Evaluación de un vector de transformación en p. fluorescens ibun S1602 para la producción de un copolímero de polihidroxialcanoatos (PHAs) de cadena corta (PHAscl) y cadena media (PHAmcl)

ilustraciones (principalmente a color), diagramas, fotografías

Autores:
Hernández Jirón, Isabel Cristina
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/85280
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/85280
https://repositorio.unal.edu.co/
Palabra clave:
570 - Biología::572 - Bioquímica
Polihidroxialcanoatos
Biopolímeros
Poliésteres
Vectores Genéticos
Pseudomonas fluorescens
Burkholderia
Polyhydroxyalkanoates
Biopolymers
Polyesters
Genetic Vectors
Polyhydroxyalkanoates
PHAs
copolymer
Burkholderia
Pseudomonas
short and medium chain
Polihidroxialcanoatos
PHAs
copolímero
Burkholderia
Pseudomonas
Cadena corta y media
Rights
openAccess
License
Atribución-SinDerivadas 4.0 Internacional
id UNACIONAL2_67280def2d572a799d23e8c7aa42c4a8
oai_identifier_str oai:repositorio.unal.edu.co:unal/85280
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Evaluación de un vector de transformación en p. fluorescens ibun S1602 para la producción de un copolímero de polihidroxialcanoatos (PHAs) de cadena corta (PHAscl) y cadena media (PHAmcl)
dc.title.translated.eng.fl_str_mv Evaluation of a transformation vector in p. fluorescens ibun S1602 for production of a short chain (PHAscl) and medium chain (PHAmcl) polyhydroxyalcanoates (PHAs) copolymer
title Evaluación de un vector de transformación en p. fluorescens ibun S1602 para la producción de un copolímero de polihidroxialcanoatos (PHAs) de cadena corta (PHAscl) y cadena media (PHAmcl)
spellingShingle Evaluación de un vector de transformación en p. fluorescens ibun S1602 para la producción de un copolímero de polihidroxialcanoatos (PHAs) de cadena corta (PHAscl) y cadena media (PHAmcl)
570 - Biología::572 - Bioquímica
Polihidroxialcanoatos
Biopolímeros
Poliésteres
Vectores Genéticos
Pseudomonas fluorescens
Burkholderia
Polyhydroxyalkanoates
Biopolymers
Polyesters
Genetic Vectors
Polyhydroxyalkanoates
PHAs
copolymer
Burkholderia
Pseudomonas
short and medium chain
Polihidroxialcanoatos
PHAs
copolímero
Burkholderia
Pseudomonas
Cadena corta y media
title_short Evaluación de un vector de transformación en p. fluorescens ibun S1602 para la producción de un copolímero de polihidroxialcanoatos (PHAs) de cadena corta (PHAscl) y cadena media (PHAmcl)
title_full Evaluación de un vector de transformación en p. fluorescens ibun S1602 para la producción de un copolímero de polihidroxialcanoatos (PHAs) de cadena corta (PHAscl) y cadena media (PHAmcl)
title_fullStr Evaluación de un vector de transformación en p. fluorescens ibun S1602 para la producción de un copolímero de polihidroxialcanoatos (PHAs) de cadena corta (PHAscl) y cadena media (PHAmcl)
title_full_unstemmed Evaluación de un vector de transformación en p. fluorescens ibun S1602 para la producción de un copolímero de polihidroxialcanoatos (PHAs) de cadena corta (PHAscl) y cadena media (PHAmcl)
title_sort Evaluación de un vector de transformación en p. fluorescens ibun S1602 para la producción de un copolímero de polihidroxialcanoatos (PHAs) de cadena corta (PHAscl) y cadena media (PHAmcl)
dc.creator.fl_str_mv Hernández Jirón, Isabel Cristina
dc.contributor.advisor.spa.fl_str_mv Bernal Morales, José Mauricio
Moreno Sarmiento, Nubia
dc.contributor.author.spa.fl_str_mv Hernández Jirón, Isabel Cristina
dc.contributor.researchgroup.spa.fl_str_mv Bioprocesos y Bioprospección
dc.subject.ddc.spa.fl_str_mv 570 - Biología::572 - Bioquímica
topic 570 - Biología::572 - Bioquímica
Polihidroxialcanoatos
Biopolímeros
Poliésteres
Vectores Genéticos
Pseudomonas fluorescens
Burkholderia
Polyhydroxyalkanoates
Biopolymers
Polyesters
Genetic Vectors
Polyhydroxyalkanoates
PHAs
copolymer
Burkholderia
Pseudomonas
short and medium chain
Polihidroxialcanoatos
PHAs
copolímero
Burkholderia
Pseudomonas
Cadena corta y media
dc.subject.decs.spa.fl_str_mv Polihidroxialcanoatos
Biopolímeros
Poliésteres
Vectores Genéticos
Pseudomonas fluorescens
Burkholderia
dc.subject.decs.eng.fl_str_mv Polyhydroxyalkanoates
Biopolymers
Polyesters
Genetic Vectors
dc.subject.proposal.eng.fl_str_mv Polyhydroxyalkanoates
PHAs
copolymer
Burkholderia
Pseudomonas
short and medium chain
dc.subject.proposal.spa.fl_str_mv Polihidroxialcanoatos
PHAs
copolímero
Burkholderia
Pseudomonas
Cadena corta y media
description ilustraciones (principalmente a color), diagramas, fotografías
publishDate 2023
dc.date.issued.none.fl_str_mv 2023
dc.date.accessioned.none.fl_str_mv 2024-01-15T17:02:40Z
dc.date.available.none.fl_str_mv 2024-01-15T17:02:40Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.spa.fl_str_mv https://repositorio.unal.edu.co/handle/unal/85280
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/85280
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Alvarez-Santullano, N., Villegas, P., Mardones, M. S., Durán, R. E., Donoso, R., González, A., … Seeger, M. (2021). Genome-wide metabolic reconstruction of the synthesis of polyhydroxyalkanoates from sugars and fatty acids by burkholderia sensu lato species. Microorganisms, 9(6). https://doi.org/10.3390/microorganisms9061290
Amitai, G., & Sorek, R. (2012). PanDaTox: A tool for accelerated metabolic engineering. Bioengineered, 3(4), 218–221. https://doi.org/10.4161/bbug.20431
Anjum, A., Zuber, M., Zia, K. M., Noreen, A., Anjum, M. N., & Tabasum, S. (2016). Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: A review of recent advancements. International Journal of Biological Macromolecules, 89, 161–174. https://doi.org/10.1016/j.ijbiomac.2016.04.069
Assal, N., & Lin, M. (2020). PCR procedures to amplify GC-rich DNA sequences of Mycobacterium bovis. BioRxiv, 2020.02.18.953695. https://doi.org/10.1101/2020.02.18.953695
Barbosa, M., Espinosa Hernández, A., Malagón Romero, D., & Moreno Sarmiento, N. (2005). PRODUCCIÓN DE POLI-β POR Ralstonia eutropha ATCC 17697. Universitas Scientiarum, 10(1), 45–54
Becerra Jiménez, M. L. (2013). Producción De Un Polímero Tipo Polihidroxialcanoato (Pha) Empleando Residuos De La Producción De Biodiesel. Revista de Ingeniería, (18), 175–190. https://doi.org/http://dx.doi.org/10.16924%2Friua.v0i18.492
Becerra, S. A. (2014). SELECCIÓN DE MUTANTES HIPERPRODUCTORAS DE POLIHIDROXIALCANOATOS EN LA CEPA Burkholderia cepacia 2G57. UNIVERSIDAD COLEGIO MAYOR DE CUNDINAMARCA
Budde, C. F., Riedel, S. L., Willis, L. B., Rha, C., & Sinskey, A. J. (2011). Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from plant oil by engineered Ralstonia eutropha strains. Applied and Environmental Microbiology, 77(9), 2847–2854. https://doi.org/10.1128/AEM.02429-10
Burdon, K. L. (1946). Fatty Material in Bacteria and Fungi Revealed by Staining Dried, Fixed Slide Preparations. Journal of Bacteriology, 52(6), 665–678. https://doi.org/10.1128/jb.52.6.665-678.1946
Cardona, A., Mora, A., & Marín, M. (2013). Identificación Molecular de Bacterias Productoras de Polihidroxialcanoatos en Subproductos de Lácteos y Caña de Azúcar. Facultad Nacional de Agronomia, 66(2), 7129–7140
Cespedes, L. G., Nahat, R. A. T. P. S., Mendonça, T. T., Tavares, R. R., Oliveira-Filho, E. R., Silva, L. F., … Gomez, J. G. C. (2018). A non-naturally-occurring P(3HB-co-3HAMCL) is produced by recombinant Pseudomonas sp. from an unrelated carbon source. International Journal of Biological Macromolecules, 114, 512–519. https://doi.org/10.1016/j.ijbiomac.2018.03.051
Cha, D., Ha, H. S., & Lee, S. K. (2020). Metabolic engineering of Pseudomonas putida for the production of various types of short-chain-length polyhydroxyalkanoates from levulinic acid. Bioresource Technology, 309(January), 123332. https://doi.org/10.1016/j.biortech.2020.123332
Chek, M. F., Hiroe, A., Hakoshima, T., Sudesh, K., & Taguchi, S. (2019). PHA synthase (PhaC): interpreting the functions of bioplastic-producing enzyme from a structural perspective. Applied Microbiology and Biotechnology, 103(3), 1131–1141. https://doi.org/10.1007/s00253-018-9538-8
Chen, G. Q., & Jiang, X. R. (2017). Engineering bacteria for enhanced polyhydroxyalkanoates (PHA) biosynthesis. Synthetic and Systems Biotechnology, 2(3), 192–197. https://doi.org/10.1016/j.synbio.2017.09.001
Chen, G. Q., Jiang, X. R., & Guo, Y. (2016). Synthetic biology of microbes synthesizing polyhydroxyalkanoates (PHA). Synthetic and Systems Biotechnology, 1(4), 236–242. https://doi.org/10.1016/j.synbio.2016.09.006
Ciesielski, S., Cydzik-Kwiatkowska, A., Pokoj, T., & Klimiuk, E. (2006). Molecular detection and diversity of medium-chain-length polyhydroxyalkanoates-producing bacteria enriched from activated sludge. Journal of Applied Microbiology, 101(1), 190–199. https://doi.org/10.1111/j.1365-2672.2006.02973.x
Conlan, L. H., Thomas, J. J., Thornton, K. C., & Dupureur, C. M. (1999). Modulating restriction endonuclease activities and specificities using neutral detergents. BioTechniques, 27(5), 955–960. https://doi.org/10.2144/99275st02
Daligault, H. E., Davenport, K. W., Minogue, T. D., Bishop-Lilly, K. A., Broomall, S. M., Bruce, D. C., … Johnson, S. L. (2014). Whole-genome assemblies of 56 Burkholderia species. Genome Announcements, 2(6). https://doi.org/10.1128/GENOMEA.01106-14
De Andrade Rodrigues, M. F., Valentin, H. E., Berger, P. A., Tran, M., Asrar, J., Gruys, K. J., & Steinbüchel, A. (2000). Polyhydroxyalkanoate accumulation in Burkholderia sp.: A molecular approach to elucidate the genes involved in the formation of two homopolymers consisting of short-chain-length 3-hydroxyalkanoic acids. Applied Microbiology and Biotechnology, 53(4), 453–460. https://doi.org/10.1007/s002530051641
De Andrade Rodrigues, Maria Filomena, Vicente, E. J., & Steinbüchel, A. (2000). Studies on polyhydroxyalkanoate (PHA) accumulation in a PHA synthase I-negative mutant of Burkholderia cepacia generated by homogenotization. FEMS Microbiology Letters, 193(1), 179–185. https://doi.org/10.1016/S0378-1097(00)00483-3
Dennis, J. J., & Sokol, P. A. (1995). Electrotransformation of Pseudomonas. Methods in Molecular Biology (Clifton, N.J.), 47, 125–133. https://doi.org/10.1385/0-89603-310-4:125
Dorado Pérez, G. (2014). Clonacion del DNA amplificado mediante Pcr. Biotecnología: Marcadores Moleculares, Ingeniería Genética y Transformación, Genómica., 1–22. Retrieved from http://www.uco.es/dptos/bioquimica-biol-mol/
Farell, E. M., & Alexandre, G. (2012). Bovine serum albumin further enhances the effects of organic solvents on increased yield of polymerase chain reaction of GC-rich templates. BMC Research Notes, 5(1), 1. https://doi.org/10.1186/1756-0500-5-257
Flynn, A., Jones, D., Man, E., Shipman, S., & Tung, S. (2002). The Influence of the Size and Number of Digested pBR322 Fragments on the Inhibition of Transformation of E . coli HB101 Cells by the Plasmids pBR322 and p328 . 5. 2(April), 57–67
González García, Y., Meza Contreras, J. C., González Reynoso, O., & Córdova López, J. A. (2013). Síntesis y Biodegradación de Polihidroxialcanoatos: Plásticos de Origen Microbiano. Revista Internacional de Contaminación Ambiental, 29(1), 77–115. Retrieved from http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0188-49992013000100007
Hall, B. G. (2013). Building phylogenetic trees from molecular data with MEGA. Molecular Biology and Evolution, 30(5), 1229–1235. https://doi.org/10.1093/molbev/mst012
Hardjasa, A., Ling, M., Ma, K., & Yu, H. (2010). Investigating the Effects of DMSO on PCR Fidelity Using a Restriction Digest-Based Method. Journal of Experimental Microbiology and Immunology (JEMI), 14(April), 161–164
Jendrossek, D. (2009). Polyhydroxyalkanoate granules are complex subcellular organelles (carbonosomes). Journal of Bacteriology, 191(10), 3195–3202. https://doi.org/10.1128/JB.01723-08
Jeon, J. M., Brigham, C. J., Kim, Y. H., Kim, H. J., Yi, D. H., Kim, H., … Yang, Y. H. (2014). Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (P(HB-co-HHx)) from butyrate using engineered Ralstonia eutropha. Applied Microbiology and Biotechnology, 98(12), 5461–5469. https://doi.org/10.1007/s00253-014-5617
Keenan, T. M., Tanenbaum, S. W., Stipanovic, A. J., & Nakas, J. P. (2004). Production and Characterization of Poly-β-hydroxyalkanoate Copolymers from Burkholderia cepacia Utilizing Xylose and Levulinic Acid. Artificial Cells Blood Substitutes And Immobilization Biotechnologyartif Cells Blood Substit Immobi, (12)
Kim, J., Chang, J. H., Kim, E. J., & Kim, K. J. (2014). Crystal structure of (R)-3-hydroxybutyryl-CoA dehydrogenase PhaB from Ralstonia eutropha. Biochemical and Biophysical Research Communications, 443(3), 783–788. https://doi.org/10.1016/j.bbrc.2013.10.150
Kimelman, A., Levy, A., Sberro, H., Kidron, S., Leavitt, A., Amitai, G., … Sorek, R. (2012). A vast collection of microbial genes that are toxic to bacteria. Genome Research, 22(4), 802–809. https://doi.org/10.1101/gr.133850.111
Kjeldsen, A., Price, M., Lilley, C., Guzniczak, E., & Archer, I. (2019). A Review of Standards for Biodegradable Plastics with support from. In Industrial Biotechnology Innovation Centre IBioIC
Kovach, M. E., Elzer, P. H., Hill, D. S., Robertson, G. T., Farris, M. A., Roop, R. M. 2nd, & Peterson, K. M. (1995). Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene, 166(1), 175–176. https://doi.org/10.1016/0378-1119(95)00584-1
Kovalcik, A., Obruca, S., Fritz, I., & Marova, I. (2019). Polyhydroxyalkanoates: Their Importance and Future. BioResources, 14(2), 2468–2471
Krela, R., Poreba, E., Weglewska, M., Skrzypczak, T., & Lesniewicz, K. (2019). A novel method for cloning of coding sequences of highly toxic proteins. Biochimica et Biophysica Acta - General Subjects, 1863(3), 521–527. https://doi.org/10.1016/j.bbagen.2018.12.010
Lau, N. S., & Sudesh, K. (2012). Revelation of the ability of burkholderia sp. USM (JCM 15050) PHA synthase to polymerize 4-hydroxybutyrate monomer. AMB Express, 2(1), 1–9. https://doi.org/10.1186/2191-0855-2-41
Lindenkamp, N., Volodina, E., & Steinbüchel, A. (2012). Genetically modified strains of Ralstonia eutropha H16 with β- ketothiolase gene deletions for production of copolyesters with defined 3-hydroxyvaleric acid contents. Applied and Environmental Microbiology, 78(15), 5375–5383. https://doi.org/10.1128/AEM.00824-12
Liu, C. H., Chen, H. Y., Chen, Y. L. L., & Sheu, D. S. (2021). The polyhydroxyalkanoate (PHA) synthase 1 of Pseudomonas sp. H9 synthesized a 3-hydroxybutyrate-dominant hybrid of short- and medium-chain-length PHA. Enzyme and Microbial Technology, 143(142), 109719. https://doi.org/10.1016/j.enzmictec.2020.109719
Liu, Y., Feng, Y., Cao, X., Li, X., & Xue, S. (2015). Structure-directed construction of a high-performance version of the enzyme FabG from the photosynthetic microorganism Synechocystis sp. PCC 6803. FEBS Letters, 589(20), 3052–3057. https://doi.org/10.1016/j.febslet.2015.09.001
Lu, J., Tappel, R. C., & Nomura, C. T. (2009). Mini-review: Biosynthesis of poly(hydroxyalkanoates). Polymer Reviews, 49(3), 226–248. https://doi.org/10.1080/15583720903048243
Marchler-Bauer, A., Derbyshire, M. K., Gonzales, N. R., Lu, S., Chitsaz, F., Geer, L. Y., … Bryant, S. H. (2015). CDD: NCBI’s conserved domain database. Nucleic Acids Research, 43(Database issue), D222–D226. https://doi.org/10.1093/NAR/GKU1221
Matsumoto, K., Tanaka, Y., Watanabe, T., Motohashi, R., Ikeda, K., Tobitani, K., … Taguchi, S. (2013). Directed evolution and structural analysis of nadph-dependent acetoacetyl coenzyme A(acetoacetyl-CoA) reductase from ralstonia eutropha reveals two mutations responsible for enhanced kinetics. Applied and Environmental Microbiology, 79(19), 6134–6139. https://doi.org/10.1128/AEM.01768-13
Méndez, D. A. (2016). MODELAMIENTO MATEMÁTICO Y OPTIMIZACIÓN DEL PROCESO DE PRODUCCIÓN DE POLIHIDROXIALCANOATOS EMPLEANDO LA BACTERIA Burkholderia cepacia B27 A PARTIR DE ÁCIDOS GRASOS. Universidad Nacional de Colombia
Mendez, Daniel A., Cabeza, I. O., Moreno, N. C., & Riascos, C. A. M. (2016). Mathematical modelling and scale-up of batch fermentation with burkholderia cepacia B27 using vegetal oil as carbon source to produce polyhydroxyalkanoates. Chemical Engineering Transactions, 49(March), 277–282. https://doi.org/10.3303/CET1649047
Mendez, Daniel Alexander. (2016). Evaluación del proceso de extracción de polihidroxialcanoatos ( PHA ) a partir de Burkholderia cepacia ... (November). https://doi.org/10.15446/agron.colomb.sup.2016n1.58399
Mezzina, M. P., Manoli, M. T., Prieto, M. A., & Nikel, P. I. (2021). Engineering Native and Synthetic Pathways in Pseudomonas putida for the Production of Tailored Polyhydroxyalkanoates. Biotechnology Journal, 16(3). https://doi.org/10.1002/biot.202000165
Montoya, D., Moreno, N., Espinosa, A., Buitrago, G., Aristizábal, F., Bernal, M., & Garcia, I. (2017). Del laboratorio a la industria. Revista Colombiana de Biotecnología., Numero esp, 12–17
Moreno, N., Gutiérrez, I., Malagón, D., Grosso, V., Revelo, D., González, J., … Montoya, D. (2007). Bioprospecting and characterization of poly-β-hydroxyalkanoate (PHAs) producing bacteria isolated from Colombian sugarcane producing areas. African Journal of Biotechnology, 6(13), 1536–1543. Retrieved from www.ajol.info/index.php/ajb/article/view/57660
Możejko-Ciesielska, J., & Kiewisz, R. (2016). Bacterial polyhydroxyalkanoates: Still fabulous? Microbiological Research, 192(2016), 271–282. https://doi.org/10.1016/j.micres.2016.07.010
Mozejko, J., & Ciesielski, S. (2013). Saponified waste palm oil as an attractive renewable resource for mcl-polyhydroxyalkanoate synthesis. Journal of Bioscience and Bioengineering, 116(4), 485–492. https://doi.org/10.1016/j.jbiosc.2013.04.014
Ojumu, T. ., & Solomon, B. . (2004). Production of Polyhydroxyalkanoates , a bacterial biodegradable polymer. African Journal of Biotechnology, 3(1), 18–24
Oliveira-Filho, E. R., Guamán, L. P., Mendonca, T. T., Long, P. F., Taciro, M. K., Gomez, J. G. C., & Silva, L. F. (2019). Production of polyhydroxyalkanoates copolymers by recombinant pseudomonas in plasmid- and Antibiotic-free cultures. Journal of Molecular Microbiology and Biotechnology, 28(5), 225–235. https://doi.org/10.1159/000495752
Pakalapati, H., Chang, C. K., Show, P. L., Arumugasamy, S. K., & Lan, J. C. W. (2018). Development of polyhydroxyalkanoates production from waste feedstocks and applications. Journal of Bioscience and Bioengineering, 126(3), 282–292. https://doi.org/10.1016/j.jbiosc.2018.03.016
Pan, W., Perrotta, J. A., Stipanovic, A. J., Nomura, C. T., & Nakas, J. P. (2012). Production of polyhydroxyalkanoates by Burkholderia cepacia ATCC 17759 using a detoxified sugar maple hemicellulosic hydrolysate. Journal of Industrial Microbiology and Biotechnology, 39(3), 459–469. https://doi.org/10.1007/s10295-011-1040-6
Parra Huertas, S. L., Pérez Casas, M. M., Bernal Morales, M., Suárez Moreno, Z., & Montoya Castaño, D. (2006). Implementación y evaluación de dos métodos deconservación y generación de la base de datos del banco de cepas y genes del Instituto de Biotecnología de la Universidad Nacional de Colombia (IBUN). Nova, 4(5), 39. https://doi.org/10.22490/24629448.346
Philip, S., Keshavarz, T., & Roy, I. (2007). Polyhydroxyalkanoates : biodegradable polymers with a range of applications. Journal OfChemical Technology and Biotechnology, 247(July 2006), 233–247. https://doi.org/10.1002/jctb
Plenderleith, R., Swift, T., & Rimmer, S. (2014). Highly-branched Poly(N-isopropyl acrylamide)s with core-shell morphology below the lower critical solution temperature. J. Mater. Chem. C, 3, 10715–10722. https://doi.org/10.1039/b000000x
Poli, A., Di Donato, P., Abbamondi, G. R., & Nicolaus, B. (2011). Synthesis, Production, and Biotechnological Applications of Exopolysaccharides and Polyhydroxyalkanoates by Archaea. Archaea, 2011, 1–13. https://doi.org/10.1155/2011/693253
Poltronieri, P., & Kumar, P. (2019). Polyhydroxyalkanoates (PHAs) in industrial applications. Handbook of Ecomaterials, 4, 2843–2872. https://doi.org/10.1007/978-3-319-68255-6_70
Rai, R., Keshavarz, T., Roether, J. A., Boccaccini, A. R., & Roy, I. (2011). Medium chain length polyhydroxyalkanoates, promising new biomedical materials for the future. Materials Science and Engineering R: Reports, 72(3), 29–47. https://doi.org/10.1016/j.mser.2010.11.002
Raza, Z. A., Abid, S., & Banat, I. M. (2018). Polyhydroxyalkanoates: Characteristics, production, recent developments and applications. International Biodeterioration and Biodegradation, 126(October 2017), 45–56. https://doi.org/10.1016/j.ibiod.2017.10.001
Rehm, B. H. A., Mitsky, T. A., & Steinbüchel, A. (2001). Role of Fatty Acid de novo Biosynthesis in Polyhydroxyalkanoic Acid (PHA) and Rhamnolipid Synthesis by Pseudomonads: Establishment of the Transacylase (PhaG)-Mediated Pathway for PHA Biosynthesis in Escherichia coli. Applied and Environmental Microbiology, 67(7), 3102–3109. https://doi.org/10.1128/AEM.67.7.3102-3109.2001
Revelo, D. (2005). Diseño de iniciadores y validación de una metodología molecular para la seleccion de bacterias de diferentes géneros acumuladoras de Polihidroxialcanoatos (PHAs). Universidad Nacional de Colombia
Revelo, D., Grosso, M. V., Moreno Solano, N. C., & Montoya, D. (2007). A most effective method for selecting a broad range of short and medium-chain-length polyhidroxyalcanoate producing microorganisms. Electronic Journal of Biotechnology, 10(3), 348–357. https://doi.org/10.2225/vol10-issue3-fulltext-13
Rodicio, M. D. R., & Mendoza, M. D. C. (2004). Identificación bacteriana mediante secuenciación del ARNr 16S: Fundamento, metodología y aplicaciones en microbiología clínica. Enfermedades Infecciosas y Microbiologia Clinica, 22(4), 238–245. https://doi.org/10.1157/13059055
Rojas-Rojas, F. U., López-Sánchez, D., Meza-Radilla, G., Méndez-Canarios, A., Ibarra, J. A., & Estrada-de los Santos, P. (2019). The controversial Burkholderia cepacia complex, a group of plant growth promoting species and plant, animals and human pathogens. Revista Argentina de Microbiologia, 51(1), 84–92. https://doi.org/10.1016/J.RAM.2018.01.002
Sagong, H.-Y., Son, H. F., Choi, S. Y., Lee, S. Y., & Kim, K.-J. (2018). Structural Insights into Polyhydroxyalkanoates Biosynthesis. Trends in Biochemical Sciences, 43(10), 790–805. https://doi.org/https://doi.org/10.1016/j.tibs.2018.08.005
Sagong, H. Y., Son, H. F., Choi, S. Y., Lee, S. Y., & Kim, K. J. (2018). Structural Insights into Polyhydroxyalkanoates Biosynthesis. Trends in Biochemical Sciences, 43(10), 790–805. https://doi.org/10.1016/j.tibs.2018.08.005
Saida, F., Uzan, M., Odaert, B., & Bontems, F. (2006). Expression of Highly Toxic Genes in E. coli: Special Strategies and Genetic Tools. Current Protein and Peptide Science, 7(1), 47–56. https://doi.org/10.2174/138920306775474095
Scales, B. S., Dickson, R. P., Lipuma, J. J., & Huffnagle, G. B. (2014). Microbiology, genomics, and clinical significance of the Pseudomonas fluorescens species complex, an unappreciated colonizer of humans. Clinical Microbiology Reviews, 27(4), 927–948. https://doi.org/10.1128/CMR.00044-14
Segawa, M., Wen, C., Orita, I., Nakamura, S., & Fukui, T. (2019). Two NADH-dependent (S)-3-hydroxyacyl-CoA dehydrogenases from polyhydroxyalkanoate-producing Ralstonia eutropha. Journal of Bioscience and Bioengineering, 127(3), 294–300. https://doi.org/10.1016/j.jbiosc.2018.08.009
Serrano, J. Y. (2010). DETERMINACIÓN DEL CLUSTER (phaC1, phaZ, phaC2, phaD, phaF, phaI) ASOCIADO CON LA PRODUCCIÓN DE POLIHIDROXIALCANOATOS (PHAs) SINTASA TIPO II EN UNA CEPA NATIVA COLOMBIANA. Universidad Nacional de Colombia
Serrano Riaño, J., Sastoque Rivera, L. Á., Castaño, D. M., & Moreno Sarmiento, N. (2011). Análisis de las polihidroxialcanoato sintasas (PhaC1 y PhaC2) en una cepa de Pseudomonas fluorescens IBUN S1602, aislada en suelos colombianos. Revista Colombiana de Biotecnología., XIII(2), 84–96
Slater, S. C., Voige, W. H., & Dennis, D. E. (1988). Cloning and expression in Escherichia coli of the Alcaligenes eutrophus H16 poly-beta-hydroxybutyrate biosynthetic pathway. Journal of Bacteriology, 170(10), 4431–4436. https://doi.org/10.1128/jb.170.10.4431-4436.1988
Tan, D., Yin, J., & Chen, G. Q. (2016). Production of Polyhydroxyalkanoates. In Current Developments in Biotechnology and Bioengineering: Production, Isolation and Purification of Industrial Products (pp. 655–692). https://doi.org/10.1016/B978-0-444-63662-1.00029-4
Tolmachov, O. E. (2011). DNA Cloning in Plasmid Vectors. In Comprehensive Biotechnology, Second Edition (Second Edi, Vol. 1). https://doi.org/10.1016/B978-0-08-088504-9.00008-8
Torres Ospina, A. C. (2019). Formulación de un modelo metabólicamente estructurado para optimizar la producción de Polihidroxialcanoatos (PHA) a partir de Burkholderia cepacia. Universidad Nacional de Colombia
Urtuvia, V., Villegas, P., Fuentes, S., González, M., & Seeger, M. (2018). Burkholderia xenovorans LB400 possesses a functional polyhydroxyalkanoate anabolic pathway encoded by the pha genes and synthesizes poly(3-hydroxybutyrate) under nitrogen-limiting conditions. International Microbiology, 21(1–2), 47–57. https://doi.org/10.1007/s10123-018-0004-3
Urtuvia, V., Villegas, P., Gonzalez, M., & Seeger, M. (2014). Bacterial production of the biodegradable plastics polyhydroxyalkanoates. International Journal of Biological Macromolecules, 70, 208–213. https://doi.org/10.1016/j.ijbiomac.2014.06.001
Vasu, K., & Nagaraja, V. (2013). Diverse Functions of Restriction-Modification Systems in Addition to Cellular Defense. Microbiology and Molecular Biology Reviews, 77(1), 53–72. https://doi.org/10.1128/mmbr.00044-12
Vu, K., Bautos, J., Hong, M.-P., & Gelli, A. (2009). The functional expression of toxic genes: Lessons learned from molecular cloning of CCH1, a high-affinity Ca2+ channel Kiem. National Institutes of Health, 393(2), 234–241. https://doi.org/10.1016/j.ab.2009.06.039
Wittenborn, E. C., Jost, M., Wei, Y., Stubbe, J. A., & Drennan, C. L. (2016). Structure of the catalytic domain of the class I polyhydroxybutyrate synthase from Cupriavidus necator. Journal of Biological Chemistry, 291(48), 25264–25277. https://doi.org/10.1074/jbc.M116.756833
Wu, H., Fan, Z., Jiang, X., Chen, J., & Chen, G. Q. (2016). Enhanced production of polyhydroxybutyrate by multiple dividing E. coli. Microbial Cell Factories, 15(1), 1–13. https://doi.org/10.1186/s12934-016-0531-6
Zhao, F., Liu, X., Kong, A., Zhao, Y., Fan, X., Ma, T., … Yang, C. (2019). Morphology engineering for enhanced production of medium-chain-length polyhydroxyalkanoates in Pseudomonas mendocina NK-01. Scientific Reports, 9(1), 1713–1724. https://doi.org/10.1038/s41598-019-39321-z
Zheng, Y., Chen, J. C., Ma, Y. M., & Chen, G. Q. (2019). Engineering biosynthesis of polyhydroxyalkanoates (PHA) for diversity and cost reduction. Metabolic Engineering, (March). https://doi.org/10.1016/j.ymben.2019.07.004
Zher Neoh, S., Fey Chek, M., Tiang Tan, H., Linares-Pastén, J. A., Nandakumar, A., Hakoshima, T., & Sudesh, K. (2022). Polyhydroxyalkanoate synthase (PhaC): The key enzyme for biopolyester synthesis. Current Research in Biotechnology, 4(November 2021), 87–101. https://doi.org/10.1016/j.crbiot.2022.01.002
Zhuang, Q., Wang, Q., Liang, Q., & Qi, Q. (2014). Synthesis of polyhydroxyalkanoates from glucose that contain medium-chain-length monomers via the reversed fatty acid β-oxidation cycle in Escherichia coli. Metabolic Engineering, 24, 78–86. https://doi.org/10.1016/j.ymben.2014.05.004
Zuriani, R., Vigneswari, S., Azizan, M. N. M., Majid, M. I. A., & Amirul, A. A. (2013). A high throughput Nile red fluorescence method for rapid quantification of intracellular bacterial polyhydroxyalkanoates. Biotechnology and Bioprocess Engineering, 18(3), 472–478. https://doi.org/10.1007/s12257-012-0607-z
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xix, 119 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Microbiología
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/85280/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/85280/2/Tesis%20de%20Maestr%c3%ada%20en%20Ciencias%20-%20Microbiolog%c3%ada.pdf
https://repositorio.unal.edu.co/bitstream/unal/85280/3/Tesis%20de%20Maestr%c3%ada%20en%20Ciencias%20-%20Microbiolog%c3%ada.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
acfcc8d53bef9e92216d0427638617f2
f589570ffb8c0195394483920cb95231
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089297791287296
spelling Atribución-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Bernal Morales, José Mauricio1e1d30ae7d64c3851743e2a4c7d40fd2Moreno Sarmiento, Nubia16311b987fedc341cbdf0f51389c4aebHernández Jirón, Isabel Cristinad7965e6eb76afb7749881aaf39e5f941Bioprocesos y Bioprospección2024-01-15T17:02:40Z2024-01-15T17:02:40Z2023https://repositorio.unal.edu.co/handle/unal/85280Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones (principalmente a color), diagramas, fotografíasLos Polihidroxialcanoatos (PHAs) son poliésteres acumulados intracelularmente como fuente de carbono y energía por bacterias en ciertas condiciones. Las características físicas y mecánicas del PHA depende del microorganismo usado, las proteínas, genes involucrados, las condiciones de crecimiento, la ruta metabólica y la fuente de carbono suministrada. Por ejemplo, los copolímeros de cadena corta y media exhiben características como, una temperatura de fusión más baja, un módulo de Young más bajo y un alargamiento de rotura más alto, esto significa que es un plástico más resistente y flexible. El Grupo de Investigación de Bioprocesos y Bioprospección de la Universidad Nacional (UNAL) ha enfocado sus esfuerzos en el estudio de microorganismos con potencial biotecnológico para establecer un aprovechamiento sostenible y rentable de bio-productos de interés comercial. Pseudomonas fluorescens y Burkholderia acumulan PHAs de cadena media (PHAmcl) y cadena corta (PHAscl) respectivamente, a partir de diversas fuentes de carbono y han sido objeto de estudio en el grupo de investigación. Análisis genéticos realizados por el grupo han demostrado que la especie P. fluorescens IBUN S1602 contiene la polimerasa tipo II para producción de PHAmcl, no obstante, hasta la fecha el grupo no ha hecho un reporte parecido para Burkholderia sp. IBUN 2G57. Dentro del trabajo realizado con IBUN S1602 se recomendó para futuras investigaciones establecer las condiciones de fermentación para producir PHAs e iniciar la manipulación genética usando el conocimiento de los genes involucrados en la producción de PHAmcl. El objetivo de este trabajo es aprovechar los recursos genéticos de Pseudomonas y Burkholderia para producir PHAs de cadena corta y media que podrían ser considerados más competitivos en el mercado y que suplieran las necesidades y limitaciones de la obtención de estos biopolímeros. En el desarrollo del proyecto se estandarizaron las condiciones de PCR de cinco pares de cebadores para amplificar el operón phaCAB y los genes phaC, phaA, phaB de Burkholderia sp. IBUN 2G57 involucrados en la producción de PHB (poli-3-Hidroxibutirato), se determinó que esta cepa tiene la organización genética de la sintasa tipo I al igual que la cepa más estudiada Cupriavidus necator, a su vez, se diseñó un vector de transformación con el operón phaCAB y el gen phaC y se realizaron ensayos de transformación de P. fluorescens IBUN S1602. La evaluación del vector de transformación construido en este trabajo llevó a considerar que los insertos provenientes de las cepas de Burkholderia presentaban un grado de toxicidad que impedían la exitosa transformación de IBUN S1602. (Texto tomado de la fuente)Polyhydroxyalkanoates (PHAs) are polyesters accumulated intracellularly as a carbon and energy source by bacteria under certain conditions. The physical and mechanical characteristics of PHA depends on the microorganism used, the proteins, genes involved, the growth conditions, the metabolic pathway and the carbon source supplied. For example, short and medium chain copolymers exhibit characteristics such as, lower melting temperature, lower Young's modulus, and higher elongation at break, this means that it is a stronger and more flexible plastic, leading to improved bioplastic properties. The Bioprocesses and Bioprospecting Research Group of the National University (UNAL) has focused its efforts on the study of microorganisms with biotechnological potential with the objective of establishing a sustainable and profitable use of bio-products of commercial interest. Pseudomonas fluorescens and Burkholderia are microorganisms that accumulate medium-chain PHAs (PHAmcl) and short-chain PHAs (PHAscl) respectively, using diverse carbon sources and have been the object of study in the research group. Genetic analyses performed by the group have shown that P. fluorescens IBUN S1602 contains the type II polymerase for PHAmcl production, however, to date the group has not made a similar report for Burkholderia sp. IBUN 2G57. Within the work carried out with IBUN S1602, it was recommended for future research to establish fermentation conditions for this strain and to initiate genetic manipulation taking advantage of the knowledge of the genes involved in PHAmcl production. The objective of this work is to take advantage of the genetic resources of Pseudomonas and Burkholderia to produce short- and medium-chain PHAs that could be considered more competitive in the market and that would meet the needs and limitations of obtaining these biopolymers. In the development of the project, the PCR conditions of five pairs of primers were optimized to amplify the pha operon and the phaC, phaA, phaB genes of Burkholderia sp. IBUN 2G57 involved in the production of PHB (poly-3-Hydroxybutyrate), it was determined that this strain has the genetic organization of type I synthase like the most studied strain Cupriavidus necator, in turn, a transformation vector with the pha operon and phaC gene was designed and transformation assays of P. fluorescens IBUN S1602 were performed. The evaluation of the transformation vector constructed in this work led to consider that the inserts from the Burkholderia strains presented a degree of toxicity that prevented the successful transformation of IBUN S1602.MaestríaMagíster en Ciencias - MicrobiologíaBiopolímeros y Fermentacionesxix, 119 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - MicrobiologíaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá570 - Biología::572 - BioquímicaPolihidroxialcanoatosBiopolímerosPoliésteresVectores GenéticosPseudomonas fluorescensBurkholderiaPolyhydroxyalkanoatesBiopolymersPolyestersGenetic VectorsPolyhydroxyalkanoatesPHAscopolymerBurkholderiaPseudomonasshort and medium chainPolihidroxialcanoatosPHAscopolímeroBurkholderiaPseudomonasCadena corta y mediaEvaluación de un vector de transformación en p. fluorescens ibun S1602 para la producción de un copolímero de polihidroxialcanoatos (PHAs) de cadena corta (PHAscl) y cadena media (PHAmcl)Evaluation of a transformation vector in p. fluorescens ibun S1602 for production of a short chain (PHAscl) and medium chain (PHAmcl) polyhydroxyalcanoates (PHAs) copolymerTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAlvarez-Santullano, N., Villegas, P., Mardones, M. S., Durán, R. E., Donoso, R., González, A., … Seeger, M. (2021). Genome-wide metabolic reconstruction of the synthesis of polyhydroxyalkanoates from sugars and fatty acids by burkholderia sensu lato species. Microorganisms, 9(6). https://doi.org/10.3390/microorganisms9061290Amitai, G., & Sorek, R. (2012). PanDaTox: A tool for accelerated metabolic engineering. Bioengineered, 3(4), 218–221. https://doi.org/10.4161/bbug.20431Anjum, A., Zuber, M., Zia, K. M., Noreen, A., Anjum, M. N., & Tabasum, S. (2016). Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: A review of recent advancements. International Journal of Biological Macromolecules, 89, 161–174. https://doi.org/10.1016/j.ijbiomac.2016.04.069Assal, N., & Lin, M. (2020). PCR procedures to amplify GC-rich DNA sequences of Mycobacterium bovis. BioRxiv, 2020.02.18.953695. https://doi.org/10.1101/2020.02.18.953695Barbosa, M., Espinosa Hernández, A., Malagón Romero, D., & Moreno Sarmiento, N. (2005). PRODUCCIÓN DE POLI-β POR Ralstonia eutropha ATCC 17697. Universitas Scientiarum, 10(1), 45–54Becerra Jiménez, M. L. (2013). Producción De Un Polímero Tipo Polihidroxialcanoato (Pha) Empleando Residuos De La Producción De Biodiesel. Revista de Ingeniería, (18), 175–190. https://doi.org/http://dx.doi.org/10.16924%2Friua.v0i18.492Becerra, S. A. (2014). SELECCIÓN DE MUTANTES HIPERPRODUCTORAS DE POLIHIDROXIALCANOATOS EN LA CEPA Burkholderia cepacia 2G57. UNIVERSIDAD COLEGIO MAYOR DE CUNDINAMARCABudde, C. F., Riedel, S. L., Willis, L. B., Rha, C., & Sinskey, A. J. (2011). Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from plant oil by engineered Ralstonia eutropha strains. Applied and Environmental Microbiology, 77(9), 2847–2854. https://doi.org/10.1128/AEM.02429-10Burdon, K. L. (1946). Fatty Material in Bacteria and Fungi Revealed by Staining Dried, Fixed Slide Preparations. Journal of Bacteriology, 52(6), 665–678. https://doi.org/10.1128/jb.52.6.665-678.1946Cardona, A., Mora, A., & Marín, M. (2013). Identificación Molecular de Bacterias Productoras de Polihidroxialcanoatos en Subproductos de Lácteos y Caña de Azúcar. Facultad Nacional de Agronomia, 66(2), 7129–7140Cespedes, L. G., Nahat, R. A. T. P. S., Mendonça, T. T., Tavares, R. R., Oliveira-Filho, E. R., Silva, L. F., … Gomez, J. G. C. (2018). A non-naturally-occurring P(3HB-co-3HAMCL) is produced by recombinant Pseudomonas sp. from an unrelated carbon source. International Journal of Biological Macromolecules, 114, 512–519. https://doi.org/10.1016/j.ijbiomac.2018.03.051Cha, D., Ha, H. S., & Lee, S. K. (2020). Metabolic engineering of Pseudomonas putida for the production of various types of short-chain-length polyhydroxyalkanoates from levulinic acid. Bioresource Technology, 309(January), 123332. https://doi.org/10.1016/j.biortech.2020.123332Chek, M. F., Hiroe, A., Hakoshima, T., Sudesh, K., & Taguchi, S. (2019). PHA synthase (PhaC): interpreting the functions of bioplastic-producing enzyme from a structural perspective. Applied Microbiology and Biotechnology, 103(3), 1131–1141. https://doi.org/10.1007/s00253-018-9538-8Chen, G. Q., & Jiang, X. R. (2017). Engineering bacteria for enhanced polyhydroxyalkanoates (PHA) biosynthesis. Synthetic and Systems Biotechnology, 2(3), 192–197. https://doi.org/10.1016/j.synbio.2017.09.001Chen, G. Q., Jiang, X. R., & Guo, Y. (2016). Synthetic biology of microbes synthesizing polyhydroxyalkanoates (PHA). Synthetic and Systems Biotechnology, 1(4), 236–242. https://doi.org/10.1016/j.synbio.2016.09.006Ciesielski, S., Cydzik-Kwiatkowska, A., Pokoj, T., & Klimiuk, E. (2006). Molecular detection and diversity of medium-chain-length polyhydroxyalkanoates-producing bacteria enriched from activated sludge. Journal of Applied Microbiology, 101(1), 190–199. https://doi.org/10.1111/j.1365-2672.2006.02973.xConlan, L. H., Thomas, J. J., Thornton, K. C., & Dupureur, C. M. (1999). Modulating restriction endonuclease activities and specificities using neutral detergents. BioTechniques, 27(5), 955–960. https://doi.org/10.2144/99275st02Daligault, H. E., Davenport, K. W., Minogue, T. D., Bishop-Lilly, K. A., Broomall, S. M., Bruce, D. C., … Johnson, S. L. (2014). Whole-genome assemblies of 56 Burkholderia species. Genome Announcements, 2(6). https://doi.org/10.1128/GENOMEA.01106-14De Andrade Rodrigues, M. F., Valentin, H. E., Berger, P. A., Tran, M., Asrar, J., Gruys, K. J., & Steinbüchel, A. (2000). Polyhydroxyalkanoate accumulation in Burkholderia sp.: A molecular approach to elucidate the genes involved in the formation of two homopolymers consisting of short-chain-length 3-hydroxyalkanoic acids. Applied Microbiology and Biotechnology, 53(4), 453–460. https://doi.org/10.1007/s002530051641De Andrade Rodrigues, Maria Filomena, Vicente, E. J., & Steinbüchel, A. (2000). Studies on polyhydroxyalkanoate (PHA) accumulation in a PHA synthase I-negative mutant of Burkholderia cepacia generated by homogenotization. FEMS Microbiology Letters, 193(1), 179–185. https://doi.org/10.1016/S0378-1097(00)00483-3Dennis, J. J., & Sokol, P. A. (1995). Electrotransformation of Pseudomonas. Methods in Molecular Biology (Clifton, N.J.), 47, 125–133. https://doi.org/10.1385/0-89603-310-4:125Dorado Pérez, G. (2014). Clonacion del DNA amplificado mediante Pcr. Biotecnología: Marcadores Moleculares, Ingeniería Genética y Transformación, Genómica., 1–22. Retrieved from http://www.uco.es/dptos/bioquimica-biol-mol/Farell, E. M., & Alexandre, G. (2012). Bovine serum albumin further enhances the effects of organic solvents on increased yield of polymerase chain reaction of GC-rich templates. BMC Research Notes, 5(1), 1. https://doi.org/10.1186/1756-0500-5-257Flynn, A., Jones, D., Man, E., Shipman, S., & Tung, S. (2002). The Influence of the Size and Number of Digested pBR322 Fragments on the Inhibition of Transformation of E . coli HB101 Cells by the Plasmids pBR322 and p328 . 5. 2(April), 57–67González García, Y., Meza Contreras, J. C., González Reynoso, O., & Córdova López, J. A. (2013). Síntesis y Biodegradación de Polihidroxialcanoatos: Plásticos de Origen Microbiano. Revista Internacional de Contaminación Ambiental, 29(1), 77–115. Retrieved from http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0188-49992013000100007Hall, B. G. (2013). Building phylogenetic trees from molecular data with MEGA. Molecular Biology and Evolution, 30(5), 1229–1235. https://doi.org/10.1093/molbev/mst012Hardjasa, A., Ling, M., Ma, K., & Yu, H. (2010). Investigating the Effects of DMSO on PCR Fidelity Using a Restriction Digest-Based Method. Journal of Experimental Microbiology and Immunology (JEMI), 14(April), 161–164Jendrossek, D. (2009). Polyhydroxyalkanoate granules are complex subcellular organelles (carbonosomes). Journal of Bacteriology, 191(10), 3195–3202. https://doi.org/10.1128/JB.01723-08Jeon, J. M., Brigham, C. J., Kim, Y. H., Kim, H. J., Yi, D. H., Kim, H., … Yang, Y. H. (2014). Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (P(HB-co-HHx)) from butyrate using engineered Ralstonia eutropha. Applied Microbiology and Biotechnology, 98(12), 5461–5469. https://doi.org/10.1007/s00253-014-5617Keenan, T. M., Tanenbaum, S. W., Stipanovic, A. J., & Nakas, J. P. (2004). Production and Characterization of Poly-β-hydroxyalkanoate Copolymers from Burkholderia cepacia Utilizing Xylose and Levulinic Acid. Artificial Cells Blood Substitutes And Immobilization Biotechnologyartif Cells Blood Substit Immobi, (12)Kim, J., Chang, J. H., Kim, E. J., & Kim, K. J. (2014). Crystal structure of (R)-3-hydroxybutyryl-CoA dehydrogenase PhaB from Ralstonia eutropha. Biochemical and Biophysical Research Communications, 443(3), 783–788. https://doi.org/10.1016/j.bbrc.2013.10.150Kimelman, A., Levy, A., Sberro, H., Kidron, S., Leavitt, A., Amitai, G., … Sorek, R. (2012). A vast collection of microbial genes that are toxic to bacteria. Genome Research, 22(4), 802–809. https://doi.org/10.1101/gr.133850.111Kjeldsen, A., Price, M., Lilley, C., Guzniczak, E., & Archer, I. (2019). A Review of Standards for Biodegradable Plastics with support from. In Industrial Biotechnology Innovation Centre IBioICKovach, M. E., Elzer, P. H., Hill, D. S., Robertson, G. T., Farris, M. A., Roop, R. M. 2nd, & Peterson, K. M. (1995). Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene, 166(1), 175–176. https://doi.org/10.1016/0378-1119(95)00584-1Kovalcik, A., Obruca, S., Fritz, I., & Marova, I. (2019). Polyhydroxyalkanoates: Their Importance and Future. BioResources, 14(2), 2468–2471Krela, R., Poreba, E., Weglewska, M., Skrzypczak, T., & Lesniewicz, K. (2019). A novel method for cloning of coding sequences of highly toxic proteins. Biochimica et Biophysica Acta - General Subjects, 1863(3), 521–527. https://doi.org/10.1016/j.bbagen.2018.12.010Lau, N. S., & Sudesh, K. (2012). Revelation of the ability of burkholderia sp. USM (JCM 15050) PHA synthase to polymerize 4-hydroxybutyrate monomer. AMB Express, 2(1), 1–9. https://doi.org/10.1186/2191-0855-2-41Lindenkamp, N., Volodina, E., & Steinbüchel, A. (2012). Genetically modified strains of Ralstonia eutropha H16 with β- ketothiolase gene deletions for production of copolyesters with defined 3-hydroxyvaleric acid contents. Applied and Environmental Microbiology, 78(15), 5375–5383. https://doi.org/10.1128/AEM.00824-12Liu, C. H., Chen, H. Y., Chen, Y. L. L., & Sheu, D. S. (2021). The polyhydroxyalkanoate (PHA) synthase 1 of Pseudomonas sp. H9 synthesized a 3-hydroxybutyrate-dominant hybrid of short- and medium-chain-length PHA. Enzyme and Microbial Technology, 143(142), 109719. https://doi.org/10.1016/j.enzmictec.2020.109719Liu, Y., Feng, Y., Cao, X., Li, X., & Xue, S. (2015). Structure-directed construction of a high-performance version of the enzyme FabG from the photosynthetic microorganism Synechocystis sp. PCC 6803. FEBS Letters, 589(20), 3052–3057. https://doi.org/10.1016/j.febslet.2015.09.001Lu, J., Tappel, R. C., & Nomura, C. T. (2009). Mini-review: Biosynthesis of poly(hydroxyalkanoates). Polymer Reviews, 49(3), 226–248. https://doi.org/10.1080/15583720903048243Marchler-Bauer, A., Derbyshire, M. K., Gonzales, N. R., Lu, S., Chitsaz, F., Geer, L. Y., … Bryant, S. H. (2015). CDD: NCBI’s conserved domain database. Nucleic Acids Research, 43(Database issue), D222–D226. https://doi.org/10.1093/NAR/GKU1221Matsumoto, K., Tanaka, Y., Watanabe, T., Motohashi, R., Ikeda, K., Tobitani, K., … Taguchi, S. (2013). Directed evolution and structural analysis of nadph-dependent acetoacetyl coenzyme A(acetoacetyl-CoA) reductase from ralstonia eutropha reveals two mutations responsible for enhanced kinetics. Applied and Environmental Microbiology, 79(19), 6134–6139. https://doi.org/10.1128/AEM.01768-13Méndez, D. A. (2016). MODELAMIENTO MATEMÁTICO Y OPTIMIZACIÓN DEL PROCESO DE PRODUCCIÓN DE POLIHIDROXIALCANOATOS EMPLEANDO LA BACTERIA Burkholderia cepacia B27 A PARTIR DE ÁCIDOS GRASOS. Universidad Nacional de ColombiaMendez, Daniel A., Cabeza, I. O., Moreno, N. C., & Riascos, C. A. M. (2016). Mathematical modelling and scale-up of batch fermentation with burkholderia cepacia B27 using vegetal oil as carbon source to produce polyhydroxyalkanoates. Chemical Engineering Transactions, 49(March), 277–282. https://doi.org/10.3303/CET1649047Mendez, Daniel Alexander. (2016). Evaluación del proceso de extracción de polihidroxialcanoatos ( PHA ) a partir de Burkholderia cepacia ... (November). https://doi.org/10.15446/agron.colomb.sup.2016n1.58399Mezzina, M. P., Manoli, M. T., Prieto, M. A., & Nikel, P. I. (2021). Engineering Native and Synthetic Pathways in Pseudomonas putida for the Production of Tailored Polyhydroxyalkanoates. Biotechnology Journal, 16(3). https://doi.org/10.1002/biot.202000165Montoya, D., Moreno, N., Espinosa, A., Buitrago, G., Aristizábal, F., Bernal, M., & Garcia, I. (2017). Del laboratorio a la industria. Revista Colombiana de Biotecnología., Numero esp, 12–17Moreno, N., Gutiérrez, I., Malagón, D., Grosso, V., Revelo, D., González, J., … Montoya, D. (2007). Bioprospecting and characterization of poly-β-hydroxyalkanoate (PHAs) producing bacteria isolated from Colombian sugarcane producing areas. African Journal of Biotechnology, 6(13), 1536–1543. Retrieved from www.ajol.info/index.php/ajb/article/view/57660Możejko-Ciesielska, J., & Kiewisz, R. (2016). Bacterial polyhydroxyalkanoates: Still fabulous? Microbiological Research, 192(2016), 271–282. https://doi.org/10.1016/j.micres.2016.07.010Mozejko, J., & Ciesielski, S. (2013). Saponified waste palm oil as an attractive renewable resource for mcl-polyhydroxyalkanoate synthesis. Journal of Bioscience and Bioengineering, 116(4), 485–492. https://doi.org/10.1016/j.jbiosc.2013.04.014Ojumu, T. ., & Solomon, B. . (2004). Production of Polyhydroxyalkanoates , a bacterial biodegradable polymer. African Journal of Biotechnology, 3(1), 18–24Oliveira-Filho, E. R., Guamán, L. P., Mendonca, T. T., Long, P. F., Taciro, M. K., Gomez, J. G. C., & Silva, L. F. (2019). Production of polyhydroxyalkanoates copolymers by recombinant pseudomonas in plasmid- and Antibiotic-free cultures. Journal of Molecular Microbiology and Biotechnology, 28(5), 225–235. https://doi.org/10.1159/000495752Pakalapati, H., Chang, C. K., Show, P. L., Arumugasamy, S. K., & Lan, J. C. W. (2018). Development of polyhydroxyalkanoates production from waste feedstocks and applications. Journal of Bioscience and Bioengineering, 126(3), 282–292. https://doi.org/10.1016/j.jbiosc.2018.03.016Pan, W., Perrotta, J. A., Stipanovic, A. J., Nomura, C. T., & Nakas, J. P. (2012). Production of polyhydroxyalkanoates by Burkholderia cepacia ATCC 17759 using a detoxified sugar maple hemicellulosic hydrolysate. Journal of Industrial Microbiology and Biotechnology, 39(3), 459–469. https://doi.org/10.1007/s10295-011-1040-6Parra Huertas, S. L., Pérez Casas, M. M., Bernal Morales, M., Suárez Moreno, Z., & Montoya Castaño, D. (2006). Implementación y evaluación de dos métodos deconservación y generación de la base de datos del banco de cepas y genes del Instituto de Biotecnología de la Universidad Nacional de Colombia (IBUN). Nova, 4(5), 39. https://doi.org/10.22490/24629448.346Philip, S., Keshavarz, T., & Roy, I. (2007). Polyhydroxyalkanoates : biodegradable polymers with a range of applications. Journal OfChemical Technology and Biotechnology, 247(July 2006), 233–247. https://doi.org/10.1002/jctbPlenderleith, R., Swift, T., & Rimmer, S. (2014). Highly-branched Poly(N-isopropyl acrylamide)s with core-shell morphology below the lower critical solution temperature. J. Mater. Chem. C, 3, 10715–10722. https://doi.org/10.1039/b000000xPoli, A., Di Donato, P., Abbamondi, G. R., & Nicolaus, B. (2011). Synthesis, Production, and Biotechnological Applications of Exopolysaccharides and Polyhydroxyalkanoates by Archaea. Archaea, 2011, 1–13. https://doi.org/10.1155/2011/693253Poltronieri, P., & Kumar, P. (2019). Polyhydroxyalkanoates (PHAs) in industrial applications. Handbook of Ecomaterials, 4, 2843–2872. https://doi.org/10.1007/978-3-319-68255-6_70Rai, R., Keshavarz, T., Roether, J. A., Boccaccini, A. R., & Roy, I. (2011). Medium chain length polyhydroxyalkanoates, promising new biomedical materials for the future. Materials Science and Engineering R: Reports, 72(3), 29–47. https://doi.org/10.1016/j.mser.2010.11.002Raza, Z. A., Abid, S., & Banat, I. M. (2018). Polyhydroxyalkanoates: Characteristics, production, recent developments and applications. International Biodeterioration and Biodegradation, 126(October 2017), 45–56. https://doi.org/10.1016/j.ibiod.2017.10.001Rehm, B. H. A., Mitsky, T. A., & Steinbüchel, A. (2001). Role of Fatty Acid de novo Biosynthesis in Polyhydroxyalkanoic Acid (PHA) and Rhamnolipid Synthesis by Pseudomonads: Establishment of the Transacylase (PhaG)-Mediated Pathway for PHA Biosynthesis in Escherichia coli. Applied and Environmental Microbiology, 67(7), 3102–3109. https://doi.org/10.1128/AEM.67.7.3102-3109.2001Revelo, D. (2005). Diseño de iniciadores y validación de una metodología molecular para la seleccion de bacterias de diferentes géneros acumuladoras de Polihidroxialcanoatos (PHAs). Universidad Nacional de ColombiaRevelo, D., Grosso, M. V., Moreno Solano, N. C., & Montoya, D. (2007). A most effective method for selecting a broad range of short and medium-chain-length polyhidroxyalcanoate producing microorganisms. Electronic Journal of Biotechnology, 10(3), 348–357. https://doi.org/10.2225/vol10-issue3-fulltext-13Rodicio, M. D. R., & Mendoza, M. D. C. (2004). Identificación bacteriana mediante secuenciación del ARNr 16S: Fundamento, metodología y aplicaciones en microbiología clínica. Enfermedades Infecciosas y Microbiologia Clinica, 22(4), 238–245. https://doi.org/10.1157/13059055Rojas-Rojas, F. U., López-Sánchez, D., Meza-Radilla, G., Méndez-Canarios, A., Ibarra, J. A., & Estrada-de los Santos, P. (2019). The controversial Burkholderia cepacia complex, a group of plant growth promoting species and plant, animals and human pathogens. Revista Argentina de Microbiologia, 51(1), 84–92. https://doi.org/10.1016/J.RAM.2018.01.002Sagong, H.-Y., Son, H. F., Choi, S. Y., Lee, S. Y., & Kim, K.-J. (2018). Structural Insights into Polyhydroxyalkanoates Biosynthesis. Trends in Biochemical Sciences, 43(10), 790–805. https://doi.org/https://doi.org/10.1016/j.tibs.2018.08.005Sagong, H. Y., Son, H. F., Choi, S. Y., Lee, S. Y., & Kim, K. J. (2018). Structural Insights into Polyhydroxyalkanoates Biosynthesis. Trends in Biochemical Sciences, 43(10), 790–805. https://doi.org/10.1016/j.tibs.2018.08.005Saida, F., Uzan, M., Odaert, B., & Bontems, F. (2006). Expression of Highly Toxic Genes in E. coli: Special Strategies and Genetic Tools. Current Protein and Peptide Science, 7(1), 47–56. https://doi.org/10.2174/138920306775474095Scales, B. S., Dickson, R. P., Lipuma, J. J., & Huffnagle, G. B. (2014). Microbiology, genomics, and clinical significance of the Pseudomonas fluorescens species complex, an unappreciated colonizer of humans. Clinical Microbiology Reviews, 27(4), 927–948. https://doi.org/10.1128/CMR.00044-14Segawa, M., Wen, C., Orita, I., Nakamura, S., & Fukui, T. (2019). Two NADH-dependent (S)-3-hydroxyacyl-CoA dehydrogenases from polyhydroxyalkanoate-producing Ralstonia eutropha. Journal of Bioscience and Bioengineering, 127(3), 294–300. https://doi.org/10.1016/j.jbiosc.2018.08.009Serrano, J. Y. (2010). DETERMINACIÓN DEL CLUSTER (phaC1, phaZ, phaC2, phaD, phaF, phaI) ASOCIADO CON LA PRODUCCIÓN DE POLIHIDROXIALCANOATOS (PHAs) SINTASA TIPO II EN UNA CEPA NATIVA COLOMBIANA. Universidad Nacional de ColombiaSerrano Riaño, J., Sastoque Rivera, L. Á., Castaño, D. M., & Moreno Sarmiento, N. (2011). Análisis de las polihidroxialcanoato sintasas (PhaC1 y PhaC2) en una cepa de Pseudomonas fluorescens IBUN S1602, aislada en suelos colombianos. Revista Colombiana de Biotecnología., XIII(2), 84–96Slater, S. C., Voige, W. H., & Dennis, D. E. (1988). Cloning and expression in Escherichia coli of the Alcaligenes eutrophus H16 poly-beta-hydroxybutyrate biosynthetic pathway. Journal of Bacteriology, 170(10), 4431–4436. https://doi.org/10.1128/jb.170.10.4431-4436.1988Tan, D., Yin, J., & Chen, G. Q. (2016). Production of Polyhydroxyalkanoates. In Current Developments in Biotechnology and Bioengineering: Production, Isolation and Purification of Industrial Products (pp. 655–692). https://doi.org/10.1016/B978-0-444-63662-1.00029-4Tolmachov, O. E. (2011). DNA Cloning in Plasmid Vectors. In Comprehensive Biotechnology, Second Edition (Second Edi, Vol. 1). https://doi.org/10.1016/B978-0-08-088504-9.00008-8Torres Ospina, A. C. (2019). Formulación de un modelo metabólicamente estructurado para optimizar la producción de Polihidroxialcanoatos (PHA) a partir de Burkholderia cepacia. Universidad Nacional de ColombiaUrtuvia, V., Villegas, P., Fuentes, S., González, M., & Seeger, M. (2018). Burkholderia xenovorans LB400 possesses a functional polyhydroxyalkanoate anabolic pathway encoded by the pha genes and synthesizes poly(3-hydroxybutyrate) under nitrogen-limiting conditions. International Microbiology, 21(1–2), 47–57. https://doi.org/10.1007/s10123-018-0004-3Urtuvia, V., Villegas, P., Gonzalez, M., & Seeger, M. (2014). Bacterial production of the biodegradable plastics polyhydroxyalkanoates. International Journal of Biological Macromolecules, 70, 208–213. https://doi.org/10.1016/j.ijbiomac.2014.06.001Vasu, K., & Nagaraja, V. (2013). Diverse Functions of Restriction-Modification Systems in Addition to Cellular Defense. Microbiology and Molecular Biology Reviews, 77(1), 53–72. https://doi.org/10.1128/mmbr.00044-12Vu, K., Bautos, J., Hong, M.-P., & Gelli, A. (2009). The functional expression of toxic genes: Lessons learned from molecular cloning of CCH1, a high-affinity Ca2+ channel Kiem. National Institutes of Health, 393(2), 234–241. https://doi.org/10.1016/j.ab.2009.06.039Wittenborn, E. C., Jost, M., Wei, Y., Stubbe, J. A., & Drennan, C. L. (2016). Structure of the catalytic domain of the class I polyhydroxybutyrate synthase from Cupriavidus necator. Journal of Biological Chemistry, 291(48), 25264–25277. https://doi.org/10.1074/jbc.M116.756833Wu, H., Fan, Z., Jiang, X., Chen, J., & Chen, G. Q. (2016). Enhanced production of polyhydroxybutyrate by multiple dividing E. coli. Microbial Cell Factories, 15(1), 1–13. https://doi.org/10.1186/s12934-016-0531-6Zhao, F., Liu, X., Kong, A., Zhao, Y., Fan, X., Ma, T., … Yang, C. (2019). Morphology engineering for enhanced production of medium-chain-length polyhydroxyalkanoates in Pseudomonas mendocina NK-01. Scientific Reports, 9(1), 1713–1724. https://doi.org/10.1038/s41598-019-39321-zZheng, Y., Chen, J. C., Ma, Y. M., & Chen, G. Q. (2019). Engineering biosynthesis of polyhydroxyalkanoates (PHA) for diversity and cost reduction. Metabolic Engineering, (March). https://doi.org/10.1016/j.ymben.2019.07.004Zher Neoh, S., Fey Chek, M., Tiang Tan, H., Linares-Pastén, J. A., Nandakumar, A., Hakoshima, T., & Sudesh, K. (2022). Polyhydroxyalkanoate synthase (PhaC): The key enzyme for biopolyester synthesis. Current Research in Biotechnology, 4(November 2021), 87–101. https://doi.org/10.1016/j.crbiot.2022.01.002Zhuang, Q., Wang, Q., Liang, Q., & Qi, Q. (2014). Synthesis of polyhydroxyalkanoates from glucose that contain medium-chain-length monomers via the reversed fatty acid β-oxidation cycle in Escherichia coli. Metabolic Engineering, 24, 78–86. https://doi.org/10.1016/j.ymben.2014.05.004Zuriani, R., Vigneswari, S., Azizan, M. N. M., Majid, M. I. A., & Amirul, A. A. (2013). A high throughput Nile red fluorescence method for rapid quantification of intracellular bacterial polyhydroxyalkanoates. Biotechnology and Bioprocess Engineering, 18(3), 472–478. https://doi.org/10.1007/s12257-012-0607-zEstudiantesInvestigadoresMaestrosLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85280/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINALTesis de Maestría en Ciencias - Microbiología.pdfTesis de Maestría en Ciencias - Microbiología.pdfapplication/pdf3447788https://repositorio.unal.edu.co/bitstream/unal/85280/2/Tesis%20de%20Maestr%c3%ada%20en%20Ciencias%20-%20Microbiolog%c3%ada.pdfacfcc8d53bef9e92216d0427638617f2MD52THUMBNAILTesis de Maestría en Ciencias - Microbiología.pdf.jpgTesis de Maestría en Ciencias - Microbiología.pdf.jpgGenerated Thumbnailimage/jpeg5010https://repositorio.unal.edu.co/bitstream/unal/85280/3/Tesis%20de%20Maestr%c3%ada%20en%20Ciencias%20-%20Microbiolog%c3%ada.pdf.jpgf589570ffb8c0195394483920cb95231MD53unal/85280oai:repositorio.unal.edu.co:unal/852802024-01-15 23:04:09.876Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=