Desarrollo de un nanogenerador piezoeléctrico para aplicaciones en sensores biomédicos

ilustraciones, diagramas

Autores:
zapata Hernandez, Juan Camilo
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/83074
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/83074
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Oxido de cinc
Dispositivos piezoeléctricos
Piezoelectric devices
Óxido de zinc
Salida eléctrica
Sensor
Textil
PENG
Zinc oxide
Electrical output
Sensor
PENG
Textiles
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_66ca1011d06ccaa9a0ba6892d4868ef2
oai_identifier_str oai:repositorio.unal.edu.co:unal/83074
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Desarrollo de un nanogenerador piezoeléctrico para aplicaciones en sensores biomédicos
dc.title.translated.eng.fl_str_mv Development of a piezoelectric nanogenerator for applications in biomedical sensors
title Desarrollo de un nanogenerador piezoeléctrico para aplicaciones en sensores biomédicos
spellingShingle Desarrollo de un nanogenerador piezoeléctrico para aplicaciones en sensores biomédicos
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Oxido de cinc
Dispositivos piezoeléctricos
Piezoelectric devices
Óxido de zinc
Salida eléctrica
Sensor
Textil
PENG
Zinc oxide
Electrical output
Sensor
PENG
Textiles
title_short Desarrollo de un nanogenerador piezoeléctrico para aplicaciones en sensores biomédicos
title_full Desarrollo de un nanogenerador piezoeléctrico para aplicaciones en sensores biomédicos
title_fullStr Desarrollo de un nanogenerador piezoeléctrico para aplicaciones en sensores biomédicos
title_full_unstemmed Desarrollo de un nanogenerador piezoeléctrico para aplicaciones en sensores biomédicos
title_sort Desarrollo de un nanogenerador piezoeléctrico para aplicaciones en sensores biomédicos
dc.creator.fl_str_mv zapata Hernandez, Juan Camilo
dc.contributor.advisor.none.fl_str_mv Buitrago Sierra, Robison
Santa Marín, Juan Felipe
dc.contributor.author.none.fl_str_mv zapata Hernandez, Juan Camilo
dc.contributor.researchgroup.spa.fl_str_mv Materiales Avanzados y Energía MATyER
dc.contributor.orcid.spa.fl_str_mv Zapata Hernandez, Juan Camilo [0000-0002-8664-5867]
dc.contributor.googlescholar.spa.fl_str_mv https://scholar.google.com/citations?user=bhXNtYcAAAAJ&hl=es
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
topic 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Oxido de cinc
Dispositivos piezoeléctricos
Piezoelectric devices
Óxido de zinc
Salida eléctrica
Sensor
Textil
PENG
Zinc oxide
Electrical output
Sensor
PENG
Textiles
dc.subject.lemb.spa.fl_str_mv Oxido de cinc
Dispositivos piezoeléctricos
dc.subject.lemb.eng.fl_str_mv Piezoelectric devices
dc.subject.proposal.spa.fl_str_mv Óxido de zinc
Salida eléctrica
Sensor
Textil
dc.subject.proposal.eng.fl_str_mv PENG
Zinc oxide
Electrical output
Sensor
PENG
Textiles
description ilustraciones, diagramas
publishDate 2022
dc.date.issued.none.fl_str_mv 2022
dc.date.accessioned.none.fl_str_mv 2023-01-23T20:50:04Z
dc.date.available.none.fl_str_mv 2023-01-23T20:50:04Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/83074
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/83074
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.indexed.spa.fl_str_mv RedCol
LaReferencia
dc.relation.references.spa.fl_str_mv Abd El-Ghaffar, M. A., Shaffei, K. A., Fouad Zikry, A. A., Mohamed, M. B., & Marzouq, K. A. G. (2016). Novel conductive nano-composite ink based on poly aniline, silver nanoparticles and nitrocellulose. Egyptian Journal of Chemistry, 59(4), 429–443. https://doi.org/10.21608/ejchem.2016.1101
Acosta, M., Novak, N., Rojas, V., Patel, S., Vaish, R., Koruza, J., & Rossetti, G. A. (2017). BaTiO3-based piezoelectrics: Fundamentals, current status, and perspectives. 041305.
Ahmad, M., Iqbal, M. A., Kiely, J., Luxton, R., & Jabeen, M. (2017). Enhanced output voltage generation via ZnO nanowires (50 nm): Effect of diameter thinning on voltage enhancement. Journal of Physics and Chemistry of Solids, 104, 281–285. https://doi.org/10.1016/j.jpcs.2017.01.006
Al-Heniti, S., Umar, A., & Zaki, H. M. (2015). Synthesis and characterization of zinc oxide nanosheets for dye-sensitized solar cells. Journal of Nanoscience and Nanotechnology, 15(12), 9954–9959. https://doi.org/10.1166/jnn.2015.10693
AlAhzm, A. M., Alejli, M. O., Ponnamma, D., Elgawady, Y., & Al-Maadeed, M. A. A. (2021). Piezoelectric properties of zinc oxide/iron oxide filled polyvinylidene fluoride nanocomposite fibers. Journal of Materials Science: Materials in Electronics, 32(11), 14610–14622. https://doi.org/10.1007/s10854-021-06020-3
Alamer, F. A. (2018). Structural and electrical properties of conductive cotton fabrics coated with the composite polyaniline/carbon black. Cellulose, 25(3), 2075–2082. https://doi.org/10.1007/s10570-018-1667-9
Alhashmi Alamer, F. (2017). A simple method for fabricating highly electrically conductive cotton fabric without metals or nanoparticles, using PEDOT:PSS. Journal of Alloys and Compounds, 702, 266–273. https://doi.org/10.1016/j.jallcom.2017.01.001
Ali, A., Nguyen, N. H. A., Baheti, V., Ashraf, M., Militky, J., Mansoor, T., Noman, M. T., & Ahmad, S. (2018). Electrical conductivity and physiological comfort of silver coated cotton fabrics. Journal of the Textile Institute, 109(5), 620–628. https://doi.org/10.1080/00405000.2017.1362148
Alshehri, N. A., Lewis, A. R., Pleydell-Pearce, C., & Maffeis, T. G. G. (2018). Investigation of the growth parameters of hydrothermal ZnO nanowires for scale up applications. Journal of Saudi Chemical Society, 22(5), 538–545. https://doi.org/10.1016/j.jscs.2017.09.004
Amin, G., Asif, M. H., Zainelabdin, A., Zaman, S., Nur, O., & Willander, M. (2011). Influence of pH, precursor concentration, growth time, and temperature on the morphology of ZnO nanostructures grown by the hydrothermal method. Journal of Nanomaterials, 2011. https://doi.org/10.1155/2011/269692
Ariosa, D., Elhordoy, F., Dalchiele, E. A., Marotti, R. E., & Stari, C. (2011). Texture vs morphology in ZnO nano-rods: On the x-ray diffraction characterization of electrochemically grown samples. Journal of Applied Physics, 110(12). https://doi.org/10.1063/1.3669026
Askari, H., Hashemi, E., Khajepour, A., Khamesee, M. B., & Wang, Z. L. (2018). Towards self-powered sensing using nanogenerators for automotive systems. Nano Energy, 53, 1003–1019. https://doi.org/10.1016/j.nanoen.2018.09.032
Augustine, R., Dan, P., Sosnik, A., Kalarikkal, N., Tran, N., Vincent, B., Thomas, S., Menu, P., Rouxel, D., Augustine, R., Dan, P., Sosnik, A., Kalarikkal, N., & Tran, N. (2022). Electrospun poly ( vinylidene fluoride-trifluoroethylene )/ zinc oxide nanocomposite tissue engineering scaffolds with enhanced cell adhesion and blood vessel formation To cite this version : HAL Id : hal-01712240.
Babick, F., Mielke, J., Wohlleben, W., Weigel, S., & Hodoroaba, V. D. (2016). How reliably can a material be classified as a nanomaterial? Available particle-sizing techniques at work. Journal of Nanoparticle Research, 18(6), 1–40. https://doi.org/10.1007/s11051-016-3461-7
Bai, H., Wang, X., Zhou, Y., & Zhang, L. (2012). Preparation and characterization of poly(vinylidene fluoride) composite membranes blended with nano-crystalline cellulose. Progress in Natural Science: Materials International, 22(3), 250–257. https://doi.org/10.1016/j.pnsc.2012.04.011
Bairagi, S., & Ali, S. W. (2019). A unique piezoelectric nanogenerator composed of melt-spun PVDF/KNN nanorod-based nanocomposite fibre. European Polymer Journal, 116(April), 554–561. https://doi.org/10.1016/j.eurpolymj.2019.04.043
Bairagi, S., & Ali, S. W. (2020a). A hybrid piezoelectric nanogenerator comprising of KNN/ZnO nanorods incorporated PVDF electrospun nanocomposite webs. International Journal of Energy Research, 44(7), 5545–5563. https://doi.org/10.1002/er.5306
Bairagi, S., & Ali, S. W. (2020b). Poly (vinylidine fluoride) (PVDF)/Potassium Sodium Niobate (KNN) nanorods based flexible nanocomposite film: Influence of KNN concentration in the performance of nanogenerator. Organic Electronics, 78(October 2019), 105547. https://doi.org/10.1016/j.orgel.2019.105547
Balan, V., Mihai, C. T., Cojocaru, F. D., Uritu, C. M., Dodi, G., Botezat, D., & Gardikiotis, I. (2019). Vibrational spectroscopy fingerprinting in medicine: From molecular to clinical practice. Materials, 12(18), 1–40. https://doi.org/10.3390/ma12182884
Bandeira, M., Giovanela, M., Roesch-Ely, M., Devine, D. M., & da Silva Crespo, J. (2020). Green synthesis of zinc oxide nanoparticles: A review of the synthesis methodology and mechanism of formation. Sustainable Chemistry and Pharmacy, 15(February), 100223. https://doi.org/10.1016/j.scp.2020.100223
Basnet, P., & Chatterjee, S. (2020). Structure-directing property and growth mechanism induced by capping agents in nanostructured ZnO during hydrothermal synthesis—A systematic review. Nano-Structures and Nano-Objects, 22, 100426. https://doi.org/10.1016/j.nanoso.2020.100426
Bergström, J. (2015). Experimental Characterization Techniques. In Mechanics of Solid Polymers. https://doi.org/10.1016/b978-0-323-31150-2.00002-9
Bhat, T. S., Bhogale, S. B., Patil, S. S., Pisal, S. H., Phaltane, S. A., & Patil, P. S. (2020). Synthesis and characterization of hexagonal zinc oxide nanorods for Eosin-Y dye sensitized solar cell. Materials Today: Proceedings, 43, 2800–2804. https://doi.org/10.1016/j.matpr.2020.08.687
Bhatia, D., Sharma, H., Meena, R. S., & Palkar, V. R. (2016). A novel ZnO piezoelectric microcantilever energy scavenger: Fabrication and characterization. Sensing and Bio-Sensing Research, 9, 45–52. https://doi.org/10.1016/j.sbsr.2016.05.008
Bhunia, R., Ghosh, B., Ghosh, D., Hussain, S., Bhar, R., & Pal, A. K. (2015). Free-standing and flexible nano-ZnO/PVDF composite thin films: Impedance spectroscopic studies. Polymers for Advanced Technologies, 26(9), 1176–1183. https://doi.org/10.1002/pat.3551
Bi, H., Meng, S., Li, Y., Guo, K., Chen, Y., Kong, J., Yang, P., Zhong, W., & Liu, B. (2006). Deposition of PEG onto PMMA microchannel surface to minimize nonspecific adsorption. Lab on a Chip, 6(6), 769–775. https://doi.org/10.1039/b600326e
Boppella, R., Anjaneyulu, K., Basak, P., & Manorama, S. V. (2013). Facile synthesis of face oriented ZnO crystals: Tunable polar facets and shape induced enhanced photocatalytic performance. Journal of Physical Chemistry C, 117(9), 4597–4605. https://doi.org/10.1021/jp311443s
Boukir, A., Fellak, S., & Doumenq, P. (2019). Structural characterization of Argania spinosa Moroccan wooden artifacts during natural degradation progress using infrared spectroscopy (ATR-FTIR) and X-Ray diffraction (XRD). Heliyon, 5(9), e02477. https://doi.org/10.1016/j.heliyon.2019.e02477
Briscoe, J., Jalali, N., Woolliams, P., Stewart, M., Weaver, P. M., Cain, M., & Dunn, S. (2013). Measurement techniques for piezoelectric nanogenerators. Energy and Environmental Science, 6(10), 3035–3045. https://doi.org/10.1039/c3ee41889h
Bruno, T. J. (1999). Sampling accessories for infrared spectrometry. Applied Spectroscopy Reviews, 34(1–2), 91–120. https://doi.org/10.1081/ASR-100100840
Cano-Raya, C., Denchev, Z. Z., Cruz, S. F., & Viana, J. C. (2019). Chemistry of solid metal-based inks and pastes for printed electronics – A review. Applied Materials Today, 15, 416–430. https://doi.org/10.1016/j.apmt.2019.02.012
Cao, F., Li, C., Li, M., Li, H., Huang, X., & Yang, B. (2018). Direct growth of Al-doped ZnO ultrathin nanosheets on electrode for ethanol gas sensor application. Applied Surface Science, 447, 173–181. https://doi.org/10.1016/j.apsusc.2018.03.217
Cao, X. T., Bach, L. G., Islam, M. R., & Lim, K. T. (2015). A simple synthesis, characterization, and properties of poly(methyl methacrylate) grafted CdTe nanocrystals. Molecular Crystals and Liquid Crystals, 618(1), 111–119. https://doi.org/10.1080/15421406.2015.1076305
Ceylan, Ö., Van Landuyt, L., Rahier, H., & De Clerck, K. (2013). The effect of water immersion on the thermal degradation of cotton fibers. Cellulose, 20(4), 1603–1612. https://doi.org/10.1007/s10570-013-9936-0
Chamakh, M. M., Mrlík, M., Leadenham, S., Bažant, P., Osička, J., Almaadeed, M. A. A., Erturk, A., & Kuřitka, I. (2020). Vibration sensing systems based on poly(Vinylidene fluoride) and microwave-assisted synthesized zno star-like particles with controllable structural and physical properties. Nanomaterials, 10(12), 1–15. https://doi.org/10.3390/nano10122345
Chand, N., & Fahim, M. (2020). Tribology of Natural Fiber Polymer Composites (2nd Editio, Vol. 148). https://doi.org/10.1016/C2018-0-04814-8
Chen, C., Bai, Z., Cao, Y., Dong, M., Jiang, K., Zhou, Y., Tao, Y., Gu, S., Xu, J., Yin, X., & Xu, W. (2020). Enhanced piezoelectric performance of BiCl3/PVDF nanofibers-based nanogenerators. Composites Science and Technology, 192, 108100. https://doi.org/10.1016/j.compscitech.2020.108100
Chen, F., Jing, M. xiang, Yang, H., Yuan, W. yong, Liu, M. quan, Ji, Y. sheng, Hussain, S., & Shen, X. qian. (2021). Improved ionic conductivity and Li dendrite suppression of PVDF-based solid electrolyte membrane by LLZO incorporation and mechanical reinforcement. Ionics, 27(3), 1101–1111. https://doi.org/10.1007/s11581-020-03891-0
Chen, J., Nabulsi, N., Wang, W., Kim, J. Y., Kwon, M. K., & Ryou, J. H. (2019). Output characteristics of thin-film flexible piezoelectric generators: A numerical and experimental investigation. Applied Energy, 255(June). https://doi.org/10.1016/j.apenergy.2019.113856
Cheng, L. C., Brahma, S., Huang, J. L., & Liu, C. P. (2022a). Enhanced piezoelectric coefficient and the piezoelectric nanogenerator output performance in Y-doped ZnO thin films. Materials Science in Semiconductor Processing, 146(February), 106703. https://doi.org/10.1016/j.mssp.2022.106703
Cheng, L. C., Brahma, S., Huang, J. L., & Liu, C. P. (2022b). Enhanced piezoelectric coefficient and the piezoelectric nanogenerator output performance in Y-doped ZnO thin films. Materials Science in Semiconductor Processing, 146(March), 106703. https://doi.org/10.1016/j.mssp.2022.106703
Cheon, J., Lee, J., & Kim, J. (2012). Inkjet printing using copper nanoparticles synthesized by electrolysis. Thin Solid Films, 520(7), 2639–2643. https://doi.org/10.1016/j.tsf.2011.11.021
Choi, D., & Park, Y. T. (2019). Nanogenerators in Korea. In Nanogenerators in Korea. https://doi.org/10.3390/books978-3-03897-623-3
Chowdhury, A. R., Jaksik, J., Hussain, I., Longoria, R., Faruque, O., Cesano, F., Scarano, D., Parsons, J., & Uddin, M. J. (2019). Multicomponent nanostructured materials and interfaces for efficient piezoelectricity. Nano-Structures and Nano-Objects, 17, 148–184. https://doi.org/10.1016/j.nanoso.2018.12.002
Christian, B., Volk, J., Lukàcs, I. E., Sautieff, E., Sturm, C., Graillot, A., Dauksevicius, R., O’Reilly, E., Ambacher, O., & Lebedev, V. (2016). Piezo-force and Vibration Analysis of ZnO Nanowire Arrays for Sensor Application. Procedia Engineering, 168, 1192–1195. https://doi.org/10.1016/j.proeng.2016.11.406
Coates, J. (2004). Encyclopedia of Analytical Chemistry -Interpretation of Infrared Spectra, A Practical Approach. Encyclopedia of Analytical Chemistry, 1–23. http://www3.uma.pt/jrodrigues/disciplinas/QINO-II/Teorica/IR.pdf
Costa, S. V., Azana, N. T., Shieh, P., & Mazon, T. (2018). Synthesis of ZnO rod arrays on aluminum recyclable paper and effect of the rod size on power density of eco-friendly nanogenerators. Ceramics International, 44(11), 12174–12179. https://doi.org/10.1016/j.ceramint.2018.03.272
Covaci, C., & Gontean, A. (2020). Piezoelectric energy harvesting solutions: A review. Sensors (Switzerland), 20(12), 1–37. https://doi.org/10.3390/s20123512
Crossley, S., & Kar-Narayan, S. (2015). Energy harvesting performance of piezoelectric ceramic and polymer nanowires. Nanotechnology, 26(34). https://doi.org/10.1088/0957-4484/26/34/344001
Deng, W., Yang, T., Jin, L., Yan, C., Huang, H., Chu, X., Wang, Z., Xiong, D., Tian, G., Gao, Y., Zhang, H., & Yang, W. (2019). Cowpea-structured PVDF/ZnO nanofibers based flexible self-powered piezoelectric bending motion sensor towards remote control of gestures. Nano Energy, 55, 516–525. https://doi.org/10.1016/j.nanoen.2018.10.049
Dong, K., Peng, X., & Wang, Z. L. (2020). Fiber/Fabric-Based Piezoelectric and Triboelectric Nanogenerators for Flexible/Stretchable and Wearable Electronics and Artificial Intelligence. Advanced Materials, 32(5), 1–43. https://doi.org/10.1002/adma.201902549
Dossin Zanrosso, C., Piazza, D., & Lansarin, M. A. (2020). PVDF/ZnO composite films for photocatalysis: A comparative study of solution mixing and melt blending methods. Polymer Engineering and Science, 60(6), 1146–1157. https://doi.org/10.1002/pen.25368
Dukali, R. M., Radovic, I. M., Stojanovic, D. B., Sevic, D. M., Radojevic, V. J., Jocic, D. M., & Aleksic, R. R. (2014). Electrospinning of the laser dye rhodamine B-doped poly(methyl methacrylate) nanofibers. Journal of the Serbian Chemical Society, 79(7), 867–880. https://doi.org/10.2298/JSC131014011D
Elton N. Kaufmann. (2003). Characterization of materials.
Erer, K. S. (2007). Adaptive usage of the Butterworth digital filter. Journal of Biomechanics, 40(13), 2934–2943. https://doi.org/10.1016/j.jbiomech.2007.02.019
Fang, L., Wu, W., Huang, X., He, J., & Jiang, P. (2015). Hydrangea-like zinc oxide superstructures for ferroelectric polymer composites with high thermal conductivity and high dielectric constant. Composites Science and Technology, 107, 67–74. https://doi.org/10.1016/j.compscitech.2014.12.009
Fangueiro, R., & Soutinho, F. (2011). Textile structures. In Fibrous and Composite Materials for Civil Engineering Applications. Woodhead Publishing Limited. https://doi.org/10.1533/9780857095583.1.62
Fateh, T., Richard, F., Rogaume, T., & Joseph, P. (2016). Experimental and modelling studies on the kinetics and mechanisms of thermal degradation of polymethyl methacrylate in nitrogen and air. Journal of Analytical and Applied Pyrolysis, 120, 423–433. https://doi.org/10.1016/j.jaap.2016.06.014
Feng, W., Wang, B., Huang, P., Wang, X., Yu, J., & Wang, C. (2016). Wet chemistry synthesis of ZnO crystals with hexamethylenetetramine(HMTA): Understanding the role of HMTA in the formation of ZnO crystals. Materials Science in Semiconductor Processing, 41, 462–469. https://doi.org/10.1016/j.mssp.2015.10.017
Fonoberov, V. A., & Balandin, A. A. (2006). ZnO Quantum Dots: Physical Properties and Optoelectronic Applications. Journal of Nanoelectronics and Optoelectronics, 1(1), 19–38. https://doi.org/10.1166/jno.2006.002
Fraga, M. A., Furlan, H., Pessoa, R. S., & Massi, M. (2014). Wide bandgap semiconductor thin films for piezoelectric and piezoresistive MEMS sensors applied at high temperatures: An overview. Microsystem Technologies, 20(1), 9–21. https://doi.org/10.1007/s00542-013-2029-z
Gaan, S., & Sun, G. (2009). Effect of nitrogen additives on thermal decomposition of cotton. Journal of Analytical and Applied Pyrolysis, 84(1), 108–115. https://doi.org/10.1016/j.jaap.2008.12.004
Gad, S. E., & Sullivan, D. W. (2014). Methyl Ethyl Ketone. In Encyclopedia of Toxicology: Third Edition (Third Edit, Vol. 3). Elsevier. https://doi.org/10.1016/B978-0-12-386454-3.00879-4
Gerbreders, V., Krasovska, M., Sledevskis, E., Gerbreders, A., Mihailova, I., Tamanis, E., & Ogurcovs, A. (2020). Hydrothermal synthesis of ZnO nanostructures with controllable morphology change. CrystEngComm, 22(8), 1346–1358. https://doi.org/10.1039/c9ce01556f
Ghasemian, M. B., Lin, Q., Adabifiroozjaei, E., Wang, F., Chu, D., & Wang, D. (2017). Morphology control and large piezoresponse of hydrothermally synthesized lead-free piezoelectric (Bi0.5Na0.5)TiO3 nanofibres. RSC Advances, 7(25), 15020–15026. https://doi.org/10.1039/c7ra01293d
Godfrey, D., Nirmal, D., Arivazhagan, L., Rathes Kannan, R., Issac Nelson, P., Rajesh, S., Vidhya, B., & Mohankumar, N. (2020). A novel ZnPc nanorod derived piezoelectric nanogenerator for energy harvesting. Physica E: Low-Dimensional Systems and Nanostructures, 118, 113931. https://doi.org/10.1016/j.physe.2019.113931
Goel, S., & Kumar, B. (2020). A review on piezo-/ferro-electric properties of morphologically diverse ZnO nanostructures. Journal of Alloys and Compounds, 816, 152491. https://doi.org/10.1016/j.jallcom.2019.152491
Golubevas, R., Zarkov, A., Alinauskas, L., Stankeviciute, Z., Balciunas, G., Garskaite, E., & Kareiva, A. (2017). Fabrication and investigation of high-quality glass-ceramic (GC)-polymethyl methacrylate (PMMA) composite for regenerative medicine. RSC Advances, 7(53), 33558–33567. https://doi.org/10.1039/c7ra05188c
gowayed, Y. (2013). Types of fiber and fiber arrangement in fi ber-reinforced polymer (FRP) composites. In N. Uddin (Ed.), Developments in fiber-reinforced polymer (FRP) composites for civil engineering (pp. 3–17).
Gulia, S., & Kakkar, R. (2013). Zno quantum dots for biomedical applications. Advanced Materials Letters, 4(12), 876–887. https://doi.org/10.5185/amlett.2013.3440
He, Q., Li, X., Zhang, J., Zhang, H., & Briscoe, J. (2021). P–N junction-based ZnO wearable textile nanogenerator for biomechanical energy harvesting. Nano Energy, 85(February), 105938. https://doi.org/10.1016/j.nanoen.2021.105938
Homayounfar, S. Z., & Andrew, T. L. (2020). Wearable Sensors for Monitoring Human Motion: A Review on Mechanisms, Materials, and Challenges. SLAS Technology, 25(1), 9–24. https://doi.org/10.1177/2472630319891128
Hou, Q., Zhu, L., Chen, H., Liu, H., & Li, W. (2013). Highly regular and ultra-thin porous ZnO nanosheets: An indirect electrodeposition method using acetate-containing precursor and their application in quantum dots-sensitized solar cells. Electrochimica Acta, 94(3), 72–79. https://doi.org/10.1016/j.electacta.2013.01.122
Hsu, C. L., & Chen, K. C. (2012). Improving piezoelectric nanogenerator comprises ZnO nanowires by bending the flexible PET substrate at low vibration frequency. Journal of Physical Chemistry C, 116(16), 9351–9355. https://doi.org/10.1021/jp301527y
Hu, D., Yao, M., Fan, Y., Ma, C., Fan, M., & Liu, M. (2019). Strategies to achieve high performance piezoelectric nanogenerators. Nano Energy, 55(November 2018), 288–304. https://doi.org/10.1016/j.nanoen.2018.10.053
Ibrahim, N., Akindoyo, J. O., & Mariatti, M. (2022). Recent development in silver-based ink for flexible electronics. Journal of Science: Advanced Materials and Devices, 7(1), 100395. https://doi.org/10.1016/j.jsamd.2021.09.002
Inamuddin, & Abbas Kashmery, H. (2019). Polyvinylidene fluoride/sulfonated graphene oxide blend membrane coated with polypyrrole/platinum electrode for ionic polymer metal composite actuator applications. Scientific Reports, 9(1), 1–11. https://doi.org/10.1038/s41598-019-46305-6
Indira, S. S., Vaithilingam, C. A., Oruganti, K. S. P., Mohd, F., & Rahman, S. (2019). Nanogenerators as a sustainable power source: state of art, applications, and challenges. In Nanomaterials (Vol. 9, Issue 5). https://doi.org/10.3390/nano9050773
Indolia, A. P., & Gaur, M. S. (2013). Investigation of structural and thermal characteristics of PVDF/ZnO nanocomposites. Journal of Thermal Analysis and Calorimetry, 113(2), 821–830. https://doi.org/10.1007/s10973-012-2834-0
Io, W. F., Wong, M. C., Pang, S. Y., Zhao, Y., Ding, R., Guo, F., & Hao, J. (2022). Strong piezoelectric response in layered CuInP2S6 nanosheets for piezoelectric nanogenerators. Nano Energy, 99(May), 107371. https://doi.org/10.1016/j.nanoen.2022.107371
Jain, G., Rocks, C., Maguire, P., & Mariotti, D. (2020). One-step synthesis of strongly confined, defect-free and hydroxy-terminated ZnO quantum dots. Nanotechnology, 31(21). https://doi.org/10.1088/1361-6528/ab72b5
Javed, Z., Rafiq, L., Nazeer, M. A., Siddiqui, S., Ramzan, M. B., Khan, M. Q., & Naeem, M. S. (2022). Piezoelectric nanogenerator for bio-mechanical strain measurement. Beilstein Journal of Nanotechnology, 13, 192–200. https://doi.org/10.3762/BJNANO.13.14
Jenkins, K., Kelly, S., Nguyen, V., Wu, Y., & Yang, R. (2018). Piezoelectric diphenylalanine peptide for greatly improved flexible nanogenerators. Nano Energy, 51, 317–323. https://doi.org/10.1016/j.nanoen.2018.06.061
Jia, G., Lu, X., Hao, B., Wang, X., Li, Y., & Yao, J. (2013). Kinetic mechanism of ZnO hexagonal single crystal slices on GaN/sapphire by a layer-by-layer growth mode. RSC Advances, 3(31), 12826–12830. https://doi.org/10.1039/c3ra23261a
Jiang, H., Wang, H., & Wang, X. (2011). Facile and mild preparation of fluorescent ZnO nanosheets and their bioimaging applications. Applied Surface Science, 257(15), 6991–6995. https://doi.org/10.1016/j.apsusc.2011.03.053
Jiang, Y., Deng, Y., & Qi, H. (2021). Microstructure dependence of output performance in flexible pvdf piezoelectric nanogenerators. Polymers, 13(19). https://doi.org/10.3390/polym13193252
Jiao, P. (2021). Emerging artificial intelligence in piezoelectric and triboelectric nanogenerators. Nano Energy, 88, 106227. https://doi.org/10.1016/j.nanoen.2021.106227
Jin, C., Hao, N., Xu, Z., Trase, I., Nie, Y., Dong, L., Closson, A., Chen, Z., & Zhang, J. X. J. (2020). Flexible piezoelectric nanogenerators using metal-doped ZnO-PVDF films. Sensors and Actuators, A: Physical, 305, 111912. https://doi.org/10.1016/j.sna.2020.111912
Joe, A., Park, S. H., Shim, K. D., Kim, D. J., Jhee, K. H., Lee, H. W., Heo, C. H., Kim, H. M., & Jang, E. S. (2017). Antibacterial mechanism of ZnO nanoparticles under dark conditions. Journal of Industrial and Engineering Chemistry, 45, 430–439. https://doi.org/10.1016/j.jiec.2016.10.013
Jung, D. Y., Baek, S. H., Hasan, M. R., & Park, I. K. (2015). Performance-enhanced ZnO nanorod-based piezoelectric nanogenerators on double-sided stainless steel foil. Journal of Alloys and Compounds, 641, 163–169. https://doi.org/10.1016/j.jallcom.2015.03.066
Kammel, R. S., & Sabry, R. S. (2019). Effects of the aspect ratio of ZnO nanorods on the performance of piezoelectric nanogenerators. Journal of Science: Advanced Materials and Devices, 4(3), 420–424. https://doi.org/10.1016/j.jsamd.2019.08.002
Kamyshny, A., & Magdassi, S. (2014). Conductive nanomaterials for printed electronics. Small, 10(17), 3515–3535. https://doi.org/10.1002/smll.201303000
Karmakar, S. R. (1998). Application of biotechnology in the pre-treatment processes of textiles. In Colourage (Vol. 45, Issue ANNUAL).
Karthikeyan, C., Arun, L., Hameed, A. S. H., Gopinath, K., Umaralikahan, L., Vijayaprasath, G., & Malathi, P. (2019). Structural, optical, thermal and magnetic properties of nickel calcium and nickel iron co-doped ZnO nanoparticles. Journal of Materials Science: Materials in Electronics, 0(0), 0. https://doi.org/10.1007/s10854-019-01160-z
Kasaw, E., Haile, A., & Getnet, M. (2020). Conductive Coatings of Cotton Fabric Consisting of. Coatings, 1–17.
Kaur, J., & Singh, H. (2020). Fabrication and analysis of piezoelectricity in 0D, 1D and 2D Zinc Oxide nanostructures. Ceramics International, 46(11), 19401–19407. https://doi.org/10.1016/j.ceramint.2020.04.283
Kawamura, G., Alvarez, S., Stewart, I. E., Catenacci, M., Chen, Z., & Ha, Y. C. (2015). Production of Oxidation-Resistant Cu-Based Nanoparticles by Wire Explosion. Scientific Reports, 5, 1–8. https://doi.org/10.1038/srep18333
Kim, H. G., Kim, E. H., & Kim, S. S. (2021). Growth of zno nanorods on ito film for piezoelectric nanogenerators. Materials, 14(6). https://doi.org/10.3390/ma14061461
Kim, M., & Fan, J. (2021). Piezoelectric Properties of Three Types of PVDF and ZnO Nanofibrous Composites. Advanced Fiber Materials, 3(3), 160–171. https://doi.org/10.1007/s42765-021-00068-w
Kim, M., Wu, Y. S., Kan, E. C., & Fan, J. (2018). Breathable and flexible piezoelectric ZnO@PVDF fibrous nanogenerator for wearable applications. Polymers, 10(7). https://doi.org/10.3390/polym10070745
Kolodziejczak-Radzimska, A., & Jesionowski, T. (2014). Zinc oxide-from synthesis to application: A review. Materials, 7(4), 2833–2881. https://doi.org/10.3390/ma7042833
Król, A., Pomastowski, P., Rafińska, K., Railean-Plugaru, V., & Buszewski, B. (2017). Zinc oxide nanoparticles: Synthesis, antiseptic activity and toxicity mechanism. Advances in Colloid and Interface Science, 249, 37–52. https://doi.org/10.1016/j.cis.2017.07.033
Kumar, P., Yadav, A. K., Joshi, A. G., Bhattacharyya, D., Jha, S. N., & Pandey, P. C. (2018). Influence of Li co-doping on structural property of sol-gel derived terbium doped zinc oxide nanoparticles. Materials Characterization, 142(December 2017), 593–601. https://doi.org/10.1016/j.matchar.2018.06.024
Kumar Prajapati, G., Katla, R., & Singh, B. (2021). Effect of variation of MoS2concentration on the piezoelectric performance of PVDF-MoS2based flexible nanogenerator. Materials Today: Proceedings, 47, 4861–4865. https://doi.org/10.1016/j.matpr.2021.06.084
Kurort, T., Sekiguchi, Y., Ogawa, T., Sawaguchi, T., Ikemusa, T., & Honda, T. (1977). Thermal Degradation of Polystyrene. Nippon Kagaku Kaishi, 1977(6), 894–901. https://doi.org/10.1246/nikkashi.1977.894
Kwon, Y. H., Kim, D. H., Kim, H. K., & Nah, J. (2015). Phosphorus-doped zinc oxide p-n homojunction thin film for flexible piezoelectric nanogenerators. Nano Energy, 18, 126–132. https://doi.org/10.1016/j.nanoen.2015.10.009
Lee, E., Park, J., Yim, M., Jeong, S., & Yoon, G. (2014). High-efficiency micro-energy generation based on free-carrier-modulated ZnO:N piezoelectric thin films. Applied Physics Letters, 104(21), 1–6. https://doi.org/10.1063/1.4880935
Lee, Y., Kim, S., Kim, D., Lee, C., Park, H., & Lee, J. H. (2020). Direct-current flexible piezoelectric nanogenerators based on two-dimensional ZnO nanosheet. Applied Surface Science, 509, 145328. https://doi.org/10.1016/j.apsusc.2020.145328
Leong, S. S., Ng, W. M., Lim, J. K., & Yeap, S. P. (2018). Handbook of Materials Characterization. https://doi.org/10.1007/978-3-319-92955-2_3
Li, G. Y., Zhang, H. Di, Guo, K., Ma, X. S., & Long, Y. Z. (2020). Fabrication and piezoelectric-pyroelectric properties of electrospun PVDF/ZnO composite fibers. Materials Research Express, 7(9). https://doi.org/10.1088/2053-1591/abb264
Li, M., Katsouras, I., Piliego, C., Glasser, G., Lieberwirth, I., Blom, P. W. M., & De Leeuw, D. M. (2013). Controlling the microstructure of poly(vinylidene-fluoride) (PVDF) thin films for microelectronics. Journal of Materials Chemistry C, 1(46), 7695–7702. https://doi.org/10.1039/c3tc31774a
Li, T., Li, Y. T., Qin, W. W., Zhang, P. P., Chen, X. Q., Hu, X. F., & Zhang, W. (2015). Piezoelectric Size Effects in a Zinc Oxide Micropillar. Nanoscale Research Letters, 10(1). https://doi.org/10.1186/s11671-015-1081-2
Li, Wanxi, Qi, H., Guo, F., Niu, X., Du, Y., & Chen, Y. (2019). NiFe2O4 nanoparticles supported on cotton-based carbon fibers and their application as a novel broadband microwave absorbent. RSC Advances, 9(51), 29959–29966. https://doi.org/10.1039/c9ra05844c
Li, Weiwei, Meredov, A., & Shamim, A. (2019). Coat-and-print patterning of silver nanowires for flexible and transparent electronics. Npj Flexible Electronics, 3(1). https://doi.org/10.1038/s41528-019-0063-3
Li, Y., Feng, J., Zhao, Y., Wang, J., & Xu, C. (2022). Ultrathin flexible linear-piezoelectric ZnO thin film actuators: Tuning the piezoelectric responses by in-plane epitaxial strain. Applied Surface Science, 599(December 2021), 153969. https://doi.org/10.1016/j.apsusc.2022.153969
Liao, Y., Zhang, R., & Qian, J. (2019). Printed electronics based on inorganic conductive nanomaterials and their applications in intelligent food packaging. RSC Advances, 9(50), 29154–29172. https://doi.org/10.1039/c9ra05954g
Liu, J., Yang, B., Lu, L., Wang, X., Li, X., Chen, X., & Liu, J. (2020). Flexible and lead-free piezoelectric nanogenerator as self-powered sensor based on electrospinning BZT-BCT/P(VDF-TrFE) nanofibers. Sensors and Actuators, A: Physical, 303(July), 111796. https://doi.org/10.1016/j.sna.2019.111796
Liu, M., Chang, J., Sun, J., & Gao, L. (2013). Synthesis of porous NiO using NaBH4 dissolved in ethylene glycol as precipitant for high-performance supercapacitor. Electrochimica Acta, 107, 9–15. https://doi.org/10.1016/j.electacta.2013.05.122
Liu, Yangsi, & Gao, W. (2015). Growth process, crystal size and alignment of ZnO nanorods synthesized under neutral and acid conditions. Journal of Alloys and Compounds, 629, 84–91. https://doi.org/10.1016/j.jallcom.2014.12.139
Liu, Yiming, Wang, L., Zhao, L., Yu, X., & Zi, Y. (2020). Recent progress on flexible nanogenerators toward self‐powered systems. InfoMat, 2(2), 318–340. https://doi.org/10.1002/inf2.12079
Liu, Z., Zhang, S., Jin, Y. M., Ouyang, H., Zou, Y., Wang, X. X., Xie, L. X., & Li, Z. (2017). Flexible piezoelectric nanogenerator in wearable self-powered active sensor for respiration and healthcare monitoring. Semiconductor Science and Technology, 32(6). https://doi.org/10.1088/1361-6641/aa68d1
Liu, Z., Zhang, S., Jin, Y. M., Ouyang, H., Zou, Y., Wang, X. X., Xie, L. X., & Li, Z. (2019). Flexible Piezoelectric Nanogenerator for Wearable Self-powered Respiration Active Sensor and Healthcare Monitoring. Materials Research Express, 0–12.
Lu, L., Ding, W., Liu, J., & Yang, B. (2020a). Flexible PVDF based piezoelectric nanogenerators. Nano Energy, 78(June), 105251. https://doi.org/10.1016/j.nanoen.2020.105251
Lu, L., Ding, W., Liu, J., & Yang, B. (2020b). Flexible PVDF based piezoelectric nanogenerators. Nano Energy, 78(July), 105251. https://doi.org/10.1016/j.nanoen.2020.105251
Luo, J. T., Yang, Y. C., Zhu, X. Y., Chen, G., Zeng, F., & Pan, F. (2010). Enhanced electromechanical response of Fe-doped ZnO films by modulating the chemical state and ionic size of the Fe dopant. Physical Review B - Condensed Matter and Materials Physics, 82(1). https://doi.org/10.1103/PhysRevB.82.014116
Lv, J., Zhang, L., Zhong, Y., Sui, X., Wang, B., Chen, Z., Feng, X., Xu, H., & Mao, Z. (2019). High-performance polypyrrole coated knitted cotton fabric electrodes for wearable energy storage. Organic Electronics, 74(May), 59–68. https://doi.org/10.1016/j.orgel.2019.06.027
Ma, X., Zhang, F., Han, K., Yang, B., & Song, G. (2015). Evaporation characteristics of acetone-butanol-ethanol and diesel blends droplets at high ambient temperatures. Fuel, 160, 43–49. https://doi.org/10.1016/j.fuel.2015.07.079
Mahalakshmi, S., Hema, N., & Vijaya, P. P. (2020). In Vitro Biocompatibility and Antimicrobial activities of Zinc Oxide Nanoparticles (ZnO NPs) Prepared by Chemical and Green Synthetic Route— A Comparative Study. BioNanoScience, 10(1), 112–121. https://doi.org/10.1007/s12668-019-00698-w
Mahanty, B., Ghosh, S. K., Jana, S., Mallick, Z., Sarkar, S., & Mandal, D. (2021). ZnO nanoparticle confined stress amplified all-fiber piezoelectric nanogenerator for self-powered healthcare monitoring. Sustainable Energy and Fuels, 5(17), 4389–4400. https://doi.org/10.1039/d1se00444a
Mahapatra, A., Ajimsha, R. S., & Misra, P. (2022). Oxygen annealing induced enhancement in output characteristics of ZnO based flexible piezoelectric nanogenerators. Journal of Alloys and Compounds, 913, 165277. https://doi.org/10.1016/j.jallcom.2022.165277
Manjula, Y., Kumar, R. R., Raju, P. M. S., Kumar, G. A., Rao, T. V., Akshaykranth, A., & Suparaja, P. (2020). Piezoelectric Flexible Nanogenerator Based on ZnO Nanosheet Networks for Mechanical a Department. Chemical Physics, 110699. https://doi.org/10.1016/j.chemphys.2020.110699
Manoharan, C., Sutharsan, P., Venkatachalapathy, R., Vasanthi, S., Dhanapandian, S., & Veeramuthu, K. (2015). Spectroscopic and rock magnetic studies on some ancient Indian pottery samples. Egyptian Journal of Basic and Applied Sciences, 2(1), 39–49. https://doi.org/10.1016/j.ejbas.2014.11.001
Matin Nazar, A., Egbe, K. J. I., Jiao, P., Wang, Y., & Yang, Y. (2021). Magnetic lifting triboelectric nanogenerators (ml-TENG) for energy harvesting and active sensing. APL Materials, 9(9). https://doi.org/10.1063/5.0064300
Mayeen, A., & Kalarikkal, N. (2018). Development of ceramic-controlled piezoelectric devices for biomedical applications. In Fundamental Biomaterials: Ceramics. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-102203-0.00002-0
Medina Cruz, D., Mostafavi, E., Vernet-Crua, A., Barabadi, H., Shah, V., Cholula-Díaz, J. L., Guisbiers, G., & Webster, T. J. (2020). Green nanotechnology-based zinc oxide (ZnO) nanomaterials for biomedical applications: a review. Journal of Physics: Materials, 3(3), 034005. https://doi.org/10.1088/2515-7639/ab8186
Meng, X., Cui, H., Dong, J., Zheng, J., Zhu, Y., Wang, Z., Zhang, J., Jia, S., Zhao, J., & Zhu, Z. (2013). Synthesis and electrocatalytic performance of nitrogen-doped macroporous carbons. Journal of Materials Chemistry A, 1(33), 9469–9476. https://doi.org/10.1039/c3ta10306d
Mesa, A. M., Castro-Autié, G. I., & Díaz-garcía, A. (2018). Evaluación de nanoestructuras de ZnO en la separación de CH4-CO2 (Issue June). https://doi.org/10.13140/RG.2.2.28587.54566
Mishra, S., Supraja, P., Jaiswal, V. V., Sankar, P. R., Kumar, R. R., Prakash, K., Kumar, K. U., & Haranath, D. (2021). Enhanced output of ZnO nanosheet-based piezoelectric nanogenerator with a novel device structure. Engineering Research Express, 3(4). https://doi.org/10.1088/2631-8695/ac34
Mo, L., Guo, Z., Yang, L., Zhang, Q., Fang, Y., Xin, Z., Chen, Z., Hu, K., Han, L., & Li, L. (2019). Silver nanoparticles based ink with moderate sintering in flexible and printed electronics. International Journal of Molecular Sciences, 20(9). https://doi.org/10.3390/ijms20092124
Mo, X., Zhou, H., Li, W., Xu, Z., Duan, J., Huang, L., Hu, B., & Zhou, J. (2019). Piezoelectrets for wearable energy harvesters and sensors. Nano Energy, 65(May), 104033. https://doi.org/10.1016/j.nanoen.2019.104033
Mokhatab, S., & Poe, W. A. (2012). Process Control Fundamentals. Handbook of Natural Gas Transmission and Processing, 473–509. https://doi.org/10.1016/b978-0-12-386914-2.00014-5
Musbah, S. S., Radojevic, V. J., Borna, N. V., Stojanovic, D. B., Dramicanin, M. D., Marinkovic, A. D., & Aleksic, R. R. (2011). PMMA-Y2O3 (Eu3+) nanocomposites: Optical and mechanical properties. Journal of the Serbian Chemical Society, 76(8), 1153–1161. https://doi.org/10.2298/JSC100330094M
Nagaraju, G., Udayabhanu, Shivaraj, Prashanth, S. A., Shastri, M., Yathish, K. V., Anupama, C., & Rangappa, D. (2017). Electrochemical heavy metal detection, photocatalytic, photoluminescence, biodiesel production and antibacterial activities of Ag–ZnO nanomaterial. Materials Research Bulletin, 94(September), 54–63. https://doi.org/10.1016/j.materresbull.2017.05.043
Naghdi, S., Rhee, K. Y., Hui, D., & Park, S. J. (2018). A review of conductive metal nanomaterials as conductive, transparent, and flexible coatings, thin films, and conductive fillers: Different deposition methods and applications. Coatings, 8(8). https://doi.org/10.3390/coatings8080278
Nain, V., Kaur, M., Sandhu, K. S., Thory, R., & Sinhmar, A. (2020). Development, characterization, and biocompatibility of zinc oxide coupled starch nanocomposites from different botanical sources. International Journal of Biological Macromolecules, 162, 24–30. https://doi.org/10.1016/j.ijbiomac.2020.06.125
Nair, K. S., Varghese, H., Chandran, A., Hareesh, U. N. S., Chouprik, A., Spiridonov, M., & Surendran, K. P. (2022). Synthesis of KNN nanoblocks through surfactant-assisted hot injection method and fabrication of flexible piezoelectric nanogenerator based on KNN-PVDF nanocomposite. Materials Today Communications, 31(February), 103291. https://doi.org/10.1016/j.mtcomm.2022.103291
Narita, F., & Fox, M. (2018). A Review on Piezoelectric, Magnetostrictive, and Magnetoelectric Materials and Device Technologies for Energy Harvesting Applications. Advanced Engineering Materials, 20(5), 1–22. https://doi.org/10.1002/adem.201700743
Naveed Ul Haq, A., Nadhman, A., Ullah, I., Mustafa, G., Yasinzai, M., & Khan, I. (2017). Synthesis Approaches of Zinc Oxide Nanoparticles: The Dilemma of Ecotoxicity. Journal of Nanomaterials, 2017(Table 1). https://doi.org/10.1155/2017/8510342
Nayan, M. B., Jagadish, K., Abhilash, M. R., Namratha, K., & Srikantaswamy, S. (2019). Comparative Study on the Effects of Surface Area, Conduction Band and Valence Band Positions on the Photocatalytic Activity of ZnO-M<sub>x</sub>O<sub>y</sub> Heterostructures. Journal of Water Resource and Protection, 11(03), 357–370. https://doi.org/10.4236/jwarp.2019.113021
Nikolaidis, A. K., & Achilias, D. S. (2018). Thermal degradation kinetics and viscoelastic behavior of poly(methyl methacrylate)/ organomodified montmorillonite nanocomposites prepared via in situ bulk radical polymerization. Polymers, 10(5). https://doi.org/10.3390/polym10050491
Omidi, M., Fatehinya, A., Farahani, M., Akbari, Z., Shahmoradi, S., Yazdian, F., Tahriri, M., Moharamzadeh, K., Tayebi, L., & Vashaee, D. (2017). Characterization of biomaterials. In Biomaterials for Oral and Dental Tissue Engineering. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-100961-1.00007-4
Ono, Y. (1997). Catalysis in the production and reactions of dimethyl carbonate, an environmentally benign building block. Applied Catalysis A: General, 155(2), 133–166. https://doi.org/10.1016/S0926-860X(96)00402-4
Opoku, H., Nketia-Yawson, B., Shin, E. S., & Noh, Y. Y. (2017). Controlling organization of conjugated polymer films from binary solvent mixtures for high performance organic field-effect transistors. Organic Electronics, 41, 198–204. https://doi.org/10.1016/j.orgel.2016.11.004
Outline, C. (2019). Methods for Assessing Surface Cleanliness. In Developments in Surface Contamination and Cleaning, Volume 12 (Vol. 12). https://doi.org/10.1016/b978-0-12-816081-7.00003-6
Ouyang, J. (2018). Recent advances of intrinsically conductive polymers. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 34(11), 1211–1220. https://doi.org/10.3866/PKU.WHXB201804095
Öztürk, S., Klnç, N., Taşaltn, N., & Öztürk, Z. Z. (2012). Fabrication of ZnO nanowires and nanorods. Physica E: Low-Dimensional Systems and Nanostructures, 44(6), 1062–1065. https://doi.org/10.1016/j.physe.2011.01.015
Parangusan, H., Ponnamma, D., & Al-Maadeed, M. A. A. (2018). Stretchable Electrospun PVDF-HFP/Co-ZnO Nanofibers as Piezoelectric Nanogenerators. Scientific Reports, 8(1), 1–11. https://doi.org/10.1038/s41598-017-19082-3
Parangusan, H., Ponnamma, D., & Almaadeed, M. A. A. (2018). Investigation on the effect of γ-irradiation on the dielectric and piezoelectric properties of stretchable PVDF/Fe-ZnO nanocomposites for self-powering devices. Soft Matter, 14(43), 8803–8813. https://doi.org/10.1039/c8sm01655k
Parize, R., Garnier, J., Chaix-Pluchery, O., Verrier, C., Appert, E., & Consonni, V. (2016). Effects of Hexamethylenetetramine on the Nucleation and Radial Growth of ZnO Nanowires by Chemical Bath Deposition. Journal of Physical Chemistry C, 120(9), 5242–5250. https://doi.org/10.1021/acs.jpcc.6b00479
Park, K. Il, Jeong, C. K., Kim, N. K., & Lee, K. J. (2016). Stretchable piezoelectric nanocomposite generator. Nano Convergence, 3(1), 1–12. https://doi.org/10.1186/s40580-016-0072-z
Park, J. S. (2010). A Review of Piezoelectric PVDF Film by Electrospinning and Its Applications. Advances in Natural Sciences: Nanoscience and Nanotechnology, 1(4). https://doi.org/10.1088/2043-6262/1/4/043002
Pedroso Silva Santos, B., Rubio Arias, J. J., Elias Jorge, F., Értola Pereira de Deus Santos, R., da Silva Fernandes, B., da Silva Candido, L., Cesar de Carvalho Peres, A., Gervasoni Chaves, E., & Vieira Marques, M. de F. (2021). Preparation, characterization and permeability evaluation of poly(vinylidene fluoride) composites with ZnO particles for flexible pipelines. Polymer Testing, 94(January). https://doi.org/10.1016/j.polymertesting.2021.107064
Peterson, J. D., Vyazovkin, S., & Wight, C. A. (1999). Stabilizing effect of oxygen on thermal degradation of poly(methyl methacrylate). Macromolecular Rapid Communications, 20(9), 480–483. https://doi.org/10.1002/(sici)1521-3927(19990901)20:9<480::aid-marc480>3.3.co;2-z
Pigliacelli, C., D’Elicio, A., Milani, R., Terraneo, G., Resnati, G., Baldelli Bombelli, F., & Metrangolo, P. (2015). Hydrophobin-stabilized dispersions of PVDF nanoparticles in water. Journal of Fluorine Chemistry, 177, 62–69. https://doi.org/10.1016/j.jfluchem.2015.02.004
Porkalai, V., Sathya, B., Benny Anburaj, D., Nedunchezhian, G., Joshua Gnanamuthu, S., & Meenambika, R. (2018). Photoluminescences properties of lanthanum-silver co-doped ZnO nano particles. Modern Electronic Materials, 4(4), 135–141. https://doi.org/10.3897/j.moem.4.4.35063
Pratihar, S., Medda, S. K., Sen, S., & Devi, P. S. (2020). Tailored piezoelectric performance of self-polarized PVDF-ZnO composites by optimization of aspect ratio of ZnO nanorods. Polymer Composites, 41(8), 3351–3363. https://doi.org/10.1002/pc.25624
Proto, A., Penhaker, M., Conforto, S., & Schmid, M. (2017). Nanogenerators for Human Body Energy Harvesting. Trends in Biotechnology, 35(7), 610–624. https://doi.org/10.1016/j.tibtech.2017.04.005
Rafique, S., Kasi, A. K., Kasi, J. K., Aminullah, Bokhari, M., & Shakoor, Z. (2020). Fabrication of silver-doped zinc oxide nanorods piezoelectric nanogenerator on cotton fabric to utilize and optimize the charging system. Nanomaterials and Nanotechnology, 10, 1–12. https://doi.org/10.1177/1847980419895741
Rai, P., Tripathy, S. K., Park, N. H., & Yu, Y. T. (2009). Hydrothermal synthesis, characterization and optical property of single crystal ZnO nanorods. AIP Conference Proceedings, 1147, 152–159. https://doi.org/10.1063/1.3183424
Rao, J., Chen, Z., Zhao, D., Yin, Y., Wang, X., & Yi, F. (2019). Recent Progress in Self-Powered Skin Sensors. 1–19.
Razza, S., Castro-Hermosa, S., Di Carlo, A., & Brown, T. M. (2016). Research Update: Large-area deposition, coating, printing, and processing techniques for the upscaling of perovskite solar cell technology. APL Materials, 4(9). https://doi.org/10.1063/1.4962478
Ren, J., Wang, C., Zhang, X., Carey, T., Chen, K., Yin, Y., & Torrisi, F. (2017). Environmentally-friendly conductive cotton fabric as flexible strain sensor based on hot press reduced graphene oxide. Carbon, 111, 622–630. https://doi.org/10.1016/j.carbon.2016.10.045
Roji, A. M. M., Jiji, G., & Raj, A. B. T. (2017). A retrospect on the role of piezoelectric nanogenerators in the development of the green world. RSC Advances, 7(53), 33642–33670. https://doi.org/10.1039/c7ra05256a
Rojo, M. M., Calero, O. C., Lopeandia, A. F., Rodriguez-Viejo, J., & Martín-Gonzalez, M. (2013). Review on measurement techniques of transport properties of nanowires. Nanoscale, 5(23), 11526–11544. https://doi.org/10.1039/c3nr03242f
Rojo, M. M., Manzano, C. V., Granados, D., Osorio, M. R., Borca-Tasciuc, T., & Martín-González, M. (2015). High electrical conductivity in out of plane direction of electrodeposited Bi2Te3 films. AIP Advances, 5(8). https://doi.org/10.1063/1.4928863
Rosen, Y., Marrach, R., Gutkin, V., & Magdassi, S. (2019). Thin Copper Flakes for Conductive Inks Prepared by Decomposition of Copper Formate and Ultrafine Wet Milling. Advanced Materials Technologies, 4(1), 1–8. https://doi.org/10.1002/admt.201800426
Sabry, R. S., & Hussein, A. D. (2019). Nanogenerator based on nanocomposites PVDF/ZnO with different concentrations. Materials Research Express, 6(10), 0–9. https://doi.org/10.1088/2053-1591/ab4296
Sahu, K., Choudhary, S., Singh, J., Kuriakose, S., Singhal, R., & Mohapatra, S. (2018). Facile wet chemical synthesis of ZnO nanosheets: Effects of counter ions on the morphological, structural, optical and photocatalytic properties. Ceramics International, 44(18), 23094–23101. https://doi.org/10.1016/j.ceramint.2018.09.116
Sayyah, S. M., El-Shafiey, Z. A., Barsoum, B. N., & Khaliel, A. B. (2004). Infrared spectroscopic studies of poly(methyl methacrylate) doped with a new sulfur-Science: Advanced Materials and Devices, 7(3), 100461. https://doi.org/10.1016/j.jsamd.2022.100461
Sriphan, S., & Vittayakorn, N. (2022b). Hybrid piezoelectric-triboelectric nanogenerators for flexible electronics: Recent advances and perspectives. Journal of Science: Advanced Materials and Devices, 7(3), 100461. https://doi.org/10.1016/j.jsamd.2022.100461
Stassi, S., Cauda, V., Ottone, C., Chiodoni, A., Pirri, C. F., & Canavese, G. (2015). Flexible piezoelectric energy nanogenerator based on ZnO nanotubes hosted in a polycarbonate membrane. Nano Energy, 13, 474–481. https://doi.org/10.1016/j.nanoen.2015.03.024
Stoppa, M., & Chiolerio, A. (2016). Testing and evaluation of wearable electronic textiles and assessment thereof. In Performance Testing of Textiles: Methods, Technology and Applications. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-100570-5.00005-0
Sun, H., Luo, M., Weng, W., Cheng, K., Du, P., Shen, G., & Han, G. (2008). Room-temperature preparation of ZnO nanosheets grown on Si substrates by a seed-layer assisted solution route. Nanotechnology, 19(12). https://doi.org/10.1088/0957-4484/19/12/125603
Sun, M., Li, Z., Yang, C., Lv, Y., Yuan, L., Shang, C., Liang, S., Guo, B., Liu, Y., Li, Z., & Luo, D. (2021). Nanogenerator-based devices for biomedical applications. Nano Energy, 89(PB), 106461. https://doi.org/10.1016/j.nanoen.2021.106461
Świerzy, A. P., Pawłowski, R., Warszyński, P., & Szczepanowicz, K. (2020). The conductive properties of ink coating based on Ni–Ag core–shell nanoparticles with the bimodal size distribution. Journal of Materials Science: Materials in Electronics, 31, 12991–12999.
Tan, K. S., Gan, W. C., Velayutham, T. S., & Majid, W. H. A. (2014). Pyroelectricity enhancement of PVDF nanocomposite thin films doped with ZnO nanoparticles. Smart Materials and Structures, 23(12). https://doi.org/10.1088/0964-1726/23/12/125006
Tan, W. K., Abdul Razak, K., Lockman, Z., Kawamura, G., Muto, H., & Matsuda, A. (2014). Synthesis of ZnO nanorod-nanosheet composite via facile hydrothermal method and their photocatalytic activities under visible-light irradiation. Journal of Solid State Chemistry, 211, 146–153. https://doi.org/10.1016/j.jssc.2013.12.026
Tandon, B., Blaker, J. J., & Cartmell, S. H. (2018). Piezoelectric materials as stimulatory biomedical materials and scaffolds for bone repair. Acta Biomaterialia, 73(April), 1–20. https://doi.org/10.1016/j.actbio.2018.04.026
Tang, B., Cai, G., Wang, X., Xu, Z., & Yang, M. (2016). Functionalization of cotton fabrics through thermal reduction of graphene oxide. Applied Surface Science, 393, 441–448. https://doi.org/10.1016/j.apsusc.2016.10.046
Thakur, P., Kool, A., Hoque, N. A., Bagchi, B., Khatun, F., Biswas, P., Brahma, D., Roy, S., Banerjee, S., & Das, S. (2018a). Superior performances of in situ synthesized ZnO/PVDF thin film based self-poled piezoelectric nanogenerator and self-charged photo-power bank with high durability. Nano Energy, 44, 456–467. https://doi.org/10.1016/j.nanoen.2017.11.065
Thein, M. T., Pung, S. Y., Aziz, A., & Itoh, M. (2015). Stacked ZnO nanorods synthesized by solution precipitation method and their photocatalytic activity study. Journal of Sol-Gel Science and Technology, 74(1), 260–271. https://doi.org/10.1007/s10971-015-3646-z
Torreblanca González, J., García Ovejero, R., Lozano Murciego, Á., Villarrubia González, G., & De Paz, J. F. (2019). Effects of Environmental Conditions and Composition on the Electrical Properties of Textile Fabrics. Sensors (Basel, Switzerland), 19(23). https://doi.org/10.3390/s19235145
Vinoth Pandi, D., Muthukumarasamy, N., Agilan, S., & Velauthapillai, D. (2018). CdSe quantum dots sensitized ZnO nanorods for solar cell application. Materials Letters, 223, 227–230. https://doi.org/10.1016/j.matlet.2018.04.022
Wahab, R., Ansari, S. G., Kim, Y. S., Seo, H. K., Kim, G. S., Khang, G., & Shin, H. S. (2007). Low temperature solution synthesis and characterization of ZnO nano-flowers. Materials Research Bulletin, 42(9), 1640–1648. https://doi.org/10.1016/j.materresbull.2006.11.035
Wang, A. C., Wu, C., Pisignano, D., Wang, Z. L., & Persano, L. (2018). Polymer nanogenerators: Opportunities and challenges for large-scale applications. Journal of Applied Polymer Science, 135(24), 1–17. https://doi.org/10.1002/app.45674
Wang, Q., Yang, D., Qiu, Y., Zhang, X., Song, W., & Hu, L. (2018). Two-dimensional ZnO nanosheets grown on flexible ITO-PET substrate for self-powered energy-harvesting nanodevices. Applied Physics Letters, 112(6). https://doi.org/10.1063/1.5012950
Wang, W., & Sun, H. (2020). Effect of different forms of nano-ZnO on the properties of PVDF/ZnO hybrid membranes. Journal of Applied Polymer Science, 137(36), 1–14. https://doi.org/10.1002/app.49070
Wang, Y. W., Shen, R., Wang, Q., & Vasquez, Y. (2018). ZnO Microstructures as Flame-Retardant Coatings on Cotton Fabrics. ACS Omega, 3(6), 6330–6338. https://doi.org/10.1021/acsomega.8b00371
Wang, Y., Zhu, L., & Du, C. (2021). Progress in piezoelectric nanogenerators based on pvdf composite films. Micromachines, 12(11). https://doi.org/10.3390/mi12111278
Wang, Z. L. (2009). ZnO nanowire and nanobelt platform for nanotechnology. Materials Science and Engineering R: Reports, 64(3–4), 33–71. https://doi.org/10.1016/j.mser.2009.02.001
Wang, Z. L., Zhu, G., Yang, Y., Wang, S., & Pan, C. (2012). Progress in nanogenerators for portable electronics. Materials Today, 15(12), 532–543. https://doi.org/10.1016/S1369-7021(13)70011-7
Wang, Z., & Song, J. (2006). Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays. Science, 312(5771), 242–246. https://doi.org/10.1126/science.1124005
Wei, H., Wang, H., Xia, Y., Cui, D., Shi, Y., Dong, M., Liu, C., Ding, T., Zhang, J., Ma, Y., Wang, N., Wang, Z., Sun, Y., Wei, R., & Guo, Z. (2018). An overview of lead-free piezoelectric materials and devices. Journal of Materials Chemistry C, 6(46), 12446–12467. https://doi.org/10.1039/c8tc04515a
Wei, S. F., Lian, J. S., & Jiang, Q. (2009). Controlling growth of ZnO rods by polyvinylpyrrolidone (PVP) and their optical properties. Applied Surface Science, 255(15), 6978–6984. https://doi.org/10.1016/j.apsusc.2009.03.023
Weng, L., Ju, P., Li, H., Yan, L., & Liu, L. (2017). Preparation and characterization of multi shape ZnO/PVDF composite materials. Journal Wuhan University of Technology, Materials Science Edition, 32(4), 958–962. https://doi.org/10.1007/s11595-017-1696-5
Whiter, R. A., Narayan, V., & Kar-Narayan, S. (2014). A scalable nanogenerator based on self-poled piezoelectric polymer nanowires with high energy conversion efficiency. Advanced Energy Materials, 4(18), 1–7. https://doi.org/10.1002/aenm.201400519
Wilson, S., & Laing, R. (2019). Fabrics and garments as sensors: A research update. In Sensors (Switzerland) (Vol. 19, Issue 16). https://doi.org/10.3390/s19163570
Xu, B., & Cai, Z. (2008). Fabrication of a superhydrophobic ZnO nanorod array film on cotton fabrics via a wet chemical route and hydrophobic modification. Applied Surface Science, 254(18), 5899–5904. https://doi.org/10.1016/j.apsusc.2008.03.160
Xu, L.-L., Guo, M.-X., Liu, S., & Bian, S.-W. (2015). Graphene/cotton composite fabrics as flexible electrode materials for electrochemical capacitors. RSC Advances, 5(32), 25244–25249. https://doi.org/10.1039/C4RA16063K
Yaghoubidoust, F., Salimi, E., Wicaksono, D. H. B., & Nur, H. (2020). Physical and electrochemical appraisal of cotton textile modified with polypyrrole and graphene/reduced graphene oxide for flexible electrode. Journal of the Textile Institute, 0(0), 1–13. https://doi.org/10.1080/00405000.2020.1835171
Yang, Gang, Tian, M. Z., Huang, P., Fu, Y. F., Li, Y. Q., Fu, Y. Q., Wang, X. Q., Li, Y., Hu, N., & Fu, S. Y. (2021). Flexible pressure sensor with a tunable pressure-detecting range for various human motions. Carbon, 173, 736–743. https://doi.org/10.1016/j.carbon.2020.11.066
Yang, Geng, Pang, G., Pang, Z., Gu, Y., Mantysalo, M., & Yang, H. (2019). Non-Invasive Flexible and Stretchable Wearable Sensors with Nano-Based Enhancement for Chronic Disease Care. IEEE Reviews in Biomedical Engineering, 12, 34–71. https://doi.org/10.1109/RBME.2018.2887301
Yang, J., Zhang, Y., Li, Y., Wang, Z., Wang, W., An, Q., & Tong, W. (2021). Piezoelectric Nanogenerators based on Graphene Oxide/PVDF Electrospun Nanofiber with Enhanced Performances by In-Situ Reduction. Materials Today Communications, 26. https://doi.org/10.1016/j.mtcomm.2020.101629
Yang leng. (2008). Characterization of Surfaces and Nanostructures Academic and Industrial Applications Characterization of Solid Materials and Heterogeneous Catalysts From Structure to Surface Reactivity Characterization Techniques for Polymer Nanocomposites Basic Concepts.
Yang, R., Qin, Y., Li, C., Dai, L., & Wang, Z. L. (2009). Characteristics of output voltage and current of integrated nanogenerators. Applied Physics Letters, 94(2), 4–6. https://doi.org/10.1063/1.3072362
Yi, G. C., Wang, C., & Park, W. Il. (2005). ZnO nanorods: Synthesis, characterization and applications. Semiconductor Science and Technology, 20(4). https://doi.org/10.1088/0268-1242/20/4/003
Yi, J., Song, Y., Cao, Z., Li, C., & Xiong, C. (2021). Gram-scale Y-doped ZnO and PVDF electrospun film for piezoelectric nanogenerators. Composites Science and Technology, 215(August), 109011. https://doi.org/10.1016/j.compscitech.2021.109011
Yu, D., Zhao, J., Wang, W., Qi, J., & Hu, Y. (2019). Mono-acrylated isosorbide as a bio-based monomer for the improvement of thermal and mechanical properties of poly(methyl methacrylate). RSC Advances, 9(61), 35532–35538. https://doi.org/10.1039/c9ra07548h
Yu, J., Wu, W., Dai, D., Song, Y., Li, C., & Jiang, N. (2014). Crystal structure transformation and dielectric properties of polymer composites incorporating zinc oxide nanorods. Macromolecular Research, 22(1), 19–25. https://doi.org/10.1007/s13233-014-2009-x
Yu, Q., Weng, P., Han, L., Yin, X., Chen, Z., Hu, X., Wang, L., & Wang, H. (2019). Enhanced thermal conductivity of flexible cotton fabrics coated with reactive MWCNT nanofluid for potential application in thermal conductivity coatings and fire warning. Cellulose, 26(12), 7523–7535. https://doi.org/10.1007/s10570-019-02592-w
Yue, R., Ramaraj, S. G., Liu, H., Elamaran, D., Elamaran, V., Gupta, V., Arya, S., Verma, S., Satapathi, S., hayawaka, Y., & Liu, X. (2022). A review of flexible lead-free piezoelectric energy harvester. Journal of Alloys and Compounds, 918, 165653. https://doi.org/10.1016/j.jallcom.2022.165653
Zapata-Hernandez, C., Durango-Giraldo, G., Cacua, K., & Buitrago-Sierra, R. (2020). Influence of graphene oxide synthesis methods on the electrical conductivity of cotton/graphene oxide composites. Journal of the Textile Institute, 0(0), 1–11. https://doi.org/10.1080/00405000.2020.1865507
Zeyrek Ongun, M., Oguzlar, S., Kartal, U., Yurddaskal, M., & Cihanbegendi, O. (2021). Energy harvesting nanogenerators: Electrospun β-PVDF nanofibers accompanying ZnO NPs and ZnO@Ag NPs. Solid State Sciences, 122(October), 106772. https://doi.org/10.1016/j.solidstatesciences.2021.106772
Zhang, D., Zhang, X., Li, X., Wang, H., Sang, X., Zhu, G., & Yeung, Y. (2022). Enhanced piezoelectric performance of PVDF/BiCl3/ZnO nanofiber-based piezoelectric nanogenerator. European Polymer Journal, 166(December 2021), 110956. https://doi.org/10.1016/j.eurpolymj.2021.110956
Zhang, Y., Ram, M. K., Stefanakos, E. K., & Goswami, D. Y. (2012). Synthesis, characterization, and applications of ZnO nanowires. Journal of Nanomaterials, 2012. https://doi.org/10.1155/2012/624520
Zhang, Z., Chen, Y., & Guo, J. (2019). ZnO nanorods patterned-textile using a novel hydrothermal method for sandwich structured-piezoelectric nanogenerator for human energy harvesting. Physica E: Low-Dimensional Systems and Nanostructures, 105, 212–218. https://doi.org/10.1016/j.physe.2018.09.007
Zhao, C., Jia, C., Zhu, Y., & Zhao, T. (2021). An effective self-powered piezoelectric sensor for monitoring basketball skills. Sensors, 21(15). https://doi.org/10.3390/s21155144
Zhao, M., Wang, Z., & Mao, S. X. (2004). Piezoelectric Characterization of Individual Zinc Oxide Nanobelt Probed by Piezoresponse Force Microscope.
Zhao, Z., Dai, Y., Dou, S. X., & Liang, J. (2021). Flexible nanogenerators for wearable electronic applications based on piezoelectric materials. Materials Today Energy, 20, 100690. https://doi.org/10.1016/j.mtener.2021.100690
Zhou, X., Parida, K., Halevi, O., Liu, Y., Xiong, J., Magdassi, S., & Lee, P. S. (2020). All 3D-printed stretchable piezoelectric nanogenerator with non-protruding kirigami structure. Nano Energy, 72, 104676. https://doi.org/10.1016/j.nanoen.2020.104676
Zhou, Z., Zhao, Y., & Cai, Z. (2010). Low-temperature growth of ZnO nanorods on PET fabrics with two-step hydrothermal method. Applied Surface Science, 256(14), 4724–4728. https://doi.org/10.1016/j.apsusc.2010.02.081
Zhu, L., Xiang, Y., Liu, Y., Geng, K., Yao, R., & Li, B. (2022). Comparison of piezoelectric responses of flexible tactile sensors based on hydrothermally-grown ZnO nanorods on ZnO seed layers with different thicknesses. Sensors and Actuators A: Physical, 341(April), 113552. https://doi.org/10.1016/j.sna.2022.113552
Zhu, M., Shi, Q., He, T., Yi, Z., Ma, Y., Yang, B., Chen, T., & Lee, C. (2019). Self-Powered and Self-Functional Cotton Sock Using Piezoelectric and Triboelectric Hybrid Mechanism for Healthcare and Sports Monitoring. ACS Nano. https://doi.org/10.1021/acsnano.8b08329
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xxii, 109 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
dc.publisher.program.spa.fl_str_mv Medellín - Minas - Maestría en Ingeniería - Materiales y Procesos
dc.publisher.faculty.spa.fl_str_mv Facultad de Minas
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/83074/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/83074/2/1036662665.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/83074/3/1036662665.2022.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
a097fc38089e760837cdf5c46cdec81c
fd263a4e92871565b89d19ee63b25043
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089844302807040
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Buitrago Sierra, Robison44944f4ec6fd91249162ea2198a5505fSanta Marín, Juan Felipe30f321423032a600a1187f1d8ce07534zapata Hernandez, Juan Camilod7d387335a2b2a0351c9b9efe2a86129600Materiales Avanzados y Energía MATyERZapata Hernandez, Juan Camilo [0000-0002-8664-5867]https://scholar.google.com/citations?user=bhXNtYcAAAAJ&hl=es2023-01-23T20:50:04Z2023-01-23T20:50:04Z2022https://repositorio.unal.edu.co/handle/unal/83074Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasEl uso de los PENG (nanogeneradores piezoeléctricos) como sensores ha causado mucho interés en los últimos años en diversas áreas de la ingeniería y medicina. Para desarrollar estos dispositivos es necesario usar materiales piezoeléctricos. Dentro de los materiales piezoeléctricos que pueden ser sintetizados, se encuentra el titanato circonato de plomo (PZT), uno de los materiales más usados; sin embargo, la presencia de plomo y sus impactos tanto ambientales como en la salud humana, han incrementado el interés por materiales que no contengan este elemento en su composición. El óxido de zinc (ZnO) es considerado una alternativa, ya que no es tóxico y puede estar sometido a grandes deformaciones mecánicas durante periodos prolongados, siendo ambas características benéficas para el desarrollo de estos dispositivos. Sin embargo, el valor d33 del PZT (~117 pC/N) es superior al ZnO (~12 pC/Ny esto sugiere que la salida eléctrica de los dispositivos basados en ZnO podría ser menor. La estrategia más empleada para incrementar el coeficiente d33 y la salida eléctrica ha sido el uso de dopantes y el efecto de la morfología, sin embargo, el efecto de estos parametrossobre la salida eléctrica ha sido poco estudiado. Adicionalmente, diversos trabajos usan sistemas mecánicos poco robustos para la evaluación de la salida eléctrica de los dispositivos PENG y podrían inducir errores durante el análisis. En este trabajo se sintetizaron dos morfologías de óxido de zinc con el fin de desarrollar un dispositivo que podría ser usado como sensor. Adicionalmente, se propuso una metodología de ensayo de este tipo de dispositivos con el fin de estandarizar el método. Los análisis SEM evidenciaron la obtención de partículas con morfología de barras y hojas. El análisis DRX conformó que ambos tipos de partículas evidencian la fase cristalina Wurtzita, la más común en el ZnO. Mediante análisis TGA se evaluó la cantidad de ZnO presente en los dos compuestos desarrollados, la diferencia entre ambos fue de 0.02 %. Adicionalmente, se propuso un sistema mecánico para realizar los ensayos de salida eléctrica, el cual consiste de una máquina universal de ensayos adaptada para este fin. El sistema entrega la fuerza aplicada durante cada ciclo y de esta manera se puede normalizar la salida eléctrica. