñez de león, Juan Carlos
- Tipo de recurso:
- Work document
- Fecha de publicación:
- 2020
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/78194
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/78194
- Palabra clave:
- 000 - Ciencias de la computación, información y obras generales::003 - Sistemas
Digital photoelasticity
Birefringence
Color fringe patterns
Stress field
Color fringe patterns
Digital image sequence processing
Pattern recognition
Computational hybrid methods.
Fotoelasticidad digital
Birrefringencia
Patrones de franjas de color
Campo de esfuerzos
Procesamiento digital de secuencias de imágenes
Reconocimiento de patrones
Métodos híbridos computacionales.
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_67ad5235b62e124a52f662fbfa548b1a |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/78194 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Evaluación del campo de esfuerzos mediante el análisis, descripción y clasificación de la dinámica temporal de secuencias de imágenes de fotoelasticidad |
dc.title.alternative.spa.fl_str_mv |
Stress field evaluation by the analysis, description, and classification of temporal dynamics in photoelasticity image sequences |
title |
Evaluación del campo de esfuerzos mediante el análisis, descripción y clasificación de la dinámica temporal de secuencias de imágenes de fotoelasticidad |
spellingShingle |
Evaluación del campo de esfuerzos mediante el análisis, descripción y clasificación de la dinámica temporal de secuencias de imágenes de fotoelasticidad 000 - Ciencias de la computación, información y obras generales::003 - Sistemas Digital photoelasticity Birefringence Color fringe patterns Stress field Color fringe patterns Digital image sequence processing Pattern recognition Computational hybrid methods. Fotoelasticidad digital Birrefringencia Patrones de franjas de color Campo de esfuerzos Procesamiento digital de secuencias de imágenes Reconocimiento de patrones Métodos híbridos computacionales. |
title_short |
Evaluación del campo de esfuerzos mediante el análisis, descripción y clasificación de la dinámica temporal de secuencias de imágenes de fotoelasticidad |
title_full |
Evaluación del campo de esfuerzos mediante el análisis, descripción y clasificación de la dinámica temporal de secuencias de imágenes de fotoelasticidad |
title_fullStr |
Evaluación del campo de esfuerzos mediante el análisis, descripción y clasificación de la dinámica temporal de secuencias de imágenes de fotoelasticidad |
title_full_unstemmed |
Evaluación del campo de esfuerzos mediante el análisis, descripción y clasificación de la dinámica temporal de secuencias de imágenes de fotoelasticidad |
title_sort |
Evaluación del campo de esfuerzos mediante el análisis, descripción y clasificación de la dinámica temporal de secuencias de imágenes de fotoelasticidad |
dc.creator.fl_str_mv |
Briñez de león, Juan Carlos |
dc.contributor.advisor.spa.fl_str_mv |
Restrepo Martínez, Alejandro Branch Bedoya, John William |
dc.contributor.author.spa.fl_str_mv |
Briñez de león, Juan Carlos |
dc.contributor.corporatename.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Medellín |
dc.contributor.researchgroup.spa.fl_str_mv |
GIDIA: Grupo de Investigación y Desarrollo en Inteligencia Artificial |
dc.subject.ddc.spa.fl_str_mv |
000 - Ciencias de la computación, información y obras generales::003 - Sistemas |
topic |
000 - Ciencias de la computación, información y obras generales::003 - Sistemas Digital photoelasticity Birefringence Color fringe patterns Stress field Color fringe patterns Digital image sequence processing Pattern recognition Computational hybrid methods. Fotoelasticidad digital Birrefringencia Patrones de franjas de color Campo de esfuerzos Procesamiento digital de secuencias de imágenes Reconocimiento de patrones Métodos híbridos computacionales. |
dc.subject.proposal.eng.fl_str_mv |
Digital photoelasticity Birefringence Color fringe patterns Stress field Color fringe patterns Digital image sequence processing Pattern recognition Computational hybrid methods. |
dc.subject.proposal.spa.fl_str_mv |
Fotoelasticidad digital Birrefringencia Patrones de franjas de color Campo de esfuerzos Procesamiento digital de secuencias de imágenes Reconocimiento de patrones Métodos híbridos computacionales. |
description |
La evaluación experimental del campo de esfuerzos es de importancia en múltiples áreas de la ingeniería porque describe la respuesta mecánica que exhibe una estructura al ser sometida a cargas de distinta naturaleza. En este campo de trabajo, los estudios de fotoelasticidad digital sobresalen entre otras técnicas por ser no invasivos, de campo completo, y altamente computacionales. No obstante, su implementación reporta limitaciones en términos de las múltiples configuraciones del polariscopio requeridas para adquirir las imágenes, cantidad de subprocesos computacionales, sesgo en zonas de concentración de esfuerzos, desempeños dependientes de la geometría de la estructura, e imposibilidad de identificar puntos isotrópicos y zonas de inconsistencias. Frente a las oportunidades de estudios en fotoelasticidad digital, esta investigación desarrolla un método basado en casos dinámicos donde la descripción y clasificación del comportamiento temporal del color son utilizados como estrategia clave para la evaluación del campo de esfuerzos en situaciones donde las técnicas convencionales reportan limitaciones. Dentro de los procesos realizados en este trabajo, inicialmente se presenta una conceptualización del campo de esfuerzos en estructuras cargadas, su relación con las propiedades ópticas birrefringentes, y los parámetros que intervienen en la formación de las imágenes con franjas de color. Con ello un repositorio híbrido de imágenes es generado. Posterior a la generación de las imágenes, una estrategia basada en la extracción, selección y clasificación de características es implementada teniendo en cuenta métodos convencionales, la longitud de arco y el conocimiento previo del comportamiento temporal del color dependiendo de las categorías de esfuerzos a la que se asocia. Los resultados demuestran que el método de clasificación de las dinámicas del color presenta mejor desempeño que los métodos convencionales seleccionados y sus derivaciones híbridas propuestas para su mejoramiento. |
publishDate |
2020 |
dc.date.accessioned.spa.fl_str_mv |
2020-08-24T19:08:01Z |
dc.date.available.spa.fl_str_mv |
2020-08-24T19:08:01Z |
dc.date.issued.spa.fl_str_mv |
2020-07-30 |
dc.type.spa.fl_str_mv |
Documento de trabajo |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/workingPaper |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_8042 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/WP |
format |
http://purl.org/coar/resource_type/c_8042 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/78194 |
url |
https://repositorio.unal.edu.co/handle/unal/78194 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Briñez-de León, J. C., Restrepo-Martínez, A., & Branch-Bedoya, J. W. (2019). Computational analysis of Bayer colour filter arrays and demosaicking algorithms in digital photoelasticity. Optics and Lasers in Engineering, 122, 195-208. Toro, H. F., Briñez-de León, J. C., Martinez, A. R., & Bedoya, J. W. B. (2018). Fringe patterns recognition in digital photoelasticity images using texture features and multispectral wavelength analysis. Optical Engineering, 57(9), 093105. Briñez-de León, J. C., Alejandro Restrepo Martínez, John W. Branch, (2018). Computational hybrid phase shifting technique applied to digital photoelasticity, In Optik - International Journal for Light and Electron Optics, Volume 157, Pages 287-297, ISSN 0030-4026 Pérez, U., Camilo, J., Motta, G. C., Briñez-de León, J. C., & Restrepo-Martínez, A. (2017). Validación del uso de fotoelasticidad como herramienta para los cursos de Mecánica de Sólidos. Revista EIA, 14(28), 117-131 Briñez-de León, J. C.; Fandiño Toro, Hermes A; Restrepo Martínez, Alejandro; Branch Bedoya, John W., (2017). Análisis de resolución en imágenes de fotoelasticidad: caso carga dinámica. Visión Electrónica. Vol 1. No. 1, Universidad Distrital Francisco José Caldas Fandiño Toro, Hermes A; Briñez-de León, J. C.; Restrepo Martínez, Alejandro; Branch Bedoya, John W., (2017). Análisis de campos de esfuerzos utilizando fotoelasticidad visible e infrarroja. Visión Electrónica. Vol 1. No. 1, Universidad Distrital Francisco José Caldas Briñez-de León, J. C., Alejandro Restrepo, John W. Branch y Carlos Madrigal. Desenvolvimiento de fase RGB aplicado a secuencias de imágenes de fotoelasticidad capturadas de la tracción de películas plásticas. XIV Encuentro Nacional De Óptica V Conferencia Andina y del Caribe En Óptica y sus Aplicaciones ENO - CANCOA 2015. Cali - Colombia. 16-20 de Noviembre de 2015 Briñez-de León, J. C., Alejandro Restrepo, John W. Branch. Evaluación Temporal de los Ordenes de Franjas de Color Utilizando Análisis de Saturación en Secuencias de Imágenes de Fotoelasticidad. Décimo segundo Congreso Iberoamericano de Ingeniería Mecánica (CIBIM XII- 2015), Guayaquil-Ecuador. Noviembre 10-13 de 2015 Fernando Melendez, Briñez-de León, J. C., Alejandro Restrepo, John W. Branch. Identificación de variaciones del efecto de la temperatura en la deformación de películas plásticas analizando el comportamiento temporal de la fotoelasticidad. XIV Encuentro Nacional De Óptica V Conferencia Andina y del Caribe En Óptica y sus Aplicaciones ENO - CANCOA 2015. Cali- Colombia. 16-20 de Noviembre de 2015 Briñez-de León, J. C., A. R. Martínez and J. W. B. Bedoya, "High stress concentration analysis using RGB intensity changes in dynamic photoelasticity videos," 2016 XXI Symposium on Signal Processing, Images and Artificial Vision (STSIVA), Bucaramanga, 2016, pp. 1-7.doi: 10.1109/STSIVA.2016.7743324 Briñez-de León, J. C., Alejandro Restrepo M.; John W. Branch; Time-space analysis in photoelasticity images using recurrent neural networks to detect zones with stress concentration. Proc. SPIE 9971, Applications of Digital Image Processing XXXIX, 99712P (September 28, 2016); doi:10.1117/12.2237373 Briñez-de León, J. C., Hermes Alexander Fandiño-Toro, Alejandro Restrepo-Martínez, John W. Branch. Evaluación de la pérdida de resolución en imágenes de fotoelasticidad debido al incremento de la carga. VIII Congreso Internacional de Ingeniería Mecánica y Mecatrónica y IV de Materiales, Energía y Medioambiente, Medellín, Colombia. 2017/4/26 Briñez-de León, J. C., D. A. Patiño Cortes, A. Restrepo Martínez, and J. W. Branch Bedoya, "Computational Detection of Salient Information to Identify High Stress and Ambiguity Regions in Digital Photoelasticity Images," in Imaging and Applied Optics 2017 (3D, AIO, COSI, IS, MATH, pcAOP), OSA Technical Digest (online) (Optical Society of America, 2017), paper IM4E.2 Briñez-de León, J. C., Alejandro Restrepo M., John W. Branch, "Computational reduction of the image sets required in conventional phase shifting methods applied to digital photoelasticity" Proc. SPIE 10395, Optics and Photonics for Information Processing XI, 103950K (24 August 2017); doi: 10.1117/12.2273431 Hermes Fandiño Toro, Briñez-de León, J. C., Alejandro Restrepo Martínez, John W. Branch Bedoya, "Texture analysis integrated to infrared light sources for identifying high fringe concentrations in digital photoelasticity," Proc. SPIE 10396, Applications of Digital Image Processing XL, 103962D (19 September 2017); doi: 10.1117/12.2273258 Juan Camilo Urango Pérez, Guillermo Carmen Motta, Briñez-de León, J. C., Alejandro Restrepo Martinez. Validation of the photoelasticity method as a tool for the enhancement of learning and design processes in solid mechanics. Congreso Internacional de Formación y Modelación en Ciencias Básicas. Universidad de Medellín. 2017. Página 217. ISBN-ebook: 978-958-8992-46-7 Briñez-de León, J. C., H. A. Fandiño Toro, A. Restrepo M, and J. W. Branch, "Bayer and demosaicking effect for imaging the stress field in digital photoelasticity," in Imaging and Applied Optics 2018 (3D, AO, AIO, COSI, DH, IS, LACSEA, LS&C, MATH, pcAOP), OSA Technical Digest (Optical Society of America, 2018), paper IW2B.3. Briñez-de León, J. C., Fandiño, H. A., Restrepo, A., & Branch, J. W. (2018, September). Computational analysis of stress map variations by industrial light sources and load additions in digital photoelasticity. In Optics and Photonics for Information Processing XII (Vol. 10751, p. 107510G). International Society for Optics and Photonics H. F. Toro, Briñez-de León, J. C., A. Restrepo Martínez, and J. W. Branch Bedoya, "Relevance analysis for texture descriptors in studies of dynamic photoelasticity," in Imaging and Applied Optics 2018 (3D, AO, AIO, COSI, DH, IS, LACSEA, LS&C, MATH, pcAOP), OSA Technical Digest (Optical Society of America, 2018), paper JM4A.37 Briñez-de León, J. C., Martínez, A. R., & Bedoya, J. W. B. (2019, June). Fast Fourier Transform as Color Variation Descriptor for Imaging the Stress Field from Photoelasticity Videos. In Imaging Systems and Applications (pp. JW2A-46). Optical Society of America Toro, H. F., Briñez-de León, J. C., RestrepoMartínez, A., & Branch, J. W. (2019, June). Texture analysis for evaluating the Bayer and demosaicking effects in photoelasticity images. In Computational Optical Sensing and Imaging (pp. JW2A-50). Optical Society of America Restrepo-Martinez, A., & Briñez-de León, J. C., (2019, September). Dynamic color descriptor based Frenet-Serret to classify stress zones from pixel variations recorded in photoelasticity videos. In Optics and Photonics for Information Processing XIII (Vol. 11136, p. 111360G). International Society for Optics and Photonics Briñez-de León, J. C., Mery, D., Restrepo, A., & Branch, J. W. (2019, September). One-dimensional local binary pattern based color descriptor to classify stress values from photoelasticity videos. In Optics and Photonics for Information Processing XIII (Vol. 11136, p. 1113607). International Society for Optics and Photonics. H. J. Jiménez, “Comportamiento mecánico y microestructural de la aleación AlMgSi para conductores eléctricos,” Rev. UIS Ing., vol. 18, no. 2, pp. 199–211, 2019. S. Sazesh, A. Ghassemi, R. Ebrahimi, and M. Khodaei, “Experimental and Numerical Analysis of Titanium/HA FGM for Dental Implantation,” Int. J. Adv. Des. Manuf. Technol., vol. 10, no. 1, pp. 57–74, 2017. K. Ramesh, “Experimental Stress Analysis,” J. Appl. Mech., vol. 33, no. 1, p. 237, 2011. M. Akay and N. Aslan, “Numerical and experimental stress analysis of a polymeric composite hip joint prosthesis,” J. Biomed. Mater. Res., vol. 31, no. 2, pp. 167–182, 1996. J. F. Doyle, Modern Experimental Stress Analysis: Completing the Solution of Partially Specified Problems. 2005. K. Ramesh, T. Kasimayan, and B. Neethi Simon, “Digital photoelasticity - A comprehensive review,” J. Strain Anal. Eng. Des., vol. 46, no. 4, pp. 245–266, 2011. J. C. Briñez, A. Restrepo, and F. López, “Métricas de similitud aplicadas para el análisis de imágenes de fotoelasticidad,” Dyna, vol. 80, no. 179, pp. 42–50, 2013. J. C. Ye, Y. Han, and E. Cha, “Deep convolutional framelets: A general deep learning framework for inverse problems,” SIAM J. Imaging Sci., vol. 11, no. 2, pp. 991–1048, 2018. K. Jin, M. McCann, E. Froustey, and M. Unser, “Deep convolutional neural network for inverse problems in imaging,” IEEE Trans. iIage Process., vol. 26, no. 9, pp. 4509–4522, 2017. R. Montanini, M. Scafidi, G. Staiti, A. Marcianò, L. D’Acquisto, and G. Oteri, “Misfit evaluation of dental implant-supported metal frameworks manufactured with different techniques: Photoelastic and strain gauge measurements,” J. Eng. Med., vol. 230, no. 12, pp. 1106–1116, 2016. C. C and E. Gabrielli, “Photoelasticity and DIC as optical techniques for monitoring masonry specimens under mechanical loads,” J. Phys. Conf. Ser., vol. 778, no. 1, pp. 1–14, 2017. F. C. Li and A. Kishen, “Deciphering dentin tissue biomechanics using digital moiré interferometry: A narrative review,” Opt. Lasers Eng., vol. 107, no. March, pp. 273–280, 2018. S. Yoneyama and S. Arikawa, “Instantaneous phase-stepping interferometry based on a pixelated micro-polarizer array,” Theor. Appl. Mech. Lett., vol. 6, no. 4, pp. 162–166, 2016. C. S. Narayanamurthy, G. Pedrini, and W. Osten, “Digital holographic photoelasticity,” Appl. Opt., vol. 56, no. 13, pp. F213–F217, 2017. R. Subramanyam and K. Ramesh, “Photoelastic study on the effect of flow induced residual stresses on fracture parameters,” Theor. Appl. Fract. Mech., vol. 85, pp. 320–327, 2016. T. Nikova and E. Stoykova, “Design of a photoelastic measurement of principal stresses by a phase-shifting method,” Phys. Scr., vol. T162, no. January, pp. 1–5, 2014. S. Alsiya, C. J. Lekshmi, B. P. J. Priya, and R. C. Mehta, “Image processing algorithm for fringe analysis in photoelasticity,” Sch. J. Eng. Technol., vol. 4, no. 7, pp. 325–328, 2016. J. A. Quiroga and J. A. Gómez-Pedrero, “Application of principal component analysis in phase-shifting photoelasticity,” Opt. Express, vol. 24, no. 6, p. 5984, 2016. D. Mishra, K. Muralidhar, and P. Munshi, “Performance evaluation of fringe thinning algorithms for interferometric tomography,” Opt. Lasers Eng., vol. 30, no. 3–4, pp. 229–249, 1998. J. Carazo-Alvarez, S. J. Haake, and E. A. Patterson, “Completely automated photoelastic fringe analysis,” Opt. Lasers Eng., vol. 21, no. 3, pp. 133–149, 1994. W. Shang, X. Ji, and X. Yang, “Study on several problems of automatic full-field isoclinic parameter measurement by digital phase shifting photoelasticity,” Optik., vol. 126, no. 19, pp. 1981–1985, 2015. M. Ramji and K. Ramesh, “Whole field evaluation of stress components in digital photoelasticity-Issues, implementation and application,” Opt. Lasers Eng., vol. 46, no. 3, pp. 257–271, 2008. M. Ramji and K. Ramesh, “A new six-step phase shifting technique using mixed-polariscope in digital photoelasticity,” Key Eng. Mater., vol. 326–328, pp. 35–38, 2009. A. Ajovalasit, S. Barone, and G. Petrucci, “A method for reducing the influence of quarter-wave plate errors in phase stepping photoelasticity,” J. Strain Anal. Eng. Des., vol. 33, no. 3, pp. 207–216, 2002. M. Solaguren-Beascoa Fernández, “Data Acquisition Techniques in Photoelasticity,” Exp. Tech., vol. 35, no. 6, pp. 71–79, 2011. P. Magalhães, F. Vieira, C. Magalhães, J. Ribeiro, and I. Rios, “Numerical method to digital photoelasticity using plane polariscope,” Opt. Express, vol. 24, no. 12, p. 12617, 2016. A. Ajovalasit, G. Petrucci, and M. Scafidi, “Measurement of edge residual stresses in glass by the phase-shifting method,” Opt. Lasers Eng., vol. 49, no. 5, pp. 652–657, 2011. J. R. Lesniak, M. J. Zickel, C. S. Welch, and D. F. Johnson, “An innovative polariscope for photoelastic stress analysis,” Proc. Sem Spring Conf. Exp. Mech., pp. 219–224, 1997. S. Yoneyama and K. Moriwaki, “Simultaneous observation of phase-stepped photoelastic fringes using a pixelated microretarder array,” Opt. Eng., vol. 45, no. 8, p. 083604, 2006. E. Compain and B. Drevillon, “High-frequency modulation of the four states of polarization of light with a single phase modulator,” Rev. Sci. Instrum., vol. 69, no. 4, pp. 1574–1580, 1998. S. Sircar and K. Bhattacharya, “Measurement of birefringence using polarization phase-shifting Mach–Zehnder interferometer,” Opt. Eng., vol. 54, no. 11, p. 113112, 2015. K. Ashokan and K. Ramesh, “A novel approach for ambiguity removal in isochromatic phasemap in digital photoelasticity,” Meas. Sci. Technol., vol. 17, no. 11, pp. 2891–2896, 2006. M. Ramji and K. Ramesh, “Adaptive quality guided phase unwrapping algorithm for whole-field digital photoelastic parameter estimation of complex models,” Strain, vol. 46, no. 2, pp. 184–194, 2010. P. Siegmann, F. Díaz-Garrido, and E. A. Patterson, “Robust approach to regularize an isochromatic fringe map,” Appl. Opt., vol. 48, no. 22, p. E24, 2009. P. Pinit, “Automated Detection of Singularities from Orientation Map of Isoclinics in,” 21st Conf. Mech. Eng. Netw. Thail., no. October, 2007. K. Ramesh, M. P. Hariprasad, and V. Ramakrishnan, “Robust multidirectional smoothing of isoclinic parameter in digital photoelasticity,” Opt. Eng., vol. 54, no. 8, p. 081205, 2015. C. Buckberry and D. Towers, “New approaches to the full-field analysis of photoelastic stress patterns,” Opt. Lasers Eng., vol. 24, no. 5–6, pp. 415–428, 1996. M.-J. Huang, “Isoclinic ambiguity unwrapping of circular ring under diametric dompression,” ICEM 14 – 14th Int. Conf. Exp. Mech., vol. 6, p. 32002, 2010. J. Wu and M. Huang, “Isochromatic photoelastic phase map unwrapping: temporal versus spatial approach,” Opt. Eng., vol. 54, no. 8, p. 081207, 2015. K. Ramesh and D. K. Tamrakar, “Improved determination of retardation in digital photoelasticity by load stepping,” Opt. Lasers Eng., vol. 33, no. 6, pp. 387–400, 2000. A. D. Nurse, “Load-stepping photoelasticity: New developments using temporal phase unwrapping,” Opt. Lasers Eng., vol. 38, no. 1–2, pp. 57–70, 2002. V. Ramakrishnan and K. Ramesh, “Scanning schemes in white light Photoelasticity – Part I: Critical assessment of existing schemes,” Opt. Lasers Eng., vol. 92, pp. 129–140, 2017. V. Ramakrishnan and K. Ramesh, “Scanning schemes in white light photoelasticity – Part II: Novel fringe resolution guided scanning scheme,” Opt. Lasers Eng., vol. 92, pp. 141–149, 2017. M. P. Haripras and K. Ramesh, “Analysis of contact zones from whole field isochromatics using reflection photoelasticity,” Opt. Lasers Eng., vol. 105, no. September 2017, pp. 86–92, 2018. K. Ramesh and A. Pandey, “An improved normalization technique for white light photoelasticity,” Opt. Lasers Eng., vol. 109, no. February, pp. 7–16, 2018. B. N. Simon, T. Kasimayan, and K. Ramesh, “The influence of ambient illumination on colour adaptation in three fringe photoelasticity,” Opt. Lasers Eng., vol. 49, no. 2, pp. 258–264, 2011. K. Ramesh, M. P. Hariprasad, and S. Bhuvanewari, “Digital photoelastic analysis applied to implant dentistry,” Opt. Lasers Eng., vol. 87, pp. 204–213, 2016. A. Pandey and K. Ramesh, “Development of a new normalization technique for twelve fringe photoelasticity (TFP),” Conf. Proc. Soc. Exp. Mech. Ser., vol. 12, pp. 177–180, 2019. J. A. Quiroga, M. Servin, and J. L. Marroquin, “Regularized phase tracking technique for demodulation of isochromatics from a single tricolour image,” Meas. Sci. Technol., vol. 13, no. 1, pp. 132–140, 2002. G. S. Grewal and V. N. Dubey, “Inverse problem of photoelastic fringe mapping using neural networks,” Meas. Sci. Technol., vol. 18, no. 5, pp. 1361–1366, 2007. L. Roy and A. J. Rosakis, “An experimental study of impact-induced failure events in homogeneous layered materials using dynamic photoelasticity and high-speed photography,” Opt. Lasers Eng., vol. 40, no. 4, pp. 263–288, 2003. W. C. Wang and Y. H. Tsai, “Digital dynamic photoelastic and numerical stress analyses of a strip,” J. Vib. Control, vol. 12, no. 8, pp. 927–938, 2006. A. Asundi, M. R. Sajan, and L. Tong, “Dynamic photoelasticity using TDI imaging,” Opt. Lasers Eng., vol. 38, no. 1–2, pp. 3–16, 2002. F. Huang and A. Sugimoto, Image and Video Technology – PSIVT 2013 Workshops, no. October. 2013. L. Wang, Y. Ju, H. Xie, G. Ma, L. Mao, and K. He, “The mechanical and photoelastic properties of 3D printable stress-visualized materials,” Sci. Rep., vol. 7, no. 1, pp. 1–9, 2017. Y. Ju, L. Wang, H. Xie, G. Ma, Z. Zheng, and L. Mao, “Visualization and Transparentization of the Structure and Stress Field of Aggregated Geomaterials Through 3D Printing and Photoelastic Techniques,” Rock Mech. Rock Eng., vol. 50, no. 6, pp. 1383–1407, 2017. A. Ajovalasit, G. Petrucci, and M. Scafidi, “Review of RGB photoelasticity,” Opt. Lasers Eng., vol. 68, pp. 58–73, 2015. Hung, K-M., and C-C. Ma. "Theoretical analysis and digital photoelastic measurement of circular disks subjected to partially distributed compressions." Experimental mechanics 43.2 (2003): 216-224. Voloshin, Arkady S., and C. P. Burger. "Half-fringe photoelasticity: a new approach to whole-field stress analysis." Experimental Mechanics 23.3 (1983): 304-313. Ramesh, K., and D. Sreedhar. "Optically enhanced tiling (OET) in digital fringe pattern analysis." Strain 34.4 (1998): 127-130. Hecker, F. W., and H. Abeln. "Digital Phase-shifting photoelasticity." Optics and the Information Age. Vol. 813. International Society for Optics and Photonics, 1987. Asundi, Anand, Liu Tong, and Chai Gin Boay. "Dynamic phase-shifting photoelasticity." Applied Optics 40.22 (2001): 3654-3658. Su, Xianyu, Anand Krishna Asundi, and M. R. Sajan. "Phase unwrapping in photoelasticity." International Conference on Experimental Mechanics: Advances and Applications. Vol. 2921. International Society for Optics and Photonics, 1997. Ekman, Matthew J., and Andrew D. Nurse. "Completely automated determination of two-dimensional photoelastic parameters using load stepping." Optical Engineering 37 (1998). Surendra, Kamadi Vara Naga, and KR Yogendra Simha. "Digital Image Analysis around isotropic points for photoelastic pattern recognition." Optical Engineering 54.8 (2015): 081209. |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.spa.spa.fl_str_mv |
Acceso abierto |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia Acceso abierto http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
273 |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.program.spa.fl_str_mv |
Medellín - Minas - Doctorado en Ingeniería - Sistemas |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/78194/4/88032810.2020.pdf https://repositorio.unal.edu.co/bitstream/unal/78194/5/license.txt https://repositorio.unal.edu.co/bitstream/unal/78194/6/license_rdf https://repositorio.unal.edu.co/bitstream/unal/78194/7/88032810.2020.pdf.jpg |
bitstream.checksum.fl_str_mv |
1b3f4adb65f5ce21bccb305f3c1577d1 e2f63a891b6ceb28c3078128251851bf 42fd4ad1e89814f5e4a476b409eb708c f7549fbefb7f0fae74d84a2537f42ed8 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089686240460800 |
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de ColombiaAcceso abiertohttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Restrepo Martínez, Alejandrod8ce0ea8-f2b4-4096-ac42-028d1d34acc8-1Branch Bedoya, John William746e3553-266a-4721-8631-383ff8c51019-1Briñez de león, Juan Carlos64fda68f-2a8a-4ab0-a423-61074c10ec27Universidad Nacional de Colombia - Sede MedellínGIDIA: Grupo de Investigación y Desarrollo en Inteligencia Artificial2020-08-24T19:08:01Z2020-08-24T19:08:01Z2020-07-30https://repositorio.unal.edu.co/handle/unal/78194La evaluación experimental del campo de esfuerzos es de importancia en múltiples áreas de la ingeniería porque describe la respuesta mecánica que exhibe una estructura al ser sometida a cargas de distinta naturaleza. En este campo de trabajo, los estudios de fotoelasticidad digital sobresalen entre otras técnicas por ser no invasivos, de campo completo, y altamente computacionales. No obstante, su implementación reporta limitaciones en términos de las múltiples configuraciones del polariscopio requeridas para adquirir las imágenes, cantidad de subprocesos computacionales, sesgo en zonas de concentración de esfuerzos, desempeños dependientes de la geometría de la estructura, e imposibilidad de identificar puntos isotrópicos y zonas de inconsistencias. Frente a las oportunidades de estudios en fotoelasticidad digital, esta investigación desarrolla un método basado en casos dinámicos donde la descripción y clasificación del comportamiento temporal del color son utilizados como estrategia clave para la evaluación del campo de esfuerzos en situaciones donde las técnicas convencionales reportan limitaciones. Dentro de los procesos realizados en este trabajo, inicialmente se presenta una conceptualización del campo de esfuerzos en estructuras cargadas, su relación con las propiedades ópticas birrefringentes, y los parámetros que intervienen en la formación de las imágenes con franjas de color. Con ello un repositorio híbrido de imágenes es generado. Posterior a la generación de las imágenes, una estrategia basada en la extracción, selección y clasificación de características es implementada teniendo en cuenta métodos convencionales, la longitud de arco y el conocimiento previo del comportamiento temporal del color dependiendo de las categorías de esfuerzos a la que se asocia. Los resultados demuestran que el método de clasificación de las dinámicas del color presenta mejor desempeño que los métodos convencionales seleccionados y sus derivaciones híbridas propuestas para su mejoramiento.Evaluating the stress field is an important task in multiple engineering areas because it describes the mechanical response that a structure resist under load application. In this study field, digital photoelasticity stand out among other techniques for being non-invasive, full-field, and highly computational. However, its application reports drawbacks in terms of the multiple polariscope configurations it requires to acquire the images, number of computational procedures, lost information in stress concentration zones, performance that dependent on the structure geometry, and the impossibility of identifying isotropic points and inconsistency zones. Taking advantages of the research opportunities in digital photoelasticity, this work develops a method for evaluating the stress information in dynamic cases. Here, describing and classifying the temporal behavior of color in photoelasticity image sequences are used as a key strategy for the evaluation of the stress field in situations where conventional techniques report limitations. Into the processes carried out in this work, a conceptualization of the stress field in loaded structures, its relationship with birefringent optical properties, and the parameters involved in the formation of images with color fringes are initially presented. With this a hybrid image repository is generated. After the generation of the images, a strategy based on the extraction, selection and classification of characteristics is implemented considering conventional methods, the arc length and the prior knowledge of the temporal behavior of the color depending on the stress categories to which they are associated to. The results demonstrate that the new method of classifying color dynamics presents better performance than the selected conventional methods and their hybrid derivations proposed to improve them.Doctorado273application/pdfspa000 - Ciencias de la computación, información y obras generales::003 - SistemasDigital photoelasticityBirefringenceColor fringe patternsStress fieldColor fringe patternsDigital image sequence processingPattern recognitionComputational hybrid methods.Fotoelasticidad digitalBirrefringenciaPatrones de franjas de colorCampo de esfuerzosProcesamiento digital de secuencias de imágenesReconocimiento de patronesMétodos híbridos computacionales.Evaluación del campo de esfuerzos mediante el análisis, descripción y clasificación de la dinámica temporal de secuencias de imágenes de fotoelasticidadStress field evaluation by the analysis, description, and classification of temporal dynamics in photoelasticity image sequencesDocumento de trabajoinfo:eu-repo/semantics/workingPaperinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_8042Texthttp://purl.org/redcol/resource_type/WPMedellín - Minas - Doctorado en Ingeniería - SistemasUniversidad Nacional de Colombia - Sede MedellínBriñez-de León, J. C., Restrepo-Martínez, A., & Branch-Bedoya, J. W. (2019). Computational analysis of Bayer colour filter arrays and demosaicking algorithms in digital photoelasticity. Optics and Lasers in Engineering, 122, 195-208.Toro, H. F., Briñez-de León, J. C., Martinez, A. R., & Bedoya, J. W. B. (2018). Fringe patterns recognition in digital photoelasticity images using texture features and multispectral wavelength analysis. Optical Engineering, 57(9), 093105.Briñez-de León, J. C., Alejandro Restrepo Martínez, John W. Branch, (2018). Computational hybrid phase shifting technique applied to digital photoelasticity, In Optik - International Journal for Light and Electron Optics, Volume 157, Pages 287-297, ISSN 0030-4026Pérez, U., Camilo, J., Motta, G. C., Briñez-de León, J. C., & Restrepo-Martínez, A. (2017). Validación del uso de fotoelasticidad como herramienta para los cursos de Mecánica de Sólidos. Revista EIA, 14(28), 117-131Briñez-de León, J. C.; Fandiño Toro, Hermes A; Restrepo Martínez, Alejandro; Branch Bedoya, John W., (2017). Análisis de resolución en imágenes de fotoelasticidad: caso carga dinámica. Visión Electrónica. Vol 1. No. 1, Universidad Distrital Francisco José CaldasFandiño Toro, Hermes A; Briñez-de León, J. C.; Restrepo Martínez, Alejandro; Branch Bedoya, John W., (2017). Análisis de campos de esfuerzos utilizando fotoelasticidad visible e infrarroja. Visión Electrónica. Vol 1. No. 1, Universidad Distrital Francisco José CaldasBriñez-de León, J. C., Alejandro Restrepo, John W. Branch y Carlos Madrigal. Desenvolvimiento de fase RGB aplicado a secuencias de imágenes de fotoelasticidad capturadas de la tracción de películas plásticas. XIV Encuentro Nacional De Óptica V Conferencia Andina y del Caribe En Óptica y sus Aplicaciones ENO - CANCOA 2015. Cali - Colombia. 16-20 de Noviembre de 2015Briñez-de León, J. C., Alejandro Restrepo, John W. Branch. Evaluación Temporal de los Ordenes de Franjas de Color Utilizando Análisis de Saturación en Secuencias de Imágenes de Fotoelasticidad. Décimo segundo Congreso Iberoamericano de Ingeniería Mecánica (CIBIM XII- 2015), Guayaquil-Ecuador. Noviembre 10-13 de 2015Fernando Melendez, Briñez-de León, J. C., Alejandro Restrepo, John W. Branch. Identificación de variaciones del efecto de la temperatura en la deformación de películas plásticas analizando el comportamiento temporal de la fotoelasticidad. XIV Encuentro Nacional De Óptica V Conferencia Andina y del Caribe En Óptica y sus Aplicaciones ENO - CANCOA 2015. Cali- Colombia. 16-20 de Noviembre de 2015Briñez-de León, J. C., A. R. Martínez and J. W. B. Bedoya, "High stress concentration analysis using RGB intensity changes in dynamic photoelasticity videos," 2016 XXI Symposium on Signal Processing, Images and Artificial Vision (STSIVA), Bucaramanga, 2016, pp. 1-7.doi: 10.1109/STSIVA.2016.7743324Briñez-de León, J. C., Alejandro Restrepo M.; John W. Branch; Time-space analysis in photoelasticity images using recurrent neural networks to detect zones with stress concentration. Proc. SPIE 9971, Applications of Digital Image Processing XXXIX, 99712P (September 28, 2016); doi:10.1117/12.2237373Briñez-de León, J. C., Hermes Alexander Fandiño-Toro, Alejandro Restrepo-Martínez, John W. Branch. Evaluación de la pérdida de resolución en imágenes de fotoelasticidad debido al incremento de la carga. VIII Congreso Internacional de Ingeniería Mecánica y Mecatrónica y IV de Materiales, Energía y Medioambiente, Medellín, Colombia. 2017/4/26Briñez-de León, J. C., D. A. Patiño Cortes, A. Restrepo Martínez, and J. W. Branch Bedoya, "Computational Detection of Salient Information to Identify High Stress and Ambiguity Regions in Digital Photoelasticity Images," in Imaging and Applied Optics 2017 (3D, AIO, COSI, IS, MATH, pcAOP), OSA Technical Digest (online) (Optical Society of America, 2017), paper IM4E.2Briñez-de León, J. C., Alejandro Restrepo M., John W. Branch, "Computational reduction of the image sets required in conventional phase shifting methods applied to digital photoelasticity" Proc. SPIE 10395, Optics and Photonics for Information Processing XI, 103950K (24 August 2017); doi: 10.1117/12.2273431Hermes Fandiño Toro, Briñez-de León, J. C., Alejandro Restrepo Martínez, John W. Branch Bedoya, "Texture analysis integrated to infrared light sources for identifying high fringe concentrations in digital photoelasticity," Proc. SPIE 10396, Applications of Digital Image Processing XL, 103962D (19 September 2017); doi: 10.1117/12.2273258Juan Camilo Urango Pérez, Guillermo Carmen Motta, Briñez-de León, J. C., Alejandro Restrepo Martinez. Validation of the photoelasticity method as a tool for the enhancement of learning and design processes in solid mechanics. Congreso Internacional de Formación y Modelación en Ciencias Básicas. Universidad de Medellín. 2017. Página 217. ISBN-ebook: 978-958-8992-46-7Briñez-de León, J. C., H. A. Fandiño Toro, A. Restrepo M, and J. W. Branch, "Bayer and demosaicking effect for imaging the stress field in digital photoelasticity," in Imaging and Applied Optics 2018 (3D, AO, AIO, COSI, DH, IS, LACSEA, LS&C, MATH, pcAOP), OSA Technical Digest (Optical Society of America, 2018), paper IW2B.3.Briñez-de León, J. C., Fandiño, H. A., Restrepo, A., & Branch, J. W. (2018, September). Computational analysis of stress map variations by industrial light sources and load additions in digital photoelasticity. In Optics and Photonics for Information Processing XII (Vol. 10751, p. 107510G). International Society for Optics and PhotonicsH. F. Toro, Briñez-de León, J. C., A. Restrepo Martínez, and J. W. Branch Bedoya, "Relevance analysis for texture descriptors in studies of dynamic photoelasticity," in Imaging and Applied Optics 2018 (3D, AO, AIO, COSI, DH, IS, LACSEA, LS&C, MATH, pcAOP), OSA Technical Digest (Optical Society of America, 2018), paper JM4A.37Briñez-de León, J. C., Martínez, A. R., & Bedoya, J. W. B. (2019, June). Fast Fourier Transform as Color Variation Descriptor for Imaging the Stress Field from Photoelasticity Videos. In Imaging Systems and Applications (pp. JW2A-46). Optical Society of AmericaToro, H. F., Briñez-de León, J. C., RestrepoMartínez, A., & Branch, J. W. (2019, June). Texture analysis for evaluating the Bayer and demosaicking effects in photoelasticity images. In Computational Optical Sensing and Imaging (pp. JW2A-50). Optical Society of AmericaRestrepo-Martinez, A., & Briñez-de León, J. C., (2019, September). Dynamic color descriptor based Frenet-Serret to classify stress zones from pixel variations recorded in photoelasticity videos. In Optics and Photonics for Information Processing XIII (Vol. 11136, p. 111360G). International Society for Optics and PhotonicsBriñez-de León, J. C., Mery, D., Restrepo, A., & Branch, J. W. (2019, September). One-dimensional local binary pattern based color descriptor to classify stress values from photoelasticity videos. In Optics and Photonics for Information Processing XIII (Vol. 11136, p. 1113607). International Society for Optics and Photonics.H. J. Jiménez, “Comportamiento mecánico y microestructural de la aleación AlMgSi para conductores eléctricos,” Rev. UIS Ing., vol. 18, no. 2, pp. 199–211, 2019.S. Sazesh, A. Ghassemi, R. Ebrahimi, and M. Khodaei, “Experimental and Numerical Analysis of Titanium/HA FGM for Dental Implantation,” Int. J. Adv. Des. Manuf. Technol., vol. 10, no. 1, pp. 57–74, 2017.K. Ramesh, “Experimental Stress Analysis,” J. Appl. Mech., vol. 33, no. 1, p. 237, 2011.M. Akay and N. Aslan, “Numerical and experimental stress analysis of a polymeric composite hip joint prosthesis,” J. Biomed. Mater. Res., vol. 31, no. 2, pp. 167–182, 1996.J. F. Doyle, Modern Experimental Stress Analysis: Completing the Solution of Partially Specified Problems. 2005.K. Ramesh, T. Kasimayan, and B. Neethi Simon, “Digital photoelasticity - A comprehensive review,” J. Strain Anal. Eng. Des., vol. 46, no. 4, pp. 245–266, 2011.J. C. Briñez, A. Restrepo, and F. López, “Métricas de similitud aplicadas para el análisis de imágenes de fotoelasticidad,” Dyna, vol. 80, no. 179, pp. 42–50, 2013.J. C. Ye, Y. Han, and E. Cha, “Deep convolutional framelets: A general deep learning framework for inverse problems,” SIAM J. Imaging Sci., vol. 11, no. 2, pp. 991–1048, 2018.K. Jin, M. McCann, E. Froustey, and M. Unser, “Deep convolutional neural network for inverse problems in imaging,” IEEE Trans. iIage Process., vol. 26, no. 9, pp. 4509–4522, 2017.R. Montanini, M. Scafidi, G. Staiti, A. Marcianò, L. D’Acquisto, and G. Oteri, “Misfit evaluation of dental implant-supported metal frameworks manufactured with different techniques: Photoelastic and strain gauge measurements,” J. Eng. Med., vol. 230, no. 12, pp. 1106–1116, 2016.C. C and E. Gabrielli, “Photoelasticity and DIC as optical techniques for monitoring masonry specimens under mechanical loads,” J. Phys. Conf. Ser., vol. 778, no. 1, pp. 1–14, 2017.F. C. Li and A. Kishen, “Deciphering dentin tissue biomechanics using digital moiré interferometry: A narrative review,” Opt. Lasers Eng., vol. 107, no. March, pp. 273–280, 2018.S. Yoneyama and S. Arikawa, “Instantaneous phase-stepping interferometry based on a pixelated micro-polarizer array,” Theor. Appl. Mech. Lett., vol. 6, no. 4, pp. 162–166, 2016.C. S. Narayanamurthy, G. Pedrini, and W. Osten, “Digital holographic photoelasticity,” Appl. Opt., vol. 56, no. 13, pp. F213–F217, 2017.R. Subramanyam and K. Ramesh, “Photoelastic study on the effect of flow induced residual stresses on fracture parameters,” Theor. Appl. Fract. Mech., vol. 85, pp. 320–327, 2016.T. Nikova and E. Stoykova, “Design of a photoelastic measurement of principal stresses by a phase-shifting method,” Phys. Scr., vol. T162, no. January, pp. 1–5, 2014.S. Alsiya, C. J. Lekshmi, B. P. J. Priya, and R. C. Mehta, “Image processing algorithm for fringe analysis in photoelasticity,” Sch. J. Eng. Technol., vol. 4, no. 7, pp. 325–328, 2016.J. A. Quiroga and J. A. Gómez-Pedrero, “Application of principal component analysis in phase-shifting photoelasticity,” Opt. Express, vol. 24, no. 6, p. 5984, 2016.D. Mishra, K. Muralidhar, and P. Munshi, “Performance evaluation of fringe thinning algorithms for interferometric tomography,” Opt. Lasers Eng., vol. 30, no. 3–4, pp. 229–249, 1998.J. Carazo-Alvarez, S. J. Haake, and E. A. Patterson, “Completely automated photoelastic fringe analysis,” Opt. Lasers Eng., vol. 21, no. 3, pp. 133–149, 1994.W. Shang, X. Ji, and X. Yang, “Study on several problems of automatic full-field isoclinic parameter measurement by digital phase shifting photoelasticity,” Optik., vol. 126, no. 19, pp. 1981–1985, 2015.M. Ramji and K. Ramesh, “Whole field evaluation of stress components in digital photoelasticity-Issues, implementation and application,” Opt. Lasers Eng., vol. 46, no. 3, pp. 257–271, 2008.M. Ramji and K. Ramesh, “A new six-step phase shifting technique using mixed-polariscope in digital photoelasticity,” Key Eng. Mater., vol. 326–328, pp. 35–38, 2009.A. Ajovalasit, S. Barone, and G. Petrucci, “A method for reducing the influence of quarter-wave plate errors in phase stepping photoelasticity,” J. Strain Anal. Eng. Des., vol. 33, no. 3, pp. 207–216, 2002.M. Solaguren-Beascoa Fernández, “Data Acquisition Techniques in Photoelasticity,” Exp. Tech., vol. 35, no. 6, pp. 71–79, 2011.P. Magalhães, F. Vieira, C. Magalhães, J. Ribeiro, and I. Rios, “Numerical method to digital photoelasticity using plane polariscope,” Opt. Express, vol. 24, no. 12, p. 12617, 2016.A. Ajovalasit, G. Petrucci, and M. Scafidi, “Measurement of edge residual stresses in glass by the phase-shifting method,” Opt. Lasers Eng., vol. 49, no. 5, pp. 652–657, 2011.J. R. Lesniak, M. J. Zickel, C. S. Welch, and D. F. Johnson, “An innovative polariscope for photoelastic stress analysis,” Proc. Sem Spring Conf. Exp. Mech., pp. 219–224, 1997.S. Yoneyama and K. Moriwaki, “Simultaneous observation of phase-stepped photoelastic fringes using a pixelated microretarder array,” Opt. Eng., vol. 45, no. 8, p. 083604, 2006.E. Compain and B. Drevillon, “High-frequency modulation of the four states of polarization of light with a single phase modulator,” Rev. Sci. Instrum., vol. 69, no. 4, pp. 1574–1580, 1998.S. Sircar and K. Bhattacharya, “Measurement of birefringence using polarization phase-shifting Mach–Zehnder interferometer,” Opt. Eng., vol. 54, no. 11, p. 113112, 2015.K. Ashokan and K. Ramesh, “A novel approach for ambiguity removal in isochromatic phasemap in digital photoelasticity,” Meas. Sci. Technol., vol. 17, no. 11, pp. 2891–2896, 2006.M. Ramji and K. Ramesh, “Adaptive quality guided phase unwrapping algorithm for whole-field digital photoelastic parameter estimation of complex models,” Strain, vol. 46, no. 2, pp. 184–194, 2010.P. Siegmann, F. Díaz-Garrido, and E. A. Patterson, “Robust approach to regularize an isochromatic fringe map,” Appl. Opt., vol. 48, no. 22, p. E24, 2009.P. Pinit, “Automated Detection of Singularities from Orientation Map of Isoclinics in,” 21st Conf. Mech. Eng. Netw. Thail., no. October, 2007.K. Ramesh, M. P. Hariprasad, and V. Ramakrishnan, “Robust multidirectional smoothing of isoclinic parameter in digital photoelasticity,” Opt. Eng., vol. 54, no. 8, p. 081205, 2015.C. Buckberry and D. Towers, “New approaches to the full-field analysis of photoelastic stress patterns,” Opt. Lasers Eng., vol. 24, no. 5–6, pp. 415–428, 1996.M.-J. Huang, “Isoclinic ambiguity unwrapping of circular ring under diametric dompression,” ICEM 14 – 14th Int. Conf. Exp. Mech., vol. 6, p. 32002, 2010.J. Wu and M. Huang, “Isochromatic photoelastic phase map unwrapping: temporal versus spatial approach,” Opt. Eng., vol. 54, no. 8, p. 081207, 2015.K. Ramesh and D. K. Tamrakar, “Improved determination of retardation in digital photoelasticity by load stepping,” Opt. Lasers Eng., vol. 33, no. 6, pp. 387–400, 2000.A. D. Nurse, “Load-stepping photoelasticity: New developments using temporal phase unwrapping,” Opt. Lasers Eng., vol. 38, no. 1–2, pp. 57–70, 2002.V. Ramakrishnan and K. Ramesh, “Scanning schemes in white light Photoelasticity – Part I: Critical assessment of existing schemes,” Opt. Lasers Eng., vol. 92, pp. 129–140, 2017.V. Ramakrishnan and K. Ramesh, “Scanning schemes in white light photoelasticity – Part II: Novel fringe resolution guided scanning scheme,” Opt. Lasers Eng., vol. 92, pp. 141–149, 2017.M. P. Haripras and K. Ramesh, “Analysis of contact zones from whole field isochromatics using reflection photoelasticity,” Opt. Lasers Eng., vol. 105, no. September 2017, pp. 86–92, 2018.K. Ramesh and A. Pandey, “An improved normalization technique for white light photoelasticity,” Opt. Lasers Eng., vol. 109, no. February, pp. 7–16, 2018.B. N. Simon, T. Kasimayan, and K. Ramesh, “The influence of ambient illumination on colour adaptation in three fringe photoelasticity,” Opt. Lasers Eng., vol. 49, no. 2, pp. 258–264, 2011.K. Ramesh, M. P. Hariprasad, and S. Bhuvanewari, “Digital photoelastic analysis applied to implant dentistry,” Opt. Lasers Eng., vol. 87, pp. 204–213, 2016.A. Pandey and K. Ramesh, “Development of a new normalization technique for twelve fringe photoelasticity (TFP),” Conf. Proc. Soc. Exp. Mech. Ser., vol. 12, pp. 177–180, 2019.J. A. Quiroga, M. Servin, and J. L. Marroquin, “Regularized phase tracking technique for demodulation of isochromatics from a single tricolour image,” Meas. Sci. Technol., vol. 13, no. 1, pp. 132–140, 2002.G. S. Grewal and V. N. Dubey, “Inverse problem of photoelastic fringe mapping using neural networks,” Meas. Sci. Technol., vol. 18, no. 5, pp. 1361–1366, 2007.L. Roy and A. J. Rosakis, “An experimental study of impact-induced failure events in homogeneous layered materials using dynamic photoelasticity and high-speed photography,” Opt. Lasers Eng., vol. 40, no. 4, pp. 263–288, 2003.W. C. Wang and Y. H. Tsai, “Digital dynamic photoelastic and numerical stress analyses of a strip,” J. Vib. Control, vol. 12, no. 8, pp. 927–938, 2006.A. Asundi, M. R. Sajan, and L. Tong, “Dynamic photoelasticity using TDI imaging,” Opt. Lasers Eng., vol. 38, no. 1–2, pp. 3–16, 2002.F. Huang and A. Sugimoto, Image and Video Technology – PSIVT 2013 Workshops, no. October. 2013.L. Wang, Y. Ju, H. Xie, G. Ma, L. Mao, and K. He, “The mechanical and photoelastic properties of 3D printable stress-visualized materials,” Sci. Rep., vol. 7, no. 1, pp. 1–9, 2017.Y. Ju, L. Wang, H. Xie, G. Ma, Z. Zheng, and L. Mao, “Visualization and Transparentization of the Structure and Stress Field of Aggregated Geomaterials Through 3D Printing and Photoelastic Techniques,” Rock Mech. Rock Eng., vol. 50, no. 6, pp. 1383–1407, 2017.A. Ajovalasit, G. Petrucci, and M. Scafidi, “Review of RGB photoelasticity,” Opt. Lasers Eng., vol. 68, pp. 58–73, 2015.Hung, K-M., and C-C. Ma. "Theoretical analysis and digital photoelastic measurement of circular disks subjected to partially distributed compressions." Experimental mechanics 43.2 (2003): 216-224.Voloshin, Arkady S., and C. P. Burger. "Half-fringe photoelasticity: a new approach to whole-field stress analysis." Experimental Mechanics 23.3 (1983): 304-313.Ramesh, K., and D. Sreedhar. "Optically enhanced tiling (OET) in digital fringe pattern analysis." Strain 34.4 (1998): 127-130.Hecker, F. W., and H. Abeln. "Digital Phase-shifting photoelasticity." Optics and the Information Age. Vol. 813. International Society for Optics and Photonics, 1987.Asundi, Anand, Liu Tong, and Chai Gin Boay. "Dynamic phase-shifting photoelasticity." Applied Optics 40.22 (2001): 3654-3658.Su, Xianyu, Anand Krishna Asundi, and M. R. Sajan. "Phase unwrapping in photoelasticity." International Conference on Experimental Mechanics: Advances and Applications. Vol. 2921. International Society for Optics and Photonics, 1997.Ekman, Matthew J., and Andrew D. Nurse. "Completely automated determination of two-dimensional photoelastic parameters using load stepping." Optical Engineering 37 (1998).Surendra, Kamadi Vara Naga, and KR Yogendra Simha. "Digital Image Analysis around isotropic points for photoelastic pattern recognition." Optical Engineering 54.8 (2015): 081209.ORIGINAL88032810.2020.pdf88032810.2020.pdfTesis de Doctorado en Ingeniería - Sistemasapplication/pdf12086764https://repositorio.unal.edu.co/bitstream/unal/78194/4/88032810.2020.pdf1b3f4adb65f5ce21bccb305f3c1577d1MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-83895https://repositorio.unal.edu.co/bitstream/unal/78194/5/license.txte2f63a891b6ceb28c3078128251851bfMD55CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.unal.edu.co/bitstream/unal/78194/6/license_rdf42fd4ad1e89814f5e4a476b409eb708cMD56THUMBNAIL88032810.2020.pdf.jpg88032810.2020.pdf.jpgGenerated Thumbnailimage/jpeg5796https://repositorio.unal.edu.co/bitstream/unal/78194/7/88032810.2020.pdf.jpgf7549fbefb7f0fae74d84a2537f42ed8MD57unal/78194oai:repositorio.unal.edu.co:unal/781942024-07-06 23:51:13.647Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCg== |