Evaluación de un vector de transformación en p. fluorescens ibun S1602 para la producción de un copolímero de polihidroxialcanoatos (PHAs) de cadena corta (PHAscl) y cadena media (PHAmcl)
ilustraciones (principalmente a color), diagramas, fotografías
- Autores:
-
Hernández Jirón, Isabel Cristina
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/85280
- Palabra clave:
- 570 - Biología::572 - Bioquímica
Polihidroxialcanoatos
Biopolímeros
Poliésteres
Vectores Genéticos
Pseudomonas fluorescens
Burkholderia
Polyhydroxyalkanoates
Biopolymers
Polyesters
Genetic Vectors
Polyhydroxyalkanoates
PHAs
copolymer
Burkholderia
Pseudomonas
short and medium chain
Polihidroxialcanoatos
PHAs
copolímero
Burkholderia
Pseudomonas
Cadena corta y media
- Rights
- openAccess
- License
- Atribución-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_67280def2d572a799d23e8c7aa42c4a8 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/85280 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Evaluación de un vector de transformación en p. fluorescens ibun S1602 para la producción de un copolímero de polihidroxialcanoatos (PHAs) de cadena corta (PHAscl) y cadena media (PHAmcl) |
dc.title.translated.eng.fl_str_mv |
Evaluation of a transformation vector in p. fluorescens ibun S1602 for production of a short chain (PHAscl) and medium chain (PHAmcl) polyhydroxyalcanoates (PHAs) copolymer |
title |
Evaluación de un vector de transformación en p. fluorescens ibun S1602 para la producción de un copolímero de polihidroxialcanoatos (PHAs) de cadena corta (PHAscl) y cadena media (PHAmcl) |
spellingShingle |
Evaluación de un vector de transformación en p. fluorescens ibun S1602 para la producción de un copolímero de polihidroxialcanoatos (PHAs) de cadena corta (PHAscl) y cadena media (PHAmcl) 570 - Biología::572 - Bioquímica Polihidroxialcanoatos Biopolímeros Poliésteres Vectores Genéticos Pseudomonas fluorescens Burkholderia Polyhydroxyalkanoates Biopolymers Polyesters Genetic Vectors Polyhydroxyalkanoates PHAs copolymer Burkholderia Pseudomonas short and medium chain Polihidroxialcanoatos PHAs copolímero Burkholderia Pseudomonas Cadena corta y media |
title_short |
Evaluación de un vector de transformación en p. fluorescens ibun S1602 para la producción de un copolímero de polihidroxialcanoatos (PHAs) de cadena corta (PHAscl) y cadena media (PHAmcl) |
title_full |
Evaluación de un vector de transformación en p. fluorescens ibun S1602 para la producción de un copolímero de polihidroxialcanoatos (PHAs) de cadena corta (PHAscl) y cadena media (PHAmcl) |
title_fullStr |
Evaluación de un vector de transformación en p. fluorescens ibun S1602 para la producción de un copolímero de polihidroxialcanoatos (PHAs) de cadena corta (PHAscl) y cadena media (PHAmcl) |
title_full_unstemmed |
Evaluación de un vector de transformación en p. fluorescens ibun S1602 para la producción de un copolímero de polihidroxialcanoatos (PHAs) de cadena corta (PHAscl) y cadena media (PHAmcl) |
title_sort |
Evaluación de un vector de transformación en p. fluorescens ibun S1602 para la producción de un copolímero de polihidroxialcanoatos (PHAs) de cadena corta (PHAscl) y cadena media (PHAmcl) |
dc.creator.fl_str_mv |
Hernández Jirón, Isabel Cristina |
dc.contributor.advisor.spa.fl_str_mv |
Bernal Morales, José Mauricio Moreno Sarmiento, Nubia |
dc.contributor.author.spa.fl_str_mv |
Hernández Jirón, Isabel Cristina |
dc.contributor.researchgroup.spa.fl_str_mv |
Bioprocesos y Bioprospección |
dc.subject.ddc.spa.fl_str_mv |
570 - Biología::572 - Bioquímica |
topic |
570 - Biología::572 - Bioquímica Polihidroxialcanoatos Biopolímeros Poliésteres Vectores Genéticos Pseudomonas fluorescens Burkholderia Polyhydroxyalkanoates Biopolymers Polyesters Genetic Vectors Polyhydroxyalkanoates PHAs copolymer Burkholderia Pseudomonas short and medium chain Polihidroxialcanoatos PHAs copolímero Burkholderia Pseudomonas Cadena corta y media |
dc.subject.decs.spa.fl_str_mv |
Polihidroxialcanoatos Biopolímeros Poliésteres Vectores Genéticos Pseudomonas fluorescens Burkholderia |
dc.subject.decs.eng.fl_str_mv |
Polyhydroxyalkanoates Biopolymers Polyesters Genetic Vectors |
dc.subject.proposal.eng.fl_str_mv |
Polyhydroxyalkanoates PHAs copolymer Burkholderia Pseudomonas short and medium chain |
dc.subject.proposal.spa.fl_str_mv |
Polihidroxialcanoatos PHAs copolímero Burkholderia Pseudomonas Cadena corta y media |
description |
ilustraciones (principalmente a color), diagramas, fotografías |
publishDate |
2023 |
dc.date.issued.none.fl_str_mv |
2023 |
dc.date.accessioned.none.fl_str_mv |
2024-01-15T17:02:40Z |
dc.date.available.none.fl_str_mv |
2024-01-15T17:02:40Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.spa.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/85280 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/85280 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Alvarez-Santullano, N., Villegas, P., Mardones, M. S., Durán, R. E., Donoso, R., González, A., … Seeger, M. (2021). Genome-wide metabolic reconstruction of the synthesis of polyhydroxyalkanoates from sugars and fatty acids by burkholderia sensu lato species. Microorganisms, 9(6). https://doi.org/10.3390/microorganisms9061290 Amitai, G., & Sorek, R. (2012). PanDaTox: A tool for accelerated metabolic engineering. Bioengineered, 3(4), 218–221. https://doi.org/10.4161/bbug.20431 Anjum, A., Zuber, M., Zia, K. M., Noreen, A., Anjum, M. N., & Tabasum, S. (2016). Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: A review of recent advancements. International Journal of Biological Macromolecules, 89, 161–174. https://doi.org/10.1016/j.ijbiomac.2016.04.069 Assal, N., & Lin, M. (2020). PCR procedures to amplify GC-rich DNA sequences of Mycobacterium bovis. BioRxiv, 2020.02.18.953695. https://doi.org/10.1101/2020.02.18.953695 Barbosa, M., Espinosa Hernández, A., Malagón Romero, D., & Moreno Sarmiento, N. (2005). PRODUCCIÓN DE POLI-β POR Ralstonia eutropha ATCC 17697. Universitas Scientiarum, 10(1), 45–54 Becerra Jiménez, M. L. (2013). Producción De Un Polímero Tipo Polihidroxialcanoato (Pha) Empleando Residuos De La Producción De Biodiesel. Revista de Ingeniería, (18), 175–190. https://doi.org/http://dx.doi.org/10.16924%2Friua.v0i18.492 Becerra, S. A. (2014). SELECCIÓN DE MUTANTES HIPERPRODUCTORAS DE POLIHIDROXIALCANOATOS EN LA CEPA Burkholderia cepacia 2G57. UNIVERSIDAD COLEGIO MAYOR DE CUNDINAMARCA Budde, C. F., Riedel, S. L., Willis, L. B., Rha, C., & Sinskey, A. J. (2011). Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from plant oil by engineered Ralstonia eutropha strains. Applied and Environmental Microbiology, 77(9), 2847–2854. https://doi.org/10.1128/AEM.02429-10 Burdon, K. L. (1946). Fatty Material in Bacteria and Fungi Revealed by Staining Dried, Fixed Slide Preparations. Journal of Bacteriology, 52(6), 665–678. https://doi.org/10.1128/jb.52.6.665-678.1946 Cardona, A., Mora, A., & Marín, M. (2013). Identificación Molecular de Bacterias Productoras de Polihidroxialcanoatos en Subproductos de Lácteos y Caña de Azúcar. Facultad Nacional de Agronomia, 66(2), 7129–7140 Cespedes, L. G., Nahat, R. A. T. P. S., Mendonça, T. T., Tavares, R. R., Oliveira-Filho, E. R., Silva, L. F., … Gomez, J. G. C. (2018). A non-naturally-occurring P(3HB-co-3HAMCL) is produced by recombinant Pseudomonas sp. from an unrelated carbon source. International Journal of Biological Macromolecules, 114, 512–519. https://doi.org/10.1016/j.ijbiomac.2018.03.051 Cha, D., Ha, H. S., & Lee, S. K. (2020). Metabolic engineering of Pseudomonas putida for the production of various types of short-chain-length polyhydroxyalkanoates from levulinic acid. Bioresource Technology, 309(January), 123332. https://doi.org/10.1016/j.biortech.2020.123332 Chek, M. F., Hiroe, A., Hakoshima, T., Sudesh, K., & Taguchi, S. (2019). PHA synthase (PhaC): interpreting the functions of bioplastic-producing enzyme from a structural perspective. Applied Microbiology and Biotechnology, 103(3), 1131–1141. https://doi.org/10.1007/s00253-018-9538-8 Chen, G. Q., & Jiang, X. R. (2017). Engineering bacteria for enhanced polyhydroxyalkanoates (PHA) biosynthesis. Synthetic and Systems Biotechnology, 2(3), 192–197. https://doi.org/10.1016/j.synbio.2017.09.001 Chen, G. Q., Jiang, X. R., & Guo, Y. (2016). Synthetic biology of microbes synthesizing polyhydroxyalkanoates (PHA). Synthetic and Systems Biotechnology, 1(4), 236–242. https://doi.org/10.1016/j.synbio.2016.09.006 Ciesielski, S., Cydzik-Kwiatkowska, A., Pokoj, T., & Klimiuk, E. (2006). Molecular detection and diversity of medium-chain-length polyhydroxyalkanoates-producing bacteria enriched from activated sludge. Journal of Applied Microbiology, 101(1), 190–199. https://doi.org/10.1111/j.1365-2672.2006.02973.x Conlan, L. H., Thomas, J. J., Thornton, K. C., & Dupureur, C. M. (1999). Modulating restriction endonuclease activities and specificities using neutral detergents. BioTechniques, 27(5), 955–960. https://doi.org/10.2144/99275st02 Daligault, H. E., Davenport, K. W., Minogue, T. D., Bishop-Lilly, K. A., Broomall, S. M., Bruce, D. C., … Johnson, S. L. (2014). Whole-genome assemblies of 56 Burkholderia species. Genome Announcements, 2(6). https://doi.org/10.1128/GENOMEA.01106-14 De Andrade Rodrigues, M. F., Valentin, H. E., Berger, P. A., Tran, M., Asrar, J., Gruys, K. J., & Steinbüchel, A. (2000). Polyhydroxyalkanoate accumulation in Burkholderia sp.: A molecular approach to elucidate the genes involved in the formation of two homopolymers consisting of short-chain-length 3-hydroxyalkanoic acids. Applied Microbiology and Biotechnology, 53(4), 453–460. https://doi.org/10.1007/s002530051641 De Andrade Rodrigues, Maria Filomena, Vicente, E. J., & Steinbüchel, A. (2000). Studies on polyhydroxyalkanoate (PHA) accumulation in a PHA synthase I-negative mutant of Burkholderia cepacia generated by homogenotization. FEMS Microbiology Letters, 193(1), 179–185. https://doi.org/10.1016/S0378-1097(00)00483-3 Dennis, J. J., & Sokol, P. A. (1995). Electrotransformation of Pseudomonas. Methods in Molecular Biology (Clifton, N.J.), 47, 125–133. https://doi.org/10.1385/0-89603-310-4:125 Dorado Pérez, G. (2014). Clonacion del DNA amplificado mediante Pcr. Biotecnología: Marcadores Moleculares, Ingeniería Genética y Transformación, Genómica., 1–22. Retrieved from http://www.uco.es/dptos/bioquimica-biol-mol/ Farell, E. M., & Alexandre, G. (2012). Bovine serum albumin further enhances the effects of organic solvents on increased yield of polymerase chain reaction of GC-rich templates. BMC Research Notes, 5(1), 1. https://doi.org/10.1186/1756-0500-5-257 Flynn, A., Jones, D., Man, E., Shipman, S., & Tung, S. (2002). The Influence of the Size and Number of Digested pBR322 Fragments on the Inhibition of Transformation of E . coli HB101 Cells by the Plasmids pBR322 and p328 . 5. 2(April), 57–67 González García, Y., Meza Contreras, J. C., González Reynoso, O., & Córdova López, J. A. (2013). Síntesis y Biodegradación de Polihidroxialcanoatos: Plásticos de Origen Microbiano. Revista Internacional de Contaminación Ambiental, 29(1), 77–115. Retrieved from http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0188-49992013000100007 Hall, B. G. (2013). Building phylogenetic trees from molecular data with MEGA. Molecular Biology and Evolution, 30(5), 1229–1235. https://doi.org/10.1093/molbev/mst012 Hardjasa, A., Ling, M., Ma, K., & Yu, H. (2010). Investigating the Effects of DMSO on PCR Fidelity Using a Restriction Digest-Based Method. Journal of Experimental Microbiology and Immunology (JEMI), 14(April), 161–164 Jendrossek, D. (2009). Polyhydroxyalkanoate granules are complex subcellular organelles (carbonosomes). Journal of Bacteriology, 191(10), 3195–3202. https://doi.org/10.1128/JB.01723-08 Jeon, J. M., Brigham, C. J., Kim, Y. H., Kim, H. J., Yi, D. H., Kim, H., … Yang, Y. H. (2014). Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (P(HB-co-HHx)) from butyrate using engineered Ralstonia eutropha. Applied Microbiology and Biotechnology, 98(12), 5461–5469. https://doi.org/10.1007/s00253-014-5617 Keenan, T. M., Tanenbaum, S. W., Stipanovic, A. J., & Nakas, J. P. (2004). Production and Characterization of Poly-β-hydroxyalkanoate Copolymers from Burkholderia cepacia Utilizing Xylose and Levulinic Acid. Artificial Cells Blood Substitutes And Immobilization Biotechnologyartif Cells Blood Substit Immobi, (12) Kim, J., Chang, J. H., Kim, E. J., & Kim, K. J. (2014). Crystal structure of (R)-3-hydroxybutyryl-CoA dehydrogenase PhaB from Ralstonia eutropha. Biochemical and Biophysical Research Communications, 443(3), 783–788. https://doi.org/10.1016/j.bbrc.2013.10.150 Kimelman, A., Levy, A., Sberro, H., Kidron, S., Leavitt, A., Amitai, G., … Sorek, R. (2012). A vast collection of microbial genes that are toxic to bacteria. Genome Research, 22(4), 802–809. https://doi.org/10.1101/gr.133850.111 Kjeldsen, A., Price, M., Lilley, C., Guzniczak, E., & Archer, I. (2019). A Review of Standards for Biodegradable Plastics with support from. In Industrial Biotechnology Innovation Centre IBioIC Kovach, M. E., Elzer, P. H., Hill, D. S., Robertson, G. T., Farris, M. A., Roop, R. M. 2nd, & Peterson, K. M. (1995). Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene, 166(1), 175–176. https://doi.org/10.1016/0378-1119(95)00584-1 Kovalcik, A., Obruca, S., Fritz, I., & Marova, I. (2019). Polyhydroxyalkanoates: Their Importance and Future. BioResources, 14(2), 2468–2471 Krela, R., Poreba, E., Weglewska, M., Skrzypczak, T., & Lesniewicz, K. (2019). A novel method for cloning of coding sequences of highly toxic proteins. Biochimica et Biophysica Acta - General Subjects, 1863(3), 521–527. https://doi.org/10.1016/j.bbagen.2018.12.010 Lau, N. S., & Sudesh, K. (2012). Revelation of the ability of burkholderia sp. USM (JCM 15050) PHA synthase to polymerize 4-hydroxybutyrate monomer. AMB Express, 2(1), 1–9. https://doi.org/10.1186/2191-0855-2-41 Lindenkamp, N., Volodina, E., & Steinbüchel, A. (2012). Genetically modified strains of Ralstonia eutropha H16 with β- ketothiolase gene deletions for production of copolyesters with defined 3-hydroxyvaleric acid contents. Applied and Environmental Microbiology, 78(15), 5375–5383. https://doi.org/10.1128/AEM.00824-12 Liu, C. H., Chen, H. Y., Chen, Y. L. L., & Sheu, D. S. (2021). The polyhydroxyalkanoate (PHA) synthase 1 of Pseudomonas sp. H9 synthesized a 3-hydroxybutyrate-dominant hybrid of short- and medium-chain-length PHA. Enzyme and Microbial Technology, 143(142), 109719. https://doi.org/10.1016/j.enzmictec.2020.109719 Liu, Y., Feng, Y., Cao, X., Li, X., & Xue, S. (2015). Structure-directed construction of a high-performance version of the