Evaluación de la liberación de ácaros Mesostigmata en el suelo para el control de Frankliniella occidentalis asociado al cultivo de rosa
ilustraciones, fotografías, tablas
- Autores:
-
Valencia Polanco, Juan Carlos
- Tipo de recurso:
- Fecha de publicación:
- 2024
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/86531
- Palabra clave:
- 630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetales
Control biológico de plagas
Floricultura
biological pest control
floriculture
Control biológico
dietas
compatibilidad
agente de control biológico
trips
Biological control
diets
compatibility
biological control agent
thrips
- Rights
- openAccess
- License
- Reconocimiento 4.0 Internacional
id |
UNACIONAL2_66de6744e457dff01e1d4b41bef40906 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/86531 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Evaluación de la liberación de ácaros Mesostigmata en el suelo para el control de Frankliniella occidentalis asociado al cultivo de rosa |
dc.title.translated.eng.fl_str_mv |
Evaluation of the release of Mesostigmata mites in the soil for the control of Frankliniella occidentalis associated with rose cultivation |
title |
Evaluación de la liberación de ácaros Mesostigmata en el suelo para el control de Frankliniella occidentalis asociado al cultivo de rosa |
spellingShingle |
Evaluación de la liberación de ácaros Mesostigmata en el suelo para el control de Frankliniella occidentalis asociado al cultivo de rosa 630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetales Control biológico de plagas Floricultura biological pest control floriculture Control biológico dietas compatibilidad agente de control biológico trips Biological control diets compatibility biological control agent thrips |
title_short |
Evaluación de la liberación de ácaros Mesostigmata en el suelo para el control de Frankliniella occidentalis asociado al cultivo de rosa |
title_full |
Evaluación de la liberación de ácaros Mesostigmata en el suelo para el control de Frankliniella occidentalis asociado al cultivo de rosa |
title_fullStr |
Evaluación de la liberación de ácaros Mesostigmata en el suelo para el control de Frankliniella occidentalis asociado al cultivo de rosa |
title_full_unstemmed |
Evaluación de la liberación de ácaros Mesostigmata en el suelo para el control de Frankliniella occidentalis asociado al cultivo de rosa |
title_sort |
Evaluación de la liberación de ácaros Mesostigmata en el suelo para el control de Frankliniella occidentalis asociado al cultivo de rosa |
dc.creator.fl_str_mv |
Valencia Polanco, Juan Carlos |
dc.contributor.advisor.none.fl_str_mv |
Rueda Ramírez, Diana Marcela Ramírez Godoy, Augusto |
dc.contributor.author.none.fl_str_mv |
Valencia Polanco, Juan Carlos |
dc.contributor.researchgroup.spa.fl_str_mv |
Manejo integrado de Plagas |
dc.contributor.orcid.spa.fl_str_mv |
Valencia Polanco, Juan Carlos [0000000287862871] |
dc.subject.ddc.spa.fl_str_mv |
630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetales |
topic |
630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetales Control biológico de plagas Floricultura biological pest control floriculture Control biológico dietas compatibilidad agente de control biológico trips Biological control diets compatibility biological control agent thrips |
dc.subject.agrovoc.spa.fl_str_mv |
Control biológico de plagas Floricultura |
dc.subject.agrovoc.eng.fl_str_mv |
biological pest control floriculture |
dc.subject.proposal.spa.fl_str_mv |
Control biológico dietas compatibilidad agente de control biológico trips |
dc.subject.proposal.eng.fl_str_mv |
Biological control diets compatibility biological control agent thrips |
description |
ilustraciones, fotografías, tablas |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-07-17T16:48:36Z |
dc.date.available.none.fl_str_mv |
2024-07-17T16:48:36Z |
dc.date.issued.none.fl_str_mv |
2024 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/86531 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/86531 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Abbatiello. (1965). A Culture chamber for Rearing Soil Mites. Turtox News 43:162- 164. Akhurst, J. (1993). Bacterial symbionts of entomopathogenic nematodes - the power behind the throne. Nematodes and the Biological Control of Insect Pests. CSIRO. Publications.12. Asocolflores. (2022, 15 de octubre). Flores entre las flores: la mujer y su papel fundamental en la floricultura colombiana. Asocolflores. https://asocolflores.org/es/flores-entre-las-flores-la-mujer-y-su-papel-fundamental- en-la-floricultura-colombiana/ Attavian. (2014). Cut Flowers and Greenery Import Manual. First edition. Editorial United States Department of Agriculture – USDA. Ávila J. (2017). Innovación: una decisión llena de oportunidades para la floricultura. Metroflor. https://www.metroflorcolombia.com/innovacion-una-decision-llena-de- oportunidades-para-la-floricultura/ Azevedo LH, Leite LG, Chacon-Orozco JG, Moreira MFP, Ferreira MP, González- Cano LM, Borges V, Rueda-Ramírez D, Moraes GJ and Palevsky E. (2019). Free living nematodes as alternative prey for soil predatory mites: An interdisciplinary case study of conservation biological control. Biological Control, 132,128–134. https://doi.org/10.1016/j.biocontrol.2019.02.007 Azevedo LH, Moreira MFP, Pereira GG, Borges V, de Moraes GJ, Inomoto MM, Vicente MH, de Siqueira Pinto M, Peres LEP, Rueda-Ramírez D, Carta L, Meyer SLF, Mowery J, Bauchan G, Ochoa R and Palevsky E. (2020). Combined releases of soil predatory mites and provisioning of free-living nematodes for the biological control of root-knot nematodes on ‘Micro Tom tomato.’ Biological Control, 146,104- 280. https://doi.org/10.1016/j.biocontrol.2020.104280 Bedano J Cantu M and Doucet E. (2006). Influence of three different land management practices on soil mite (Arachnida: Acari) densities in relation to a natural soil Applied Soil Ecology 32, 293–304. DOI:10.1016/j.apsoil.2005.07.009 Beretta GM, Deere JA, Messelink GJ, Muñoz-Cárdenas K, Janssen A. (2022). Review: predatory soil mites as biocontrol agents of above and below-ground plant pests. Experimental and Applied Acarology 87, 143–162. https://doi.org/10.1007/s10493-022-00723-w Berndt O, Meyhofer R and Poehling H. (2004). The edaphic phase in the ontogenesis of Frankliniella occidentalis and comparison of Hypoaspis miles and Hypoaspis aculeifer as predators of soil-dwelling thrips stages. Biological control. Vol 30, 17-24. https://doi.org/10.1016/j.biocontrol.2003.09.009 Bielza P, Balanza B, Cifuentes D, Mendoza J. (2020). Challenges facing arthropod biological control: identifying traits for genetic improvement of pradators in protectec crops. Pest Management Science. DOI: 10.1002/ps.5857 Britto E, Gago J and de Morae G. (2012). How promising is Lasioseius floridensis as a control agent of Polyphagotarsonemus latus? Exp Appl Acarol 56, 221–23. DOI10.1007/s10493-012-9513-5 Bussaman P, Sa-Uth C, Rattanasena P and Chandrapatya A. (2012). Acaricidal activities of whole cell suspension, cell-free supernatant, and crude cell extract of Xenorhabdus stokiae against mushroom mite (Luciaphorus sp.). Biomedicine & Biotechnology). Vol 13 (4), pp: 261-266. 10.1631/jzus.B1100155 Brodsgaard H. (1994). Insecticide resistance in European and African strains of western flower thrips (Thysanoptera:Thripidae) tested in a new residue-on-glass test. Journal Econ.Entomol., 87 (5),1144-1146. https://doi.org/10.1093/jee/87.5.1141 Broughton S, Cousins D and Rahman T. (2015). Evaluation of semiochemicals for their potential application in mass trapping of Frankliniella occidentalis (Pergande) in roses. Crop Protection. Vol 67, pp:130-135. https://doi.org/10.1016/j.cropro.2014.10.011 Buitenhuis R y Shipp J. (2008). Influence of plant species and plant growth stage on Frankliniella occidentalis pupation behaviur in greenhouse ornamentals. J Appl Entomol 132:86-88. https://doi.org/10.1111/j.1439-0418.2007.01250.x Buitrago-Villanueva, I., Muñoz-Cárdenas, K., Bustos, A., Cantor, F. (2010). Evaluation of host plants for the production of the thrips Frankliniella occidentalis (Thysanoptera: Thripidae) as prey supply for its controllers. Rev. Fac. Ciencias Básicas 6 (1), 12–23. Bustillo A. (2009). Evaluación de insecticidas químicos y biológicos para controlar Frankliniella occidentalis (Thysanoptera: Thripidae) en cultivos de espárragos. Revista Colombiana de Entomologia. Vol 35 (1),1-3. DOI:10.25100/socolen.v35i1.9182 Cárdenas. (1993). Especies de trips (Thysanoptera: Thripidae) más comunes en invernaderos de flores de la Sabana de Bogotá. Agronomía Colombiana. Vol 10 (2),132-143. Carrión & Desgarennes, (2012). Efecto de Paecilomyces lilacinus en Nemátodos de vida Libre Asociados a la Rizósfera de Papas Cultivadas en la Región del Cofre de Perote, Veracruz, México. Revista mexicana de fitopatología. Vol 30 (1), pp: 86- 90. Ceniflores. (2021). Sector floricultor. Ceniflores. https://ceniflores.org/sector- floricultor/#:~:text=Nuestro%20pa%C3%ADs%20exporta%20flores%20a,millones %20correspondientes%20a%20302.000%20toneladas. Chambers E, Hapairai L, Peel B, Bossin H and Dobson S. (2011). Male Mating Competitiveess of a Wolbachia-introgessed Aedes polynesiensis Strain under Semi-Field Conditions. PLoS Negl Trop. Vol 5(8). DOI: 10.1371/journal.pntd.0001271 Chege F, Bundi M, Kisingir J and Nekambi E. (2021). Assessing the Impact of Strengthening the Phytosanitary Capacity of the Floriculture Sector in Uganda. CABI Working Paper, 17 - 24. DOI: https://dx.doi.org/10.1079/CABICOMM-62-8143. Cloyd. (2009). Western Flower Thrips (Frankliniella occidentalis) Management on Ornamental Crops Grown in Greenhouses: Have We Reached an Impasse?.Pest Technology Vol 3,1-9. Cotes. (2018). Control Biológico de fitopatógenos, insectos y ácaros. Primera edición. Agrosavia. Cubillos-Salamanca Y, Rodriguez-Maciel J, Pineda-Guillermo S, Silva-Rojas H, Berzosa J, Tejada-Reyes and Rebollar-Alviter A. (2020). Identification of Thrips Species and Resistance of Frankliniella occidentalis (Thysanoptera: Thripidae) to Malathion, Spinosad, and Bifenthrin in Blackberry Crops. Florida Entomologist. Vol 102 (4), pp: 738-746. https://doi.org/10.1653/024.102.0411 Emami K, Zahedi A and Saboori A. (2015). Diet dependent olfactory response and predation rate of Neoseiulus californicus (Acari: Phytoseiidae) in the presence of Frankliniella occidentalis and Tetranychus urticae. Persian Journal of Acarology. Vol. 4(1), 95–109. https://doi.org/10.22073/pja.v4i1.10195 Forts S and Nelson K. (1996). Molecular Biology of the Symbiotic-Pathogenic Bacteria Xenorhabdus spp. and Photorhabdus spp. Microbiological Reviews. Vol 60 (1), pp: 21–43. Gaum W, Giliomee J and Pringle K. (1994). Life history and life tables of western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae), on english cucumbers. Bulletin of Entomological Research. Vol 84, pp: 219-224. DOI: https://doi.org/10.1017/S0007485300039729 Grosman AH, Messelink GJ, Groot EB de. (2011). Combined use of a mulch layer and the soil-dwelling predatory mite Macrocheles robustulus (Berlese) enhance the biological control of sciarids in potted plants. IOBC/WPRS Bulletin 68, pp: 51–54. Heidemann K, Scheu S, Ruess L and Maraun M. (2011). Molecular detection of nematode predation and scavenging in oribatid mites: Laboratory and field experiments. Soil Biology and Biochemistry. Vol 43 (11), pp: 2229-2236. https://doi.org/10.1016/j.soilbio.2011.07.015 Aguilar-Menezes E, Aquino A, Correira M y Menezes E.(2007). Ácaros: Taxonomia bioecologia e sua importancia Agricola. Primeraedición. Embrapa. Herron G, James T. (2005). Monitorins insecticide resistance in Australin Frankliniella occidentalis Pergande (Thysanoptera: Thripidae) detects fipronil and spinosad resistence. Australian Journal of Entomology. Vol 44, 299-303. DOI:10.1111/j.1440-6055.2005. 00478.x. Hilgert N, Lambaré A, Vignale N, Stampella P and Pochettino M. (2014). ¿Especies naturalizadas o antropizadas? Introducidos en época histórica en el norte de Argentina. Revista Biodiversidad Neotropical. Vol 4 (2), pp: 69-87. http://sedici.unlp.edu.ar/handle/10915/96907 Inserra RN, Davis DW. (1983). Hypoaspis nr. aculeifer: a mite predacious on Root-knot and Cyst nematodes. Journal of Nematology 15 (2), pp: 324–325. Jensen S. (2000). Insecticide resistence in the western flower thrips, Frankliniella occidentalis. Pest Manag. Vol 5, 131-146. DOI: 10.1023/A:1009600426262 Jiang R, Ma D, Zhao F and Mcgrath S. (2005). Blackwell Publishing, Ltd. Cadmium hyperaccumulation protects Thlaspi caerulescens from leaf feeding damage by thrips (Frankliniella occidentalis). New Phytologist. Vol 167: 805–814. doi:10.1111/j.1469-8137.2005.01452. x. Karyanto A, Rahmadi C, Franklin E, Ssusilo F, Wellington J. Collembola, acari y otra mesofauna del suelo: el método Berlese. (2013). En Fátima S, Moreira E, Huising J y Bignell D. (Eds.). Manual de Biología de suelos tropicales. Instituto Nacional de Pesquisas da amazonia. Kevan D, and Sharma G. (1964). Observations on the biology of Hypoaspis aculeifer (Canestrini, 1884), apparently new to North America (Acarina: Mesostigmata: Laelapidae). Acarologia. Vol 7, pp: 647–658. Kivett, J. M. (2015). Efficacy of entomopathogenic organisms Beauveria bassiana, Isaria fumosoroseus, Metarhizium anisopliae and Chromobacterium subtsugae against the western flower thrips, Frankliniella occidentalis, under both laboratory and greenhouse conditions (Doctoral dissertation, Kansas State University). Koul O and Dhaliwal. (2003). Predators and Paraditoids. First edition. Editorial Taylor & Francis. Losey J. and Denno R. (1998). Interspecific variation in the escape responses of aphids: effect on risk of predation from foliar-foraging and ground-foraging predators. Oecologia. Vol 115, pp: 245–252. Loyola E, Dole M, and Dunning R. (2019). South and Central America cut flower production and postharvest survey. HortTechnology, 29(6), 898–905. https://doi.org/10.21273/ HORTTECH04484-19. Maoz Y, Gal S, Argov Y, Coll M, Palevsky E. (2011). Biocontrol of persea mite, Oligonychus perseae, with an exotic spider mite predator and an indigenous pollen feeder. Biological Control 59 (2), pp: 147–157. https://doi.org/10.1016/j.biocontrol.2011.07.014 Mason P. (2021). Biological control global impacts challenges and future directions of pest management. First edition. Editorial CRC Press. Massaro M, Montrazi M, Melo JW S and de Moraes GJ. (2021). Small-Scale Production of Amblyseius tamatavensis with Thyreophagus cracentiseta (Acari: Phytoseiidae, Acaridae). Insects. Vol 12(10). https://doi.org/10.3390/insects12100848 Mahar AN., Munir M., Elawad S., Gowen S R and Hague N G. (2004). Microbial control of diamondback moth, Plutella xylostella L. (Lepidoptera: Yponomeutidae) using bacteria (Xenorhabdus nematophila) and its metabolites from the entomopathogenic nematode Steinernema carpocapsae. J Zhejiang Univ. SCI. Vol 5 (10), pp:1183-1190. 10.1631/jzus.2004.1183 Messelink, G and Holstein-Saj, R. (2008). Improving thrips control by the soil-dwelling predatory mite Macrocheles robustulus (Berlese). Integrated Control in Protectec Crops. Vol 32, pp: 135-138. Momen and Khader. (2010). Los hongos como fuente de alimento del depredador generalista Neoseiulus barkeri (Hughes) (Acari: Phytoseiidae). Acta Phytopathologica et Entomologica Hungarica. Vol 25 (2), 401-409. https://doi.org/10.1556/aphyt.45.2010.2.18 Nderitu J, Wambua E, Olubayo F, Kasina M and Waturu C. (2007). Management of thrips (Thysanoptera: Thripidae) infestation on French beans (Phaseolus vulgaris L.) in Kenya by combination of insecticides and varietal resistance. Entomol. Vol 4, 469-473. Doi: 10.3923/je.2007.469.473 N’Dri J, Guéi A, Hance T, Yéo J, Ahui J and André H. (2018). From the Efficiency of Berlese Tullgren Funnel to the Spatiotemporal Variation of Two Uropodina Genera, Afrotrachytes Kontschán, 2006 and Trachyuropoda Berlese, 1888 (Acari, Mesostigmata) in Côte d’Ivoire. Journal of Advances in Biology. Vol 11 (1). Pp: 2201 -2217. DOI: 10.24297/jab.v11i1.7470 Park C. (2007). Dictionary of environment and conservation. First edition. Oxford University Press. Peacock L, Carter P, Powers S, and Karp A. (2003). Geographic variation in phenotypic traits in Phratora spp, and the effects of conditioning on feeding preference. Entomologia Experimentalis et Applicata 109, 31–37. Petcharad B, Košulič O and Michalko. (2018). Insecticides alter prey choice of potential biocontrol agent Philodromus cespitum (Araneae, Philodromidae).Chemosphere. Vol 202, pp: 491-497. https://doi.org/10.1016/j.chemosphere.2018.03.134 Qian L, Huang Z, Liu X, Li C, Gao Y, Gui F, Chang X and Chen F. (2020). Efect of elevated CO2 on interactions between the host plant Phaseolus vulgaris and the invasive western fower thrips, Frankliniella occidentalis. Journal of Pest Science. Vol 94(1), pp: 43- 54. https://doi.org/10.1007/s10340-020-01208-8 Rahman T, Spafford H and Broughton S. (2012). Use of spinosad and predatory mites for the management of Frankliniella occidentalisin low tunnel-grown strawberry. Entomologia experimentalis et Applicata. Vol 142, PP: 258-270. https://doi.org/10.1111/j.1570-7458.2012.01221.x Rothstein M, Götz P. (1968). Biosynthesis of fatty acids in the free-living nematode, Turbatrix aceti. Arch. Biochem. Biophys. Vol 126, pp: 131–140. doi:10.1016/0003-9861(68)90567-5. Rueda-Ramírez D, Rios-Malaver D, Varela-Ramírez A and Moraes GJ. (2018). Colombian population of the mite Gaeolaelaps aculeifer as a predator of the thrips Frankliniella occidentalis and the possible use of an astigmatid mite as its factitious prey. Systematic & Applied Acarology 23(12), pp: 2359–2372. https://doi.org/10.11158/saa.23.12.8 Rueda-Ramírez D, Rios-Malaver D, Varela-Ramírez A and Moraes GJ. (2019). Biology and predation capacity of Parasitus bituberosus (Acari: Mesostigmata: Parasitidae) on Frankliniella occidentalis (Thysanoptera: Thripidae) and free-living nematodes as complementary diet. Pest Management Science 75:1819–1830. https://doi.org/10.1002/ps.5326 Rueda -Ramírez D, Rios Malaver D, Forero Tarazona L, Ramírez-Godoy A and Varela-Ramírez A. (2020). Gaeolaelaps aculeifer (Mesostigmata: Laelapidae), a new alternative for pest management in Colombia. Vol 149, 67-69. Rueda-Ramírez D, Varela Ramírez A, Ebratt Ravelo E and de Moraes G. (2021). Edaphic mesostigmatid mites (Acari: Mesostigmata) and thrips (Insecta: Thysanoptera) in rose cultivation and secondary vegetation areas in the Bogotá plateau, Colombia. International Journal of Acarology 47(1),8–22. https://doi.org/10.1080/01647954.2020.1866666 Rueda-Ramírez D, Narberhaus A, Palevsky E, Hallmann J and Ruess L. (2023a). Bottom-up effects of nematode prey on soil predatory mites (Acari: Mesostigmata). Soil Biology and Biochemistry, 185,109-143. https://doi.org/10.1016/j.soilbio.2023.109143 Rueda-Ramírez D, Palevsky E, Ruess L. (2023b). Soil nematodes as a means of conservation of soil predatory mites for biocontrol. Agronomy 13(1). https://doi.org/10.3390/agronomy13010032 Ruess L, Müller-Navarra. (2019). Essential Biomolecules in Food Webs. Front. Ecol. Evol. Vol 7, 269. https://doi.org/10.3389/fevo.2019.00269 Sáenz A y Luque J. (2000). Ciclo de vida del Entomonematodo nativo Steinernema feltiae Filipjev. Agronomía Colombiana. Vol 17, pp: 17-24. Saito, T and Brownbridge, M. (2016). Compatibility of soil-dwelling predators and microbial agents and their efficacy in controlling soil-dwelling stages of western flower thrips Frankliniella occidentalis. Biological Control. Vol 92, 92- 100.https://doi.org/10.1016/j.biocontrol.2015.10.003 Salazar-Moncada D, Morales-Muñoz J y Cardona-Bustos N. (2020). Revista Facultad Nacional de Agronomia Medellin. Vol 73 (1), pp: 9057-9064. DOI:10.15446/rfnam.v73n1.76027 Sandoval D. (2023). Identificación y método de cría de ácaros Astigmatina y compatibilidad entre tres especies de ácaros Mesostigmata depredadores de suelo [Tesis de pregrado, Universidad Nacional de Colombia]. Sonnino A y Ruane J. (2013). Biotecnologías e innovación el compromiso social de la ciencia. En Hodson E y Zamudio T (Eds). Biotecnologías e innovación: el compromiso social de la Ciencia. (pp. 25 -52). Pontificia Universidad Javeriana. Schneider-Orelli O. (1947). Entomoligisches praktikum. Aarau: Sauerlander, 149. Szafranek P, Lewandowski M, Kozak M. (2013). Prey preference and life tables of the predatory mite Parasitus bituberosus (Acari: Parasitidae) when offered various prey combinations. Experimental and Applied Acarology 61(1), pp: 53–67. https://doi.org/10.1007/s10493-013-9701-y Valcarcel. (2013). Memorias Congreso Colombiano de Entomología. 40 congreso Socolen. Bogotá, D.C., 10, 11 y 12 de julio de 2013. Sociedad Colombiana de Entomología - Socolen. DVD. Bogotá, D.C., Colombia. Van Lenteren J. (2012). The state of commercial augmentative biological control: plenty of natural enemies, but a frustrating lack of uptake. BioControl. Vol 57(1), pp: 1-20. doi:10.1007/s10526-011-9395-1 Venter Z, Jacobs K and Hawkins H. (2016). The impact of crop rotation on soil microbial diversity: A meta-analysis. Pedobiologia. Vol 9, pp: 215–223. https://doi.org/10.1016/j.pedobi.2016.04.001 Watts, J.L.; Browse, J. (2002). Genetic dissection of polyunsaturated fatty acid synthesis in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA. Vol 99, pp: 5854– 5859. doi: 10.1073/pnas.092064799. Webster J, Chen G and Li J. (1998). Parasitic worms. An ally in the war against the superbugs. Parasite Today. Vol 14, pp: 161–163. 10.1016/s0169-4758(97)01220-9 White G. (1927). A method for obtaining infective nematode larvae from cultures. Science. Vol 66, pp: 302-303. 10.1126/science.66.1709.302-a Wiethoff J, Poehling H, and Meyhöfer R. (2004). Combining plant- and soil-dwelling predatory mites to optimise biological control of thrips. Experimental & Applied Acaroly. Vol 34, pp: 239-261. https://doi.org/10.1023/B:APPA.0000049137.26697.b9 Zhang Z, Wu Q, Li X, Zhang Y, Xu B and Zhu G. (2007). Life history of western flower thrips, Frankliniella occidentalis (Thysa., Thripidae), on five different vegetable leaves. Journal of applied entomology. Vol 135 (5), pp: 347-354. https://doi.org/10.1111/j.1439-0418.2007.01186.x Zhang, k., Yuan, J., Wang, J., Hua, D., Zheng, X., Tao, M., Zhang, Z., Wan, Y., Wang, S., Zhang, Y., Liang, P and Wu, Q. (2022). Susceptibility levels of field populations of Frankliniella occidentalis (Thysanoptera: Thripidae) to seven insecticides in China. Crop protection. Vol 153. https://doi.org/10.1016/j.cropro.2021.105886 |
dc.rights.spa.fl_str_mv |
Derechos reservados al autor, 2024 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Reconocimiento 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Reconocimiento 4.0 Internacional Derechos reservados al autor, 2024 http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xxi, 82 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias Agrarias - Maestría en Ciencias Agrarias |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Agrarias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/86531/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/86531/2/1030607177.2024.pdf https://repositorio.unal.edu.co/bitstream/unal/86531/3/1030607177.2024.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a d1b5258b8e458ff385fdbc6c9fedba12 0426e2255b76b0507a0cc799d9639f0b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089235529990144 |
spelling |
Reconocimiento 4.0 InternacionalDerechos reservados al autor, 2024http://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Rueda Ramírez, Diana Marcela2c4f5d09f79ad449ece89e5fa4c2b3cdRamírez Godoy, Augusto73c680e5d85c269dc8bf3c061fe30a3aValencia Polanco, Juan Carlos60ecf840700955ff9ec00d85f6ff85d0Manejo integrado de PlagasValencia Polanco, Juan Carlos [0000000287862871]2024-07-17T16:48:36Z2024-07-17T16:48:36Z2024https://repositorio.unal.edu.co/handle/unal/86531Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, fotografías, tablasDado el impacto y al difícil control del trip Frankliniella occidentalis (Pergande, 1895) (Thysanoptera: Thiripidae) en la floricultura, su manejo integrado está bajo constante investigación e innovación para complementar el control que se ha venido realizado. En este sentido, el control biológico está tomando más fuerza en la actualidad. Si bien en la floricultura ya se manejan algunos agentes de control biológico ACB que regulan a la plaga en la parte aérea de la planta, últimamente se están evaluando especímenes que habitan en el suelo y pueden depredar o parasitar los estadios de pupa y prepupa de los trips. Además de conocer el grado de depredación o control de la plaga en laboratorio, a los ACB se les tienen que realizar una serie de pruebas para poder saber cuáles son las mejores herramientas para su cría masiva (evaluaciones de dietas y sustratos), evaluaciones de compatibilidades con otros organismos, y el estudio de la interacción entre la planta, la plaga y el controlador finalizando con una valoración del establecimiento en campo. Por tal motivo, el objetivo general de esta tesis fue avanzar en el conocimiento de la compatibilidad con otros agentes y de los métodos de producción, eficacia y permanencia de cada una de las tres especies (Gaeolaelaps aculeifer (Canestrini, 1984) (Laelapidae), Macrocheles robustulus (Berlese, 1904) (Macrochelidae) y Parasitus bituberosus Karg, 1972 (Parasitidae)) prometedoras para el control biológico de trips en fases edáficas. Para esto se evaluaron dietas (Los nematodos: Rhabditella axei (Cobbold) (Chitwood, 1933) (Nematoda: Rhabditidae) y Steinernema feltiae Filipjev, 1934 (Rhabditida: Steinernematidae) y el ácaro astigmata Tyrophagus putrescentiae (Schrank) (Astigmatina: Acaridae)) y sustratos (Vermicultita (V), cascarilla de arroz (CA) y fibra de coco (FC)). También se hicieron pruebas de semicampo en los invernaderos de propagación vegetal de la Universidad Nacional de Colombia sede Bogotá (4°38′08′′N 74°04′58′′O) evaluado el daño de F. occidentalis al liberar los tres ácaros Mesostigmata en plantas de fríjol (Phaseolus vulgaris L.). Finalmente se realizó una prueba de permanencia de los ácaros liberados en un cultivo de rosas en una finca ubicada en el municipio de Subachoque Cundinamarca (4°86′23′′N, -74°22′34′′O) trabajándose camas sembradas con la variedad Freedom. Los resultados demostraron que la mejor dieta fue R. axei con una oviposición diaria por hembra de: 2.4 ± 0.5; 3.3 ± 0.6 y 8.6 ± 0.4 para G. aculeifer, M. robustulus y P. bituberosus respectivamente. Por otra parte, para ningún ácaro se presentó una mortalidad mayor al 2% al aplicarse S. feltiae. En cuanto a los sustratos, para G. aculeifer todos los sustratos estimularon un aumento en su población, en cambio para M. robustulus V y CA obtuvieron las mejores poblaciones y para P. bituberosus V fue el único sustrato que genero una población considerable. Con respecto a los resultados del capítulo dos se presentó que el control positivo T0+ obtuvo una reducción en el número de hojas y en el área foliar, así como un mayor porcentaje de daño (9.4 ± 0.9) comparado con T0- y con los tratamientos en los que hubo liberación de ácaros. Después del control negativo, el tratamiento T3 con la liberación de P. bituberosus presentó los mejores resultados de trips/hoja (0.8 ± 0.6) y porcentaje de daño (2.5 ± 0.8). En cuanto a la permanencia de los ácaros, se encontró que al final del experimento todas las especies liberadas presentaban algunos individuos en el sustrato. Finalmente, para el capítulo tres los resultados mostraron que la finca presentaba dos grupos predominantes de ácaros Mesostigmata: Parasitidae (Parasitidae1 e individuos Pergamasus sp.). En cuanto a la permanencia se obtuvo que para las 3 y 4 sdl todas las tres especies de ácaros liberados lograron permanecer en los puntos de liberación (T1 = 10.7 ± 3.8; T2 = 9.1 ± 3.7; T3 = 15 ± 3) individuos/1000 cm3 y (8 ± 2.3) para G. aculeifer y (5 ± 2.2) para M. robustulus (individuos/1000 cm3) en el tratamiento de liberación combinada (T4) para 4sdl, con mejores resultados en los puntos hacia el centro de la cama (punto B). Se concluye que, se logró establecer una dieta y un sustrato para la cría masiva de los ácaros Mesostigmata y se pudo evaluar la permanencia y ver el efecto positivo en la reducción del daño producción por F. occidentalis al liberar los tres ACB. (Texto tomado de la fuente)Within the research of new possible biological control agents (BCA) that complement IPM, there is the evaluation of substrates for the development of massive offspring and the study of the interaction (compatibilities and diets) of the BCA with other organisms of its kind. ecosystem. In floriculture, although there are already some CBAs that have been used for some time, there are new CBA alternatives that have been evaluated, such as entomopathogenic nematodes and predatory Mesostigmata mites that live in the soil, for the control of western thrips of floers Frankliniella occidentalis (Pergande, 1895) (Thysanoptera: Thiripidae). However, additional research is still needed for its use, such as the selection of mass breeding methods and compatibility studies. The objective of this research was to evaluate diets and substrates for the mass breeding of three Mesostigmata soil mites (Gaeolaelaps aculeifer (Canestrini,1984) (Laelapidae), Macrocheles robustulus (Berlese, 1904) (Macrochelidae) and Parasitus bituberosus Karg, 1972 (Parasitidae)) and compatibility with the entomopathogenic nematode Steinernema feltiae Filipjev, 1934. For this, the following were evaluated for each of the three species of Mesostigmata: 1) three diets: the free-living nematode Rhabditella axei (Cobbold) (Chitwood, 1933) (Nematoda: Rhabditidae), the entomopathogenic nematode S. feltiae and the Astigmata mite Tyrophagus putrescentiae (Scrank) (Astigmatina: Acaridae); 2) mortality due to S. feltiae: and 3) the substrates: vermiculite (V), rice husk (RH) and coconut fiber (CF) for mass rearing using R. axei as diet. The results showed that the best diet was R. axei with a daily oviposition per female of: 2.4 ± 0.5; 3.3 ± 0.6 and 8.6 ± 0.4 for G. aculeifer, M. robustulus and P. bituberosus respectively. On the other hand, for no mite there was a mortality greater than 2% when S. feltiae was applied. Finally, for G. aculeifer all substrates stimulated an increase in its population and it was RH that generated the highest value (540 ± 391 individuals/breeding unit); However, for M. robustulus V and RH they obtained the best populations and RH was the highest (304 ± 70 individuals/breeding unit) and P. bituberosus V was the only substrate that generated a considerable population (122 ± 16 individuals/breeding unit). breeding unit). In conclusion, the results presented in this chapter select for each of the mites the most determining variables for better efficiency when carrying out mass breeding. Also, with the evaluations made, there is a greater understanding of the compatibility that exists with S. feltiae.MaestríaMagíster en Ciencias AgrariasEntomologíaxxi, 82 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias Agrarias - Maestría en Ciencias AgrariasFacultad de Ciencias AgrariasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetalesControl biológico de plagasFloriculturabiological pest controlfloricultureControl biológicodietascompatibilidadagente de control biológicotripsBiological controldietscompatibilitybiological control agentthripsEvaluación de la liberación de ácaros Mesostigmata en el suelo para el control de Frankliniella occidentalis asociado al cultivo de rosaEvaluation of the release of Mesostigmata mites in the soil for the control of Frankliniella occidentalis associated with rose cultivationTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAbbatiello. (1965). A Culture chamber for Rearing Soil Mites. Turtox News 43:162- 164.Akhurst, J. (1993). Bacterial symbionts of entomopathogenic nematodes - the power behind the throne. Nematodes and the Biological Control of Insect Pests. CSIRO. Publications.12.Asocolflores. (2022, 15 de octubre). Flores entre las flores: la mujer y su papel fundamental en la floricultura colombiana. Asocolflores. https://asocolflores.org/es/flores-entre-las-flores-la-mujer-y-su-papel-fundamental- en-la-floricultura-colombiana/Attavian. (2014). Cut Flowers and Greenery Import Manual. First edition. Editorial United States Department of Agriculture – USDA.Ávila J. (2017). Innovación: una decisión llena de oportunidades para la floricultura. Metroflor. https://www.metroflorcolombia.com/innovacion-una-decision-llena-de- oportunidades-para-la-floricultura/Azevedo LH, Leite LG, Chacon-Orozco JG, Moreira MFP, Ferreira MP, González- Cano LM, Borges V, Rueda-Ramírez D, Moraes GJ and Palevsky E. (2019). Free living nematodes as alternative prey for soil predatory mites: An interdisciplinary case study of conservation biological control. Biological Control, 132,128–134. https://doi.org/10.1016/j.biocontrol.2019.02.007Azevedo LH, Moreira MFP, Pereira GG, Borges V, de Moraes GJ, Inomoto MM, Vicente MH, de Siqueira Pinto M, Peres LEP, Rueda-Ramírez D, Carta L, Meyer SLF, Mowery J, Bauchan G, Ochoa R and Palevsky E. (2020). Combined releases of soil predatory mites and provisioning of free-living nematodes for the biological control of root-knot nematodes on ‘Micro Tom tomato.’ Biological Control, 146,104- 280. https://doi.org/10.1016/j.biocontrol.2020.104280Bedano J Cantu M and Doucet E. (2006). Influence of three different land management practices on soil mite (Arachnida: Acari) densities in relation to a natural soil Applied Soil Ecology 32, 293–304. DOI:10.1016/j.apsoil.2005.07.009Beretta GM, Deere JA, Messelink GJ, Muñoz-Cárdenas K, Janssen A. (2022). Review: predatory soil mites as biocontrol agents of above and below-ground plant pests. Experimental and Applied Acarology 87, 143–162. https://doi.org/10.1007/s10493-022-00723-wBerndt O, Meyhofer R and Poehling H. (2004). The edaphic phase in the ontogenesis of Frankliniella occidentalis and comparison of Hypoaspis miles and Hypoaspis aculeifer as predators of soil-dwelling thrips stages. Biological control. Vol 30, 17-24. https://doi.org/10.1016/j.biocontrol.2003.09.009Bielza P, Balanza B, Cifuentes D, Mendoza J. (2020). Challenges facing arthropod biological control: identifying traits for genetic improvement of pradators in protectec crops. Pest Management Science. DOI: 10.1002/ps.5857Britto E, Gago J and de Morae G. (2012). How promising is Lasioseius floridensis as a control agent of Polyphagotarsonemus latus? Exp Appl Acarol 56, 221–23. DOI10.1007/s10493-012-9513-5Bussaman P, Sa-Uth C, Rattanasena P and Chandrapatya A. (2012). Acaricidal activities of whole cell suspension, cell-free supernatant, and crude cell extract of Xenorhabdus stokiae against mushroom mite (Luciaphorus sp.). Biomedicine & Biotechnology). Vol 13 (4), pp: 261-266. 10.1631/jzus.B1100155Brodsgaard H. (1994). Insecticide resistance in European and African strains of western flower thrips (Thysanoptera:Thripidae) tested in a new residue-on-glass test. Journal Econ.Entomol., 87 (5),1144-1146. https://doi.org/10.1093/jee/87.5.1141Broughton S, Cousins D and Rahman T. (2015). Evaluation of semiochemicals for their potential application in mass trapping of Frankliniella occidentalis (Pergande) in roses. Crop Protection. Vol 67, pp:130-135. https://doi.org/10.1016/j.cropro.2014.10.011Buitenhuis R y Shipp J. (2008). Influence of plant species and plant growth stage on Frankliniella occidentalis pupation behaviur in greenhouse ornamentals. J Appl Entomol 132:86-88. https://doi.org/10.1111/j.1439-0418.2007.01250.xBuitrago-Villanueva, I., Muñoz-Cárdenas, K., Bustos, A., Cantor, F. (2010). Evaluation of host plants for the production of the thrips Frankliniella occidentalis (Thysanoptera: Thripidae) as prey supply for its controllers. Rev. Fac. Ciencias Básicas 6 (1), 12–23.Bustillo A. (2009). Evaluación de insecticidas químicos y biológicos para controlar Frankliniella occidentalis (Thysanoptera: Thripidae) en cultivos de espárragos. Revista Colombiana de Entomologia. Vol 35 (1),1-3. DOI:10.25100/socolen.v35i1.9182Cárdenas. (1993). Especies de trips (Thysanoptera: Thripidae) más comunes en invernaderos de flores de la Sabana de Bogotá. Agronomía Colombiana. Vol 10 (2),132-143.Carrión & Desgarennes, (2012). Efecto de Paecilomyces lilacinus en Nemátodos de vida Libre Asociados a la Rizósfera de Papas Cultivadas en la Región del Cofre de Perote, Veracruz, México. Revista mexicana de fitopatología. Vol 30 (1), pp: 86- 90.Ceniflores. (2021). Sector floricultor. Ceniflores. https://ceniflores.org/sector- floricultor/#:~:text=Nuestro%20pa%C3%ADs%20exporta%20flores%20a,millones %20correspondientes%20a%20302.000%20toneladas.Chambers E, Hapairai L, Peel B, Bossin H and Dobson S. (2011). Male Mating Competitiveess of a Wolbachia-introgessed Aedes polynesiensis Strain under Semi-Field Conditions. PLoS Negl Trop. Vol 5(8). DOI: 10.1371/journal.pntd.0001271Chege F, Bundi M, Kisingir J and Nekambi E. (2021). Assessing the Impact of Strengthening the Phytosanitary Capacity of the Floriculture Sector in Uganda. CABI Working Paper, 17 - 24. DOI: https://dx.doi.org/10.1079/CABICOMM-62-8143.Cloyd. (2009). Western Flower Thrips (Frankliniella occidentalis) Management on Ornamental Crops Grown in Greenhouses: Have We Reached an Impasse?.Pest Technology Vol 3,1-9.Cotes. (2018). Control Biológico de fitopatógenos, insectos y ácaros. Primera edición. Agrosavia.Cubillos-Salamanca Y, Rodriguez-Maciel J, Pineda-Guillermo S, Silva-Rojas H, Berzosa J, Tejada-Reyes and Rebollar-Alviter A. (2020). Identification of Thrips Species and Resistance of Frankliniella occidentalis (Thysanoptera: Thripidae) to Malathion, Spinosad, and Bifenthrin in Blackberry Crops. Florida Entomologist. Vol 102 (4), pp: 738-746. https://doi.org/10.1653/024.102.0411Emami K, Zahedi A and Saboori A. (2015). Diet dependent olfactory response and predation rate of Neoseiulus californicus (Acari: Phytoseiidae) in the presence of Frankliniella occidentalis and Tetranychus urticae. Persian Journal of Acarology. Vol. 4(1), 95–109. https://doi.org/10.22073/pja.v4i1.10195Forts S and Nelson K. (1996). Molecular Biology of the Symbiotic-Pathogenic Bacteria Xenorhabdus spp. and Photorhabdus spp. Microbiological Reviews. Vol 60 (1), pp: 21–43.Gaum W, Giliomee J and Pringle K. (1994). Life history and life tables of western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae), on english cucumbers. Bulletin of Entomological Research. Vol 84, pp: 219-224. DOI: https://doi.org/10.1017/S0007485300039729Grosman AH, Messelink GJ, Groot EB de. (2011). Combined use of a mulch layer and the soil-dwelling predatory mite Macrocheles robustulus (Berlese) enhance the biological control of sciarids in potted plants. IOBC/WPRS Bulletin 68, pp: 51–54.Heidemann K, Scheu S, Ruess L and Maraun M. (2011). Molecular detection of nematode predation and scavenging in oribatid mites: Laboratory and field experiments. Soil Biology and Biochemistry. Vol 43 (11), pp: 2229-2236. https://doi.org/10.1016/j.soilbio.2011.07.015Aguilar-Menezes E, Aquino A, Correira M y Menezes E.(2007). Ácaros: Taxonomia bioecologia e sua importancia Agricola. Primeraedición. Embrapa.Herron G, James T. (2005). Monitorins insecticide resistance in Australin Frankliniella occidentalis Pergande (Thysanoptera: Thripidae) detects fipronil and spinosad resistence. Australian Journal of Entomology. Vol 44, 299-303. DOI:10.1111/j.1440-6055.2005. 00478.x.Hilgert N, Lambaré A, Vignale N, Stampella P and Pochettino M. (2014). ¿Especies naturalizadas o antropizadas? Introducidos en época histórica en el norte de Argentina. Revista Biodiversidad Neotropical. Vol 4 (2), pp: 69-87. http://sedici.unlp.edu.ar/handle/10915/96907Inserra RN, Davis DW. (1983). Hypoaspis nr. aculeifer: a mite predacious on Root-knot and Cyst nematodes. Journal of Nematology 15 (2), pp: 324–325.Jensen S. (2000). Insecticide resistence in the western flower thrips, Frankliniella occidentalis. Pest Manag. Vol 5, 131-146. DOI: 10.1023/A:1009600426262Jiang R, Ma D, Zhao F and Mcgrath S. (2005). Blackwell Publishing, Ltd. Cadmium hyperaccumulation protects Thlaspi caerulescens from leaf feeding damage by thrips (Frankliniella occidentalis). New Phytologist. Vol 167: 805–814. doi:10.1111/j.1469-8137.2005.01452. x.Karyanto A, Rahmadi C, Franklin E, Ssusilo F, Wellington J. Collembola, acari y otra mesofauna del suelo: el método Berlese. (2013). En Fátima S, Moreira E, Huising J y Bignell D. (Eds.). Manual de Biología de suelos tropicales. Instituto Nacional de Pesquisas da amazonia.Kevan D, and Sharma G. (1964). Observations on the biology of Hypoaspis aculeifer (Canestrini, 1884), apparently new to North America (Acarina: Mesostigmata: Laelapidae). Acarologia. Vol 7, pp: 647–658.Kivett, J. M. (2015). Efficacy of entomopathogenic organisms Beauveria bassiana, Isaria fumosoroseus, Metarhizium anisopliae and Chromobacterium subtsugae against the western flower thrips, Frankliniella occidentalis, under both laboratory and greenhouse conditions (Doctoral dissertation, Kansas State University).Koul O and Dhaliwal. (2003). Predators and Paraditoids. First edition. Editorial Taylor & Francis.Losey J. and Denno R. (1998). Interspecific variation in the escape responses of aphids: effect on risk of predation from foliar-foraging and ground-foraging predators. Oecologia. Vol 115, pp: 245–252.Loyola E, Dole M, and Dunning R. (2019). South and Central America cut flower production and postharvest survey. HortTechnology, 29(6), 898–905. https://doi.org/10.21273/ HORTTECH04484-19.Maoz Y, Gal S, Argov Y, Coll M, Palevsky E. (2011). Biocontrol of persea mite, Oligonychus perseae, with an exotic spider mite predator and an indigenous pollen feeder. Biological Control 59 (2), pp: 147–157. https://doi.org/10.1016/j.biocontrol.2011.07.014Mason P. (2021). Biological control global impacts challenges and future directions of pest management. First edition. Editorial CRC Press.Massaro M, Montrazi M, Melo JW S and de Moraes GJ. (2021). Small-Scale Production of Amblyseius tamatavensis with Thyreophagus cracentiseta (Acari: Phytoseiidae, Acaridae). Insects. Vol 12(10). https://doi.org/10.3390/insects12100848Mahar AN., Munir M., Elawad S., Gowen S R and Hague N G. (2004). Microbial control of diamondback moth, Plutella xylostella L. (Lepidoptera: Yponomeutidae) using bacteria (Xenorhabdus nematophila) and its metabolites from the entomopathogenic nematode Steinernema carpocapsae. J Zhejiang Univ. SCI. Vol 5 (10), pp:1183-1190. 10.1631/jzus.2004.1183Messelink, G and Holstein-Saj, R. (2008). Improving thrips control by the soil-dwelling predatory mite Macrocheles robustulus (Berlese). Integrated Control in Protectec Crops. Vol 32, pp: 135-138.Momen and Khader. (2010). Los hongos como fuente de alimento del depredador generalista Neoseiulus barkeri (Hughes) (Acari: Phytoseiidae). Acta Phytopathologica et Entomologica Hungarica. Vol 25 (2), 401-409. https://doi.org/10.1556/aphyt.45.2010.2.18Nderitu J, Wambua E, Olubayo F, Kasina M and Waturu C. (2007). Management of thrips (Thysanoptera: Thripidae) infestation on French beans (Phaseolus vulgaris L.) in Kenya by combination of insecticides and varietal resistance. Entomol. Vol 4, 469-473. Doi: 10.3923/je.2007.469.473N’Dri J, Guéi A, Hance T, Yéo J, Ahui J and André H. (2018). From the Efficiency of Berlese Tullgren Funnel to the Spatiotemporal Variation of Two Uropodina Genera, Afrotrachytes Kontschán, 2006 and Trachyuropoda Berlese, 1888 (Acari, Mesostigmata) in Côte d’Ivoire. Journal of Advances in Biology. Vol 11 (1). Pp: 2201 -2217. DOI: 10.24297/jab.v11i1.7470Park C. (2007). Dictionary of environment and conservation. First edition. Oxford University Press.Peacock L, Carter P, Powers S, and Karp A. (2003). Geographic variation in phenotypic traits in Phratora spp, and the effects of conditioning on feeding preference. Entomologia Experimentalis et Applicata 109, 31–37.Petcharad B, Košulič O and Michalko. (2018). Insecticides alter prey choice of potential biocontrol agent Philodromus cespitum (Araneae, Philodromidae).Chemosphere. Vol 202, pp: 491-497. https://doi.org/10.1016/j.chemosphere.2018.03.134Qian L, Huang Z, Liu X, Li C, Gao Y, Gui F, Chang X and Chen F. (2020). Efect of elevated CO2 on interactions between the host plant Phaseolus vulgaris and the invasive western fower thrips, Frankliniella occidentalis. Journal of Pest Science. Vol 94(1), pp: 43- 54. https://doi.org/10.1007/s10340-020-01208-8Rahman T, Spafford H and Broughton S. (2012). Use of spinosad and predatory mites for the management of Frankliniella occidentalisin low tunnel-grown strawberry. Entomologia experimentalis et Applicata. Vol 142, PP: 258-270. https://doi.org/10.1111/j.1570-7458.2012.01221.xRothstein M, Götz P. (1968). Biosynthesis of fatty acids in the free-living nematode, Turbatrix aceti. Arch. Biochem. Biophys. Vol 126, pp: 131–140. doi:10.1016/0003-9861(68)90567-5.Rueda-Ramírez D, Rios-Malaver D, Varela-Ramírez A and Moraes GJ. (2018). Colombian population of the mite Gaeolaelaps aculeifer as a predator of the thrips Frankliniella occidentalis and the possible use of an astigmatid mite as its factitious prey. Systematic & Applied Acarology 23(12), pp: 2359–2372. https://doi.org/10.11158/saa.23.12.8Rueda-Ramírez D, Rios-Malaver D, Varela-Ramírez A and Moraes GJ. (2019). Biology and predation capacity of Parasitus bituberosus (Acari: Mesostigmata: Parasitidae) on Frankliniella occidentalis (Thysanoptera: Thripidae) and free-living nematodes as complementary diet. Pest Management Science 75:1819–1830. https://doi.org/10.1002/ps.5326Rueda -Ramírez D, Rios Malaver D, Forero Tarazona L, Ramírez-Godoy A and Varela-Ramírez A. (2020). Gaeolaelaps aculeifer (Mesostigmata: Laelapidae), a new alternative for pest management in Colombia. Vol 149, 67-69.Rueda-Ramírez D, Varela Ramírez A, Ebratt Ravelo E and de Moraes G. (2021). Edaphic mesostigmatid mites (Acari: Mesostigmata) and thrips (Insecta: Thysanoptera) in rose cultivation and secondary vegetation areas in the Bogotá plateau, Colombia. International Journal of Acarology 47(1),8–22. https://doi.org/10.1080/01647954.2020.1866666Rueda-Ramírez D, Narberhaus A, Palevsky E, Hallmann J and Ruess L. (2023a). Bottom-up effects of nematode prey on soil predatory mites (Acari: Mesostigmata). Soil Biology and Biochemistry, 185,109-143. https://doi.org/10.1016/j.soilbio.2023.109143Rueda-Ramírez D, Palevsky E, Ruess L. (2023b). Soil nematodes as a means of conservation of soil predatory mites for biocontrol. Agronomy 13(1). https://doi.org/10.3390/agronomy13010032Ruess L, Müller-Navarra. (2019). Essential Biomolecules in Food Webs. Front. Ecol. Evol. Vol 7, 269. https://doi.org/10.3389/fevo.2019.00269Sáenz A y Luque J. (2000). Ciclo de vida del Entomonematodo nativo Steinernema feltiae Filipjev. Agronomía Colombiana. Vol 17, pp: 17-24.Saito, T and Brownbridge, M. (2016). Compatibility of soil-dwelling predators and microbial agents and their efficacy in controlling soil-dwelling stages of western flower thrips Frankliniella occidentalis. Biological Control. Vol 92, 92- 100.https://doi.org/10.1016/j.biocontrol.2015.10.003Salazar-Moncada D, Morales-Muñoz J y Cardona-Bustos N. (2020). Revista Facultad Nacional de Agronomia Medellin. Vol 73 (1), pp: 9057-9064. DOI:10.15446/rfnam.v73n1.76027Sandoval D. (2023). Identificación y método de cría de ácaros Astigmatina y compatibilidad entre tres especies de ácaros Mesostigmata depredadores de suelo [Tesis de pregrado, Universidad Nacional de Colombia].Sonnino A y Ruane J. (2013). Biotecnologías e innovación el compromiso social de la ciencia. En Hodson E y Zamudio T (Eds). Biotecnologías e innovación: el compromiso social de la Ciencia. (pp. 25 -52). Pontificia Universidad Javeriana.Schneider-Orelli O. (1947). Entomoligisches praktikum. Aarau: Sauerlander, 149.Szafranek P, Lewandowski M, Kozak M. (2013). Prey preference and life tables of the predatory mite Parasitus bituberosus (Acari: Parasitidae) when offered various prey combinations. Experimental and Applied Acarology 61(1), pp: 53–67. https://doi.org/10.1007/s10493-013-9701-yValcarcel. (2013). Memorias Congreso Colombiano de Entomología. 40 congreso Socolen. Bogotá, D.C., 10, 11 y 12 de julio de 2013. Sociedad Colombiana de Entomología - Socolen. DVD. Bogotá, D.C., Colombia.Van Lenteren J. (2012). The state of commercial augmentative biological control: plenty of natural enemies, but a frustrating lack of uptake. BioControl. Vol 57(1), pp: 1-20. doi:10.1007/s10526-011-9395-1Venter Z, Jacobs K and Hawkins H. (2016). The impact of crop rotation on soil microbial diversity: A meta-analysis. Pedobiologia. Vol 9, pp: 215–223. https://doi.org/10.1016/j.pedobi.2016.04.001Watts, J.L.; Browse, J. (2002). Genetic dissection of polyunsaturated fatty acid synthesis in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA. Vol 99, pp: 5854– 5859. doi: 10.1073/pnas.092064799.Webster J, Chen G and Li J. (1998). Parasitic worms. An ally in the war against the superbugs. Parasite Today. Vol 14, pp: 161–163. 10.1016/s0169-4758(97)01220-9White G. (1927). A method for obtaining infective nematode larvae from cultures. Science. Vol 66, pp: 302-303. 10.1126/science.66.1709.302-aWiethoff J, Poehling H, and Meyhöfer R. (2004). Combining plant- and soil-dwelling predatory mites to optimise biological control of thrips. Experimental & Applied Acaroly. Vol 34, pp: 239-261. https://doi.org/10.1023/B:APPA.0000049137.26697.b9Zhang Z, Wu Q, Li X, Zhang Y, Xu B and Zhu G. (2007). Life history of western flower thrips, Frankliniella occidentalis (Thysa., Thripidae), on five different vegetable leaves. Journal of applied entomology. Vol 135 (5), pp: 347-354. https://doi.org/10.1111/j.1439-0418.2007.01186.xZhang, k., Yuan, J., Wang, J., Hua, D., Zheng, X., Tao, M., Zhang, Z., Wan, Y., Wang, S., Zhang, Y., Liang, P and Wu, Q. (2022). Susceptibility levels of field populations of Frankliniella occidentalis (Thysanoptera: Thripidae) to seven insecticides in China. Crop protection. Vol 153. https://doi.org/10.1016/j.cropro.2021.105886InvestigadoresPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86531/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1030607177.2024.pdf1030607177.2024.pdfTesis de Maestría en Ciencias Agrariasapplication/pdf1463554https://repositorio.unal.edu.co/bitstream/unal/86531/2/1030607177.2024.pdfd1b5258b8e458ff385fdbc6c9fedba12MD52THUMBNAIL1030607177.2024.pdf.jpg1030607177.2024.pdf.jpgGenerated Thumbnailimage/jpeg5445https://repositorio.unal.edu.co/bitstream/unal/86531/3/1030607177.2024.pdf.jpg0426e2255b76b0507a0cc799d9639f0bMD53unal/86531oai:repositorio.unal.edu.co:unal/865312024-08-26 23:10:59.473Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |