ATPasas tipo P de Mycobacterium tuberculosis como dianas para el diseño racional de compuestos antituberculosos

Tuberculosis (TB) is an infectious disease caused by the acid-fast bacillus Mycobacterium tuberculosis (Mtb), which is one of the most important public health problems worldwide. Furthermore, the emergence of resistant Mtb strains to current anti-TB drugs has increased the search for alternative the...

Full description

Autores:
Santos Ruiz, Paola Andrea
Tipo de recurso:
Work document
Fecha de publicación:
2020
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/77933
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/77933
Palabra clave:
572 - Bioquímica
614 - Medicina Forense; incidencia de lesiones, heridas, enfermedades; medicina preventiva pública
P-type ATPases
tuberculosis
antituberculous compounds
cyclopiazonic acid
molecular docking
ATPasas tipo P
tuberculosis
compuestos antituberculosos
ácido ciclopiazónico
acoplamiento molecular
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_67088fe5e8672d7760c674386a73e0b0
oai_identifier_str oai:repositorio.unal.edu.co:unal/77933
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv ATPasas tipo P de Mycobacterium tuberculosis como dianas para el diseño racional de compuestos antituberculosos
title ATPasas tipo P de Mycobacterium tuberculosis como dianas para el diseño racional de compuestos antituberculosos
spellingShingle ATPasas tipo P de Mycobacterium tuberculosis como dianas para el diseño racional de compuestos antituberculosos
572 - Bioquímica
614 - Medicina Forense; incidencia de lesiones, heridas, enfermedades; medicina preventiva pública
P-type ATPases
tuberculosis
antituberculous compounds
cyclopiazonic acid
molecular docking
ATPasas tipo P
tuberculosis
compuestos antituberculosos
ácido ciclopiazónico
acoplamiento molecular
title_short ATPasas tipo P de Mycobacterium tuberculosis como dianas para el diseño racional de compuestos antituberculosos
title_full ATPasas tipo P de Mycobacterium tuberculosis como dianas para el diseño racional de compuestos antituberculosos
title_fullStr ATPasas tipo P de Mycobacterium tuberculosis como dianas para el diseño racional de compuestos antituberculosos
title_full_unstemmed ATPasas tipo P de Mycobacterium tuberculosis como dianas para el diseño racional de compuestos antituberculosos
title_sort ATPasas tipo P de Mycobacterium tuberculosis como dianas para el diseño racional de compuestos antituberculosos
dc.creator.fl_str_mv Santos Ruiz, Paola Andrea
dc.contributor.advisor.spa.fl_str_mv Soto Ospina, Carlos Yesid
López Vallejo, Fabián Harvey
dc.contributor.author.spa.fl_str_mv Santos Ruiz, Paola Andrea
dc.contributor.researchgroup.spa.fl_str_mv Bioquímica y Biología Molecular de las Micobacterias
dc.subject.ddc.spa.fl_str_mv 572 - Bioquímica
614 - Medicina Forense; incidencia de lesiones, heridas, enfermedades; medicina preventiva pública
topic 572 - Bioquímica
614 - Medicina Forense; incidencia de lesiones, heridas, enfermedades; medicina preventiva pública
P-type ATPases
tuberculosis
antituberculous compounds
cyclopiazonic acid
molecular docking
ATPasas tipo P
tuberculosis
compuestos antituberculosos
ácido ciclopiazónico
acoplamiento molecular
dc.subject.proposal.eng.fl_str_mv P-type ATPases
tuberculosis
antituberculous compounds
cyclopiazonic acid
molecular docking
dc.subject.proposal.spa.fl_str_mv ATPasas tipo P
tuberculosis
compuestos antituberculosos
ácido ciclopiazónico
acoplamiento molecular
description Tuberculosis (TB) is an infectious disease caused by the acid-fast bacillus Mycobacterium tuberculosis (Mtb), which is one of the most important public health problems worldwide. Furthermore, the emergence of resistant Mtb strains to current anti-TB drugs has increased the search for alternative therapeutic targets and methods for the rational design of new effective drugs. In this sense, membrane proteins have been considered interesting targets due to their biological implication and for being highly accessible to active compounds. Particularly, P-type ATPases membrane transporters are interesting targets due to their implication in ionic homeostasis and mycobacterial viability. This work was oriented to CtpF, a calcium P-type ATPase, related to a broad number of biological conditions associated to processes of infection such as oxidative stress, adaptation of tubercle bacilli to anaerobic conditions, hypoxia and latency. Due to that, the main objective of this doctoral Thesis was to determine, through in silico and in vitro analysis, the potential of P-type ATPases of Mtb, especially the calcium transporter CtpF, as a target for the rational design of anti-TB compounds. Initially, a 3D homology model of CtpF was generated, which was employed for identified key pharmacophoric features of the CtpF-cyclopiazonic acid (CPA) complex, a well-known inhibitor of the sarco-endoplasmic reticulum Ca2+-ATPase (SERCA1a), from which its 3D structure is known experimentally and was used as a template in the construction of the model. By using a repertoire of experimental techniques, it was evaluated and found that CPA causes inhibition of the Ca2+-ATPase activity of CtpF, as well as mycobactericidal activity. The analysis of the transcriptional response of P2 ATPases to treatment with CPA showed a specific response of ctpF in comparison with other P-type ATPases. These initial results provide evidence that CtpF is a molecular target for the design of compounds with anti-TB potential. Thereupon, with the CtpF-CPA pharmacophoric features, a pharmacophore-based virtual screening was performed using the ZINC database in order to select candidate molecules to inhibitors of CtpF. Molecular docking-based virtual screening and binding free energy calculations (MM-GBSA) of selected candidates allowed identifying six compounds with the best relative binding energies to be evaluated in vitro. The compounds selected displayed in vitro antimycobacterial activity, showing a minimum inhibitory concentrations (MIC) ranging from 50 -100 μg/mL, and growth inhibitions of 29.5 - 64.0 % on Mtb. Likewise, they causes inhibition of Ca2+-ATPase activity in Mtb membrane vesicles (IC50) ranging from 4.1 - 35.8 μM. Finally, the activity of the compounds with the best biological activity was evaluated in a macrophage infection model, as an approach to evaluate the effect of compounds once the infection has occurred. The compound ZINC63908257 was the best candidate by displaying a MIC of 50 μg/mL, a Ca2+ P-type ATPase inhibition with IC50 = 4.4 μM and 81 % decrease in Mtb replication within macrophage. This compound showed cytotoxic activity of 12.9 % in MH-S cells and hemolysis of 2 % of human erythrocytes, thus, this compound shows a good pharmacokinetic profile (drug-like). Overall, the results presented here shows the importance of the P-type ATPases of Mtb for the mycobacteria survival during infection, and identify the CtpF as a key molecular target for the design of new antituberculous compounds.
publishDate 2020
dc.date.accessioned.spa.fl_str_mv 2020-08-05T09:35:00Z
dc.date.available.spa.fl_str_mv 2020-08-05T09:35:00Z
dc.date.issued.spa.fl_str_mv 2020-02-14
dc.type.spa.fl_str_mv Documento de trabajo
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/workingPaper
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_8042
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/WP
format http://purl.org/coar/resource_type/c_8042
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv ATPasas tipo P de Mycobacterium tuberculosis como dianas para el diseño racional de compuestos antituberculosos
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/77933
identifier_str_mv ATPasas tipo P de Mycobacterium tuberculosis como dianas para el diseño racional de compuestos antituberculosos
url https://repositorio.unal.edu.co/handle/unal/77933
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Achard, M.E.S., Stafford, S.L., Bokil, N.J., Chartres, J., Bernhardt, P. V., Schembri, M.A., Sweet, M.J., Mcewan, A.G., 2012. Copper redistribution in murine macrophages in response to Salmonella infection. Biochem. J. 444, 51–57. https://doi.org/10.1042/BJ20112180
Aguilar-Ayala, D.A., Cnockaert, M., Vandamme, P., Palomino, J.C., Martin, A., Gonzalez-Y-Merchand, J., 2018. Antimicrobial activity against Mycobacterium tuberculosis under in vitro lipid-rich dormancy conditions. J. Med. Microbiol. 67, 282–285. https://doi.org/10.1099/jmm.0.000681
Ahmad, S., 2011. Pathogenesis, immunology, and diagnosis of latent Mycobacterium tuberculosis infection. Clin. Dev. Immunol. 2011, 814943. https://doi.org/10.1155/2011/814943
Almerico, A.M., Tutone, M., Lauria, A., 2012. Receptor-guided 3D-QSAR approach for the discovery of c-kit tyrosine kinase inhibitors. J. Mol. Model. https://doi.org/10.1007/s00894-011-1304-0
Andersen, P., Doherty, T.M., 2005. The success and failure of BCG - implications for a novel tuberculosis vaccine. Nat. Rev. Microbiol. 3, 656–662. https://doi.org/10.1038/nrmicro1211
Andries, K., Verhasselt, P., Guillemont, J., Göhlmann, H.W.H., Neefs, J.-M., Winkler, H., Van Gestel, J., Timmerman, P., Zhu, M., Lee, E., Williams, P., de Chaffoy, D., Huitric, E., Hoffner, S., Cambau, E., Truffot-Pernot, C., Lounis, N., Jarlier, V., 2005. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis., Science (New York, N.Y.). https://doi.org/10.1126/science.1106753
Aparna, V., Dineshkumar, K., Mohanalakshmi, N., Velmurugan, D., Hopper, W., 2014. Identification of natural compound inhibitors for multidrug efflux pumps of Escherichia coli and Pseudomonas aeruginosa using in silico high-throughput virtual screening and in vitro validation. PLoS One 9. https://doi.org/10.1371/journal.pone.0101840
Axelsen, K.B., Palmgren, M.G., 1998. Evolution of substrate specificities in the P-type ATPase superfamily. J. Mol. Evol. 46, 84–101. https://doi.org/10.1007/PL00006286
Ayala-Torres, C., Novoa-Aponte, L., Soto, C.Y., 2015. Pma1 is an alkali/alkaline earth metal cation ATPase that preferentially transports Na+ and K+ across the Mycobacterium smegmatis plasma membrane. Microbiol. Res. 176, 1–6. https://doi.org/10.1016/j.micres.2015.04.004
Basu, J., Chattopadhyay, R., Kundu, M., Chakrabarti, P., 1992. Purification and partial characterization of a penicillin-binding protein from Mycobacterium smegmatis. J. Bacteriol. 174, 4829–4832. https://doi.org/10.1128/jb.174.14.4829-4832.1992
Beresford, N.J., Mulhearn, D., Szczepankiewicz, B., Liu, G., Johnson, M.E., Fordham-Skelton, A., Abad-Zapatero, C., Cavet, J.S., Tabernero, L., 2009. Inhibition of MptpB phosphatase from Mycobacterium tuberculosis impairs mycobacterial survival in macrophages. J. Antimicrob. Chemother. 63, 928–936. https://doi.org/10.1093/jac/dkp031
Bers, D.M., Patton, C.W., Nuccitelli, R., 2010. A practical guide to the preparation of Ca2+buffers. Methods Cell Biol. 99, 1–26. https://doi.org/10.1016/B978-0-12-374841-6.00001-3
Betts, J.C., McLaren, A., Lennon, M.G., Kelly, F.M., Lukey, P.T., Blakemore, S.J., Duncan, K., 2003. Signature gene expression profiles discriminate between isoniazid-, thiolactomycin-, and triclosan-treated Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 47, 2903–2913. https://doi.org/10.1128/AAC.47.9.2903-2913.2003
Botella, H., Peyron, P., Levillain, F., Poincloux, R., Poquet, Y., Brandli, I., Wang, C., Tailleux, L., Tilleul, S., Charrire, G.M., Waddell, S.J., Foti, M., Lugo-Villarino, G., Gao, Q., Maridonneau-Parini, I., Butcher, P.D., Castagnoli, P.R., Gicquel, B., De Chastellier, C., Neyrolles, O., 2011. Mycobacterial P 1-Type ATPases mediate resistance to Zinc poisoning in human macrophages. Cell Host Microbe 10, 248–259. https://doi.org/10.1016/j.chom.2011.08.006
Caballero, J., Alzate-Morales, J.H., Vergara-Jaque, A., 2011. Investigation of the Differences in Activity between Hydroxycycloalkyl N1 Substituted Pyrazole Derivatives As Inhibitors of B-Raf Kinase by Using Docking, Molecular Dynamics, QM/MM, and Fragment-Based De Novo Design: Study of Binding Mode of Diastereomer . J. Chem. Inf. Model. 51, 2920–2931. https://doi.org/10.1021/ci200306w
Cambier, C.J., Falkow, S., Ramakrishnan, L., 2014. Host Evasion and Exploitation Schemes of Mycobacterium tuberculosis. Cell 159, 1497–1509. https://doi.org/Doi 10.1016/J.Cell.2014.11.024
Caminero, J.A., 2006. Treatment of multidrug-resistant tuberculosis: evidence and controversies. Int. J. Tuberc. Lung Dis. 10, 829–37.
e Knegt, G.J., Bruning, O., Ten Kate, M.T., De Jong, M., Van Belkum, A., Endtz, H.P., Breit, T.M., Bakker-Woudenberg, I.A.J.M., De Steenwinkel, J.E.M., 2013. Rifampicin-induced transcriptome response in rifampicin-resistant Mycobacterium tuberculosis. Tuberculosis 93, 96–101. https://doi.org/10.1016/j.tube.2012.10.013
Di Marino, D., D’Annessa, I., Coletta, A., Via, A., Tramontano, A., 2015. Characterization of the differences in the cyclopiazonic acid binding mode to mammalian and P. Falciparum Ca2+ pumps: A computational study. Proteins Struct. Funct. Bioinforma. 83, 564–574. https://doi.org/10.1002/prot.24734
Ekins, S., Freundlich, J.S., Hobrath, J. V., Lucile White, E., Reynolds, R.C., 2014. Combining computational methods for hit to lead optimization in mycobacterium tuberculosis drug discovery. Pharm. Res. 31, 414–435. https://doi.org/10.1007/s11095-013-1172-7
Espinoza-Moraga, M., Njuguna, N.M., Mugumbate, G., Caballero, J., Chibale, K., 2013. In silico comparison of antimycobacterial natural products with known antituberculosis drugs. J. Chem. Inf. Model. 53, 649–660. https://doi.org/10.1021/ci300467b
araco, M., Li, Y., Li, S., Spelt, C., Di Sansebastiano, G. Pietro, Reale, L., Ferranti, F., Verweij, W., Koes, R., Quattrocchio, F.M., 2017. A Tonoplast P3B-ATPase Mediates Fusion of Two Types of Vacuoles in Petal Cells. Cell Rep. 19, 2413–2422. https://doi.org/10.1016/j.celrep.2017.05.076
Ford, C.B., Shah, R.R., Maeda, M.K., Gagneux, S., Murray, M.B., Cohen, T., Johnston, J.C., Gardy, J., Lipsitch, M., Fortune, S.M., 2013. Mycobacterium tuberculosis mutation rate estimates from different lineages predict substantial differences in the emergence of drug-resistant tuberculosis. Nat. Genet. 45, 784–90. https://doi.org/10.1038/ng.2656
Galagan, J.E., Minch, K., Peterson, M., Lyubetskaya, A., Azizi, E., Sweet, L., Gomes, A., Rustad, T., Dolganov, G., Glotova, I., Abeel, T., Mahwinney, C., Kennedy, A.D., Allard, R., Brabant, W., Krueger, A., Jaini, S., Honda, B., Yu, W.H., Hickey, M.J., Zucker, J., Garay, C., Weiner, B., Sisk, P., Stolte, C., Winkler, J.K., Van De Peer, Y., Iazzetti, P., Camacho, D., Dreyfuss, J., Liu, Y., Dorhoi, A., Mollenkopf, H.J., Drogaris, P., Lamontagne, J., Zhou, Y., Piquenot, J., Park, S.T., Raman, S., Kaufmann, S.H.E., Mohney, R.P., Chelsky, D., Branch Moody, D., Sherman, D.R., Schoolnik, G.K., 2013. The Mycobacterium tuberculosis regulatory network and hypoxia. Nature 499, 178–183. https://doi.org/10.1038/nature12337
Gangopadhyay, A., Chakraborty, H.J., Datta, A., 2019. Employing virtual screening and molecular dynamics simulations for identifying hits against the active cholera toxin. Toxicon. https://doi.org/10.1016/j.toxicon.2019.09.005
Gordon, A.H., Hart, P.D., Young, M.R., 1980. Ammonia inhibits phagosome-lysosome fusion in macrophages. Nature 286, 79–80. https://doi.org/10.1038/286079a0
Hameed, H.M.A., Islam, M.M., Chhotaray, C., Wang, C., Liu, Y., Tan, Y., Li, X., Tan, S., Delorme, V., Yew, W.W., Liu, J., Zhang, T., 2018. Molecular targets related drug resistance mechanisms in MDR-, XDR-, and TDR-Mycobacterium tuberculosis strains. Front. Cell. Infect. Microbiol. 8. https://doi.org/10.3389/fcimb.2018.00114
Hofman, S., Segers, M.M., Ghimire, S., Bolhuis, M.S., Sturkenboom, M.G.G., Van Soolingen, D., Alffenaar, J.W.C., 2016. Emerging drugs and alternative possibilities in the treatment of tuberculosis. Expert Opin. Emerg. Drugs 21, 103–116. https://doi.org/10.1517/14728214.2016.1151000
Ishiyama, M., Tominaga, H., Shiga, M., SASAMOTO, K., OHKURA, Y., UENO, K., 1996. A combined assay of cell viability and in vitro cytotoxicity with a highly water-soluble tetrazolium salt, neutral red and crystal violet. Biol. Pharm. Bull. 19, 1518–1520. https://doi.org/10.1248/bpb.19.1518
Jaconi, M.E.E., Lew, D.P., Carpentier, J.L., Magnusson, K.E., Sjogren, M., Stendahl, O., 1990. Cytosolic free calcium elevation mediates the phagosome-lysosome fusion during phagocytosis in human neutrophils. J. Cell Biol. 110, 1555–1564. https://doi.org/10.1083/jcb.110.5.1555
Jensen, A.M., Sorensen, T.L., Olesen, C., Moller, J. V, Nissen, P., 2006. Modulatory and catalytic modes of ATP binding by the calcium pump. EMBO J. 25, 2305–2314. https://doi.org/7601135 [pii]\r10.1038/sj.emboj.7601135
Kandasamy, S., Hassan, S., Gopalaswamy, R., Narayanan, S., 2014. Homology modelling, docking, pharmacophore and site directed mutagenesis analysis to identify the critical amino acid residue of PknI from Mycobacterium tuberculosis. J. Mol. Graph. Model. 52, 11–19. https://doi.org/10.1016/j.jmgm.2014.05.011
Khalifa, R.A., Nasser, M.S., Gomaa, A.A., Osman, N.M., Salem, H.M., 2013. Resazurin Microtiter Assay Plate method for detection of susceptibility of multidrug resistant Mycobacterium tuberculosis to second-line anti-tuberculous drugs. Egypt. J. Chest Dis. Tuberc. 62, 241–247. https://doi.org/10.1016/j.ejcdt.2013.05.008
Laursen, M., Bublitz, M., Moncoq, K., Olesen, C., Møller, J.V., Young, H.S., Nissen, P., Morth, J.P., 2009. Cyclopiazonic acid is complexed to a divalent metal ion when bound to the sarcoplasmic reticulum Ca2+-ATPase. J. Biol. Chem. 284, 13513–13518. https://doi.org/10.1074/jbc.C900031200
León-Torres, A., Novoa-Aponte, L., Soto, C.-Y., 2015. CtpA, a putative Mycobacterium tuberculosis P-type ATPase, is stimulated by copper (I) in the mycobacterial plasma membrane. BioMetals 28, 713–724. https://doi.org/10.1007/s10534-015-9860-x
López, M., Quitian, L.V., Calderón, M.N., Soto, C.Y., 2018. The P-type ATPase CtpG preferentially transports Cd2+ across the Mycobacterium tuberculosis plasma membrane. Arch. Microbiol. 200, 483–492. https://doi.org/10.1007/s00203-017-1465-z
Malik, Z.A., Denning, G.M., Kusner, D.J., 2000. Inhibition of Ca2+ signaling by Mycobacterium tuberculosis is associated with reduced phagosome-lysosome fusion and increased survival within human macrophages. J. Exp. Med. 191, 287–302. https://doi.org/10.1084/jem.191.2.287
Maya-Hoyos, M., Rosales, C., Novoa-Aponte, L., Castillo, E., Soto, C.Y., 2019. The P-type ATPase CtpF is a plasma membrane transporter mediating calcium efflux in Mycobacterium tuberculosis cells. Heliyon 5, e02852. https://doi.org/10.1016/j.heliyon.2019.e02852
Naik, P.K., Srivastava, M., Bajaj, P., Jain, S., Dubey, A., Ranjan, P., Kumar, R., Singh, H., 2011. The binding modes and binding affinities of artemisinin derivatives with Plasmodium falciparum Ca2+-ATPase (PfATP6). J. Mol. Model. 17, 333–357. https://doi.org/10.1007/s00894-010-0726-4
Neyrolles, O., Wolschendorf, F., Mitra, A., Niederweis, M., 2015. Mycobacteria, metals, and the macrophage. Immunol. Rev. 264, 249–63. https://doi.org/10.1111/imr.12265
Novoa-Aponte, L., León-Torres, A., Patiño-Ruiz, M., Cuesta-Bernal, J., Salazar, L.-M., Landsman, D., Mariño-Ramírez, L., Soto, C.-Y., 2012. In silico identification and characterization of the ion transport specificity for P-type ATPases in the Mycobacterium tuberculosis complex. BMC Struct. Biol. 12, 25. https://doi.org/10.1186/1472-6807-12-25
Novoa-Aponte, L., Soto Ospina, C.Y., 2014. Mycobacterium tuberculosis P-type ATPases: Possible Targets for Drug or Vaccine Development. Biomed Res. Int. 2014, 296. https://doi.org/10.1155/2014/296986
O´Shea, R., Moser, H.E., 2008. Physicochemical properties of antibacterial compounds: Implications for drug discovery. J. Med. Chem. 51, 2871–2878. https://doi.org/10.1021/jm700967e
Ocampo, M., Aristizbal-Ramrez, D., Rodrguez, D.M., Muoz, M., Curtidor, H., Vanegas, M., Patarroyo, M.A., Patarroyo, M.E., 2012. The role of Mycobacterium tuberculosis Rv3166c protein-derived high-activity binding peptides in inhibiting invasion of human cell lines. Protein Eng. Des. Sel. 25, 235–242. https://doi.org/10.1093/protein/gzs011
Palmgren, M.G., Nissen, P., 2011. P-Type ATPases. Annu. Rev. Biophys. 40, 243–266. https://doi.org/10.1146/annurev.biophys.093008.131331
Palomino, J.-C., Martin, A., Camacho, M., Guerra, H., Swings, J., Portaels, F., 2002. Resazurin microtiter assay plate: simple and inexpensive method for detection of drug resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 46, 2720–2. https://doi.org/10.1128/AAC.46.8.2720
Pulido, P.A., Novoa-Aponte, L., Villamil, N., Soto, C.Y., 2014. The DosR Dormancy Regulator of Mycobacterium tuberculosis Stimulates the Na(+)/K (+) and Ca (2+) ATPase Activities in Plasma Membrane Vesicles of Mycobacteria. Curr. Microbiol. 69, 604–10. https://doi.org/10.1007/s00284-014-0632-6
Raimunda, D., Long, J.E., Sassetti, C.M., Argüello, J.M., 2012. Role in metal homeostasis of CtpD, a Co(2+) transporting P(1B4) -ATPase of Mycobacterium smegmatis. Mol. Microbiol. 1–11. https://doi.org/10.1111/j.1365-2958.2012.08082.x
Ramírez, D., Concha, G., Arévalo, B., Prent-Peñaloza, L., Zúñiga, L., Kiper, A.K., Rinné, S., Reyes-Parada, M., Decher, N., González, W., Caballero, J., 2019. Discovery of novel TASK-3 channel blockers using a Pharmacophore-Based Virtual Screening. Int. J. Mol. Sci. 20, 4014. https://doi.org/10.3390/ijms20164014
Santos, P., Gordillo, A., Osses, L., Salazar, L.M., Soto, C.Y., 2012. Effect of antimicrobial peptides on ATPase activity and proton pumping in plasma membrane vesicles obtained from mycobacteria. Peptides 36, 121–128. https://doi.org/10.1016/j.peptides.2012.04.018
Santos, P., López-Vallejo, F., Soto, C.Y., 2017. In silico approaches and chemical space of anti-P-type ATPase compounds for discovering new antituberculous drugs. Chem. Biol. Drug Des. https://doi.org/10.1111/cbdd.12950
Sharma, S., Meena, L.S., 2017. Potential of Ca2+ in Mycobacterium tuberculosis H 37 Rv Pathogenesis and Survival. Appl. Biochem. Biotechnol. 181, 762–771. https://doi.org/10.1007/s12010-016-2247-9
Soldati, T., Neyrolles, O., 2012. Mycobacteria and the Intraphagosomal Environment: Take It With a Pinch of Salt(s)! Traffic 13, 1042–1052. https://doi.org/10.1111/j.1600-0854.2012.01358.x
Takahashi, M., Kondou, Y., Toyoshima, C., 2007. Interdomain communication in calcium pump as revealed in the crystal structures with transmembrane inhibitors. Proc. Natl. Acad. Sci. 104, 5800–5805. https://doi.org/10.1073/pnas.0700979104
Toro, J.C., Hoffner, S., Linde, C., Andersson, M., Andersson, J., Grundström, S., 2006. Enhanced susceptibility of multidrug resistant strains of Mycobacterium tuberculosis to granulysin peptides correlates with a reduced fitness phenotype. Microbes Infect. 8, 1985–93. https://doi.org/10.1016/j.micinf.2006.02.030
Trauner, A., Borrell, S., Reither, K., Gagneux, S., 2014. Evolution of drug resistance in tuberculosis: Recent progress and implications for diagnosis and therapy. Drugs 74, 1063–1072. https://doi.org/10.1007/s40265-014-0248-y
Vasava, M.S., Bhoi, M.N., Rathwa, S.K., Borad, M.A., Nair, S.G., Patel, H.D., 2017. Drug development against tuberculosis: Past, present and future. Indian J. Tuberc. 64, 252–275. https://doi.org/10.1016/j.ijtb.2017.03.002
Velázquez-Libera, J.L., Rossino, G., Navarro-Retamal, C., Collina, S., Caballero, J., 2019. Docking, Interaction Fingerprint, and Three-Dimensional Quantitative Structure–Activity Relationship (3D-QSAR) of Sigma1 Receptor Ligands, Analogs of the Neuroprotective Agent RC-33. Front. Chem. https://doi.org/10.3389/fchem.2019.00496
Vilchèze, C., Baughn, A.D., Tufariello, J.A., Leung, L.W., Kuo, M., Basler, C.F., Alland, D., Sacchettini, J.C., Freundlich, J.S., Jacobs, W.R., 2011. Novel inhibitors of InhA efficiently kill Mycobacterium tuberculosis under aerobic and anaerobic conditions. Antimicrob. Agents Chemother. 55, 3889–3898. https://doi.org/10.1128/AAC.00266-11
Wagner, D., Maser, J., Moric, I., Boechat, N., Vogt, S., Gicquel, B., Lai, B., Reyrat, J.M., Bermudez, L., 2005. Changes of the phagosomal elemental concentrations by Mycobacterium tuberculosis Mramp. Microbiology 151, 323–332. https://doi.org/10.1099/mic.0.27213-0
Ward, S.K., Abomoelak, B., Hoye, E.A., Steinberg, H., Talaat, A.M., 2010. CtpV: A putative copper exporter required for full virulence of Mycobacterium tuberculosis. Mol. Microbiol. 77, 1096–1110. https://doi.org/10.1111/j.1365-2958.2010.07273.x
Wolber, G., Langer, T., 2005. LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. J. Chem. Inf. Model. 45, 160–169. https://doi.org/10.1021/ci049885e
World Health Organization, 2019. Global tuberculosis report 2019. https://doi.org/ISBN 978 92 4 156539 4
Yatime, L., Buch-Pedersen, M.J., Musgaard, M., Morth, J.P., Winther, A.M.L., Pedersen, B.P., Olesen, C., Andersen, J.P., Vilsen, B., Schiøtt, B., Palmgren, M.G., Møller, J. V, Nissen, P., Fedosova, N., 2009. P-type ATPases as drug targets: Tools for medicine and science. Biochim. Biophys. Acta - Bioenerg. https://doi.org/10.1016/j.bbabio.2008.12.019
Zanotti, G., 2016. The Ca2+ ATPase of the Sarco-/Endoplasmic Reticulum (SERCA): Structure and Control, in: Chakraborti, S., Dhalla, N. (Eds.), Regulation of Ca2+-ATPases,V-ATPases and F-ATPases. Springer, pp. 137–151. https://doi.org/10.1007/978-3-319-24780-9_9
Zumla, A., Nahid, P., Cole, S.T., 2013. Advances in the development of new tuberculosis drugs and treatment regimens. Nat. Rev. Drug Discov. 12, 388–404. https://doi.org/10.1038/nrd4001
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.spa.spa.fl_str_mv Acceso abierto
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
Acceso abierto
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 143
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Doctorado en Ciencias - Bioquímica
dc.publisher.department.spa.fl_str_mv Departamento de Química
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/77933/1/Tesis_DoctodoBioqu%c3%admica_P.Santos_2020.pdf
https://repositorio.unal.edu.co/bitstream/unal/77933/2/license.txt
https://repositorio.unal.edu.co/bitstream/unal/77933/3/license_rdf
https://repositorio.unal.edu.co/bitstream/unal/77933/4/Tesis_DoctodoBioqu%c3%admica_P.Santos_2020.pdf.jpg
bitstream.checksum.fl_str_mv 38a98443b715a1cd9a1687111ce6a387
6f3f13b02594d02ad110b3ad534cd5df
217700a34da79ed616c2feb68d4c5e06
33f0b6d1304f88c31245fb48c75dc9a3
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089531039678464
spelling Atribución-NoComercial-SinDerivadas 4.0 InternacionalDerechos reservados - Universidad Nacional de ColombiaAcceso abiertohttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Soto Ospina, Carlos Yesid4393e614-27e4-4a4f-9a3e-41bca2eeaf49-1López Vallejo, Fabián Harvey36affc04-e4da-4319-a025-df0499f0373b-1Santos Ruiz, Paola Andrea86c28970-ae0e-43b8-9ce1-02748c032a33Bioquímica y Biología Molecular de las Micobacterias2020-08-05T09:35:00Z2020-08-05T09:35:00Z2020-02-14ATPasas tipo P de Mycobacterium tuberculosis como dianas para el diseño racional de compuestos antituberculososhttps://repositorio.unal.edu.co/handle/unal/77933Tuberculosis (TB) is an infectious disease caused by the acid-fast bacillus Mycobacterium tuberculosis (Mtb), which is one of the most important public health problems worldwide. Furthermore, the emergence of resistant Mtb strains to current anti-TB drugs has increased the search for alternative therapeutic targets and methods for the rational design of new effective drugs. In this sense, membrane proteins have been considered interesting targets due to their biological implication and for being highly accessible to active compounds. Particularly, P-type ATPases membrane transporters are interesting targets due to their implication in ionic homeostasis and mycobacterial viability. This work was oriented to CtpF, a calcium P-type ATPase, related to a broad number of biological conditions associated to processes of infection such as oxidative stress, adaptation of tubercle bacilli to anaerobic conditions, hypoxia and latency. Due to that, the main objective of this doctoral Thesis was to determine, through in silico and in vitro analysis, the potential of P-type ATPases of Mtb, especially the calcium transporter CtpF, as a target for the rational design of anti-TB compounds. Initially, a 3D homology model of CtpF was generated, which was employed for identified key pharmacophoric features of the CtpF-cyclopiazonic acid (CPA) complex, a well-known inhibitor of the sarco-endoplasmic reticulum Ca2+-ATPase (SERCA1a), from which its 3D structure is known experimentally and was used as a template in the construction of the model. By using a repertoire of experimental techniques, it was evaluated and found that CPA causes inhibition of the Ca2+-ATPase activity of CtpF, as well as mycobactericidal activity. The analysis of the transcriptional response of P2 ATPases to treatment with CPA showed a specific response of ctpF in comparison with other P-type ATPases. These initial results provide evidence that CtpF is a molecular target for the design of compounds with anti-TB potential. Thereupon, with the CtpF-CPA pharmacophoric features, a pharmacophore-based virtual screening was performed using the ZINC database in order to select candidate molecules to inhibitors of CtpF. Molecular docking-based virtual screening and binding free energy calculations (MM-GBSA) of selected candidates allowed identifying six compounds with the best relative binding energies to be evaluated in vitro. The compounds selected displayed in vitro antimycobacterial activity, showing a minimum inhibitory concentrations (MIC) ranging from 50 -100 μg/mL, and growth inhibitions of 29.5 - 64.0 % on Mtb. Likewise, they causes inhibition of Ca2+-ATPase activity in Mtb membrane vesicles (IC50) ranging from 4.1 - 35.8 μM. Finally, the activity of the compounds with the best biological activity was evaluated in a macrophage infection model, as an approach to evaluate the effect of compounds once the infection has occurred. The compound ZINC63908257 was the best candidate by displaying a MIC of 50 μg/mL, a Ca2+ P-type ATPase inhibition with IC50 = 4.4 μM and 81 % decrease in Mtb replication within macrophage. This compound showed cytotoxic activity of 12.9 % in MH-S cells and hemolysis of 2 % of human erythrocytes, thus, this compound shows a good pharmacokinetic profile (drug-like). Overall, the results presented here shows the importance of the P-type ATPases of Mtb for the mycobacteria survival during infection, and identify the CtpF as a key molecular target for the design of new antituberculous compounds.La Tuberculosis (TB) es una enfermedad infectocontagiosa causada por el bacilo ácido-alcohol resistente Mycobacterium tuberculosis (Mtb). A su vez, la TB es un problema muy relevante de salud pública a nivel mundial. Por otra parte, la aparición de cepas de Mtb resistentes a los fármacos antituberculosos actualmente empleados, ha impulsado la búsqueda de dianas terapéuticas alternativas y metodologías para el diseño racional de nuevos fármacos efectivos. En ese sentido, las proteínas de membrana son considerados blancos de interés al ser mayormente accesibles a los compuestos activos. Particularmente los transportadores de membrana ATPasas tipo P son dianas interesantes por su implicación en la homeóstasis iónica y la viabilidad de las micobacterias. El presente trabajo se orientó en CtpF, una ATPasa tipo P de Mtb transportadora de Ca2+, relacionada con una gran cantidad de condiciones biológicas asociadas al proceso de infección tales como estrés oxidativo, la adaptación del bacilo tuberculoso a condiciones anaeróbicas, hipoxia y latencia. Por lo anterior, el objetivo principal de esta Tesis fue determinar mediante análisis in silico e in vitro el potencial de las ATPasas tipo P de Mtb, especialmente el trasportador de calcio CtpF, como diana para la búsqueda racional de compuestos con actividad antituberculosa. Inicialmente se generó un modelo 3D de CtpF por homología, el que fue empleado para identificar las características farmacofóricas del complejo CtpF-ácido ciclopiazónico (CPA), un inhibidor de la Ca2+-ATPasa de retículo sarco-endoplásmico (SERCA1a), de la que se conoce experimentalmente su estructura 3D, y fue usada como plantilla en la construcción del modelo. Utilizando un repertorio de técnicas experimentales, se evaluó y encontró que CPA causa inhibición de la actividad Ca2+-ATPasa de CtpF, así como actividad micobactericida. El análisis de la respuesta transcripcional de los genes de las ATPasas tipo P2 al tratamiento con CPA, mostró una respuesta específica de ctpF en comparación a otras ATPasas tipo P. Estos resultados iniciales permitieron sugerir a CtpF como una diana molecular para el diseño de compuestos con potencial anti-TB. A continuación, con las características farmacofóricas CtpF-CPA se realizó un cribado virtual basado en farmacóforo utilizando la base de datos ZINC, para seleccionar moléculas candidatas a inhibidores de CtpF. Estudios de acoplamiento molecular y cálculos de MM-GBSA de los candidatos permitieron la identificación de seis compuestos con la mejor energía libre de unión para ser evaluados in vitro. Los compuestos finalmente seleccionados demostraron tener actividad antimicobacteriana mostrando una concentración mínima inhibitoria (CMI) entre 50 - 100 μg/mL, e inhibición del crecimiento de Mtb entre el 29.5 - 64.0 %. De manera similar, causaron inhibición de la actividad Ca2+-ATPasa en vesículas de membrana de Mtb con un rango IC50 entre 4.1 - 35.8 μM. Finalmente se evaluó la actividad de los compuestos con mejor respuesta biológica, en un modelo de infección de macrófagos, como un acercamiento al efecto de los compuestos en la sobrevida de Mtb durante la infección. El compuesto ZINC63908257 fue seleccionado como el candidato más activo con una CMI de 50 μg/mL, inhibición de la actividad Ca2+-ATPasa con IC50 = 4.4 μM y disminución del 81 % de la replicación intracelular de Mtb en macrófagos una vez ocurrida la fagocitosis. Este compuesto demostró un efecto citotóxico del 12.9 % en células MH-S y hemólisis del 2 % de glóbulos rojos humanos, además de presentar propiedades farmacocinéticas adecuadas (drug-like). El conjunto de resultados obtenidos muestra la importancia de las ATPasas tipo P de Mtb para la supervivencia del bacilo durante la infección, e identifican la proteína CtpF como una diana molecular clave para el diseño de nuevos compuestos antituberculosos.Proyecto DIB_2016_Numero_35885 y Colciencias Programa Nacional en Ciencias Básicas-Cod. 110171250419Búsqueda racional de compuestos inhibidores de la actividad ATPasa tipo P de membrana plasmática y determinación de su actividad antimicobacteriana.Doctorado143application/pdfspa572 - Bioquímica614 - Medicina Forense; incidencia de lesiones, heridas, enfermedades; medicina preventiva públicaP-type ATPasestuberculosisantituberculous compoundscyclopiazonic acidmolecular dockingATPasas tipo Ptuberculosiscompuestos antituberculososácido ciclopiazónicoacoplamiento molecularATPasas tipo P de Mycobacterium tuberculosis como dianas para el diseño racional de compuestos antituberculososDocumento de trabajoinfo:eu-repo/semantics/workingPaperinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_8042http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/WPBogotá - Ciencias - Doctorado en Ciencias - BioquímicaDepartamento de QuímicaUniversidad Nacional de Colombia - Sede BogotáAchard, M.E.S., Stafford, S.L., Bokil, N.J., Chartres, J., Bernhardt, P. V., Schembri, M.A., Sweet, M.J., Mcewan, A.G., 2012. Copper redistribution in murine macrophages in response to Salmonella infection. Biochem. J. 444, 51–57. https://doi.org/10.1042/BJ20112180Aguilar-Ayala, D.A., Cnockaert, M., Vandamme, P., Palomino, J.C., Martin, A., Gonzalez-Y-Merchand, J., 2018. Antimicrobial activity against Mycobacterium tuberculosis under in vitro lipid-rich dormancy conditions. J. Med. Microbiol. 67, 282–285. https://doi.org/10.1099/jmm.0.000681Ahmad, S., 2011. Pathogenesis, immunology, and diagnosis of latent Mycobacterium tuberculosis infection. Clin. Dev. Immunol. 2011, 814943. https://doi.org/10.1155/2011/814943Almerico, A.M., Tutone, M., Lauria, A., 2012. Receptor-guided 3D-QSAR approach for the discovery of c-kit tyrosine kinase inhibitors. J. Mol. Model. https://doi.org/10.1007/s00894-011-1304-0Andersen, P., Doherty, T.M., 2005. The success and failure of BCG - implications for a novel tuberculosis vaccine. Nat. Rev. Microbiol. 3, 656–662. https://doi.org/10.1038/nrmicro1211Andries, K., Verhasselt, P., Guillemont, J., Göhlmann, H.W.H., Neefs, J.-M., Winkler, H., Van Gestel, J., Timmerman, P., Zhu, M., Lee, E., Williams, P., de Chaffoy, D., Huitric, E., Hoffner, S., Cambau, E., Truffot-Pernot, C., Lounis, N., Jarlier, V., 2005. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis., Science (New York, N.Y.). https://doi.org/10.1126/science.1106753Aparna, V., Dineshkumar, K., Mohanalakshmi, N., Velmurugan, D., Hopper, W., 2014. Identification of natural compound inhibitors for multidrug efflux pumps of Escherichia coli and Pseudomonas aeruginosa using in silico high-throughput virtual screening and in vitro validation. PLoS One 9. https://doi.org/10.1371/journal.pone.0101840Axelsen, K.B., Palmgren, M.G., 1998. Evolution of substrate specificities in the P-type ATPase superfamily. J. Mol. Evol. 46, 84–101. https://doi.org/10.1007/PL00006286Ayala-Torres, C., Novoa-Aponte, L., Soto, C.Y., 2015. Pma1 is an alkali/alkaline earth metal cation ATPase that preferentially transports Na+ and K+ across the Mycobacterium smegmatis plasma membrane. Microbiol. Res. 176, 1–6. https://doi.org/10.1016/j.micres.2015.04.004Basu, J., Chattopadhyay, R., Kundu, M., Chakrabarti, P., 1992. Purification and partial characterization of a penicillin-binding protein from Mycobacterium smegmatis. J. Bacteriol. 174, 4829–4832. https://doi.org/10.1128/jb.174.14.4829-4832.1992Beresford, N.J., Mulhearn, D., Szczepankiewicz, B., Liu, G., Johnson, M.E., Fordham-Skelton, A., Abad-Zapatero, C., Cavet, J.S., Tabernero, L., 2009. Inhibition of MptpB phosphatase from Mycobacterium tuberculosis impairs mycobacterial survival in macrophages. J. Antimicrob. Chemother. 63, 928–936. https://doi.org/10.1093/jac/dkp031Bers, D.M., Patton, C.W., Nuccitelli, R., 2010. A practical guide to the preparation of Ca2+buffers. Methods Cell Biol. 99, 1–26. https://doi.org/10.1016/B978-0-12-374841-6.00001-3Betts, J.C., McLaren, A., Lennon, M.G., Kelly, F.M., Lukey, P.T., Blakemore, S.J., Duncan, K., 2003. Signature gene expression profiles discriminate between isoniazid-, thiolactomycin-, and triclosan-treated Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 47, 2903–2913. https://doi.org/10.1128/AAC.47.9.2903-2913.2003Botella, H., Peyron, P., Levillain, F., Poincloux, R., Poquet, Y., Brandli, I., Wang, C., Tailleux, L., Tilleul, S., Charrire, G.M., Waddell, S.J., Foti, M., Lugo-Villarino, G., Gao, Q., Maridonneau-Parini, I., Butcher, P.D., Castagnoli, P.R., Gicquel, B., De Chastellier, C., Neyrolles, O., 2011. Mycobacterial P 1-Type ATPases mediate resistance to Zinc poisoning in human macrophages. Cell Host Microbe 10, 248–259. https://doi.org/10.1016/j.chom.2011.08.006Caballero, J., Alzate-Morales, J.H., Vergara-Jaque, A., 2011. Investigation of the Differences in Activity between Hydroxycycloalkyl N1 Substituted Pyrazole Derivatives As Inhibitors of B-Raf Kinase by Using Docking, Molecular Dynamics, QM/MM, and Fragment-Based De Novo Design: Study of Binding Mode of Diastereomer . J. Chem. Inf. Model. 51, 2920–2931. https://doi.org/10.1021/ci200306wCambier, C.J., Falkow, S., Ramakrishnan, L., 2014. Host Evasion and Exploitation Schemes of Mycobacterium tuberculosis. Cell 159, 1497–1509. https://doi.org/Doi 10.1016/J.Cell.2014.11.024Caminero, J.A., 2006. Treatment of multidrug-resistant tuberculosis: evidence and controversies. Int. J. Tuberc. Lung Dis. 10, 829–37.e Knegt, G.J., Bruning, O., Ten Kate, M.T., De Jong, M., Van Belkum, A., Endtz, H.P., Breit, T.M., Bakker-Woudenberg, I.A.J.M., De Steenwinkel, J.E.M., 2013. Rifampicin-induced transcriptome response in rifampicin-resistant Mycobacterium tuberculosis. Tuberculosis 93, 96–101. https://doi.org/10.1016/j.tube.2012.10.013Di Marino, D., D’Annessa, I., Coletta, A., Via, A., Tramontano, A., 2015. Characterization of the differences in the cyclopiazonic acid binding mode to mammalian and P. Falciparum Ca2+ pumps: A computational study. Proteins Struct. Funct. Bioinforma. 83, 564–574. https://doi.org/10.1002/prot.24734Ekins, S., Freundlich, J.S., Hobrath, J. V., Lucile White, E., Reynolds, R.C., 2014. Combining computational methods for hit to lead optimization in mycobacterium tuberculosis drug discovery. Pharm. Res. 31, 414–435. https://doi.org/10.1007/s11095-013-1172-7Espinoza-Moraga, M., Njuguna, N.M., Mugumbate, G., Caballero, J., Chibale, K., 2013. In silico comparison of antimycobacterial natural products with known antituberculosis drugs. J. Chem. Inf. Model. 53, 649–660. https://doi.org/10.1021/ci300467baraco, M., Li, Y., Li, S., Spelt, C., Di Sansebastiano, G. Pietro, Reale, L., Ferranti, F., Verweij, W., Koes, R., Quattrocchio, F.M., 2017. A Tonoplast P3B-ATPase Mediates Fusion of Two Types of Vacuoles in Petal Cells. Cell Rep. 19, 2413–2422. https://doi.org/10.1016/j.celrep.2017.05.076Ford, C.B., Shah, R.R., Maeda, M.K., Gagneux, S., Murray, M.B., Cohen, T., Johnston, J.C., Gardy, J., Lipsitch, M., Fortune, S.M., 2013. Mycobacterium tuberculosis mutation rate estimates from different lineages predict substantial differences in the emergence of drug-resistant tuberculosis. Nat. Genet. 45, 784–90. https://doi.org/10.1038/ng.2656Galagan, J.E., Minch, K., Peterson, M., Lyubetskaya, A., Azizi, E., Sweet, L., Gomes, A., Rustad, T., Dolganov, G., Glotova, I., Abeel, T., Mahwinney, C., Kennedy, A.D., Allard, R., Brabant, W., Krueger, A., Jaini, S., Honda, B., Yu, W.H., Hickey, M.J., Zucker, J., Garay, C., Weiner, B., Sisk, P., Stolte, C., Winkler, J.K., Van De Peer, Y., Iazzetti, P., Camacho, D., Dreyfuss, J., Liu, Y., Dorhoi, A., Mollenkopf, H.J., Drogaris, P., Lamontagne, J., Zhou, Y., Piquenot, J., Park, S.T., Raman, S., Kaufmann, S.H.E., Mohney, R.P., Chelsky, D., Branch Moody, D., Sherman, D.R., Schoolnik, G.K., 2013. The Mycobacterium tuberculosis regulatory network and hypoxia. Nature 499, 178–183. https://doi.org/10.1038/nature12337Gangopadhyay, A., Chakraborty, H.J., Datta, A., 2019. Employing virtual screening and molecular dynamics simulations for identifying hits against the active cholera toxin. Toxicon. https://doi.org/10.1016/j.toxicon.2019.09.005Gordon, A.H., Hart, P.D., Young, M.R., 1980. Ammonia inhibits phagosome-lysosome fusion in macrophages. Nature 286, 79–80. https://doi.org/10.1038/286079a0Hameed, H.M.A., Islam, M.M., Chhotaray, C., Wang, C., Liu, Y., Tan, Y., Li, X., Tan, S., Delorme, V., Yew, W.W., Liu, J., Zhang, T., 2018. Molecular targets related drug resistance mechanisms in MDR-, XDR-, and TDR-Mycobacterium tuberculosis strains. Front. Cell. Infect. Microbiol. 8. https://doi.org/10.3389/fcimb.2018.00114Hofman, S., Segers, M.M., Ghimire, S., Bolhuis, M.S., Sturkenboom, M.G.G., Van Soolingen, D., Alffenaar, J.W.C., 2016. Emerging drugs and alternative possibilities in the treatment of tuberculosis. Expert Opin. Emerg. Drugs 21, 103–116. https://doi.org/10.1517/14728214.2016.1151000Ishiyama, M., Tominaga, H., Shiga, M., SASAMOTO, K., OHKURA, Y., UENO, K., 1996. A combined assay of cell viability and in vitro cytotoxicity with a highly water-soluble tetrazolium salt, neutral red and crystal violet. Biol. Pharm. Bull. 19, 1518–1520. https://doi.org/10.1248/bpb.19.1518Jaconi, M.E.E., Lew, D.P., Carpentier, J.L., Magnusson, K.E., Sjogren, M., Stendahl, O., 1990. Cytosolic free calcium elevation mediates the phagosome-lysosome fusion during phagocytosis in human neutrophils. J. Cell Biol. 110, 1555–1564. https://doi.org/10.1083/jcb.110.5.1555Jensen, A.M., Sorensen, T.L., Olesen, C., Moller, J. V, Nissen, P., 2006. Modulatory and catalytic modes of ATP binding by the calcium pump. EMBO J. 25, 2305–2314. https://doi.org/7601135 [pii]\r10.1038/sj.emboj.7601135Kandasamy, S., Hassan, S., Gopalaswamy, R., Narayanan, S., 2014. Homology modelling, docking, pharmacophore and site directed mutagenesis analysis to identify the critical amino acid residue of PknI from Mycobacterium tuberculosis. J. Mol. Graph. Model. 52, 11–19. https://doi.org/10.1016/j.jmgm.2014.05.011Khalifa, R.A., Nasser, M.S., Gomaa, A.A., Osman, N.M., Salem, H.M., 2013. Resazurin Microtiter Assay Plate method for detection of susceptibility of multidrug resistant Mycobacterium tuberculosis to second-line anti-tuberculous drugs. Egypt. J. Chest Dis. Tuberc. 62, 241–247. https://doi.org/10.1016/j.ejcdt.2013.05.008Laursen, M., Bublitz, M., Moncoq, K., Olesen, C., Møller, J.V., Young, H.S., Nissen, P., Morth, J.P., 2009. Cyclopiazonic acid is complexed to a divalent metal ion when bound to the sarcoplasmic reticulum Ca2+-ATPase. J. Biol. Chem. 284, 13513–13518. https://doi.org/10.1074/jbc.C900031200León-Torres, A., Novoa-Aponte, L., Soto, C.-Y., 2015. CtpA, a putative Mycobacterium tuberculosis P-type ATPase, is stimulated by copper (I) in the mycobacterial plasma membrane. BioMetals 28, 713–724. https://doi.org/10.1007/s10534-015-9860-xLópez, M., Quitian, L.V., Calderón, M.N., Soto, C.Y., 2018. The P-type ATPase CtpG preferentially transports Cd2+ across the Mycobacterium tuberculosis plasma membrane. Arch. Microbiol. 200, 483–492. https://doi.org/10.1007/s00203-017-1465-zMalik, Z.A., Denning, G.M., Kusner, D.J., 2000. Inhibition of Ca2+ signaling by Mycobacterium tuberculosis is associated with reduced phagosome-lysosome fusion and increased survival within human macrophages. J. Exp. Med. 191, 287–302. https://doi.org/10.1084/jem.191.2.287Maya-Hoyos, M., Rosales, C., Novoa-Aponte, L., Castillo, E., Soto, C.Y., 2019. The P-type ATPase CtpF is a plasma membrane transporter mediating calcium efflux in Mycobacterium tuberculosis cells. Heliyon 5, e02852. https://doi.org/10.1016/j.heliyon.2019.e02852Naik, P.K., Srivastava, M., Bajaj, P., Jain, S., Dubey, A., Ranjan, P., Kumar, R., Singh, H., 2011. The binding modes and binding affinities of artemisinin derivatives with Plasmodium falciparum Ca2+-ATPase (PfATP6). J. Mol. Model. 17, 333–357. https://doi.org/10.1007/s00894-010-0726-4Neyrolles, O., Wolschendorf, F., Mitra, A., Niederweis, M., 2015. Mycobacteria, metals, and the macrophage. Immunol. Rev. 264, 249–63. https://doi.org/10.1111/imr.12265Novoa-Aponte, L., León-Torres, A., Patiño-Ruiz, M., Cuesta-Bernal, J., Salazar, L.-M., Landsman, D., Mariño-Ramírez, L., Soto, C.-Y., 2012. In silico identification and characterization of the ion transport specificity for P-type ATPases in the Mycobacterium tuberculosis complex. BMC Struct. Biol. 12, 25. https://doi.org/10.1186/1472-6807-12-25Novoa-Aponte, L., Soto Ospina, C.Y., 2014. Mycobacterium tuberculosis P-type ATPases: Possible Targets for Drug or Vaccine Development. Biomed Res. Int. 2014, 296. https://doi.org/10.1155/2014/296986O´Shea, R., Moser, H.E., 2008. Physicochemical properties of antibacterial compounds: Implications for drug discovery. J. Med. Chem. 51, 2871–2878. https://doi.org/10.1021/jm700967eOcampo, M., Aristizbal-Ramrez, D., Rodrguez, D.M., Muoz, M., Curtidor, H., Vanegas, M., Patarroyo, M.A., Patarroyo, M.E., 2012. The role of Mycobacterium tuberculosis Rv3166c protein-derived high-activity binding peptides in inhibiting invasion of human cell lines. Protein Eng. Des. Sel. 25, 235–242. https://doi.org/10.1093/protein/gzs011Palmgren, M.G., Nissen, P., 2011. P-Type ATPases. Annu. Rev. Biophys. 40, 243–266. https://doi.org/10.1146/annurev.biophys.093008.131331Palomino, J.-C., Martin, A., Camacho, M., Guerra, H., Swings, J., Portaels, F., 2002. Resazurin microtiter assay plate: simple and inexpensive method for detection of drug resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 46, 2720–2. https://doi.org/10.1128/AAC.46.8.2720Pulido, P.A., Novoa-Aponte, L., Villamil, N., Soto, C.Y., 2014. The DosR Dormancy Regulator of Mycobacterium tuberculosis Stimulates the Na(+)/K (+) and Ca (2+) ATPase Activities in Plasma Membrane Vesicles of Mycobacteria. Curr. Microbiol. 69, 604–10. https://doi.org/10.1007/s00284-014-0632-6Raimunda, D., Long, J.E., Sassetti, C.M., Argüello, J.M., 2012. Role in metal homeostasis of CtpD, a Co(2+) transporting P(1B4) -ATPase of Mycobacterium smegmatis. Mol. Microbiol. 1–11. https://doi.org/10.1111/j.1365-2958.2012.08082.xRamírez, D., Concha, G., Arévalo, B., Prent-Peñaloza, L., Zúñiga, L., Kiper, A.K., Rinné, S., Reyes-Parada, M., Decher, N., González, W., Caballero, J., 2019. Discovery of novel TASK-3 channel blockers using a Pharmacophore-Based Virtual Screening. Int. J. Mol. Sci. 20, 4014. https://doi.org/10.3390/ijms20164014Santos, P., Gordillo, A., Osses, L., Salazar, L.M., Soto, C.Y., 2012. Effect of antimicrobial peptides on ATPase activity and proton pumping in plasma membrane vesicles obtained from mycobacteria. Peptides 36, 121–128. https://doi.org/10.1016/j.peptides.2012.04.018Santos, P., López-Vallejo, F., Soto, C.Y., 2017. In silico approaches and chemical space of anti-P-type ATPase compounds for discovering new antituberculous drugs. Chem. Biol. Drug Des. https://doi.org/10.1111/cbdd.12950Sharma, S., Meena, L.S., 2017. Potential of Ca2+ in Mycobacterium tuberculosis H 37 Rv Pathogenesis and Survival. Appl. Biochem. Biotechnol. 181, 762–771. https://doi.org/10.1007/s12010-016-2247-9Soldati, T., Neyrolles, O., 2012. Mycobacteria and the Intraphagosomal Environment: Take It With a Pinch of Salt(s)! Traffic 13, 1042–1052. https://doi.org/10.1111/j.1600-0854.2012.01358.xTakahashi, M., Kondou, Y., Toyoshima, C., 2007. Interdomain communication in calcium pump as revealed in the crystal structures with transmembrane inhibitors. Proc. Natl. Acad. Sci. 104, 5800–5805. https://doi.org/10.1073/pnas.0700979104Toro, J.C., Hoffner, S., Linde, C., Andersson, M., Andersson, J., Grundström, S., 2006. Enhanced susceptibility of multidrug resistant strains of Mycobacterium tuberculosis to granulysin peptides correlates with a reduced fitness phenotype. Microbes Infect. 8, 1985–93. https://doi.org/10.1016/j.micinf.2006.02.030Trauner, A., Borrell, S., Reither, K., Gagneux, S., 2014. Evolution of drug resistance in tuberculosis: Recent progress and implications for diagnosis and therapy. Drugs 74, 1063–1072. https://doi.org/10.1007/s40265-014-0248-yVasava, M.S., Bhoi, M.N., Rathwa, S.K., Borad, M.A., Nair, S.G., Patel, H.D., 2017. Drug development against tuberculosis: Past, present and future. Indian J. Tuberc. 64, 252–275. https://doi.org/10.1016/j.ijtb.2017.03.002Velázquez-Libera, J.L., Rossino, G., Navarro-Retamal, C., Collina, S., Caballero, J., 2019. Docking, Interaction Fingerprint, and Three-Dimensional Quantitative Structure–Activity Relationship (3D-QSAR) of Sigma1 Receptor Ligands, Analogs of the Neuroprotective Agent RC-33. Front. Chem. https://doi.org/10.3389/fchem.2019.00496Vilchèze, C., Baughn, A.D., Tufariello, J.A., Leung, L.W., Kuo, M., Basler, C.F., Alland, D., Sacchettini, J.C., Freundlich, J.S., Jacobs, W.R., 2011. Novel inhibitors of InhA efficiently kill Mycobacterium tuberculosis under aerobic and anaerobic conditions. Antimicrob. Agents Chemother. 55, 3889–3898. https://doi.org/10.1128/AAC.00266-11Wagner, D., Maser, J., Moric, I., Boechat, N., Vogt, S., Gicquel, B., Lai, B., Reyrat, J.M., Bermudez, L., 2005. Changes of the phagosomal elemental concentrations by Mycobacterium tuberculosis Mramp. Microbiology 151, 323–332. https://doi.org/10.1099/mic.0.27213-0Ward, S.K., Abomoelak, B., Hoye, E.A., Steinberg, H., Talaat, A.M., 2010. CtpV: A putative copper exporter required for full virulence of Mycobacterium tuberculosis. Mol. Microbiol. 77, 1096–1110. https://doi.org/10.1111/j.1365-2958.2010.07273.xWolber, G., Langer, T., 2005. LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. J. Chem. Inf. Model. 45, 160–169. https://doi.org/10.1021/ci049885eWorld Health Organization, 2019. Global tuberculosis report 2019. https://doi.org/ISBN 978 92 4 156539 4Yatime, L., Buch-Pedersen, M.J., Musgaard, M., Morth, J.P., Winther, A.M.L., Pedersen, B.P., Olesen, C., Andersen, J.P., Vilsen, B., Schiøtt, B., Palmgren, M.G., Møller, J. V, Nissen, P., Fedosova, N., 2009. P-type ATPases as drug targets: Tools for medicine and science. Biochim. Biophys. Acta - Bioenerg. https://doi.org/10.1016/j.bbabio.2008.12.019Zanotti, G., 2016. The Ca2+ ATPase of the Sarco-/Endoplasmic Reticulum (SERCA): Structure and Control, in: Chakraborti, S., Dhalla, N. (Eds.), Regulation of Ca2+-ATPases,V-ATPases and F-ATPases. Springer, pp. 137–151. https://doi.org/10.1007/978-3-319-24780-9_9Zumla, A., Nahid, P., Cole, S.T., 2013. Advances in the development of new tuberculosis drugs and treatment regimens. Nat. Rev. Drug Discov. 12, 388–404. https://doi.org/10.1038/nrd4001ORIGINALTesis_DoctodoBioquímica_P.Santos_2020.pdfTesis_DoctodoBioquímica_P.Santos_2020.pdfapplication/pdf4276954https://repositorio.unal.edu.co/bitstream/unal/77933/1/Tesis_DoctodoBioqu%c3%admica_P.Santos_2020.pdf38a98443b715a1cd9a1687111ce6a387MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83991https://repositorio.unal.edu.co/bitstream/unal/77933/2/license.txt6f3f13b02594d02ad110b3ad534cd5dfMD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.unal.edu.co/bitstream/unal/77933/3/license_rdf217700a34da79ed616c2feb68d4c5e06MD53THUMBNAILTesis_DoctodoBioquímica_P.Santos_2020.pdf.jpgTesis_DoctodoBioquímica_P.Santos_2020.pdf.jpgGenerated Thumbnailimage/jpeg4350https://repositorio.unal.edu.co/bitstream/unal/77933/4/Tesis_DoctodoBioqu%c3%admica_P.Santos_2020.pdf.jpg33f0b6d1304f88c31245fb48c75dc9a3MD54unal/77933oai:repositorio.unal.edu.co:unal/779332024-07-18 23:10:20.286Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHBvciB1biBwbGF6byBkZSA1IGHDsW9zLCBxdWUgc2Vyw6FuIHByb3Jyb2dhYmxlcyBpbmRlZmluaWRhbWVudGUgcG9yIGVsIHRpZW1wbyBxdWUgZHVyZSBlbCBkZXJlY2hvIHBhdHJpbW9uaWFsIGRlbCBhdXRvci4gRWwgYXV0b3IgcG9kcsOhIGRhciBwb3IgdGVybWluYWRhIGxhIGxpY2VuY2lhIHNvbGljaXTDoW5kb2xvIGEgbGEgVW5pdmVyc2lkYWQgY29uIHVuYSBhbnRlbGFjacOzbiBkZSBkb3MgbWVzZXMgYW50ZXMgZGUgbGEgY29ycmVzcG9uZGllbnRlIHByw7Nycm9nYS4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCg==