Determinación de Cyanoprokaryotas planctónicas y su potencial en la producción de cianotoxinas en un embalse de la sabana de Bogotá - Colombia
The aim of this study was to identify planktonic cyanoprokaryotic species potential producers of cyanotoxins in La Regadera dam (located at south eastern of Bogotá city) and their temporary variation for 9 months period. To accomplish the target a monthly two-phase sampling was performed; first phas...
- Autores:
-
Forero Cujiño, Mario Andrés
- Tipo de recurso:
- Work document
- Fecha de publicación:
- 2019
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/77965
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/77965
- Palabra clave:
- 570 - Biología
577 - Ecología
628 - Ingeniería sanitaria
cyanoprokaryotes
cianotoxinas
saxitoxina (STX)
microcistina (MC)
embalse La Regadera
agua potable
salud humana
cyanoprokaryotic
cyanotoxins
saxitoxine (STX)
microcystine (MC)
la Regadera dam
potable Water
human health
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_6724ac03f8470d5fb61108525c004a69 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/77965 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Determinación de Cyanoprokaryotas planctónicas y su potencial en la producción de cianotoxinas en un embalse de la sabana de Bogotá - Colombia |
title |
Determinación de Cyanoprokaryotas planctónicas y su potencial en la producción de cianotoxinas en un embalse de la sabana de Bogotá - Colombia |
spellingShingle |
Determinación de Cyanoprokaryotas planctónicas y su potencial en la producción de cianotoxinas en un embalse de la sabana de Bogotá - Colombia 570 - Biología 577 - Ecología 628 - Ingeniería sanitaria cyanoprokaryotes cianotoxinas saxitoxina (STX) microcistina (MC) embalse La Regadera agua potable salud humana cyanoprokaryotic cyanotoxins saxitoxine (STX) microcystine (MC) la Regadera dam potable Water human health |
title_short |
Determinación de Cyanoprokaryotas planctónicas y su potencial en la producción de cianotoxinas en un embalse de la sabana de Bogotá - Colombia |
title_full |
Determinación de Cyanoprokaryotas planctónicas y su potencial en la producción de cianotoxinas en un embalse de la sabana de Bogotá - Colombia |
title_fullStr |
Determinación de Cyanoprokaryotas planctónicas y su potencial en la producción de cianotoxinas en un embalse de la sabana de Bogotá - Colombia |
title_full_unstemmed |
Determinación de Cyanoprokaryotas planctónicas y su potencial en la producción de cianotoxinas en un embalse de la sabana de Bogotá - Colombia |
title_sort |
Determinación de Cyanoprokaryotas planctónicas y su potencial en la producción de cianotoxinas en un embalse de la sabana de Bogotá - Colombia |
dc.creator.fl_str_mv |
Forero Cujiño, Mario Andrés |
dc.contributor.advisor.spa.fl_str_mv |
Montenegro Ruíz, Luis Carlos Pinilla Agudelo, Gabriel Antonio |
dc.contributor.author.spa.fl_str_mv |
Forero Cujiño, Mario Andrés |
dc.contributor.corporatename.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.contributor.researchgroup.spa.fl_str_mv |
Fisiología del estrés y biodiversidad en plantas y microorganismos - Biodiversidad, biotecnología y conservación de ecosistemas |
dc.subject.ddc.spa.fl_str_mv |
570 - Biología 577 - Ecología 628 - Ingeniería sanitaria |
topic |
570 - Biología 577 - Ecología 628 - Ingeniería sanitaria cyanoprokaryotes cianotoxinas saxitoxina (STX) microcistina (MC) embalse La Regadera agua potable salud humana cyanoprokaryotic cyanotoxins saxitoxine (STX) microcystine (MC) la Regadera dam potable Water human health |
dc.subject.proposal.spa.fl_str_mv |
cyanoprokaryotes cianotoxinas saxitoxina (STX) microcistina (MC) embalse La Regadera agua potable salud humana |
dc.subject.proposal.eng.fl_str_mv |
cyanoprokaryotic cyanotoxins saxitoxine (STX) microcystine (MC) la Regadera dam potable Water human health |
description |
The aim of this study was to identify planktonic cyanoprokaryotic species potential producers of cyanotoxins in La Regadera dam (located at south eastern of Bogotá city) and their temporary variation for 9 months period. To accomplish the target a monthly two-phase sampling was performed; first phase took place between October and November 2015 and second phase was developed between January and July 2016. At the same time, qualitative and quantitative analysis of cyanobacterial community were developed, as well as in vitro culture of strains in BG-11 liquid and solid (agar) culture medium. Subsequently, the isolation and identification of cyanobacteria strains was carried out, as well as the molecular characterization of toxic cyanobacteria and the types of cyanotoxins expressed by them. The results showed a total of 30 isolated strains of cyanobacteria present in the dam which correspond mainly to filamentous cyanobacteria of the genus Leptolyngbya sp., Lyngbya sp., Phormidium sp., and Planktolyngbya sp. On the other hand, in March 2016 (fifth sampling) it was evidenced a Aphanizomenon gracile, algal bloom, which contains a genetic pool able to express the neutrotoxin Saxitoxine (STX), which includes the genes sxtI, sxtA and sxtG. However, none of the cyanobacterial strains in vitro cultured showed the gene regions capable of expressing the cyanotoxins, microcystin (mcyA, mcyB, mcyC, mcyD, mcyE, mcyG); cylinrospermopsin (AMT, PS, PKS), and anatoxin-a (ANAC-GENF / ANAC-GENR). These results are useful to monitoring the potential risk of toxic cyanoprokaryotic proliferation by the Water and Sewerage Company of Bogotá city and to allow implementing preventive identification and quantification protocols in order to guaranty potable water availability for human population. |
publishDate |
2019 |
dc.date.issued.spa.fl_str_mv |
2019-12-19 |
dc.date.accessioned.spa.fl_str_mv |
2020-08-06T17:41:32Z |
dc.date.available.spa.fl_str_mv |
2020-08-06T17:41:32Z |
dc.type.spa.fl_str_mv |
Documento de trabajo |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/workingPaper |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_8042 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/WP |
format |
http://purl.org/coar/resource_type/c_8042 |
status_str |
acceptedVersion |
dc.identifier.citation.spa.fl_str_mv |
Forero, M. (2019). Determinación de Cyanoprokaryotas planctónicas y su potencial en la producción de cianotoxinas en un embalse de la sabana de Bogotá - Colombia. (tesis de maestría). Universidad Nacional de Colombia. |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/77965 |
identifier_str_mv |
Forero, M. (2019). Determinación de Cyanoprokaryotas planctónicas y su potencial en la producción de cianotoxinas en un embalse de la sabana de Bogotá - Colombia. (tesis de maestría). Universidad Nacional de Colombia. |
url |
https://repositorio.unal.edu.co/handle/unal/77965 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Allen, M. M. (1973). Methods for Cyanophyceae. En: Stein, J. R. (ed). Handbook of physiological methods: culture methods and growth measurements. Cambridge University Press. 127 – 138 pp. Anagnostidis, K. & Komárek, J. (1985). Modern approach to the classification system of cyanophytes. 1-Introduction. Archiv für Hydrobiologie – Supplement. 71, 1-2. Anagnostidis, K. & Komárek, J. (1988). Modern approach to the classification system of cyanophytes. 3- Oscillatoriales. Archiv für Hydrobiologie. 80, 1-4. Andersen, R. (2005). Algal Culturing Techniques. 1st Edition. USA: Elsevier Academic Press. 596 p. Aranguren, N., Bolívar, A., Canosa, A., Galvis, G., Mojica, J. I., Donato, J. C., Rueda, G. & Ruiz, E. (2002). Manual de Métodos en Limnología. Asociación Colombiana de Limnología, v.1, 76 p. Baker, P. D., & Humpage, A. R. (1994). Toxicity associated with commonly occurring cyanobacteria in surface waters of the murray-darling basin, australia. Marine and Freshwater Research, 45(5), 773–786. https://doi.org/10.1071/MF9940773 Bernard, C., Ballot, A., Thomazeau, S., Maloufi, S., Furey, A., Mankiewicz-Boczek, J., Pawlik-Skowronska, B., Capelli, C. & Salmaso, N. (2017). Appendix 2. Cyanobacteria associated with the production of cyanotoxins. 503-527. In: J. Meriluoto, L. Spoof and G.A. Codd (eds.), Handbook on cyanobacterial monitoring and cyanotoxin analysis. J. Wiley & Sons, Chichester. Best, J. H., Eddy, F. B., & Codd, G. A. (2003). Effects of Microcystis cells, cell extracts and lipopolysaccharide on drinking and liver function in rainbow trout Oncorhynchus mykiss Walbaum. Aquatic Toxicology, 64(4), 419–426. https://doi.org/10.1016/S0166-445X(03)00105-X Briand, J., Jacquet, S., Bernard, C., & Humbert, J. (2003). Health hazards for terrestrial vertebrates from toxic cyanobacteria in surface water ecosystems. Vet. Res. 34 (2003) 361–377. DOI: 10.1051/vetres:2003019. Botero, L., Mancera-Pineda, J. E., Vidal, L. A., Santos-Martínez, A., Ramirez, G., Fontalvo, M. L., Espinosa, L. F., Troncoso, W., Viloria, E., & Salazar, J. G. (1995). Informe sobre la mortandad masiva de peces ocurrida en el complejo lagunar Ciénaga Grande de Santa Marta - Caribe colombiano, en junio de 1995. Progr. Lagunas Costeras, INVEMAR, Santa Marta, 13 p. Buitenhuis, E., Li, W., Vaulot, D., Lomas, M., Landry, M., Partensky, F., Karl, D., Ulloa, O., Campbell, L., Jacquet, S., Lantoine, F., Chavez, F., Macias, D., Gosselin, M. & McManus, G. 2012. Picophytoplankton biomass distribution in the global ocean. Earth System Science Data Discussions 5: 221-242. Bula-Meyer, G. (1985). Un núcleo nuevo de surgencia en el Caribe colombiano detectado en correlación con las distribuciones de las algas. Bol. Ecotrópica, 12: 3–25. Burja, A., Banaigs, B., Abou-Mansour E., Grant Burgess, J., Wright P. 2001. Marine cyanobacteria a prolific source of natural products. Tetrahedron. 57: 9347- 9377. Camacho, A., Wurtsbaugth, W. A., Miracle, M. R., Armengol, X. & Vicente, E. (2003). Nitrogen limitation of phytoplankton in a spanish karst lake with a deep chlorophyll maximum: a nutrient enrichment bioassay approach. Journal of Plankton Research, 25(4), 397–404. Carmichael, W. W. (1992). Cyanobacteria secondary metabolites—the cyanotoxins. Journal of Applied Bacteriology, 72(6), 445–459. https://doi.org/10.1111/j.1365-2672.1992.tb01858.x Casco, M. A. & Toja, J. (2003). Efecto de la fluctuación de nivel del agua en la biomasa, la diversidad y las estrategias del perifiton de los embalses. Limnetica. 22(1-2), 115-134. Casey, J., Lomas, M., Mandecki, J. & Walker, D. (2007). Prochlorococcus contributes to new production in the Sargasso Sea deep chlorophyll maximum. Geophysical Research Letters 34: L10604. Chen, W., Peng, L., Wan, N., & Song, L. (2009). Mechanism study on the frequent variations of cell-bound microcystins in cyanobacterial blooms in Lake Taihu: Implications for water quality monitoring and assessments. Chemosphere, 77(11), 1585–1593. https://doi.org/10.1016/j.chemosphere.2009.09.037 Chorus, I. & Bartram, J. 1999. Toxic Cyanobacteria in Water: A guide to their public health consequences, monitoring and management. World Health Organization. Codd, G. A., Morrison, L. F., & Metcalf, J. S. (2005). Cyanobacterial toxins: Risk management for health protection. Toxicology and Applied Pharmacology, 203(3 SPEC. ISS.), 264–272. https://doi.org/10.1016/j.taap.2004.02.016 Comba, N. (2009). Las cyanoprokaryotes como indicadoras de la calidad del agua en el Embalse de Betania (Cuenca alta del Río Magdalena). Universidad de Bogotá Jorge Tadeo Lozano, Facultad de Ciencias Naturales - Programa de Biología Marina., 110. Corrales, M., Villalobos, K., Rodríguez, A., Muñoz, N. & Umaña, R. (2017). Identificación y caracterización molecular de cianobacterias tropicales de los géneros Nostoc, Calothrix, Tolypothrix y Scytonema (Nostocales: Nostocaceae), con posible potencial biotecnológico. UNED Research Journal. 9(2): 280-288. Dawes, C. J. (1981). Marine Botany. John Wiley & Sons. E. U. A., 628 pp. Dias, E., Pereira, P., & Franca, S. (2002). Production of paralytic shellfish toxins by Aphanizomenon sp. LMECAY31 (Cyanobacteria). J. Phycol. 38, 705-712. Dolman, A. M., Rücker, J., Pick, F. R., Fastner, J., Rohrlack, T., Mischke, U., & Wiedner, C. (2012). Cyanobacteria and cyanotoxins: The influence of nitrogen versus phosphorus. PLoS ONE, 7(6). https://doi.org/10.1371/journal.pone.0038757 Donato, J. (2001). Fitoplancton de los lagos andinos del norte de Sudamérica (Colombia). Bogotá, D.C.: Academia Colombiana de Ciencias Exactas, Físicas y Naturales. Colección Jorge Álvarez Lleras, No. 19. Downing, J. A., Watson, S. B., & McCauley, E. (2001). Predicting Cyanobacteria dominance in lakes. Canadian Journal of Fisheries and Aquatic Sciences, 58(10), 1905–1908. https://doi.org/10.1139/f01-143. Fabre, A., Carballo, C., Hernández, E., Piriz, P., Bergamino, L., Mello, L. et al., 2010. El nitrógeno y la relación zona eufótica/zona de mezcla explican la presencia de cianobacterias en pequeños lagos subtropicales, artificiales de Uruguay. Pan-American Journal of Aquatic Sciences. 5(1), 112-125. Fergusson, K. M. & Saint, P. C. (2003). Multiplex PCR assay for Cylindrospermopsis raciborskii and cylindrospermopsin-producing cyanobacteria. Environ. Toxicol. 18, 120–125. Ferrao, A., Herrera, N. & Echeverri, L. 2014. Microcystin accumulation in cladocerans: First evidence of MC uptake from aqueous extracts of a natural bloom sample. Toxicon. 87: 26 – 31. Ferreira, F., Soler, J., Fidalgo, L., & Fernadez, P. (2000). PSP toxins from Aphanizomenon flos-aquae (cyanobacteria) collected in the Crestuma reservoir (Douro river, Northern Portugal). Toxicon, 39, 757-761. Ferris, M. & Hirsch, C. (1991). Method for isolation and purification of cyanobacteria. Applied and Environmental Microbiology. 57(5), 1448 - 1452. Frazão, B., Martins, R., & Vasconcelos, V. (2010). Are known cyanotoxins involved in the toxicity of picoplanktonic and filamentous north atlantic marine cyanobacteria? Marine Drugs, 8(6), 1908–1919. https://doi.org/10.3390/md8061908 Funari, E., & Testai, E. (2008). Human health risk assessment related to cyanotoxins exposure. Critical Reviews in Toxicology, 38(2), 97–125. https://doi.org/10.1080/10408440701749454 Funasa. (2003). Cianobactérias Tóxicas na Água para Consumo Humano na Sáude Pública e Processos de Remoção em Água para Consumo Humano. Brasília: Ministério Da Saúde: Fundação Nacional de Saúde, 1–56. Galhano, V., De Figueiredo, D., Alves, A., Correia, A., Pereira, M., Gomes, J. & Peixoto, F. (2011). Morphological, biochemical and molecular characterization of Anabaena, Aphanizomenon and Nostoc strains (Cyanobacteria, Nostocales) isolated from Portuguese freshwater habitats. Hydrobiología. 663(1), 187-203. Doi:10.1007/s10750-010-0572-5. Galeano, J., & Villalobos, J. (2011). Cyanoprokaryotes y cicrocistinas en el Caribe Colombiano: identificación de cyanoprokaryotes y detección de microcistinas en el antiguo delta del río Sinú Córdoba – Colombia. Editorial Académica Española, 96p. Garcia Nieto, P. J., Sánchez Lasheras, F., de Cos Juez, F. J., & Alonso Fernández, J. R. (2011). Study of cyanotoxins presence from experimental cyanobacteria concentrations using a new data mining methodology based on multivariate adaptive regression splines in Trasona reservoir (Northern Spain). Journal of Hazardous Materials, 195, 414–421. https://doi.org/10.1016/j.jhazmat.2011.08.061 García-Pichel, F., López-Cortes, A. & Nübel, U. (2001). Phylogenetic and morphological diversity of cyanobacteria in soil desert crust from the Colorado plateau. Appl. Environ. Microbiol., 67: 1902-1910. Genuário, D. B., Silva-Stenico, M. E., Welker, M., Beraldo Moraes, L. A., & Fiore, M. F. (2010). Characterization of a microcystin and detection of microcystin synthetase genes from a Brazilian isolate of Nostoc. Toxicon, 55, 846–854. Gil, C.B., Restrepo, J.J.R., Boltovskoy, A. & Vallejo, A. (2012). Spatial and temporal change characterization of Ceratium furcoides (Dinophyta) in the equatorial reservoir Riogrande II, Colombia. Acta Limnologica Brasiliensia, 24(2), 207-219. http://dx.doi.org/10.1590/S2179-975X2012005000039. Gómez, F., Moreira, D. & López-García, P. (2010). Neoceratium gen. nov., a new genus for all marine species currently assigned to Ceratium (Dinophyceae). Protist, 161(1), 35-54. http://dx.doi.org/10.1016/j.protis.2009.06.004. PMid:19665427. Grigorszky, I., Borics, G., Padisák, J., Tótmérész, B., Vasas, G., Nagy, S. & Borbély, G. (2003). Factors controlling the occurrence of Dinophyta species in Hungary. Hydrobiologia, 506-509(1-3), 203-207. http://dx.doi.org/10.1023/B:HYDR.0000008552.60232.68. Grilli, M. (1992). Cianobacterian in symbioses with bryophytes and tracheophytes, In: W. Reisser (ed) Algae and Symbioses: Plants, Animals, Fungi, Viruses Interactions Explores. Biopress Limited, Bristol. 231-254. González, M. Parra O & Cifuentes A. (1995). Técnicas de cultivo de microalgas en laboratorio. En: Manual de metidos ficológicos. Universidad de Concepción. Chile: Editora Aníbal Pinto, 220 - 249. González-Gil, S, Aguilera, A. López-Rodas, V. & Costas, E. (1999). Characterization of morphospeciesGonzalez and strains of Pseudoanabaena (Cyanophyceae) from laboratory cultures using antibodies and lectins. Eur. J. Phycol., 34: 27 - 33. Havens, K. E. (2008). Cyanobacteria blooms: effects on aquatic ecosystems. Cyanobacterial Harmful Algal Blooms: State of the Science and Research Needs, 1(2004), 733–747. https://doi.org/10.1007/978-0-387-75865-7_33 Håkanson, L. (1977). The influence of wind, fetch, and water depth on the distribution of sediments in Lake Vänern, Sweden. Can. J. Earth Sci. 14, 397–412. Harper, D.M., Morrison, E.H.J., Macharia, M.M., Mavuti, K.M. & Upton, C. (2011). Lake Naivasha, Kenya: ecology, society and future. Freshwater Reviews. 4, 89–114. Heisler, J., Glibert, P. M., Burkholder, J. M., Anderson, D. M., Cochlan, W., Dennison, W. C., … Suddleson, M. (2008). Eutrophication and harmful algal blooms: A scientific consensus. Harmful Algae, 8(1), 3–13. https://doi.org/10.1016/j.hal.2008.08.006 Heresztyn, T. & Nicholson, B. (2001). Determination of cyanobacterial hepatotoxins directly in water using a protein phosphatase inhibition assay. Water Res. 35:3049-56. Herrera, N. A., Flórez, M. T. & Echeverri, L. F. (2015). Evaluación preliminar de la reducción de Microcistina-LR en muestras de florecimientos a través de sistemas sedimentarios. Rev. Int. Contam. Ambie. 31(4), 405-414. Herrera N, Echeverri L & Ferrao A. (2015). Effects of phytoplankton extracts containing the toxin microcystin-LR on the survival and reproduction of cladocerans. Toxicon. 95: 38 – 45. Herrera, N., Flórez, M. T., Velásquez, J. P. & Echeverri, F. (2019). Effect of Phenyl-Acyl Compounds on the Growth, Morphology, and Toxin Production of Microcystis aeruginosa Kützing. Water, 11, 236. Herrera, N., Herrera, C., Ortíz, I., Orozco, L., Robledo, S., Agudelo, D. & Echeverri, F. (2018). Genotoxicity and cytotoxicity of three microcystin-LR containing cyanobacterial samples from Antioquia, Colombia. Toxicon 154: 50 – 59. Herrera, N., Palacio, J., Echeverri, L. & Ferrao, A. (2014). Effects of a cyanobacterial bloom sample containing microcystin-LR on the ecophysiology of Daphnia similis. Toxicology Reports. 1: 909 – 914. Hisbergues, M., Christiansen, G., Rouhiainen, L., Sivonen, K. & Börner, T. (2003). PCR-based identification of microcystin producing genotypes of different cyanobacterial genera. Arch. Microbiol. 180, 402–410. Hotto, A. M., Satchwell, M. F., & Boyer, G. L. (2007). Molecular characterization of potential microcystinproducing cyanobacteria in Lake Ontario embayments and nearshore waters. Applied and Environmental Microbiology, 73:(14), 4570 - 4578. Humpage, A. R., Rositano, J., Bretag, A.H., Brown, R., Baker, P.D., Nicholson, B. C. & Steffensen, D.A. (1994). Paralytic shellfish poisons from Australian cyanobacterial blooms. Aust. J. Mar. Freshwater Res., 45(5), 761-771. Hurtado, J. & Polania, J. (2014). Molecular techniques for cyanobacteria detection at Riogrande II and La Fe water reservoirs, Colombia. Revista de biología tropical. Vol. 62 (1): 403-419. IDEAM. (2016). Impacto del Fenómeno “El Niño” 2015-2016 en los Nevados y Alta Montaña en Colombia. Ikawa, M., Auger, K., Mosley, S.P., Sasner, J.J., Noguchi, T. & Hashimoto, K. (1985). Toxin profiles of the blue-green alga Aphanizomenon flos-aquae. In: Toxic Dinoflagellates, Anderson, D.M., White, A.W. & Baden, D.G. (eds.), Elsevier, New York. 299-304. Johnson, Z., Zinser, E., Coe, A., Mcnulty, N., Woodward, E. & Chisholm, S. (2006). Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients. Science 311: 1737-1740. Kaiser, H. F. (1974). An index of factorial simplicity. Psychometrika. 34, 31-36. Kaya, K., Sano, T., Inoue, H., & Takagi, H. (2001). Selective determination of total normal microcystin by colorimetry, LC/UV detection and/or LC/MS. Anal. Chim. Acta 450, 73–80. Kellmann, R., Mills, T., Neilan, B. A. (2006). Functional modeling and phylogenetic distribution of putative cylindrospermopsin biosynthesis enzymes. J. Mol. Evol. 62, 267–280. Kellmann R., T. K. Mihali, Y. J. Jeon, R. Pickford, F. Pomati & B. A. Neilan. (2008). Biosynthetic intermediate analysis and the functional homology reveal a saxitoxin gene cluster in cyanobacteria. Appl. Environ. Microb. 74, 4044-4053. Kim, J. H., Choi, W., Jeon, S.-M. et al. (2015). Isolation and characterization of Leptolyngbya sp. KIOST-1, a basophilic and euryhaline filamentous cyanobacterium from an open paddle-wheel raceway Arthrospira culture pond in Korea. J Appl Microbiol, 119(6):1597-1612. Krienitz, L., Dadheech, P. K., Fastner, J. & Kotut, K. (2013). The rise of potentially toxin producing cyanobacteria in Lake Naivasha, Great African Rift Valley, Kenya. Harmful Algae. 27, 42 - 51. Komárek, J. & Anagnostidis, K. (1998) Cyanoprokaryota. I. Chroococcales. In: Ettl, H., Gärtner, G., Heynig, H. and Mollenhauer, D., Eds., Süsswasserflora von Mitteleuropa, Begründet von A. PascherBd. 19/3 Cyanoprokaryota. 1. Teil Chroococcales, Spektrum, Akademischer Verlag, Heidelberg & Berlin, 1-548. Komárek, J. & Anagnostidis, K. (2005). Cyanoprokaryota II. Teil Oscillatoriales. Jena, Alemania: Elsevier/Spektrum Gmbh. Kotai, J. (1972). Instruction for Preparation of Modified Nutrient Solution Z8 for Algae. Norwegian Intitute for Water Research (NIVA), B-11/69. Kumar, H. D., & Singh, H. N. (1979). A texbook on algae. Hong Kong: MacMillan Press LTD. Kuiper-Goodman, T., Falconer, I., & Fitzgerald, J. (1999). Human health aspects. In: Chorus I, Bartram J, editors. Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. London, UK: E & FN Spon. p. 113–53. Kumari, N., Srivastava, A. & Bhargava, P. (2009). Molecular approaches towards assessment of cyanobacterial biodiversity. African Journal of Biotechnology. 8(18): 4284-4298. Kutschera, U., & Niklas, K. J. (2005). Endosymbiosis, cell evolution, and speciation. Theory in Biosciences, 124(1), 1–24. https://doi.org/10.1016/j.thbio.2005.04.001 Lajeunesse. A., Segura, P. A., Gélinas, M., Hudon, C., Thomas, K., Quilliam, M. A. et al., 2012. Detection and confirmation of saxitoxin analogues in freshwater benthic Lyngbya wollei algae collected in the St. Lawrence River (Canada) by liquid chromatography–tandem mass spectrometry. J Chromatogr A. 1219, 93–103. Leão, P. N., Ramos, V., Vale, M., Machado, J. P. & Vasconcelos, V. M. (2012). Microbial community changes elicited by exposure to cyanobacterial allelochemicals. Microb. Ecol. 63, 85–95. Leão, P. N., Engene, N., Antunes, A., Gerwick, W. & Vasconcelos, V. (2012). The chemical ecology of cyanobacteria. Nat. Prod. Rep. 29, 372 - 391. Lewis, W. M. (2002). Causes for the high frequency of nitrogen limitation in tropical lakes. Verhandlungen der Internationalen Vereinigung der Limnologie, 28, 210–213. Lopes, V. R., Ramos, V., Martins, A., Sousa, M., Welker, M., Antunes, A. & Vasconcelos, V. (2012). Phylogenetic, chemical and morphological diversity of cianobacteria from Portuguese temperate estuaries. Mar. Environ. Res. 73, 7–16. Lund JW., Kipling C., & Le Creen ED. (1958). The inverted microscope method of estimating algal number and the statistical basis of estimations by counting. Hydrobiologia, 11, 143-170. Mahmood, N.A. & Carmichael, W.W. (1986b) Paralytic shellfish poisons produced by the freshwater cyanobacterium Aphanizomenon flos-aquae nh-5. Toxicon, 24(2), 175- 186. McGregor, A. & Ramussen, J. P. (2007). FEMS Microbiological Ecology, 6, 23. Meichtry De Zaburlín, N., Garrido, G.G., Peso, J.G. & Llano, V.M. (2013). Programa calidad de agua del Embalse Yacyretá. Informe anual de evaluación 2012–2013. Convenio Entidad Binacional Yacyretá – Facultad de Ciencias Exactas, Químicas y Naturales. Posadas: Universidad Nacional de Misiones. Mendoza, A. (2018). Transferencia horizontal de genes como el origen de la biosíntesis de saxitoxina en Gymnodinium catenatum (Dinophyceae). Tesis Doctorado en Ciencias Marinas. Instituto Politécnico Nacional. Centro Interdisciplinario de Ciencias Marinas. La Paz. 121 p. Merel, S., Villarín, M. C., Chung, K., & Snyder, S. (2013). Spatial and thematic distribution of research on cyanotoxins. Toxicon, 76, 118–131. https://doi.org/10.1016/j.toxicon.2013.09.008 Merel, S., Walker, D., Chicana, R., Snyder, S., Baurès, E., & Thomas, O. (2013). State of knowledge and concerns on cyanobacterial blooms and cyanotoxins. Environment International. https://doi.org/10.1016/j.envint.2013.06.013 Metcalf, J., Hyenstrand, P., Beattie, K. & Codd, G. (2000. Effects of physicochemical variables and cyanobacterial extracts on the immune assay of microcystin-LR by two ELISA kits. Journal of Applied Microbiology 89: 532-538. Mikalsen, B., Boison, G., Skulberg, O. M., Fastner, J., et al. 2003. Natural variation in the microcystin synthetase operon mcyABC and impact on microcystin production in microcystis strains. J. Bacteriol. 185, 2774–2785. Miles, C.O., Sandvik, M., Nonga, H.E., Rundberget, T., Wilkins, A.L., Rise, F. & Ballot, A. (2012). Thiol derivatization for LC–MS identification of microcystins in complex matrices. Environmental Science & Technology. 46, 8937–8944. Mirkin, B. G., Fenner, T. I., Galperin, M. Y., & Koonin, E. V. (2003). Algorithms for computing parsimonious evolutionary scenarios for genome evolution, the last universal common ancestor and dominance of horizontal gene transfer in the evolution of prokaryotes. BMC Evolutionary Biology. 3(2). doi: 10.1186/1471-2148-3-2 Misson, B., & Latour, D. (2013). Vertical Heterogeneity of Genotypic Structure and Toxic Potential within Populations of the Harmful Cyanobacterium Microcystis aeruginosa. Advances in Microbiology, 3(October), 27–37. Moffitt, M., Blackburn, S. & Neilan, B. (2001). rRNA sequences reflect the ecophysiology and define the toxic cyanobacteria of the genus Nodularia. International Journal of Systematic and Evolutionary Microbiology. 51, 505-512. Moollan, R., Rae, B. & Verbeek, A. (1996). Some comments on the determination of microcystin toxins in waters by high-performance liquid chromatography. Analyst 121: 233– 238. Moore, L., Post, A., Rocap, G. & Chisholm, S. (2002). Utilization of different nitrogen sources by the marine cyanobacteria Prochlorococcus and Synechococcus. Limnology and Oceanography 47: 989-996. Morais, J., Martins, A., Vale, M., & Vasconcelos, V. (2014). Assessment of cyanobacterial toxinogenic genotypes and estimation of toxin content in urban lakes. Fresenius Environmental Bulletin, 23(8), 1867–1873. Moreira, C., Ramos, V., Azevedo, J., & Vasconcelos V. (2014). Methods to detect cyanobacteria and their toxins in the environment. Appl Microbiol Biotechnol, 98, 8073 – 8082. Mur, L. R., Skulberg M. O., Utkilen, H. (1999). Cyanobacteria in the environment. In: Chorus I, Bartram J, editors. Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. London, UK: E & FN Spon. p. 15–40. Muyzer, G., De Waal, E. C. & Uitterlinden, A. G. (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59, 695–700. Neilan, B. A., Jacobs, D. & Del Dot, T. (1997). RNA sequences and evolutionary relationships among toxic and non-toxic cianobacteria of the genus microcystis. Int. J. Syst. Bacteriol. 47, 693–697. Nicholson, BC., Shaw, GR., Morrall, J., Senogles, PJ., Woods TA, Papageorgiou, J., Kapralos, C., Wickramasinghe, W., Davis, B. C., Eaglesham, G. K., & Moore M. R. (2003). Chlorination for degrading saxitoxins (paralytic shellfish poisons) in water. Environ Technol, 24, 1341-1348. Nimptsch, J., Woelfl, S., Osorio, S., Valenzuela, J., Moreira, C., Ramos, V., Castelo-Branco, R., Nuno, P. & Vasconcelos, V. (2015). First record of toxins associated with cyanobacterial blooms in oligotrophic North Patagonian lakes of Chile—a genomic approach. International Review of Hydrobiology. 100, 1-12. Nübel, U., Garcia-Pichel, F., Muyzer, G. (1997). PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl. Environ. Microbiol. 63, 3327–3332. Oberholster, P. J., Botha A. -M. & Cloete, T. E. (2006). Toxic cyanobacterial blooms in a shallow, artificially mixed urban lake in Colorado, USA. Lakes & Reservoirs: Research and Management. 11, 111- 123. Oliva, M. G., & Garduño G. (2017). Cyanoprokaryotes Cyanobacteria, Cyanoprokaryota. Tlalnepantla, Edo. de Mexico: Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, 246 pp. O’Neil, J. M., Davis, T. W., Burford, M. A., & Gobler, C. J. (2012). The rise of harmful cyanobacteria blooms: The potential roles of eutrophication and climate change. Harmful Algae, 14, 313–334. https://doi.org/10.1016/j.hal.2011.10.027 Orr R. J. S., A. Stüken, S. A. Murray & K. S. Jakobsen. (2013). Evolution and distribution of saxitoxin biosynthesis in dinoflagellates. Marine Drugs. 11, 2814-2828. O’Sullivan, PE. & Reynolds, CS. (2004). The Lakes Handbook. Oxford: Blackwell Science Ltd. vol. 1, Limnology and limnetic ecology. 699 p. Ouahid, Y. (2005). Identification of potentially toxic environmental Microcystis by individual and multiple PCR amplification of specific microcystin synthetase gene regions. Environ. Toxic. Water. 20, 235–242. Palacio, H. M., Palacio, J. A., Echenique, R. O., Sant'Anna, C. L. & Ramírez J. J. (2015a). Dolichospermum lemmermannii (Cyanobacteria): a temperate species in a neotropical, eutrophic reservoir. Bol. Soc. Argent. Bot. 50(3), 309-321. Palacio, H. M., Ramírez J. J., Echenique, R. O., Palacio, J. A. & Sant'Anna, C. L. (2015b). Floristic composition of cyanobacteria in a neotropical, eutrophic reservoir. Brazilian Journal of Botany, 38(4), 865–876. Paerl, H. W., Huisman, J. (2008). Climate: Blooms like it hot. Science, 4, 57–58. Paerl, H. W. & Paul, V. J. (2012). Climate change: links to global expansion of harmful cyanobacteria. Water Res. 46, 1349–1363. Partensky F, Blanchot J, Lantoine F, Neveux J & Marie D. (1996). Vertical structure of picophytoplankton at different trophic sites of the tropical northeastern Atlantic Ocean. Deep-Sea Research 43: 1191–1213. Pearson, L. A. & Neilan, B. A. (2008). The molecular genetics of cyanobacterial toxicity as a basis for monitoring water quality and public health risk. Current Opinion in Biotechnology,19, 281-288. Pereira, P., Onodera, H., Andrinolo, D., Franca S., Araújo, F., Lagos, N. & Y. Oshima, Y. (2000). Paralytic shellfish poisoning toxins in the freshwater cyanobacterium Aphanizomenon flos-aquae, isolated from Montargil reservoir, Portugal. Toxicon, 38, 1689-1702. Pérez, J. (2003). Caracterización de las secuencias ribosomales 16s (ADNr) de cianobacterias asociadas a eventos de toxicidad. Tesis de grado para obtener el grado de Maestro en ciencias. Centro de investigaciones biológicas del Noreste, S. C. Pettersson, L. H., & Pozdnyakov, D. (2013). Monitoring of Harmful Algal Blooms. New York, EU: Springer-Verlag Berlin Heidelberg. Pettersson, L. H., & Pozdnyakov, D. (2013). Monitoring of Harmful Algal Blooms. Norfolk, UK: Springer-Verlag Berlin Heidelberg. Peterson S. A., Miller W. E., Greene J. C. & Callahan C. A. (1985) Use of bioassays to determine potential toxicity effects of environmental pollutants. In: Perspectives on Nonpoint Source Pollution. Environmental Protection Agency, EPA 440/5-85-001, pp. 38–45, Washington DC, USA. Pinheiro, C., Azevedo, J., Campos, A., Loureiro, S., & Vasconcelos, V. (2013). Absence of negative allelopathic effects of cylindrospermopsin and microcystin-LR on selected marine and freshwater phytoplankton species. Hydrobiologia, 705(1), 27–42. https://doi.org/10.1007/s10750-012-1372-x Pontificia Universidad Javeriana. (2015). Seguimiento limnológico de las fuentes de agua captadas para el suministro realizado por el acueducto de Bogotá. Séptimo Informe, embalses San Rafael, Chisacá y Regadera y fuentes superficiales. Dirección de ingeniería especializada aguas y saneamiento básico. Empresa de acueducto y alcantarillado de Bogotá (EAAB). Prasanna, R., Sood, A., Jaiswal, P., Nayak, S., Gupta, V., Chaudhary, V., Natarajan, C. (2010). Rediscovering cyanobacteria as valuable sources of bioactive compounds (Review). Applied Biochemistry and Microbiology, 46(2), 119–134. https://doi.org/10.1134/S0003683810020018. Puglisi, M., Sneed, J., Sharp, K., Ritson, R & Paul, V. (2014). Marine chemical ecology in benthic environments. Natural Product Reports. 31:1510–1553. Rantala, A., Känä, S., Wang, H., Rouhiainen, L., Wahlsten, M., Rizzi, E., Berg, K., Gugger, M. & Sivonen, K. (2011). Anatoxin-a Synthetase Gene Cluster of the Cyanobacterium Anabaena sp. Strain 37 and Molecular Methods to Detect Potential Producers. Applied and Environmental Microbiology. Vol. 77: (20), 7271 – 7278. Rajaniemi, P., Hrouzek, P., Kaštovská, K., Willame, R., Rantala, A., Hoffmann, L., Komárek, J. & Sivonen, K. (2005). Phylogenetic and morphological evaluation of the genera Anabaena, Aphanizomenon, Trichormus and Nostoc (Nostocales, Cyanobacteria). International Journal of Systematic and Evolutionary Microbiology. 55, 11-26. Rantala-Ylinen, A., Känä, S., Wang, H., Rouhiainen, L., et al., 2011. Anatoxin-a synthetase gene cluster of the cyanobacterium Anabaena sp. strain 37 and molecular methods to detect potential producers. Appl. Environ. Microbiol. 77, 7271–7278. Redfield, A. C. (1958). The biological control of chemical factors in the environment. American Scientist, 46, 205–222. Reichwaldt, ES. & Ghadouani, A. (2012). Effects of rainfall patterns on toxic cyanobacterial blooms in a changing climate: between simplistic scenarios and complex dynamics. Water Res, 46, 1372–1393. Rippka, R., Deruelles, J., Waterbury, B., Herdman, M. & Stanier, R. Y. (1979). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111, 1–61. Rippka, R. (1988). Isolation and purification of cyanobacteria. 3–27. L. Packer and A. N. Glazer (ed.) Methods in enzymology. 167. Academic Press, Inc. New York. Reynolds, C.S. (1997). Vegetation processes in the pelagic: a model for ecosystem theory. Ecology Institute. Oldendorf/Luhe, 371 pp. Reynolds, C.S. (2006). The Ecology of phytoplankton. Cambridge University, Cambridge. Roldan, G. & Ramírez, J. J. (2008). Fundamentos de limnología neotropical. -2.ª edición-. Medellín: Editorial Universidad de Antioquia. Rosales, N., Guevara, M., Lodeiros, C. & Morales, E. (2008). Crecimiento y producción de metabolitos de la cianobacteria marina Synechococcus sp. (Chroococcales) en función de la irradiancia. Revista de Biología Tropical. 56 (2), 421- 429. Rueter, J. G., McCarthy, J. J., Carpenter, E. J. (1979). The toxic effect of copper on Oscillatoria (Trichodesmium) thiebautii. Limnol. Oceanogr. 24, 558–562. Saker, M. L., Jungblut, A. D., Neilan, B. A., Rawn, D. F. K., & Vasconcelos, V. M. (2005). Detection of microcystin synthetase genes in health food supplements containing the freshwater cyanobacterium Aphanizomenon flos-aquae. Toxicon, 46(5), 555–562. https://doi.org/10.1016/j.toxicon.2005.06.021 Salas, H. J. & Martino, P. (2001). Metodologías simplificadas para la evaluación de eutroficación en lagos cálidos tropicales. OMS-Cepis. Savela, H., Spoof, L., Perälä, N., Preede, M., Lamminmäki, U., Nybom, S., Häggqvist, K., Meriluoto, J., Vehniäinen, M. (2015). Detection of cyanobacterial sxt genes and paralytic shellfish toxins in freshwater lakes and brackish waters on Åland Islands, Finland. Harmful Algae. 46, 1-10. Savela, H., Spoof, L., Höysniemi, N., Vehniäinen, M., Mankiewicz-Boczek, J., Jurczak, T., Kokociński, M. & Meriluoto, J. (2017). First report of cyanobacterial paralytic shellfish toxin biosynthesis genes and paralytic shellfish toxin production in Polish freshwater lakes. Advances in Oceanography and Limnology. 8(1), 61-70. Scanlan, J. (2003). Physiological diversity and niche adaptations in marine Synechococcus Advances in Microbial Physiology 47: 1-64. Shapiro, J. (1990). Current beliefs regarding dominance by blue-greens: The case for the importance of CO2 and pH. Verh. Intern. Verein. Limnol. 24:38-54. Schembri, M. A., Neilan, B. A. & Saint, C. P. (2001). Identification of genes implicated in toxin productioninthe cyanobacterium Cylindrospermopsis raciborskii. Environ. Toxicol. 16, 413–421. Seifert, M., McGregor, G., Eaglesham, G., Wickramasinghe, W. & Shaw, G. First evidence for the production of cylindrospermopsin and deoxy cylindrospermopsin by the freshwater benthic cyanobacterium, Lyngbya wollei (Farlow ex Gomont) Speziale and Dyck. Harmful Algae. 6, 73–80. Seo, P. & Yokota, A. (2003). The phylogenetic relationships of cyanobacteria inferred from 16S rRNA, gyrB, rpoC1 and rpoD1 gene sequences. The Journal of general and applied microbiology. 49(3): 191-203. Shih, P., Wu, D., Latifi, A., Axen, S., Fewer, D., Talla, E., Calteau, A., Cai, F., Tandeau de Marsac, N. & Rippka. R. (2012). Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing. Proceedings of the National Academy of Sciences of the United States of America. 110:1053–1058. Smienk, F., Sevilla, E., Peleato, M., Razquin, P. & Mata, L. (2007). Validación de un kit para la detección de microcistinas en agua. Artículos Técnicos. 100 – 111 Stewart, I., Carmichael, W. W., Sadler, R., McGregor, G. B., Reardon, K., Eaglesham, G. K., Shaw, G. R. (2009). Occupational and environmental hazard assessments for the isolation, purification and toxicity testing of cyanobacterial toxins. Environmental Health, 8(1), 52. https://doi.org/10.1186/1476-069X-8-52 Sukenik, A., Rosin, C., Porat, R., Teltsch, B., Banker, R., & Carmeli, S. (1998). Toxins from cyanobacteria and their potential impact on water quality of lake kinneret, Israel. Israel Journal of Plant Sciences, 46(2), 109–115. https://doi.org/10.1080/07929978.1998.10676717 Tell, G. (1985). Catálogo de las algas de agua dulce de la República Argentina. Biblioteca Ficológica. 70 [i-vi], 1-283. Thajuddin, N. & Subramanian, G. (2005). Cyanobacterial biodiversity and potential applications in biotechnology. Current Science. 89: 50-57. Tidgewell, K., Engene, N., Byrum, T., Media, J., Doi, T., Valeriote, F. & Gerwick, W. (2010). Evolved diversification of a modular natural product pathway: apratoxins F and G, two cytotoxic cyclic depsipeptides from a Palmyra collection of Lyngbya bouillonii. Chembiochem 11:1458 –1466. Ting, C., Rocap, G., King, J. & Chisholm, S. (2002). Cyanobacterial photosynthesis in the oceans: the origins and significance of divergent light-harvesting strategies. Trends in Microbiology 10: 134-142. Torres Quintero, E., & Velásquez, M. C. (2009). Diagnóstico ambiental de las cuencas hidrográficas de embalses en Colombia, análisis hidrológico para el embalse de La Regadera. Avances, Investigación En Ingeniería, (10), 65–78. Retrieved from http://www.unilibre.edu.co/revistaavances/avances_10/r10_art10.pdf Tundisi, J. G. (1990). Perspectives for ecological modeling of tropical and subtropical reservoirs in Soth America. Ecol. Modell, 52:7-20. Tundisi J. G. (1999). Reservatórios como sistemas complexos: Teoria, aplicações e perspectivas para usos múltiplos. In: Ecologia de Reservatórios (ed. R. Henry) pp. 19–38. FUNDIBIO FAPESP, Botucatu, SP, Brazil. Vaara, T., Vaara, M., & Niemela, S. (1979). Two improved methods for obtaining axenic cultures of cyanobacteria. Applied and Environmental Microbiology, 38(5), 1011–1014. Valencia H. 2004. Manual de prácticas de microbiología básica. Universidad Nacional de Colombia. Facultad de Ciencias. Departamento de Biología, Bogotá, Colombia. Van Apeldoorn, ME., van Egmond, HP., Speijers, GJA, & Bakker, GJI. (2007). Toxins of cyanobacteria. Mol Nutr Food Res, 51, 7–60. Vasconcelos, V. (1999). Cyanobacterial toxins in Portugal: effects on aquatic animals and risk for human health. Braz J Med Biol Res, 32(3), 249-254. Vasconcelos, V. (2006). Eutrophicatton, toxic cyanobacteria and cyanotoxins: When ecosystems cry for help. Limnetica, 25(1–2), 425–432. Vasconcelos, V. M., Sivonen, K., Evans, W. R., Carmichael, W. W., & Namikoshi, M. (1996). Hepatotoxic microcystin diversity in cyanobacterial blooms collected in Portuguese freshwaters. Water Research, 30(10), 2377–2384. https://doi.org/10.1016/0043-1354(96)00152-2 Vasconcelos, V., Morais, J., & Vale, M. (2011). Microcystins and cyanobacteria trends in a 14 year monitoring of a temperate eutrophic reservoir (Aguieira, Portugal). Journal of Environmental Monitoring : JEM, 13(3), 668–672. https://doi.org/10.1039/c0em00671h Villabona-González, S.L., Buitrago-Amariles, R.F., Ramírez-Restrepo, J.J. & Palacio-Baena, J.A. (2014). Biomasa de rotíferos de dos embalses con diferentes estados tróficos (Antioquia, Colombia) y su relación con algunas variables limnológicas. Actualidades Biológicas, 36(101), 149-162. Ward, C. Beattie, K. Lee, E. & Codd, G. (1997). Colorimetric protein phosphatase inhibition assay of laboratory strains and natural blooms of cyanobacteria: comparisons with high-performance liquid chromatographic analysis for microcystins. FEMS Microbiology Letters 153:465-73. Waterbury, J. B. (2006). The Cyanobacteria—Isolation, Purification and Identification.Chapter 2.1. Prokaryotes. 4, 1053–1073. Prokaryotes (2006) 4:1053–1073 Watanabe, M. F., & Oishi S. (1980). Toxicities of Microcystis aeruginosa Collected from Some Lakes, Reservoirs, Ponds and Moat in tokyo and adjacent regions. Japanese Journal of limnology (rikusuigaku zasshi), 41(1), 5-9. Werner, V.R. (2010). Cyanophyceae. In: Catálogo de plantas e fungos do Brasil. Vol. 1. (Forzza, R.C. Eds), pp. 356-366. Rio de Janeiro: Andrea Jakobsson Estúdio; Instituto de Pesquisas Jardim Botânico do Rio de Janeiro. Wetzel, R. G. (1983) Limnology. 2nd Edition, Saunders College Publishing, Philadelphia, USA. 858 p. Wetzel, R. G. (2001). Limnology. Lake and River Ecosystems. Third Edition. Academic Press, USA. 1006 p. Whitton, B. & Potts, M. (2000). The Ecology of cyanobacteria. Kluwer Academic, Dordrecht, Paises Bajos. 1-19. World Health Organization. (1999). Toxic Cyanobacteria in Water: A guide to their public health consequences, monitoring and management. Retrieved March. https://doi.org/10.1046/j.1365-2427.2003.01107.x Yilmaz, M., Foss, A. J., Selwood, A. I., Özen, M. & Boundy, M. (2018). Paralytic shellfish toxin producing Aphanizomenon gracile strains isolated from Lake Iznik, Turkey. Toxicon. 148, 132 - 142. Žegura, B., Straser, A., & Filipič, M. (2012). Erratum to: Genotoxicity and potential carcinogenicity of cyanobacterial toxins-A review [Mutat Res 727 (2011) 16-41]. Mutation Research - Reviews in Mutation Research, 750(1), 83. https://doi.org/10.1016/j.mrrev.2011.10.001 Zhang, Q. ‐X, Yu, M. ‐J, Li, S. ‐H, & Carmichael, W. W. (1991). Cyclic peptide hepatotoxins from freshwater cyanobacterial (blue‐green algae) waterblooms collected in Central China. Environmental Toxicology and Chemistry, 10(3), 313–321. https://doi.org/10.1002/etc.5620100303 Zhang Y., S. F. Zhang, L. Lin & D. Z. Wang. (2014). Comparative transcriptome analysis of a toxin-producing dinoflagellate Alexandrium catenella and its non-toxic mutant. Mar. Drugs. 12, 5698-5718. Zhen, Z., Liu, J., Rensing, C., Yan, C. & Zhang, Y. (2017). Effects of two different high-fidelity DNA polymerases on genetic analysis of the cyanobacterial community structure in a subtropical deep freshwater reservoir. Archives of Microbiology.199(1): 125-134. Zurawell, R. W., Chen, H., Burke, J. M., & Prepas, E. E. (2005). Hepatotoxic cyanobacteria: A review of the biological importance of microcystins in freshwater environments. Journal of Toxicology and Environmental Health - Part B: Critical Reviews, 8(1), 1–37. https://doi.org/10.1080/10937400590889412 |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.spa.spa.fl_str_mv |
Acceso abierto |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia Acceso abierto http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
213 |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Maestría en Ciencias - Biología |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/77965/2/license.txt https://repositorio.unal.edu.co/bitstream/unal/77965/3/license_rdf https://repositorio.unal.edu.co/bitstream/unal/77965/1/80723576.2019..pdf https://repositorio.unal.edu.co/bitstream/unal/77965/4/80723576.2019..pdf.jpg |
bitstream.checksum.fl_str_mv |
e2f63a891b6ceb28c3078128251851bf 42fd4ad1e89814f5e4a476b409eb708c b740c870d7c79e0bcb8c3b91a9374ebd 8614287d1909a81b3c51526c6fd4e65c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090249731571712 |
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de ColombiaAcceso abiertohttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Montenegro Ruíz, Luis Carlos655bac3f-ba79-4301-99e4-18a2c9e7a985-1Pinilla Agudelo, Gabriel Antonio53fb7ab4-2799-47a1-a738-5b35fda97757-1Forero Cujiño, Mario Andrés2704e947-702a-4133-9c90-d170d8c0ec49Universidad Nacional de ColombiaFisiología del estrés y biodiversidad en plantas y microorganismos - Biodiversidad, biotecnología y conservación de ecosistemas2020-08-06T17:41:32Z2020-08-06T17:41:32Z2019-12-19Forero, M. (2019). Determinación de Cyanoprokaryotas planctónicas y su potencial en la producción de cianotoxinas en un embalse de la sabana de Bogotá - Colombia. (tesis de maestría). Universidad Nacional de Colombia.https://repositorio.unal.edu.co/handle/unal/77965The aim of this study was to identify planktonic cyanoprokaryotic species potential producers of cyanotoxins in La Regadera dam (located at south eastern of Bogotá city) and their temporary variation for 9 months period. To accomplish the target a monthly two-phase sampling was performed; first phase took place between October and November 2015 and second phase was developed between January and July 2016. At the same time, qualitative and quantitative analysis of cyanobacterial community were developed, as well as in vitro culture of strains in BG-11 liquid and solid (agar) culture medium. Subsequently, the isolation and identification of cyanobacteria strains was carried out, as well as the molecular characterization of toxic cyanobacteria and the types of cyanotoxins expressed by them. The results showed a total of 30 isolated strains of cyanobacteria present in the dam which correspond mainly to filamentous cyanobacteria of the genus Leptolyngbya sp., Lyngbya sp., Phormidium sp., and Planktolyngbya sp. On the other hand, in March 2016 (fifth sampling) it was evidenced a Aphanizomenon gracile, algal bloom, which contains a genetic pool able to express the neutrotoxin Saxitoxine (STX), which includes the genes sxtI, sxtA and sxtG. However, none of the cyanobacterial strains in vitro cultured showed the gene regions capable of expressing the cyanotoxins, microcystin (mcyA, mcyB, mcyC, mcyD, mcyE, mcyG); cylinrospermopsin (AMT, PS, PKS), and anatoxin-a (ANAC-GENF / ANAC-GENR). These results are useful to monitoring the potential risk of toxic cyanoprokaryotic proliferation by the Water and Sewerage Company of Bogotá city and to allow implementing preventive identification and quantification protocols in order to guaranty potable water availability for human population.El objetivo de este estudio fue determinar las especies de cyanoprokaryotes planctónicas potencialmente productoras de cianotoxinas presentes en el embalse La Regadera (ubicado en la parte sur oriental de la ciudad de Bogotá), y la variación temporal de la comunidad de cyanoprokaryotes en un periodo de 9 meses. Para tal fin se efectuaron muestreos mensuales en dos fases. La primera fase se realizó entre los meses de octubre y noviembre de 2015; y la segunda fase se realizó entre el periodo de enero a julio de 2016. Se realizó el análisis cualitativo y cuantitativo de la comunidad de cyanoprokaryotes presentes en el embalse, así como el montaje de cultivos in vitro utilizando principalmente medio de cultivo BG-11 líquido y sólido (agar). Posteriormente se procedió al aislamiento e identificación de las cepas de cyanoprokaryotes. Además, se caracterizaron molecularmente las especies de cyanoprokaryotes potencialmente toxicas, así como los tipos de cianotoxinas expresadas por las mismas. Los resultados evidenciaron un total de 30 cepas de cyanoprokaryotes aisladas presentes en el embalse La Regadera, las cuales corresponden principalmente a cyanoprokaryotes filamentosas de los géneros Leptolyngbya sp., Lyngbya sp., Phormidium sp. y Planktolyngbya sp. Por otro lado, se evidenció el florecimiento algal (FA) de Aphanizomenon gracile durante el mes de marzo de 2016 (quinto muestreo), el cual presentó el pool genético capaz de expresar la neurotoxina Saxitoxina (STX) que comprende los genes sxtI, sxtA y sxtG. Ninguna de las cepas de cyanoprokaryotes cultivadas in vitro contenía las regiones génicas capaces de expresar las cianotoxinas, microcistina (mcyA, mcyB, mcyC, mcyD, mcyE, mcyG), cilindrospermopsina (AMT, PS, PKS) y anatoxina-a (ANAC-GENF/ANAC-GENR). Estos resultados le permitirán a la Empresa de Acueducto y Alcantarillado de Bogotá reconocer el riesgo de la proliferación de cyanoprokaryotes potencialmente toxicas, con el propósito de activar protocolos preventivos de identificación y cuantificación de cianotoxinas que le garanticen a la población humana el consumo de agua potable libre de estas sustancias.Maestría213application/pdfspa570 - Biología577 - Ecología628 - Ingeniería sanitariacyanoprokaryotescianotoxinassaxitoxina (STX)microcistina (MC)embalse La Regaderaagua potablesalud humanacyanoprokaryoticcyanotoxinssaxitoxine (STX)microcystine (MC)la Regadera dampotable Waterhuman healthDeterminación de Cyanoprokaryotas planctónicas y su potencial en la producción de cianotoxinas en un embalse de la sabana de Bogotá - ColombiaDocumento de trabajoinfo:eu-repo/semantics/workingPaperinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_8042Texthttp://purl.org/redcol/resource_type/WPBogotá - Ciencias - Maestría en Ciencias - BiologíaUniversidad Nacional de Colombia - Sede BogotáAllen, M. M. (1973). Methods for Cyanophyceae. En: Stein, J. R. (ed). Handbook of physiological methods: culture methods and growth measurements. Cambridge University Press. 127 – 138 pp.Anagnostidis, K. & Komárek, J. (1985). Modern approach to the classification system of cyanophytes. 1-Introduction. Archiv für Hydrobiologie – Supplement. 71, 1-2.Anagnostidis, K. & Komárek, J. (1988). Modern approach to the classification system of cyanophytes. 3- Oscillatoriales. Archiv für Hydrobiologie. 80, 1-4.Andersen, R. (2005). Algal Culturing Techniques. 1st Edition. USA: Elsevier Academic Press. 596 p.Aranguren, N., Bolívar, A., Canosa, A., Galvis, G., Mojica, J. I., Donato, J. C., Rueda, G. & Ruiz, E. (2002). Manual de Métodos en Limnología. Asociación Colombiana de Limnología, v.1, 76 p.Baker, P. D., & Humpage, A. R. (1994). Toxicity associated with commonly occurring cyanobacteria in surface waters of the murray-darling basin, australia. Marine and Freshwater Research, 45(5), 773–786. https://doi.org/10.1071/MF9940773Bernard, C., Ballot, A., Thomazeau, S., Maloufi, S., Furey, A., Mankiewicz-Boczek, J., Pawlik-Skowronska, B., Capelli, C. & Salmaso, N. (2017). Appendix 2. Cyanobacteria associated with the production of cyanotoxins. 503-527. In: J. Meriluoto, L. Spoof and G.A. Codd (eds.), Handbook on cyanobacterial monitoring and cyanotoxin analysis. J. Wiley & Sons, Chichester.Best, J. H., Eddy, F. B., & Codd, G. A. (2003). Effects of Microcystis cells, cell extracts and lipopolysaccharide on drinking and liver function in rainbow trout Oncorhynchus mykiss Walbaum. Aquatic Toxicology, 64(4), 419–426. https://doi.org/10.1016/S0166-445X(03)00105-XBriand, J., Jacquet, S., Bernard, C., & Humbert, J. (2003). Health hazards for terrestrial vertebrates from toxic cyanobacteria in surface water ecosystems. Vet. Res. 34 (2003) 361–377. DOI: 10.1051/vetres:2003019.Botero, L., Mancera-Pineda, J. E., Vidal, L. A., Santos-Martínez, A., Ramirez, G., Fontalvo, M. L., Espinosa, L. F., Troncoso, W., Viloria, E., & Salazar, J. G. (1995). Informe sobre la mortandad masiva de peces ocurrida en el complejo lagunar Ciénaga Grande de Santa Marta - Caribe colombiano, en junio de 1995. Progr. Lagunas Costeras, INVEMAR, Santa Marta, 13 p.Buitenhuis, E., Li, W., Vaulot, D., Lomas, M., Landry, M., Partensky, F., Karl, D., Ulloa, O., Campbell, L., Jacquet, S., Lantoine, F., Chavez, F., Macias, D., Gosselin, M. & McManus, G. 2012. Picophytoplankton biomass distribution in the global ocean. Earth System Science Data Discussions 5: 221-242.Bula-Meyer, G. (1985). Un núcleo nuevo de surgencia en el Caribe colombiano detectado en correlación con las distribuciones de las algas. Bol. Ecotrópica, 12: 3–25.Burja, A., Banaigs, B., Abou-Mansour E., Grant Burgess, J., Wright P. 2001. Marine cyanobacteria a prolific source of natural products. Tetrahedron. 57: 9347- 9377.Camacho, A., Wurtsbaugth, W. A., Miracle, M. R., Armengol, X. & Vicente, E. (2003). Nitrogen limitation of phytoplankton in a spanish karst lake with a deep chlorophyll maximum: a nutrient enrichment bioassay approach. Journal of Plankton Research, 25(4), 397–404.Carmichael, W. W. (1992). Cyanobacteria secondary metabolites—the cyanotoxins. Journal of Applied Bacteriology, 72(6), 445–459. https://doi.org/10.1111/j.1365-2672.1992.tb01858.xCasco, M. A. & Toja, J. (2003). Efecto de la fluctuación de nivel del agua en la biomasa, la diversidad y las estrategias del perifiton de los embalses. Limnetica. 22(1-2), 115-134.Casey, J., Lomas, M., Mandecki, J. & Walker, D. (2007). Prochlorococcus contributes to new production in the Sargasso Sea deep chlorophyll maximum. Geophysical Research Letters 34: L10604.Chen, W., Peng, L., Wan, N., & Song, L. (2009). Mechanism study on the frequent variations of cell-bound microcystins in cyanobacterial blooms in Lake Taihu: Implications for water quality monitoring and assessments. Chemosphere, 77(11), 1585–1593. https://doi.org/10.1016/j.chemosphere.2009.09.037Chorus, I. & Bartram, J. 1999. Toxic Cyanobacteria in Water: A guide to their public health consequences, monitoring and management. World Health Organization.Codd, G. A., Morrison, L. F., & Metcalf, J. S. (2005). Cyanobacterial toxins: Risk management for health protection. Toxicology and Applied Pharmacology, 203(3 SPEC. ISS.), 264–272. https://doi.org/10.1016/j.taap.2004.02.016Comba, N. (2009). Las cyanoprokaryotes como indicadoras de la calidad del agua en el Embalse de Betania (Cuenca alta del Río Magdalena). Universidad de Bogotá Jorge Tadeo Lozano, Facultad de Ciencias Naturales - Programa de Biología Marina., 110.Corrales, M., Villalobos, K., Rodríguez, A., Muñoz, N. & Umaña, R. (2017). Identificación y caracterización molecular de cianobacterias tropicales de los géneros Nostoc, Calothrix, Tolypothrix y Scytonema (Nostocales: Nostocaceae), con posible potencial biotecnológico. UNED Research Journal. 9(2): 280-288.Dawes, C. J. (1981). Marine Botany. John Wiley & Sons. E. U. A., 628 pp.Dias, E., Pereira, P., & Franca, S. (2002). Production of paralytic shellfish toxins by Aphanizomenon sp. LMECAY31 (Cyanobacteria). J. Phycol. 38, 705-712.Dolman, A. M., Rücker, J., Pick, F. R., Fastner, J., Rohrlack, T., Mischke, U., & Wiedner, C. (2012). Cyanobacteria and cyanotoxins: The influence of nitrogen versus phosphorus. PLoS ONE, 7(6). https://doi.org/10.1371/journal.pone.0038757Donato, J. (2001). Fitoplancton de los lagos andinos del norte de Sudamérica (Colombia). Bogotá, D.C.: Academia Colombiana de Ciencias Exactas, Físicas y Naturales. Colección Jorge Álvarez Lleras, No. 19.Downing, J. A., Watson, S. B., & McCauley, E. (2001). Predicting Cyanobacteria dominance in lakes. Canadian Journal of Fisheries and Aquatic Sciences, 58(10), 1905–1908. https://doi.org/10.1139/f01-143.Fabre, A., Carballo, C., Hernández, E., Piriz, P., Bergamino, L., Mello, L. et al., 2010. El nitrógeno y la relación zona eufótica/zona de mezcla explican la presencia de cianobacterias en pequeños lagos subtropicales, artificiales de Uruguay. Pan-American Journal of Aquatic Sciences. 5(1), 112-125.Fergusson, K. M. & Saint, P. C. (2003). Multiplex PCR assay for Cylindrospermopsis raciborskii and cylindrospermopsin-producing cyanobacteria. Environ. Toxicol. 18, 120–125.Ferrao, A., Herrera, N. & Echeverri, L. 2014. Microcystin accumulation in cladocerans: First evidence of MC uptake from aqueous extracts of a natural bloom sample. Toxicon. 87: 26 – 31.Ferreira, F., Soler, J., Fidalgo, L., & Fernadez, P. (2000). PSP toxins from Aphanizomenon flos-aquae (cyanobacteria) collected in the Crestuma reservoir (Douro river, Northern Portugal). Toxicon, 39, 757-761.Ferris, M. & Hirsch, C. (1991). Method for isolation and purification of cyanobacteria. Applied and Environmental Microbiology. 57(5), 1448 - 1452.Frazão, B., Martins, R., & Vasconcelos, V. (2010). Are known cyanotoxins involved in the toxicity of picoplanktonic and filamentous north atlantic marine cyanobacteria? Marine Drugs, 8(6), 1908–1919. https://doi.org/10.3390/md8061908Funari, E., & Testai, E. (2008). Human health risk assessment related to cyanotoxins exposure. Critical Reviews in Toxicology, 38(2), 97–125. https://doi.org/10.1080/10408440701749454Funasa. (2003). Cianobactérias Tóxicas na Água para Consumo Humano na Sáude Pública e Processos de Remoção em Água para Consumo Humano. Brasília: Ministério Da Saúde: Fundação Nacional de Saúde, 1–56.Galhano, V., De Figueiredo, D., Alves, A., Correia, A., Pereira, M., Gomes, J. & Peixoto, F. (2011). Morphological, biochemical and molecular characterization of Anabaena, Aphanizomenon and Nostoc strains (Cyanobacteria, Nostocales) isolated from Portuguese freshwater habitats. Hydrobiología. 663(1), 187-203. Doi:10.1007/s10750-010-0572-5.Galeano, J., & Villalobos, J. (2011). Cyanoprokaryotes y cicrocistinas en el Caribe Colombiano: identificación de cyanoprokaryotes y detección de microcistinas en el antiguo delta del río Sinú Córdoba – Colombia. Editorial Académica Española, 96p.Garcia Nieto, P. J., Sánchez Lasheras, F., de Cos Juez, F. J., & Alonso Fernández, J. R. (2011). Study of cyanotoxins presence from experimental cyanobacteria concentrations using a new data mining methodology based on multivariate adaptive regression splines in Trasona reservoir (Northern Spain). Journal of Hazardous Materials, 195, 414–421. https://doi.org/10.1016/j.jhazmat.2011.08.061García-Pichel, F., López-Cortes, A. & Nübel, U. (2001). Phylogenetic and morphological diversity of cyanobacteria in soil desert crust from the Colorado plateau. Appl. Environ. Microbiol., 67: 1902-1910.Genuário, D. B., Silva-Stenico, M. E., Welker, M., Beraldo Moraes, L. A., & Fiore, M. F. (2010). Characterization of a microcystin and detection of microcystin synthetase genes from a Brazilian isolate of Nostoc. Toxicon, 55, 846–854.Gil, C.B., Restrepo, J.J.R., Boltovskoy, A. & Vallejo, A. (2012). Spatial and temporal change characterization of Ceratium furcoides (Dinophyta) in the equatorial reservoir Riogrande II, Colombia. Acta Limnologica Brasiliensia, 24(2), 207-219. http://dx.doi.org/10.1590/S2179-975X2012005000039.Gómez, F., Moreira, D. & López-García, P. (2010). Neoceratium gen. nov., a new genus for all marine species currently assigned to Ceratium (Dinophyceae). Protist, 161(1), 35-54. http://dx.doi.org/10.1016/j.protis.2009.06.004. PMid:19665427.Grigorszky, I., Borics, G., Padisák, J., Tótmérész, B., Vasas, G., Nagy, S. & Borbély, G. (2003). Factors controlling the occurrence of Dinophyta species in Hungary. Hydrobiologia, 506-509(1-3), 203-207. http://dx.doi.org/10.1023/B:HYDR.0000008552.60232.68.Grilli, M. (1992). Cianobacterian in symbioses with bryophytes and tracheophytes, In: W. Reisser (ed) Algae and Symbioses: Plants, Animals, Fungi, Viruses Interactions Explores. Biopress Limited, Bristol. 231-254.González, M. Parra O & Cifuentes A. (1995). Técnicas de cultivo de microalgas en laboratorio. En: Manual de metidos ficológicos. Universidad de Concepción. Chile: Editora Aníbal Pinto, 220 - 249.González-Gil, S, Aguilera, A. López-Rodas, V. & Costas, E. (1999). Characterization of morphospeciesGonzalez and strains of Pseudoanabaena (Cyanophyceae) from laboratory cultures using antibodies and lectins. Eur. J. Phycol., 34: 27 - 33.Havens, K. E. (2008). Cyanobacteria blooms: effects on aquatic ecosystems. Cyanobacterial Harmful Algal Blooms: State of the Science and Research Needs, 1(2004), 733–747. https://doi.org/10.1007/978-0-387-75865-7_33Håkanson, L. (1977). The influence of wind, fetch, and water depth on the distribution of sediments in Lake Vänern, Sweden. Can. J. Earth Sci. 14, 397–412.Harper, D.M., Morrison, E.H.J., Macharia, M.M., Mavuti, K.M. & Upton, C. (2011). Lake Naivasha, Kenya: ecology, society and future. Freshwater Reviews. 4, 89–114.Heisler, J., Glibert, P. M., Burkholder, J. M., Anderson, D. M., Cochlan, W., Dennison, W. C., … Suddleson, M. (2008). Eutrophication and harmful algal blooms: A scientific consensus. Harmful Algae, 8(1), 3–13. https://doi.org/10.1016/j.hal.2008.08.006Heresztyn, T. & Nicholson, B. (2001). Determination of cyanobacterial hepatotoxins directly in water using a protein phosphatase inhibition assay. Water Res. 35:3049-56.Herrera, N. A., Flórez, M. T. & Echeverri, L. F. (2015). Evaluación preliminar de la reducción de Microcistina-LR en muestras de florecimientos a través de sistemas sedimentarios. Rev. Int. Contam. Ambie. 31(4), 405-414.Herrera N, Echeverri L & Ferrao A. (2015). Effects of phytoplankton extracts containing the toxin microcystin-LR on the survival and reproduction of cladocerans. Toxicon. 95: 38 – 45.Herrera, N., Flórez, M. T., Velásquez, J. P. & Echeverri, F. (2019). Effect of Phenyl-Acyl Compounds on the Growth, Morphology, and Toxin Production of Microcystis aeruginosa Kützing. Water, 11, 236.Herrera, N., Herrera, C., Ortíz, I., Orozco, L., Robledo, S., Agudelo, D. & Echeverri, F. (2018). Genotoxicity and cytotoxicity of three microcystin-LR containing cyanobacterial samples from Antioquia, Colombia. Toxicon 154: 50 – 59.Herrera, N., Palacio, J., Echeverri, L. & Ferrao, A. (2014). Effects of a cyanobacterial bloom sample containing microcystin-LR on the ecophysiology of Daphnia similis. Toxicology Reports. 1: 909 – 914.Hisbergues, M., Christiansen, G., Rouhiainen, L., Sivonen, K. & Börner, T. (2003). PCR-based identification of microcystin producing genotypes of different cyanobacterial genera. Arch. Microbiol. 180, 402–410.Hotto, A. M., Satchwell, M. F., & Boyer, G. L. (2007). Molecular characterization of potential microcystinproducing cyanobacteria in Lake Ontario embayments and nearshore waters. Applied and Environmental Microbiology, 73:(14), 4570 - 4578.Humpage, A. R., Rositano, J., Bretag, A.H., Brown, R., Baker, P.D., Nicholson, B. C. & Steffensen, D.A. (1994). Paralytic shellfish poisons from Australian cyanobacterial blooms. Aust. J. Mar. Freshwater Res., 45(5), 761-771.Hurtado, J. & Polania, J. (2014). Molecular techniques for cyanobacteria detection at Riogrande II and La Fe water reservoirs, Colombia. Revista de biología tropical. Vol. 62 (1): 403-419.IDEAM. (2016). Impacto del Fenómeno “El Niño” 2015-2016 en los Nevados y Alta Montaña en Colombia.Ikawa, M., Auger, K., Mosley, S.P., Sasner, J.J., Noguchi, T. & Hashimoto, K. (1985). Toxin profiles of the blue-green alga Aphanizomenon flos-aquae. In: Toxic Dinoflagellates, Anderson, D.M., White, A.W. & Baden, D.G. (eds.), Elsevier, New York. 299-304.Johnson, Z., Zinser, E., Coe, A., Mcnulty, N., Woodward, E. & Chisholm, S. (2006). Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients. Science 311: 1737-1740.Kaiser, H. F. (1974). An index of factorial simplicity. Psychometrika. 34, 31-36.Kaya, K., Sano, T., Inoue, H., & Takagi, H. (2001). Selective determination of total normal microcystin by colorimetry, LC/UV detection and/or LC/MS. Anal. Chim. Acta 450, 73–80.Kellmann, R., Mills, T., Neilan, B. A. (2006). Functional modeling and phylogenetic distribution of putative cylindrospermopsin biosynthesis enzymes. J. Mol. Evol. 62, 267–280.Kellmann R., T. K. Mihali, Y. J. Jeon, R. Pickford, F. Pomati & B. A. Neilan. (2008). Biosynthetic intermediate analysis and the functional homology reveal a saxitoxin gene cluster in cyanobacteria. Appl. Environ. Microb. 74, 4044-4053.Kim, J. H., Choi, W., Jeon, S.-M. et al. (2015). Isolation and characterization of Leptolyngbya sp. KIOST-1, a basophilic and euryhaline filamentous cyanobacterium from an open paddle-wheel raceway Arthrospira culture pond in Korea. J Appl Microbiol, 119(6):1597-1612.Krienitz, L., Dadheech, P. K., Fastner, J. & Kotut, K. (2013). The rise of potentially toxin producing cyanobacteria in Lake Naivasha, Great African Rift Valley, Kenya. Harmful Algae. 27, 42 - 51.Komárek, J. & Anagnostidis, K. (1998) Cyanoprokaryota. I. Chroococcales. In: Ettl, H., Gärtner, G., Heynig, H. and Mollenhauer, D., Eds., Süsswasserflora von Mitteleuropa, Begründet von A. PascherBd. 19/3 Cyanoprokaryota. 1. Teil Chroococcales, Spektrum, Akademischer Verlag, Heidelberg & Berlin, 1-548.Komárek, J. & Anagnostidis, K. (2005). Cyanoprokaryota II. Teil Oscillatoriales. Jena, Alemania: Elsevier/Spektrum Gmbh.Kotai, J. (1972). Instruction for Preparation of Modified Nutrient Solution Z8 for Algae. Norwegian Intitute for Water Research (NIVA), B-11/69.Kumar, H. D., & Singh, H. N. (1979). A texbook on algae. Hong Kong: MacMillan Press LTD.Kuiper-Goodman, T., Falconer, I., & Fitzgerald, J. (1999). Human health aspects. In: Chorus I, Bartram J, editors. Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. London, UK: E & FN Spon. p. 113–53.Kumari, N., Srivastava, A. & Bhargava, P. (2009). Molecular approaches towards assessment of cyanobacterial biodiversity. African Journal of Biotechnology. 8(18): 4284-4298.Kutschera, U., & Niklas, K. J. (2005). Endosymbiosis, cell evolution, and speciation. Theory in Biosciences, 124(1), 1–24. https://doi.org/10.1016/j.thbio.2005.04.001Lajeunesse. A., Segura, P. A., Gélinas, M., Hudon, C., Thomas, K., Quilliam, M. A. et al., 2012. Detection and confirmation of saxitoxin analogues in freshwater benthic Lyngbya wollei algae collected in the St. Lawrence River (Canada) by liquid chromatography–tandem mass spectrometry. J Chromatogr A. 1219, 93–103.Leão, P. N., Ramos, V., Vale, M., Machado, J. P. & Vasconcelos, V. M. (2012). Microbial community changes elicited by exposure to cyanobacterial allelochemicals. Microb. Ecol. 63, 85–95.Leão, P. N., Engene, N., Antunes, A., Gerwick, W. & Vasconcelos, V. (2012). The chemical ecology of cyanobacteria. Nat. Prod. Rep. 29, 372 - 391.Lewis, W. M. (2002). Causes for the high frequency of nitrogen limitation in tropical lakes. Verhandlungen der Internationalen Vereinigung der Limnologie, 28, 210–213.Lopes, V. R., Ramos, V., Martins, A., Sousa, M., Welker, M., Antunes, A. & Vasconcelos, V. (2012). Phylogenetic, chemical and morphological diversity of cianobacteria from Portuguese temperate estuaries. Mar. Environ. Res. 73, 7–16.Lund JW., Kipling C., & Le Creen ED. (1958). The inverted microscope method of estimating algal number and the statistical basis of estimations by counting. Hydrobiologia, 11, 143-170.Mahmood, N.A. & Carmichael, W.W. (1986b) Paralytic shellfish poisons produced by the freshwater cyanobacterium Aphanizomenon flos-aquae nh-5. Toxicon, 24(2), 175- 186.McGregor, A. & Ramussen, J. P. (2007). FEMS Microbiological Ecology, 6, 23.Meichtry De Zaburlín, N., Garrido, G.G., Peso, J.G. & Llano, V.M. (2013). Programa calidad de agua del Embalse Yacyretá. Informe anual de evaluación 2012–2013. Convenio Entidad Binacional Yacyretá – Facultad de Ciencias Exactas, Químicas y Naturales. Posadas: Universidad Nacional de Misiones.Mendoza, A. (2018). Transferencia horizontal de genes como el origen de la biosíntesis de saxitoxina en Gymnodinium catenatum (Dinophyceae). Tesis Doctorado en Ciencias Marinas. Instituto Politécnico Nacional. Centro Interdisciplinario de Ciencias Marinas. La Paz. 121 p.Merel, S., Villarín, M. C., Chung, K., & Snyder, S. (2013). Spatial and thematic distribution of research on cyanotoxins. Toxicon, 76, 118–131. https://doi.org/10.1016/j.toxicon.2013.09.008Merel, S., Walker, D., Chicana, R., Snyder, S., Baurès, E., & Thomas, O. (2013). State of knowledge and concerns on cyanobacterial blooms and cyanotoxins. Environment International. https://doi.org/10.1016/j.envint.2013.06.013Metcalf, J., Hyenstrand, P., Beattie, K. & Codd, G. (2000. Effects of physicochemical variables and cyanobacterial extracts on the immune assay of microcystin-LR by two ELISA kits. Journal of Applied Microbiology 89: 532-538.Mikalsen, B., Boison, G., Skulberg, O. M., Fastner, J., et al. 2003. Natural variation in the microcystin synthetase operon mcyABC and impact on microcystin production in microcystis strains. J. Bacteriol. 185, 2774–2785.Miles, C.O., Sandvik, M., Nonga, H.E., Rundberget, T., Wilkins, A.L., Rise, F. & Ballot, A. (2012). Thiol derivatization for LC–MS identification of microcystins in complex matrices. Environmental Science & Technology. 46, 8937–8944.Mirkin, B. G., Fenner, T. I., Galperin, M. Y., & Koonin, E. V. (2003). Algorithms for computing parsimonious evolutionary scenarios for genome evolution, the last universal common ancestor and dominance of horizontal gene transfer in the evolution of prokaryotes. BMC Evolutionary Biology. 3(2). doi: 10.1186/1471-2148-3-2Misson, B., & Latour, D. (2013). Vertical Heterogeneity of Genotypic Structure and Toxic Potential within Populations of the Harmful Cyanobacterium Microcystis aeruginosa. Advances in Microbiology, 3(October), 27–37.Moffitt, M., Blackburn, S. & Neilan, B. (2001). rRNA sequences reflect the ecophysiology and define the toxic cyanobacteria of the genus Nodularia. International Journal of Systematic and Evolutionary Microbiology. 51, 505-512.Moollan, R., Rae, B. & Verbeek, A. (1996). Some comments on the determination of microcystin toxins in waters by high-performance liquid chromatography. Analyst 121: 233– 238.Moore, L., Post, A., Rocap, G. & Chisholm, S. (2002). Utilization of different nitrogen sources by the marine cyanobacteria Prochlorococcus and Synechococcus. Limnology and Oceanography 47: 989-996.Morais, J., Martins, A., Vale, M., & Vasconcelos, V. (2014). Assessment of cyanobacterial toxinogenic genotypes and estimation of toxin content in urban lakes. Fresenius Environmental Bulletin, 23(8), 1867–1873.Moreira, C., Ramos, V., Azevedo, J., & Vasconcelos V. (2014). Methods to detect cyanobacteria and their toxins in the environment. Appl Microbiol Biotechnol, 98, 8073 – 8082.Mur, L. R., Skulberg M. O., Utkilen, H. (1999). Cyanobacteria in the environment. In: Chorus I, Bartram J, editors. Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. London, UK: E & FN Spon. p. 15–40.Muyzer, G., De Waal, E. C. & Uitterlinden, A. G. (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59, 695–700.Neilan, B. A., Jacobs, D. & Del Dot, T. (1997). RNA sequences and evolutionary relationships among toxic and non-toxic cianobacteria of the genus microcystis. Int. J. Syst. Bacteriol. 47, 693–697.Nicholson, BC., Shaw, GR., Morrall, J., Senogles, PJ., Woods TA, Papageorgiou, J., Kapralos, C., Wickramasinghe, W., Davis, B. C., Eaglesham, G. K., & Moore M. R. (2003). Chlorination for degrading saxitoxins (paralytic shellfish poisons) in water. Environ Technol, 24, 1341-1348.Nimptsch, J., Woelfl, S., Osorio, S., Valenzuela, J., Moreira, C., Ramos, V., Castelo-Branco, R., Nuno, P. & Vasconcelos, V. (2015). First record of toxins associated with cyanobacterial blooms in oligotrophic North Patagonian lakes of Chile—a genomic approach. International Review of Hydrobiology. 100, 1-12.Nübel, U., Garcia-Pichel, F., Muyzer, G. (1997). PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl. Environ. Microbiol. 63, 3327–3332.Oberholster, P. J., Botha A. -M. & Cloete, T. E. (2006). Toxic cyanobacterial blooms in a shallow, artificially mixed urban lake in Colorado, USA. Lakes & Reservoirs: Research and Management. 11, 111- 123.Oliva, M. G., & Garduño G. (2017). Cyanoprokaryotes Cyanobacteria, Cyanoprokaryota. Tlalnepantla, Edo. de Mexico: Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, 246 pp.O’Neil, J. M., Davis, T. W., Burford, M. A., & Gobler, C. J. (2012). The rise of harmful cyanobacteria blooms: The potential roles of eutrophication and climate change. Harmful Algae, 14, 313–334. https://doi.org/10.1016/j.hal.2011.10.027Orr R. J. S., A. Stüken, S. A. Murray & K. S. Jakobsen. (2013). Evolution and distribution of saxitoxin biosynthesis in dinoflagellates. Marine Drugs. 11, 2814-2828.O’Sullivan, PE. & Reynolds, CS. (2004). The Lakes Handbook. Oxford: Blackwell Science Ltd. vol. 1, Limnology and limnetic ecology. 699 p.Ouahid, Y. (2005). Identification of potentially toxic environmental Microcystis by individual and multiple PCR amplification of specific microcystin synthetase gene regions. Environ. Toxic. Water. 20, 235–242.Palacio, H. M., Palacio, J. A., Echenique, R. O., Sant'Anna, C. L. & Ramírez J. J. (2015a). Dolichospermum lemmermannii (Cyanobacteria): a temperate species in a neotropical, eutrophic reservoir. Bol. Soc. Argent. Bot. 50(3), 309-321.Palacio, H. M., Ramírez J. J., Echenique, R. O., Palacio, J. A. & Sant'Anna, C. L. (2015b). Floristic composition of cyanobacteria in a neotropical, eutrophic reservoir. Brazilian Journal of Botany, 38(4), 865–876.Paerl, H. W., Huisman, J. (2008). Climate: Blooms like it hot. Science, 4, 57–58.Paerl, H. W. & Paul, V. J. (2012). Climate change: links to global expansion of harmful cyanobacteria. Water Res. 46, 1349–1363.Partensky F, Blanchot J, Lantoine F, Neveux J & Marie D. (1996). Vertical structure of picophytoplankton at different trophic sites of the tropical northeastern Atlantic Ocean. Deep-Sea Research 43: 1191–1213.Pearson, L. A. & Neilan, B. A. (2008). The molecular genetics of cyanobacterial toxicity as a basis for monitoring water quality and public health risk. Current Opinion in Biotechnology,19, 281-288.Pereira, P., Onodera, H., Andrinolo, D., Franca S., Araújo, F., Lagos, N. & Y. Oshima, Y. (2000). Paralytic shellfish poisoning toxins in the freshwater cyanobacterium Aphanizomenon flos-aquae, isolated from Montargil reservoir, Portugal. Toxicon, 38, 1689-1702.Pérez, J. (2003). Caracterización de las secuencias ribosomales 16s (ADNr) de cianobacterias asociadas a eventos de toxicidad. Tesis de grado para obtener el grado de Maestro en ciencias. Centro de investigaciones biológicas del Noreste, S. C.Pettersson, L. H., & Pozdnyakov, D. (2013). Monitoring of Harmful Algal Blooms. New York, EU: Springer-Verlag Berlin Heidelberg.Pettersson, L. H., & Pozdnyakov, D. (2013). Monitoring of Harmful Algal Blooms. Norfolk, UK: Springer-Verlag Berlin Heidelberg.Peterson S. A., Miller W. E., Greene J. C. & Callahan C. A. (1985) Use of bioassays to determine potential toxicity effects of environmental pollutants. In: Perspectives on Nonpoint Source Pollution. Environmental Protection Agency, EPA 440/5-85-001, pp. 38–45, Washington DC, USA.Pinheiro, C., Azevedo, J., Campos, A., Loureiro, S., & Vasconcelos, V. (2013). Absence of negative allelopathic effects of cylindrospermopsin and microcystin-LR on selected marine and freshwater phytoplankton species. Hydrobiologia, 705(1), 27–42. https://doi.org/10.1007/s10750-012-1372-xPontificia Universidad Javeriana. (2015). Seguimiento limnológico de las fuentes de agua captadas para el suministro realizado por el acueducto de Bogotá. Séptimo Informe, embalses San Rafael, Chisacá y Regadera y fuentes superficiales. Dirección de ingeniería especializada aguas y saneamiento básico. Empresa de acueducto y alcantarillado de Bogotá (EAAB).Prasanna, R., Sood, A., Jaiswal, P., Nayak, S., Gupta, V., Chaudhary, V., Natarajan, C. (2010). Rediscovering cyanobacteria as valuable sources of bioactive compounds (Review). Applied Biochemistry and Microbiology, 46(2), 119–134. https://doi.org/10.1134/S0003683810020018.Puglisi, M., Sneed, J., Sharp, K., Ritson, R & Paul, V. (2014). Marine chemical ecology in benthic environments. Natural Product Reports. 31:1510–1553.Rantala, A., Känä, S., Wang, H., Rouhiainen, L., Wahlsten, M., Rizzi, E., Berg, K., Gugger, M. & Sivonen, K. (2011). Anatoxin-a Synthetase Gene Cluster of the Cyanobacterium Anabaena sp. Strain 37 and Molecular Methods to Detect Potential Producers. Applied and Environmental Microbiology. Vol. 77: (20), 7271 – 7278.Rajaniemi, P., Hrouzek, P., Kaštovská, K., Willame, R., Rantala, A., Hoffmann, L., Komárek, J. & Sivonen, K. (2005). Phylogenetic and morphological evaluation of the genera Anabaena, Aphanizomenon, Trichormus and Nostoc (Nostocales, Cyanobacteria). International Journal of Systematic and Evolutionary Microbiology. 55, 11-26.Rantala-Ylinen, A., Känä, S., Wang, H., Rouhiainen, L., et al., 2011. Anatoxin-a synthetase gene cluster of the cyanobacterium Anabaena sp. strain 37 and molecular methods to detect potential producers. Appl. Environ. Microbiol. 77, 7271–7278.Redfield, A. C. (1958). The biological control of chemical factors in the environment. American Scientist, 46, 205–222.Reichwaldt, ES. & Ghadouani, A. (2012). Effects of rainfall patterns on toxic cyanobacterial blooms in a changing climate: between simplistic scenarios and complex dynamics. Water Res, 46, 1372–1393.Rippka, R., Deruelles, J., Waterbury, B., Herdman, M. & Stanier, R. Y. (1979). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111, 1–61.Rippka, R. (1988). Isolation and purification of cyanobacteria. 3–27. L. Packer and A. N. Glazer (ed.) Methods in enzymology. 167. Academic Press, Inc. New York.Reynolds, C.S. (1997). Vegetation processes in the pelagic: a model for ecosystem theory. Ecology Institute. Oldendorf/Luhe, 371 pp.Reynolds, C.S. (2006). The Ecology of phytoplankton. Cambridge University, Cambridge.Roldan, G. & Ramírez, J. J. (2008). Fundamentos de limnología neotropical. -2.ª edición-. Medellín: Editorial Universidad de Antioquia.Rosales, N., Guevara, M., Lodeiros, C. & Morales, E. (2008). Crecimiento y producción de metabolitos de la cianobacteria marina Synechococcus sp. (Chroococcales) en función de la irradiancia. Revista de Biología Tropical. 56 (2), 421- 429.Rueter, J. G., McCarthy, J. J., Carpenter, E. J. (1979). The toxic effect of copper on Oscillatoria (Trichodesmium) thiebautii. Limnol. Oceanogr. 24, 558–562.Saker, M. L., Jungblut, A. D., Neilan, B. A., Rawn, D. F. K., & Vasconcelos, V. M. (2005). Detection of microcystin synthetase genes in health food supplements containing the freshwater cyanobacterium Aphanizomenon flos-aquae. Toxicon, 46(5), 555–562. https://doi.org/10.1016/j.toxicon.2005.06.021Salas, H. J. & Martino, P. (2001). Metodologías simplificadas para la evaluación de eutroficación en lagos cálidos tropicales. OMS-Cepis.Savela, H., Spoof, L., Perälä, N., Preede, M., Lamminmäki, U., Nybom, S., Häggqvist, K., Meriluoto, J., Vehniäinen, M. (2015). Detection of cyanobacterial sxt genes and paralytic shellfish toxins in freshwater lakes and brackish waters on Åland Islands, Finland. Harmful Algae. 46, 1-10.Savela, H., Spoof, L., Höysniemi, N., Vehniäinen, M., Mankiewicz-Boczek, J., Jurczak, T., Kokociński, M. & Meriluoto, J. (2017). First report of cyanobacterial paralytic shellfish toxin biosynthesis genes and paralytic shellfish toxin production in Polish freshwater lakes. Advances in Oceanography and Limnology. 8(1), 61-70.Scanlan, J. (2003). Physiological diversity and niche adaptations in marine Synechococcus Advances in Microbial Physiology 47: 1-64.Shapiro, J. (1990). Current beliefs regarding dominance by blue-greens: The case for the importance of CO2 and pH. Verh. Intern. Verein. Limnol. 24:38-54.Schembri, M. A., Neilan, B. A. & Saint, C. P. (2001). Identification of genes implicated in toxin productioninthe cyanobacterium Cylindrospermopsis raciborskii. Environ. Toxicol. 16, 413–421.Seifert, M., McGregor, G., Eaglesham, G., Wickramasinghe, W. & Shaw, G. First evidence for the production of cylindrospermopsin and deoxy cylindrospermopsin by the freshwater benthic cyanobacterium, Lyngbya wollei (Farlow ex Gomont) Speziale and Dyck. Harmful Algae. 6, 73–80.Seo, P. & Yokota, A. (2003). The phylogenetic relationships of cyanobacteria inferred from 16S rRNA, gyrB, rpoC1 and rpoD1 gene sequences. The Journal of general and applied microbiology. 49(3): 191-203.Shih, P., Wu, D., Latifi, A., Axen, S., Fewer, D., Talla, E., Calteau, A., Cai, F., Tandeau de Marsac, N. & Rippka. R. (2012). Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing. Proceedings of the National Academy of Sciences of the United States of America. 110:1053–1058.Smienk, F., Sevilla, E., Peleato, M., Razquin, P. & Mata, L. (2007). Validación de un kit para la detección de microcistinas en agua. Artículos Técnicos. 100 – 111Stewart, I., Carmichael, W. W., Sadler, R., McGregor, G. B., Reardon, K., Eaglesham, G. K., Shaw, G. R. (2009). Occupational and environmental hazard assessments for the isolation, purification and toxicity testing of cyanobacterial toxins. Environmental Health, 8(1), 52. https://doi.org/10.1186/1476-069X-8-52Sukenik, A., Rosin, C., Porat, R., Teltsch, B., Banker, R., & Carmeli, S. (1998). Toxins from cyanobacteria and their potential impact on water quality of lake kinneret, Israel. Israel Journal of Plant Sciences, 46(2), 109–115. https://doi.org/10.1080/07929978.1998.10676717Tell, G. (1985). Catálogo de las algas de agua dulce de la República Argentina. Biblioteca Ficológica. 70 [i-vi], 1-283.Thajuddin, N. & Subramanian, G. (2005). Cyanobacterial biodiversity and potential applications in biotechnology. Current Science. 89: 50-57.Tidgewell, K., Engene, N., Byrum, T., Media, J., Doi, T., Valeriote, F. & Gerwick, W. (2010). Evolved diversification of a modular natural product pathway: apratoxins F and G, two cytotoxic cyclic depsipeptides from a Palmyra collection of Lyngbya bouillonii. Chembiochem 11:1458 –1466.Ting, C., Rocap, G., King, J. & Chisholm, S. (2002). Cyanobacterial photosynthesis in the oceans: the origins and significance of divergent light-harvesting strategies. Trends in Microbiology 10: 134-142.Torres Quintero, E., & Velásquez, M. C. (2009). Diagnóstico ambiental de las cuencas hidrográficas de embalses en Colombia, análisis hidrológico para el embalse de La Regadera. Avances, Investigación En Ingeniería, (10), 65–78. Retrieved from http://www.unilibre.edu.co/revistaavances/avances_10/r10_art10.pdfTundisi, J. G. (1990). Perspectives for ecological modeling of tropical and subtropical reservoirs in Soth America. Ecol. Modell, 52:7-20.Tundisi J. G. (1999). Reservatórios como sistemas complexos: Teoria, aplicações e perspectivas para usos múltiplos. In: Ecologia de Reservatórios (ed. R. Henry) pp. 19–38. FUNDIBIO FAPESP, Botucatu, SP, Brazil.Vaara, T., Vaara, M., & Niemela, S. (1979). Two improved methods for obtaining axenic cultures of cyanobacteria. Applied and Environmental Microbiology, 38(5), 1011–1014.Valencia H. 2004. Manual de prácticas de microbiología básica. Universidad Nacional de Colombia. Facultad de Ciencias. Departamento de Biología, Bogotá, Colombia.Van Apeldoorn, ME., van Egmond, HP., Speijers, GJA, & Bakker, GJI. (2007). Toxins of cyanobacteria. Mol Nutr Food Res, 51, 7–60.Vasconcelos, V. (1999). Cyanobacterial toxins in Portugal: effects on aquatic animals and risk for human health. Braz J Med Biol Res, 32(3), 249-254.Vasconcelos, V. (2006). Eutrophicatton, toxic cyanobacteria and cyanotoxins: When ecosystems cry for help. Limnetica, 25(1–2), 425–432.Vasconcelos, V. M., Sivonen, K., Evans, W. R., Carmichael, W. W., & Namikoshi, M. (1996). Hepatotoxic microcystin diversity in cyanobacterial blooms collected in Portuguese freshwaters. Water Research, 30(10), 2377–2384. https://doi.org/10.1016/0043-1354(96)00152-2Vasconcelos, V., Morais, J., & Vale, M. (2011). Microcystins and cyanobacteria trends in a 14 year monitoring of a temperate eutrophic reservoir (Aguieira, Portugal). Journal of Environmental Monitoring : JEM, 13(3), 668–672. https://doi.org/10.1039/c0em00671hVillabona-González, S.L., Buitrago-Amariles, R.F., Ramírez-Restrepo, J.J. & Palacio-Baena, J.A. (2014). Biomasa de rotíferos de dos embalses con diferentes estados tróficos (Antioquia, Colombia) y su relación con algunas variables limnológicas. Actualidades Biológicas, 36(101), 149-162.Ward, C. Beattie, K. Lee, E. & Codd, G. (1997). Colorimetric protein phosphatase inhibition assay of laboratory strains and natural blooms of cyanobacteria: comparisons with high-performance liquid chromatographic analysis for microcystins. FEMS Microbiology Letters 153:465-73.Waterbury, J. B. (2006). The Cyanobacteria—Isolation, Purification and Identification.Chapter 2.1. Prokaryotes. 4, 1053–1073. Prokaryotes (2006) 4:1053–1073Watanabe, M. F., & Oishi S. (1980). Toxicities of Microcystis aeruginosa Collected from Some Lakes, Reservoirs, Ponds and Moat in tokyo and adjacent regions. Japanese Journal of limnology (rikusuigaku zasshi), 41(1), 5-9.Werner, V.R. (2010). Cyanophyceae. In: Catálogo de plantas e fungos do Brasil. Vol. 1. (Forzza, R.C. Eds), pp. 356-366. Rio de Janeiro: Andrea Jakobsson Estúdio; Instituto de Pesquisas Jardim Botânico do Rio de Janeiro.Wetzel, R. G. (1983) Limnology. 2nd Edition, Saunders College Publishing, Philadelphia, USA. 858 p.Wetzel, R. G. (2001). Limnology. Lake and River Ecosystems. Third Edition. Academic Press, USA. 1006 p.Whitton, B. & Potts, M. (2000). The Ecology of cyanobacteria. Kluwer Academic, Dordrecht, Paises Bajos. 1-19.World Health Organization. (1999). Toxic Cyanobacteria in Water: A guide to their public health consequences, monitoring and management. Retrieved March. https://doi.org/10.1046/j.1365-2427.2003.01107.xYilmaz, M., Foss, A. J., Selwood, A. I., Özen, M. & Boundy, M. (2018). Paralytic shellfish toxin producing Aphanizomenon gracile strains isolated from Lake Iznik, Turkey. Toxicon. 148, 132 - 142.Žegura, B., Straser, A., & Filipič, M. (2012). Erratum to: Genotoxicity and potential carcinogenicity of cyanobacterial toxins-A review [Mutat Res 727 (2011) 16-41]. Mutation Research - Reviews in Mutation Research, 750(1), 83. https://doi.org/10.1016/j.mrrev.2011.10.001Zhang, Q. ‐X, Yu, M. ‐J, Li, S. ‐H, & Carmichael, W. W. (1991). Cyclic peptide hepatotoxins from freshwater cyanobacterial (blue‐green algae) waterblooms collected in Central China. Environmental Toxicology and Chemistry, 10(3), 313–321. https://doi.org/10.1002/etc.5620100303Zhang Y., S. F. Zhang, L. Lin & D. Z. Wang. (2014). Comparative transcriptome analysis of a toxin-producing dinoflagellate Alexandrium catenella and its non-toxic mutant. Mar. Drugs. 12, 5698-5718.Zhen, Z., Liu, J., Rensing, C., Yan, C. & Zhang, Y. (2017). Effects of two different high-fidelity DNA polymerases on genetic analysis of the cyanobacterial community structure in a subtropical deep freshwater reservoir. Archives of Microbiology.199(1): 125-134.Zurawell, R. W., Chen, H., Burke, J. M., & Prepas, E. E. (2005). Hepatotoxic cyanobacteria: A review of the biological importance of microcystins in freshwater environments. Journal of Toxicology and Environmental Health - Part B: Critical Reviews, 8(1), 1–37. https://doi.org/10.1080/10937400590889412LICENSElicense.txtlicense.txttext/plain; charset=utf-83895https://repositorio.unal.edu.co/bitstream/unal/77965/2/license.txte2f63a891b6ceb28c3078128251851bfMD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.unal.edu.co/bitstream/unal/77965/3/license_rdf42fd4ad1e89814f5e4a476b409eb708cMD53ORIGINAL80723576.2019..pdf80723576.2019..pdfapplication/pdf4299144https://repositorio.unal.edu.co/bitstream/unal/77965/1/80723576.2019..pdfb740c870d7c79e0bcb8c3b91a9374ebdMD51THUMBNAIL80723576.2019..pdf.jpg80723576.2019..pdf.jpgGenerated Thumbnailimage/jpeg5635https://repositorio.unal.edu.co/bitstream/unal/77965/4/80723576.2019..pdf.jpg8614287d1909a81b3c51526c6fd4e65cMD54unal/77965oai:repositorio.unal.edu.co:unal/779652023-07-19 23:04:04.738Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCg== |