enzyme FabG from the photosynthetic microorganism Synechocystis sp. PCC 6803. FEBS Letters, 589(20), 3052–3057. https://doi.org/10.1016/j.febslet.2015.09.001 Lu, J., Tappel, R. C., & Nomura, C. T. (2009). Mini-review: Biosynthesis of poly(hydroxyalkanoates). Polymer Reviews, 49(3), 226–248. https://doi.org/10.1080/15583720903048243 Marchler-Bauer, A., Derbyshire, M. K., Gonzales, N. R., Lu, S., Chitsaz, F., Geer, L. Y., … Bryant, S. H. (2015). CDD: NCBI’s conserved domain database. Nucleic Acids Research, 43(Database issue), D222–D226. https://doi.org/10.1093/NAR/GKU1221 Matsumoto, K., Tanaka, Y., Watanabe, T., Motohashi, R., Ikeda, K., Tobitani, K., … Taguchi, S. (2013). Directed evolution and structural analysis of nadph-dependent acetoacetyl coenzyme A(acetoacetyl-CoA) reductase from ralstonia eutropha reveals two mutations responsible for enhanced kinetics. Applied and Environmental Microbiology, 79(19), 6134–6139. https://doi.org/10.1128/AEM.01768-13 Méndez, D. A. (2016). MODELAMIENTO MATEMÁTICO Y OPTIMIZACIÓN DEL PROCESO DE PRODUCCIÓN DE POLIHIDROXIALCANOATOS EMPLEANDO LA BACTERIA Burkholderia cepacia B27 A PARTIR DE ÁCIDOS GRASOS. Universidad Nacional de Colombia Mendez, Daniel A., Cabeza, I. O., Moreno, N. C., & Riascos, C. A. M. (2016). Mathematical modelling and scale-up of batch fermentation with burkholderia cepacia B27 using vegetal oil as carbon source to produce polyhydroxyalkanoates. Chemical Engineering Transactions, 49(March), 277–282. https://doi.org/10.3303/CET1649047 Mendez, Daniel Alexander. (2016). Evaluación del proceso de extracción de polihidroxialcanoatos ( PHA ) a partir de Burkholderia cepacia ... (November). https://doi.org/10.15446/agron.colomb.sup.2016n1.58399 Mezzina, M. P., Manoli, M. T., Prieto, M. A., & Nikel, P. I. (2021). Engineering Native and Synthetic Pathways in Pseudomonas putida for the Production of Tailored Polyhydroxyalkanoates. Biotechnology Journal, 16(3). https://doi.org/10.1002/biot.202000165 Montoya, D., Moreno, N., Espinosa, A., Buitrago, G., Aristizábal, F., Bernal, M., & Garcia, I. (2017). Del laboratorio a la industria. Revista Colombiana de Biotecnología., Numero esp, 12–17 Moreno, N., Gutiérrez, I., Malagón, D., Grosso, V., Revelo, D., González, J., … Montoya, D. (2007). Bioprospecting and characterization of poly-β-hydroxyalkanoate (PHAs) producing bacteria isolated from Colombian sugarcane producing areas. African Journal of Biotechnology, 6(13), 1536–1543. Retrieved from www.ajol.info/index.php/ajb/article/view/57660 Możejko-Ciesielska, J., & Kiewisz, R. (2016). Bacterial polyhydroxyalkanoates: Still fabulous? Microbiological Research, 192(2016), 271–282. https://doi.org/10.1016/j.micres.2016.07.010 Mozejko, J., & Ciesielski, S. (2013). Saponified waste palm oil as an attractive renewable resource for mcl-polyhydroxyalkanoate synthesis. Journal of Bioscience and Bioengineering, 116(4), 485–492. https://doi.org/10.1016/j.jbiosc.2013.04.014 Ojumu, T. ., & Solomon, B. . (2004). Production of Polyhydroxyalkanoates , a bacterial biodegradable polymer. African Journal of Biotechnology, 3(1), 18–24 Oliveira-Filho, E. R., Guamán, L. P., Mendonca, T. T., Long, P. F., Taciro, M. K., Gomez, J. G. C., & Silva, L. F. (2019). Production of polyhydroxyalkanoates copolymers by recombinant pseudomonas in plasmid- and Antibiotic-free cultures. Journal of Molecular Microbiology and Biotechnology, 28(5), 225–235. https://doi.org/10.1159/000495752 Pakalapati, H., Chang, C. K., Show, P. L., Arumugasamy, S. K., & Lan, J. C. W. (2018). Development of polyhydroxyalkanoates production from waste feedstocks and applications. Journal of Bioscience and Bioengineering, 126(3), 282–292. https://doi.org/10.1016/j.jbiosc.2018.03.016 Pan, W., Perrotta, J. A., Stipanovic, A. J., Nomura, C. T., & Nakas, J. P. (2012). Production of polyhydroxyalkanoates by Burkholderia cepacia ATCC 17759 using a detoxified sugar maple hemicellulosic hydrolysate. Journal of Industrial Microbiology and Biotechnology, 39(3), 459–469. https://doi.org/10.1007/s10295-011-1040-6 Parra Huertas, S. L., Pérez Casas, M. M., Bernal Morales, M., Suárez Moreno, Z., & Montoya Castaño, D. (2006). Implementación y evaluación de dos métodos deconservación y generación de la base de datos del banco de cepas y genes del Instituto de Biotecnología de la Universidad Nacional de Colombia (IBUN). Nova, 4(5), 39. https://doi.org/10.22490/24629448.346 Philip, S., Keshavarz, T., & Roy, I. (2007). Polyhydroxyalkanoates : biodegradable polymers with a range of applications. Journal OfChemical Technology and Biotechnology, 247(July 2006), 233–247. https://doi.org/10.1002/jctb Plenderleith, R., Swift, T., & Rimmer, S. (2014). Highly-branched Poly(N-isopropyl acrylamide)s with core-shell morphology below the lower critical solution temperature. J. Mater. Chem. C, 3, 10715–10722. https://doi.org/10.1039/b000000x Poli, A., Di Donato, P., Abbamondi, G. R., & Nicolaus, B. (2011). Synthesis, Production, and Biotechnological Applications of Exopolysaccharides and Polyhydroxyalkanoates by Archaea. Archaea, 2011, 1–13. https://doi.org/10.1155/2011/693253 Poltronieri, P., & Kumar, P. (2019). Polyhydroxyalkanoates (PHAs) in industrial applications. Handbook of Ecomaterials, 4, 2843–2872. https://doi.org/10.1007/978-3-319-68255-6_70 Rai, R., Keshavarz, T., Roether, J. A., Boccaccini, A. R., & Roy, I. (2011). Medium chain length polyhydroxyalkanoates, promising new biomedical materials for the future. Materials Science and Engineering R: Reports, 72(3), 29–47. https://doi.org/10.1016/j.mser.2010.11.002 Raza, Z. A., Abid, S., & Banat, I. M. (2018). Polyhydroxyalkanoates: Characteristics, production, recent developments and applications. International Biodeterioration and Biodegradation, 126(October 2017), 45–56. https://doi.org/10.1016/j.ibiod.2017.10.001 Rehm, B. H. A., Mitsky, T. A., & Steinbüchel, A. (2001). Role of Fatty Acid de novo Biosynthesis in Polyhydroxyalkanoic Acid (PHA) and Rhamnolipid Synthesis by Pseudomonads: Establishment of the Transacylase (PhaG)-Mediated Pathway for PHA Biosynthesis in Escherichia coli. Applied and Environmental Microbiology, 67(7), 3102–3109. https://doi.org/10.1128/AEM.67.7.3102-3109.2001 Revelo, D. (2005). Diseño de iniciadores y validación de una metodología molecular para la seleccion de bacterias de diferentes géneros acumuladoras de Polihidroxialcanoatos (PHAs). Universidad Nacional de Colombia Revelo, D., Grosso, M. V., Moreno Solano, N. C., & Montoya, D. (2007). A most effective method for selecting a broad range of short and medium-chain-length polyhidroxyalcanoate producing microorganisms. Electronic Journal of Biotechnology, 10(3), 348–357. https://doi.org/10.2225/vol10-issue3-fulltext-13 Rodicio, M. D. R., & Mendoza, M. D. C. (2004). Identificación bacteriana mediante secuenciación del ARNr 16S: Fundamento, metodología y aplicaciones en microbiología clínica. Enfermedades Infecciosas y Microbiologia Clinica, 22(4), 238–245. https://doi.org/10.1157/13059055 Rojas-Rojas, F. U., López-Sánchez, D., Meza-Radilla, G., Méndez-Canarios, A., Ibarra, J. A., & Estrada-de los Santos, P. (2019). The controversial Burkholderia cepacia complex, a group of plant growth promoting species and plant, animals and human pathogens. Revista Argentina de Microbiologia, 51(1), 84–92. https://doi.org/10.1016/J.RAM.2018.01.002 Sagong, H.-Y., Son, H. F., Choi, S. Y., Lee, S. Y., & Kim, K.-J. (2018). Structural Insights into Polyhydroxyalkanoates Biosynthesis. Trends in Biochemical Sciences, 43(10), 790–805. https://doi.org/https://doi.org/10.1016/j.tibs.2018.08.005 Sagong, H. Y., Son, H. F., Choi, S. Y., Lee, S. Y., & Kim, K. J. (2018). Structural Insights into Polyhydroxyalkanoates Biosynthesis. Trends in Biochemical Sciences, 43(10), 790–805. https://doi.org/10.1016/j.tibs.2018.08.005 Saida, F., Uzan, M., Odaert, B., & Bontems, F. (2006). Expression of Highly Toxic Genes in E. coli: Special Strategies and Genetic Tools. Current Protein and Peptide Science, 7(1), 47–56. https://doi.org/10.2174/138920306775474095 Scales, B. S., Dickson, R. P., Lipuma, J. J., & Huffnagle, G. B. (2014). Microbiology, genomics, and clinical significance of the Pseudomonas fluorescens species complex, an unappreciated colonizer of humans. Clinical Microbiology Reviews, 27(4), 927–948. https://doi.org/10.1128/CMR.00044-14 Segawa, M., Wen, C., Orita, I., Nakamura, S., & Fukui, T. (2019). Two NADH-dependent (S)-3-hydroxyacyl-CoA dehydrogenases from polyhydroxyalkanoate-producing Ralstonia eutropha. Journal of Bioscience and Bioengineering, 127(3), 294–300. https://doi.org/10.1016/j.jbiosc.2018.08.009 Serrano, J. Y. (2010). DETERMINACIÓN DEL CLUSTER (phaC1, phaZ, phaC2, phaD, phaF, phaI) ASOCIADO CON LA PRODUCCIÓN DE POLIHIDROXIALCANOATOS (PHAs) SINTASA TIPO II EN UNA CEPA NATIVA COLOMBIANA. Universidad Nacional de Colombia Serrano Riaño, J., Sastoque Rivera, L. Á., Castaño, D. M., & Moreno Sarmiento, N. (2011). Análisis de las polihidroxialcanoato sintasas (PhaC1 y PhaC2) en una cepa de Pseudomonas fluorescens IBUN S1602, aislada en suelos colombianos. Revista Colombiana de Biotecnología., XIII(2), 84–96 Slater, S. C., Voige, W. H., & Dennis, D. E. (1988). Cloning and expression in Escherichia coli of the Alcaligenes eutrophus H16 poly-beta-hydroxybutyrate biosynthetic pathway. Journal of Bacteriology, 170(10), 4431–4436. https://doi.org/10.1128/jb.170.10.4431-4436.1988 Tan, D., Yin, J., & Chen, G. Q. (2016). Production of Polyhydroxyalkanoates. In Current Developments in Biotechnology and Bioengineering: Production, Isolation and Purification of Industrial Products (pp. 655–692). https://doi.org/10.1016/B978-0-444-63662-1.00029-4 Tolmachov, O. E. (2011). DNA Cloning in Plasmid Vectors. In Comprehensive Biotechnology, Second Edition (Second Edi, Vol. 1). https://doi.org/10.1016/B978-0-08-088504-9.00008-8 Torres Ospina, A. C. (2019). Formulación de un modelo metabólicamente estructurado para optimizar la producción de Polihidroxialcanoatos (PHA) a partir de Burkholderia cepacia. Universidad Nacional de Colombia Urtuvia, V., Villegas, P., Fuentes, S., González, M., & Seeger, M. (2018). Burkholderia xenovorans LB400 possesses a functional polyhydroxyalkanoate anabolic pathway encoded by the pha genes and synthesizes poly(3-hydroxybutyrate) under nitrogen-limiting conditions. International Microbiology, 21(1–2), 47–57. https://doi.org/10.1007/s10123-018-0004-3 Urtuvia, V., Villegas, P., Gonzalez, M., & Seeger, M. (2014). Bacterial production of the biodegradable plastics polyhydroxyalkanoates. International Journal of Biological Macromolecules, 70, 208–213. https://doi.org/10.1016/j.ijbiomac.2014.06.001 Vasu, K., & Nagaraja, V. (2013). Diverse Functions of Restriction-Modification Systems in Addition to Cellular Defense. Microbiology and Molecular Biology Reviews, 77(1), 53–72. https://doi.org/10.1128/mmbr.00044-12 Vu, K., Bautos, J., Hong, M.-P., & Gelli, A. (2009). The functional expression of toxic genes: Lessons learned from molecular cloning of CCH1, a high-affinity Ca2+ channel Kiem. National Institutes of Health, 393(2), 234–241. https://doi.org/10.1016/j.ab.2009.06.039 Wittenborn, E. C., Jost, M., Wei, Y., Stubbe, J. A., & Drennan, C. L. (2016). Structure of the catalytic domain of the class I polyhydroxybutyrate synthase from Cupriavidus necator. Journal of Biological Chemistry, 291(48), 25264–25277. https://doi.org/10.1074/jbc.M116.756833 Wu, H., Fan, Z., Jiang, X., Chen, J., & Chen, G. Q. (2016). Enhanced production of polyhydroxybutyrate by multiple dividing E. coli. Microbial Cell Factories, 15(1), 1–13. https://doi.org/10.1186/s12934-016-0531-6 Zhao, F., Liu, X., Kong, A., Zhao, Y., Fan, X., Ma, T., … Yang, C. (2019). Morphology engineering for enhanced production of medium-chain-length polyhydroxyalkanoates in Pseudomonas mendocina NK-01. Scientific Reports, 9(1), 1713–1724. https://doi.org/10.1038/s41598-019-39321-z Zheng, Y., Chen, J. C., Ma, Y. M., & Chen, G. Q. (2019). Engineering biosynthesis of polyhydroxyalkanoates (PHA) for diversity and cost reduction. Metabolic Engineering, (March). https://doi.org/10.1016/j.ymben.2019.07.004 Zher Neoh, S., Fey Chek, M., Tiang Tan, H., Linares-Pastén, J. A., Nandakumar, A., Hakoshima, T., & Sudesh, K. (2022). Polyhydroxyalkanoate synthase (PhaC): The key enzyme for biopolyester synthesis. Current Research in Biotechnology, 4(November 2021), 87–101. https://doi.org/10.1016/j.crbiot.2022.01.002 Zhuang, Q., Wang, Q., Liang, Q., & Qi, Q. (2014). Synthesis of polyhydroxyalkanoates from glucose that contain medium-chain-length monomers via the reversed fatty acid β-oxidation cycle in Escherichia coli. Metabolic Engineering, 24, 78–86. https://doi.org/10.1016/j.ymben.2014.05.004 Zuriani, R., Vigneswari, S., Azizan, M. N. M., Majid, M. I. A., & Amirul, A. A. (2013). A high throughput Nile red fluorescence method for rapid quantification of intracellular bacterial polyhydroxyalkanoates. Biotechnology and Bioprocess Engineering, 18(3), 472–478. https://doi.org/10.1007/s12257-012-0607-z |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xix, 119 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Maestría en Ciencias - Microbiología |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/85280/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/85280/2/Tesis%20de%20Maestr%c3%ada%20en%20Ciencias%20-%20Microbiolog%c3%ada.pdf https://repositorio.unal.edu.co/bitstream/unal/85280/3/Tesis%20de%20Maestr%c3%ada%20en%20Ciencias%20-%20Microbiolog%c3%ada.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a acfcc8d53bef9e92216d0427638617f2 f589570ffb8c0195394483920cb95231 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089297791287296 |
spelling |
Atribución-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Bernal Morales, José Mauricio1e1d30ae7d64c3851743e2a4c7d40fd2Moreno Sarmiento, Nubia16311b987fedc341cbdf0f51389c4aebHernández Jirón, Isabel Cristinad7965e6eb76afb7749881aaf39e5f941Bioprocesos y Bioprospección2024-01-15T17:02:40Z2024-01-15T17:02:40Z2023https://repositorio.unal.edu.co/handle/unal/85280Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones (principalmente a color), diagramas, fotografíasLos Polihidroxialcanoatos (PHAs) son poliésteres acumulados intracelularmente como fuente de carbono y energía por bacterias en ciertas condiciones. Las características físicas y mecánicas del PHA depende del microorganismo usado, las proteínas, genes involucrados, las condiciones de crecimiento, la ruta metabólica y la fuente de carbono suministrada. Por ejemplo, los copolímeros de cadena corta y media exhiben características como, una temperatura de fusión más baja, un módulo de Young más bajo y un alargamiento de rotura más alto, esto significa que es un plástico más resistente y flexible. El Grupo de Investigación de Bioprocesos y Bioprospección de la Universidad Nacional (UNAL) ha enfocado sus esfuerzos en el estudio de microorganismos con potencial biotecnológico para establecer un aprovechamiento sostenible y rentable de bio-productos de interés comercial. Pseudomonas fluorescens y Burkholderia acumulan PHAs de cadena media (PHAmcl) y cadena corta (PHAscl) respectivamente, a partir de diversas fuentes de carbono y han sido objeto de estudio en el grupo de investigación. Análisis genéticos realizados por el grupo han demostrado que la especie P. fluorescens IBUN S1602 contiene la polimerasa tipo II para producción de PHAmcl, no obstante, hasta la fecha el grupo no ha hecho un reporte parecido para Burkholderia sp. IBUN 2G57. Dentro del trabajo realizado con IBUN S1602 se recomendó para futuras investigaciones establecer las condiciones de fermentación para producir PHAs e iniciar la manipulación genética usando el conocimiento de los genes involucrados en la producción de PHAmcl. El objetivo de este trabajo es aprovechar los recursos genéticos de Pseudomonas y Burkholderia para producir PHAs de cadena corta y media que podrían ser considerados más competitivos en el mercado y que suplieran las necesidades y limitaciones de la obtención de estos biopolímeros. En el desarrollo del proyecto se estandarizaron las condiciones de PCR de cinco pares de cebadores para amplificar el operón phaCAB y los genes phaC, phaA, phaB de Burkholderia sp. IBUN 2G57 involucrados en la producción de PHB (poli-3-Hidroxibutirato), se determinó que esta cepa tiene la organización genética de la sintasa tipo I al igual que la cepa más estudiada Cupriavidus necator, a su vez, se diseñó un vector de transformación con el operón phaCAB y el gen phaC y se realizaron ensayos de transformación de P. fluorescens IBUN S1602. La evaluación del vector de transformación construido en este trabajo llevó a considerar que los insertos provenientes de las cepas de Burkholderia presentaban un grado de toxicidad que impedían la exitosa transformación de IBUN S1602. (Texto tomado de la fuente)Polyhydroxyalkanoates (PHAs) are polyesters accumulated intracellularly as a carbon and energy source by bacteria under certain conditions. The physical and mechanical characteristics of PHA depends on the microorganism used, the proteins, genes involved, the growth conditions, the metabolic pathway and the carbon source supplied. For example, short and medium chain copolymers exhibit characteristics such as, lower melting temperature, lower Young's modulus, and higher elongation at break, this means that it is a stronger and more flexible plastic, leading to improved bioplastic properties. The Bioprocesses and Bioprospecting Research Group of the National University (UNAL) has focused its efforts on the study of microorganisms with biotechnological potential with the objective of establishing a sustainable and profitable use of bio-products of commercial interest. Pseudomonas fluorescens and Burkholderia are microorganisms that accumulate medium-chain PHAs (PHAmcl) and short-chain PHAs (PHAscl) respectively, using diverse carbon sources and have been the object of study in the research group. Genetic analyses performed by the group have shown that P. fluorescens IBUN S1602 contains the type II polymerase for PHAmcl production, however, to date the group has not made a similar report for Burkholderia sp. IBUN 2G57. Within the work carried out with IBUN S1602, it was recommended for future research to establish fermentation conditions for this strain and to initiate genetic manipulation taking advantage of the knowledge of the genes involved in PHAmcl production. The objective of this work is to take advantage of the genetic resources of Pseudomonas and Burkholderia to produce short- and medium-chain PHAs that could be considered more competitive in the market and that would meet the needs and limitations of obtaining these biopolymers. In the development of the project, the PCR conditions of five pairs of primers were optimized to amplify the pha operon and the phaC, phaA, phaB genes of Burkholderia sp. IBUN 2G57 involved in the production of PHB (poly-3-Hydroxybutyrate), it was determined that this strain has the genetic organization of type I synthase like the most studied strain Cupriavidus necator, in turn, a transformation vector with the pha operon and phaC gene was designed and transformation assays of P. fluorescens IBUN S1602 were performed. The evaluation of the transformation vector constructed in this work led to consider that the inserts from the Burkholderia strains presented a degree of toxicity that prevented the successful transformation of IBUN S1602.MaestríaMagíster en Ciencias - MicrobiologíaBiopolímeros y Fermentacionesxix, 119 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - MicrobiologíaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá570 - Biología::572 - BioquímicaPolihidroxialcanoatosBiopolímerosPoliésteresVectores GenéticosPseudomonas fluorescensBurkholderiaPolyhydroxyalkanoatesBiopolymersPolyestersGenetic VectorsPolyhydroxyalkanoatesPHAscopolymerBurkholderiaPseudomonasshort and medium chainPolihidroxialcanoatosPHAscopolímeroBurkholderiaPseudomonasCadena corta y mediaEvaluación de un vector de transformación en p. fluorescens ibun S1602 para la producción de un copolímero de polihidroxialcanoatos (PHAs) de cadena corta (PHAscl) y cadena media (PHAmcl)Evaluation of a transformation vector in p. fluorescens ibun S1602 for production of a short chain (PHAscl) and medium chain (PHAmcl) polyhydroxyalcanoates (PHAs) copolymerTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAlvarez-Santullano, N., Villegas, P., Mardones, M. S., Durán, R. E., Donoso, R., González, A., … Seeger, M. (2021). Genome-wide metabolic reconstruction of the synthesis of polyhydroxyalkanoates from sugars and fatty acids by burkholderia sensu lato species. Microorganisms, 9(6). https://doi.org/10.3390/microorganisms9061290Amitai, G., & Sorek, R. (2012). PanDaTox: A tool for accelerated metabolic engineering. Bioengineered, 3(4), 218–221. https://doi.org/10.4161/bbug.20431Anjum, A., Zuber, M., Zia, K. M., Noreen, A., Anjum, M. N., & Tabasum, S. (2016). Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: A review of recent advancements. International Journal of Biological Macromolecules, 89, 161–174. https://doi.org/10.1016/j.ijbiomac.2016.04.069Assal, N., & Lin, M. (2020). PCR procedures to amplify GC-rich DNA sequences of Mycobacterium bovis. BioRxiv, 2020.02.18.953695. https://doi.org/10.1101/2020.02.18.953695Barbosa, M., Espinosa Hernández, A., Malagón Romero, D., & Moreno Sarmiento, N. (2005). PRODUCCIÓN DE POLI-β POR Ralstonia eutropha ATCC 17697. Universitas Scientiarum, 10(1), 45–54Becerra Jiménez, M. L. (2013). Producción De Un Polímero Tipo Polihidroxialcanoato (Pha) Empleando Residuos De La Producción De Biodiesel. Revista de Ingeniería, (18), 175–190. https://doi.org/http://dx.doi.org/10.16924%2Friua.v0i18.492Becerra, S. A. (2014). SELECCIÓN DE MUTANTES HIPERPRODUCTORAS DE POLIHIDROXIALCANOATOS EN LA CEPA Burkholderia cepacia 2G57. UNIVERSIDAD COLEGIO MAYOR DE CUNDINAMARCABudde, C. F., Riedel, S. L., Willis, L. B., Rha, C., & Sinskey, A. J. (2011). Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from plant oil by engineered Ralstonia eutropha strains. Applied and Environmental Microbiology, 77(9), 2847–2854. https://doi.org/10.1128/AEM.02429-10Burdon, K. L. (1946). Fatty Material in Bacteria and Fungi Revealed by Staining Dried, Fixed Slide Preparations. Journal of Bacteriology, 52(6), 665–678. https://doi.org/10.1128/jb.52.6.665-678.1946Cardona, A., Mora, A., & Marín, M. (2013). Identificación Molecular de Bacterias Productoras de Polihidroxialcanoatos en Subproductos de Lácteos y Caña de Azúcar. Facultad Nacional de Agronomia, 66(2), 7129–7140Cespedes, L. G., Nahat, R. A. T. P. S., Mendonça, T. T., Tavares, R. R., Oliveira-Filho, E. R., Silva, L. F., … Gomez, J. G. C. (2018). A non-naturally-occurring P(3HB-co-3HAMCL) is produced by recombinant Pseudomonas sp. from an unrelated carbon source. International Journal of Biological Macromolecules, 114, 512–519. https://doi.org/10.1016/j.ijbiomac.2018.03.051Cha, D., Ha, H. S., & Lee, S. K. (2020). Metabolic engineering of Pseudomonas putida for the production of various types of short-chain-length polyhydroxyalkanoates from levulinic acid. Bioresource Technology, 309(January), 123332. https://doi.org/10.1016/j.biortech.2020.123332Chek, M. F., Hiroe, A., Hakoshima, T., Sudesh, K., & Taguchi, S. (2019). PHA synthase (PhaC): interpreting the functions of bioplastic-producing enzyme from a structural perspective. Applied Microbiology and Biotechnology, 103(3), 1131–1141. https://doi.org/10.1007/s00253-018-9538-8Chen, G. Q., & Jiang, X. R. (2017). Engineering bacteria for enhanced polyhydroxyalkanoates (PHA) biosynthesis. Synthetic and Systems Biotechnology, 2(3), 192–197. https://doi.org/10.1016/j.synbio.2017.09.001Chen, G. Q., Jiang, X. R., & Guo, Y. (2016). Synthetic biology of microbes synthesizing polyhydroxyalkanoates (PHA). Synthetic and Systems Biotechnology, 1(4), 236–242. https://doi.org/10.1016/j.synbio.2016.09.006Ciesielski, S., Cydzik-Kwiatkowska, A., Pokoj, T., & Klimiuk, E. (2006). Molecular detection and diversity of medium-chain-length polyhydroxyalkanoates-producing bacteria enriched from activated sludge. Journal of Applied Microbiology, 101(1), 190–199. https://doi.org/10.1111/j.1365-2672.2006.02973.xConlan, L. H., Thomas, J. J., Thornton, K. C., & Dupureur, C. M. (1999). Modulating restriction endonuclease activities and specificities using neutral detergents. BioTechniques, 27(5), 955–960. https://doi.org/10.2144/99275st02Daligault, H. E., Davenport, K. W., Minogue, T. D., Bishop-Lilly, K. A., Broomall, S. M., Bruce, D. C., … Johnson, S. L. (2014). Whole-genome assemblies of 56 Burkholderia species. Genome Announcements, 2(6). https://doi.org/10.1128/GENOMEA.01106-14De Andrade Rodrigues, M. F., Valentin, H. E., Berger, P. A., Tran, M., Asrar, J., Gruys, K. J., & Steinbüchel, A. (2000). Polyhydroxyalkanoate accumulation in Burkholderia sp.: A molecular approach to elucidate the genes involved in the formation of two homopolymers consisting of short-chain-length 3-hydroxyalkanoic acids. Applied Microbiology and Biotechnology, 53(4), 453–460. https://doi.org/10.1007/s002530051641De Andrade Rodrigues, Maria Filomena, Vicente, E. J., & Steinbüchel, A. (2000). Studies on polyhydroxyalkanoate (PHA) accumulation in a PHA synthase I-negative mutant of Burkholderia cepacia generated by homogenotization. FEMS Microbiology Letters, 193(1), 179–185. https://doi.org/10.1016/S0378-1097(00)00483-3Dennis, J. J., & Sokol, P. A. (1995). Electrotransformation of Pseudomonas. Methods in Molecular Biology (Clifton, N.J.), 47, 125–133. https://doi.org/10.1385/0-89603-310-4:125Dorado Pérez, G. (2014). Clonacion del DNA amplificado mediante Pcr. Biotecnología: Marcadores Moleculares, Ingeniería Genética y Transformación, Genómica., 1–22. Retrieved from http://www.uco.es/dptos/bioquimica-biol-mol/Farell, E. M., & Alexandre, G. (2012). Bovine serum albumin further enhances the effects of organic solvents on increased yield of polymerase chain reaction of GC-rich templates. BMC Research Notes, 5(1), 1. https://doi.org/10.1186/1756-0500-5-257Flynn, A., Jones, D., Man, E., Shipman, S., & Tung, S. (2002). The Influence of the Size and Number of Digested pBR322 Fragments on the Inhibition of Transformation of E . coli HB101 Cells by the Plasmids pBR322 and p328 . 5. 2(April), 57–67González García, Y., Meza Contreras, J. C., González Reynoso, O., & Córdova López, J. A. (2013). Síntesis y Biodegradación de Polihidroxialcanoatos: Plásticos de Origen Microbiano. Revista Internacional de Contaminación Ambiental, 29(1), 77–115. Retrieved from http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0188-49992013000100007Hall, B. G. (2013). Building phylogenetic trees from molecular data with MEGA. Molecular Biology and Evolution, 30(5), 1229–1235. https://doi.org/10.1093/molbev/mst012Hardjasa, A., Ling, M., Ma, K., & Yu, H. (2010). Investigating the Effects of DMSO on PCR Fidelity Using a Restriction Digest-Based Method. Journal of Experimental Microbiology and Immunology (JEMI), 14(April), 161–164Jendrossek, D. (2009). Polyhydroxyalkanoate granules are complex subcellular organelles (carbonosomes). Journal of Bacteriology, 191(10), 3195–3202. https://doi.org/10.1128/JB.01723-08Jeon, J. M., Brigham, C. J., Kim, Y. H., Kim, H. J., Yi, D. H., Kim, H., … Yang, Y. H. (2014). Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (P(HB-co-HHx)) from butyrate using engineered Ralstonia eutropha. Applied Microbiology and Biotechnology, 98(12), 5461–5469. https://doi.org/10.1007/s00253-014-5617Keenan, T. M., Tanenbaum, S. W., Stipanovic, A. J., & Nakas, J. P. (2004). Production and Characterization of Poly-β-hydroxyalkanoate Copolymers from Burkholderia cepacia Utilizing Xylose and Levulinic Acid. Artificial Cells Blood Substitutes And Immobilization Biotechnologyartif Cells Blood Substit Immobi, (12)Kim, J., Chang, J. H., Kim, E. J., & Kim, K. J. (2014). Crystal structure of (R)-3-hydroxybutyryl-CoA dehydrogenase PhaB from Ralstonia eutropha. Biochemical and Biophysical Research Communications, 443(3), 783–788. https://doi.org/10.1016/j.bbrc.2013.10.150Kimelman, A., Levy, A., Sberro, H., Kidron, S., Leavitt, A., Amitai, G., … Sorek, R. (2012). A vast collection of microbial genes that are toxic to bacteria. Genome Research, 22(4), 802–809. https://doi.org/10.1101/gr.133850.111Kjeldsen, A., Price, M., Lilley, C., Guzniczak, E., & Archer, I. (2019). A Review of Standards for Biodegradable Plastics with support from. In Industrial Biotechnology Innovation Centre IBioICKovach, M. E., Elzer, P. H., Hill, D. S., Robertson, G. T., Farris, M. A., Roop, R. M. 2nd, & Peterson, K. M. (1995). Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene, 166(1), 175–176. https://doi.org/10.1016/0378-1119(95)00584-1Kovalcik, A., Obruca, S., Fritz, I., & Marova, I. (2019). Polyhydroxyalkanoates: Their Importance and Future. BioResources, 14(2), 2468–2471Krela, R., Poreba, E., Weglewska, M., Skrzypczak, T., & Lesniewicz, K. (2019). A novel method for cloning of coding sequences of highly toxic proteins. Biochimica et Biophysica Acta - General Subjects, 1863(3), 521–527. https://doi.org/10.1016/j.bbagen.2018.12.010Lau, N. S., & Sudesh, K. (2012). Revelation of the ability of burkholderia sp. USM (JCM 15050) PHA synthase to polymerize 4-hydroxybutyrate monomer. AMB Express, 2(1), 1–9. https://doi.org/10.1186/2191-0855-2-41Lindenkamp, N., Volodina, E., & Steinbüchel, A. (2012). Genetically modified strains of Ralstonia eutropha H16 with β- ketothiolase gene deletions for production of copolyesters with defined 3-hydroxyvaleric acid contents. Applied and Environmental Microbiology, 78(15), 5375–5383. https://doi.org/10.1128/AEM.00824-12Liu, C. H., Chen, H. Y., Chen, Y. L. L., & Sheu, D. S. (2021). The polyhydroxyalkanoate (PHA) synthase 1 of Pseudomonas sp. H9 synthesized a 3-hydroxybutyrate-dominant hybrid of short- and medium-chain-length PHA. Enzyme and Microbial Technology, 143(142), 109719. https://doi.org/10.1016/j.enzmictec.2020.109719Liu, Y., Feng, Y., Cao, X., Li, X., & Xue, S. (2015). Structure-directed construction of a high-performance version of the enzyme FabG from the photosynthetic microorganism Synechocystis sp. PCC 6803. FEBS Letters, 589(20), 3052–3057. https://doi.org/10.1016/j.febslet.2015.09.001Lu, J., Tappel, R. C., & Nomura, C. T. (2009). Mini-review: Biosynthesis of poly(hydroxyalkanoates). Polymer Reviews, 49(3), 226–248. https://doi.org/10.1080/15583720903048243Marchler-Bauer, A., Derbyshire, M. K., Gonzales, N. R., Lu, S., Chitsaz, F., Geer, L. Y., … Bryant, S. H. (2015). CDD: NCBI’s conserved domain database. Nucleic Acids Research, 43(Database issue), D222–D226. https://doi.org/10.1093/NAR/GKU1221Matsumoto, K., Tanaka, Y., Watanabe, T., Motohashi, R., Ikeda, K., Tobitani, K., … Taguchi, S. (2013). Directed evolution and structural analysis of nadph-dependent acetoacetyl coenzyme A(acetoacetyl-CoA) reductase from ralstonia eutropha reveals two mutations responsible for enhanced kinetics. Applied and Environmental Microbiology, 79(19), 6134–6139. https://doi.org/10.1128/AEM.01768-13Méndez, D. A. (2016). MODELAMIENTO MATEMÁTICO Y OPTIMIZACIÓN DEL PROCESO DE PRODUCCIÓN DE POLIHIDROXIALCANOATOS EMPLEANDO LA BACTERIA Burkholderia cepacia B27 A PARTIR DE ÁCIDOS GRASOS. Universidad Nacional de ColombiaMendez, Daniel A., Cabeza, I. O., Moreno, N. C., & Riascos, C. A. M. (2016). Mathematical modelling and scale-up of batch fermentation with burkholderia cepacia B27 using vegetal oil as carbon source to produce polyhydroxyalkanoates. Chemical Engineering Transactions, 49(March), 277–282. https://doi.org/10.3303/CET1649047Mendez, Daniel Alexander. (2016). Evaluación del proceso de extracción de polihidroxialcanoatos ( PHA ) a partir de Burkholderia cepacia ... (November). https://doi.org/10.15446/agron.colomb.sup.2016n1.58399Mezzina, M. P., Manoli, M. T., Prieto, M. A., & Nikel, P. I. (2021). Engineering Native and Synthetic Pathways in Pseudomonas putida for the Production of Tailored Polyhydroxyalkanoates. Biotechnology Journal, 16(3). https://doi.org/10.1002/biot.202000165Montoya, D., Moreno, N., Espinosa, A., Buitrago, G., Aristizábal, F., Bernal, M., & Garcia, I. (2017). Del laboratorio a la industria. Revista Colombiana de Biotecnología., Numero esp, 12–17Moreno, N., Gutiérrez, I., Malagón, D., Grosso, V., Revelo, D., González, J., … Montoya, D. (2007). Bioprospecting and characterization of poly-β-hydroxyalkanoate (PHAs) producing bacteria isolated from Colombian sugarcane producing areas. African Journal of Biotechnology, 6(13), 1536–1543. Retrieved from www.ajol.info/index.php/ajb/article/view/57660Możejko-Ciesielska, J., & Kiewisz, R. (2016). Bacterial polyhydroxyalkanoates: Still fabulous? Microbiological Research, 192(2016), 271–282. https://doi.org/10.1016/j.micres.2016.07.010Mozejko, J., & Ciesielski, S. (2013). Saponified waste palm oil as an attractive renewable resource for mcl-polyhydroxyalkanoate synthesis. Journal of Bioscience and Bioengineering, 116(4), 485–492. https://doi.org/10.1016/j.jbiosc.2013.04.014Ojumu, T. ., & Solomon, B. . (2004). Production of Polyhydroxyalkanoates , a bacterial biodegradable polymer. African Journal of Biotechnology, 3(1), 18–24Oliveira-Filho, E. R., Guamán, L. P., Mendonca, T. T., Long, P. F., Taciro, M. K., Gomez, J. G. C., & Silva, L. F. (2019). Production of polyhydroxyalkanoates copolymers by recombinant pseudomonas in plasmid- and Antibiotic-free cultures. Journal of Molecular Microbiology and Biotechnology, 28(5), 225–235. https://doi.org/10.1159/000495752Pakalapati, H., Chang, C. K., Show, P. L., Arumugasamy, S. K., & Lan, J. C. W. (2018). Development of polyhydroxyalkanoates production from waste feedstocks and applications. Journal of Bioscience and Bioengineering, 126(3), 282–292. https://doi.org/10.1016/j.jbiosc.2018.03.016Pan, W., Perrotta, J. A., Stipanovic, A. J., Nomura, C. T., & Nakas, J. P. (2012). Production of polyhydroxyalkanoates by Burkholderia cepacia ATCC 17759 using a detoxified sugar maple hemicellulosic hydrolysate. Journal of Industrial Microbiology and Biotechnology, 39(3), 459–469. https://doi.org/10.1007/s10295-011-1040-6Parra Huertas, S. L., Pérez Casas, M. M., Bernal Morales, M., Suárez Moreno, Z., & Montoya Castaño, D. (2006). Implementación y evaluación de dos métodos deconservación y generación de la base de datos del banco de cepas y genes del Instituto de Biotecnología de la Universidad Nacional de Colombia (IBUN). Nova, 4(5), 39. https://doi.org/10.22490/24629448.346Philip, S., Keshavarz, T., & Roy, I. (2007). Polyhydroxyalkanoates : biodegradable polymers with a range of applications. Journal OfChemical Technology and Biotechnology, 247(July 2006), 233–247. https://doi.org/10.1002/jctbPlenderleith, R., Swift, T., & Rimmer, S. (2014). Highly-branched Poly(N-isopropyl acrylamide)s with core-shell morphology below the lower critical solution temperature. J. Mater. Chem. C, 3, 10715–10722. https://doi.org/10.1039/b000000xPoli, A., Di Donato, P., Abbamondi, G. R., & Nicolaus, B. (2011). Synthesis, Production, and Biotechnological Applications of Exopolysaccharides and Polyhydroxyalkanoates by Archaea. Archaea, 2011, 1–13. https://doi.org/10.1155/2011/693253Poltronieri, P., & Kumar, P. (2019). Polyhydroxyalkanoates (PHAs) in industrial applications. Handbook of Ecomaterials, 4, 2843–2872. https://doi.org/10.1007/978-3-319-68255-6_70Rai, R., Keshavarz, T., Roether, J. A., Boccaccini, A. R., & Roy, I. (2011). Medium chain length polyhydroxyalkanoates, promising new biomedical materials for the future. Materials Science and Engineering R: Reports, 72(3), 29–47. https://doi.org/10.1016/j.mser.2010.11.002Raza, Z. A., Abid, S., & Banat, I. M. (2018). Polyhydroxyalkanoates: Characteristics, production, recent developments and applications. International Biodeterioration and Biodegradation, 126(October 2017), 45–56. https://doi.org/10.1016/j.ibiod.2017.10.001Rehm, B. H. A., Mitsky, T. A., & Steinbüchel, A. (2001). Role of Fatty Acid de novo Biosynthesis in Polyhydroxyalkanoic Acid (PHA) and Rhamnolipid Synthesis by Pseudomonads: Establishment of the Transacylase (PhaG)-Mediated Pathway for PHA Biosynthesis in Escherichia coli. Applied and Environmental Microbiology, 67(7), 3102–3109. https://doi.org/10.1128/AEM.67.7.3102-3109.2001Revelo, D. (2005). Diseño de iniciadores y validación de una metodología molecular para la seleccion de bacterias de diferentes géneros acumuladoras de Polihidroxialcanoatos (PHAs). Universidad Nacional de ColombiaRevelo, D., Grosso, M. V., Moreno Solano, N. C., & Montoya, D. (2007). A most effective method for selecting a broad range of short and medium-chain-length polyhidroxyalcanoate producing microorganisms. Electronic Journal of Biotechnology, 10(3), 348–357. https://doi.org/10.2225/vol10-issue3-fulltext-13Rodicio, M. D. R., & Mendoza, M. D. C. (2004). Identificación bacteriana mediante secuenciación del ARNr 16S: Fundamento, metodología y aplicaciones en microbiología clínica. Enfermedades Infecciosas y Microbiologia Clinica, 22(4), 238–245. https://doi.org/10.1157/13059055Rojas-Rojas, F. U., López-Sánchez, D., Meza-Radilla, G., Méndez-Canarios, A., Ibarra, J. A., & Estrada-de los Santos, P. (2019). The controversial Burkholderia cepacia complex, a group of plant growth promoting species and plant, animals and human pathogens. Revista Argentina de Microbiologia, 51(1), 84–92. https://doi.org/10.1016/J.RAM.2018.01.002Sagong, H.-Y., Son, H. F., Choi, S. Y., Lee, S. Y., & Kim, K.-J. (2018). Structural Insights into Polyhydroxyalkanoates Biosynthesis. Trends in Biochemical Sciences, 43(10), 790–805. https://doi.org/https://doi.org/10.1016/j.tibs.2018.08.005Sagong, H. Y., Son, H. F., Choi, S. Y., Lee, S. Y., & Kim, K. J. (2018). Structural Insights into Polyhydroxyalkanoates Biosynthesis. Trends in Biochemical Sciences, 43(10), 790–805. https://doi.org/10.1016/j.tibs.2018.08.005Saida, F., Uzan, M., Odaert, B., & Bontems, F. (2006). Expression of Highly Toxic Genes in E. coli: Special Strategies and Genetic Tools. Current Protein and Peptide Science, 7(1), 47–56. https://doi.org/10.2174/138920306775474095Scales, B. S., Dickson, R. P., Lipuma, J. J., & Huffnagle, G. B. (2014). Microbiology, genomics, and clinical significance of the Pseudomonas fluorescens species complex, an unappreciated colonizer of humans. Clinical Microbiology Reviews, 27(4), 927–948. https://doi.org/10.1128/CMR.00044-14Segawa, M., Wen, C., Orita, I., Nakamura, S., & Fukui, T. (2019). Two NADH-dependent (S)-3-hydroxyacyl-CoA dehydrogenases from polyhydroxyalkanoate-producing Ralstonia eutropha. Journal of Bioscience and Bioengineering, 127(3), 294–300. https://doi.org/10.1016/j.jbiosc.2018.08.009Serrano, J. Y. (2010). DETERMINACIÓN DEL CLUSTER (phaC1, phaZ, phaC2, phaD, phaF, phaI) ASOCIADO CON LA PRODUCCIÓN DE POLIHIDROXIALCANOATOS (PHAs) SINTASA TIPO II EN UNA CEPA NATIVA COLOMBIANA. Universidad Nacional de ColombiaSerrano Riaño, J., Sastoque Rivera, L. Á., Castaño, D. M., & Moreno Sarmiento, N. (2011). Análisis de las polihidroxialcanoato sintasas (PhaC1 y PhaC2) en una cepa de Pseudomonas fluorescens IBUN S1602, aislada en suelos colombianos. Revista Colombiana de Biotecnología., XIII(2), 84–96Slater, S. C., Voige, W. H., & Dennis, D. E. (1988). Cloning and expression in Escherichia coli of the Alcaligenes eutrophus H16 poly-beta-hydroxybutyrate biosynthetic pathway. Journal of Bacteriology, 170(10), 4431–4436. https://doi.org/10.1128/jb.170.10.4431-4436.1988Tan, D., Yin, J., & Chen, G. Q. (2016). Production of Polyhydroxyalkanoates. In Current Developments in Biotechnology and Bioengineering: Production, Isolation and Purification of Industrial Products (pp. 655–692). https://doi.org/10.1016/B978-0-444-63662-1.00029-4Tolmachov, O. E. (2011). DNA Cloning in Plasmid Vectors. In Comprehensive Biotechnology, Second Edition (Second Edi, Vol. 1). https://doi.org/10.1016/B978-0-08-088504-9.00008-8Torres Ospina, A. C. (2019). Formulación de un modelo metabólicamente estructurado para optimizar la producción de Polihidroxialcanoatos (PHA) a partir de Burkholderia cepacia. Universidad Nacional de ColombiaUrtuvia, V., Villegas, P., Fuentes, S., González, M., & Seeger, M. (2018). Burkholderia xenovorans LB400 possesses a functional polyhydroxyalkanoate anabolic pathway encoded by the pha genes and synthesizes poly(3-hydroxybutyrate) under nitrogen-limiting conditions. International Microbiology, 21(1–2), 47–57. https://doi.org/10.1007/s10123-018-0004-3Urtuvia, V., Villegas, P., Gonzalez, M., & Seeger, M. (2014). Bacterial production of the biodegradable plastics polyhydroxyalkanoates. International Journal of Biological Macromolecules, 70, 208–213. https://doi.org/10.1016/j.ijbiomac.2014.06.001Vasu, K., & Nagaraja, V. (2013). Diverse Functions of Restriction-Modification Systems in Addition to Cellular Defense. Microbiology and Molecular Biology Reviews, 77(1), 53–72. https://doi.org/10.1128/mmbr.00044-12Vu, K., Bautos, J., Hong, M.-P., & Gelli, A. (2009). The functional expression of toxic genes: Lessons learned from molecular cloning of CCH1, a high-affinity Ca2+ channel Kiem. National Institutes of Health, 393(2), 234–241. https://doi.org/10.1016/j.ab.2009.06.039Wittenborn, E. C., Jost, M., Wei, Y., Stubbe, J. A., & Drennan, C. L. (2016). Structure of the catalytic domain of the class I polyhydroxybutyrate synthase from Cupriavidus necator. Journal of Biological Chemistry, 291(48), 25264–25277. https://doi.org/10.1074/jbc.M116.756833Wu, H., Fan, Z., Jiang, X., Chen, J., & Chen, G. Q. (2016). Enhanced production of polyhydroxybutyrate by multiple dividing E. coli. Microbial Cell Factories, 15(1), 1–13. https://doi.org/10.1186/s12934-016-0531-6Zhao, F., Liu, X., Kong, A., Zhao, Y., Fan, X., Ma, T., … Yang, C. (2019). Morphology engineering for enhanced production of medium-chain-length polyhydroxyalkanoates in Pseudomonas mendocina NK-01. Scientific Reports, 9(1), 1713–1724. https://doi.org/10.1038/s41598-019-39321-zZheng, Y., Chen, J. C., Ma, Y. M., & Chen, G. Q. (2019). Engineering biosynthesis of polyhydroxyalkanoates (PHA) for diversity and cost reduction. Metabolic Engineering, (March). https://doi.org/10.1016/j.ymben.2019.07.004Zher Neoh, S., Fey Chek, M., Tiang Tan, H., Linares-Pastén, J. A., Nandakumar, A., Hakoshima, T., & Sudesh, K. (2022). Polyhydroxyalkanoate synthase (PhaC): The key enzyme for biopolyester synthesis. Current Research in Biotechnology, 4(November 2021), 87–101. https://doi.org/10.1016/j.crbiot.2022.01.002Zhuang, Q., Wang, Q., Liang, Q., & Qi, Q. (2014). Synthesis of polyhydroxyalkanoates from glucose that contain medium-chain-length monomers via the reversed fatty acid β-oxidation cycle in Escherichia coli. Metabolic Engineering, 24, 78–86. https://doi.org/10.1016/j.ymben.2014.05.004Zuriani, R., Vigneswari, S., Azizan, M. N. M., Majid, M. I. A., & Amirul, A. A. (2013). A high throughput Nile red fluorescence method for rapid quantification of intracellular bacterial polyhydroxyalkanoates. Biotechnology and Bioprocess Engineering, 18(3), 472–478. https://doi.org/10.1007/s12257-012-0607-zEstudiantesInvestigadoresMaestrosLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85280/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINALTesis de Maestría en Ciencias - Microbiología.pdfTesis de Maestría en Ciencias - Microbiología.pdfapplication/pdf3447788https://repositorio.unal.edu.co/bitstream/unal/85280/2/Tesis%20de%20Maestr%c3%ada%20en%20Ciencias%20-%20Microbiolog%c3%ada.pdfacfcc8d53bef9e92216d0427638617f2MD52THUMBNAILTesis de Maestría en Ciencias - Microbiología.pdf.jpgTesis de Maestría en Ciencias - Microbiología.pdf.jpgGenerated Thumbnailimage/jpeg5010https://repositorio.unal.edu.co/bitstream/unal/85280/3/Tesis%20de%20Maestr%c3%ada%20en%20Ciencias%20-%20Microbiolog%c3%ada.pdf.jpgf589570ffb8c0195394483920cb95231MD53unal/85280oai:repositorio.unal.edu.co:unal/852802024-01-15 23:04:09.876Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |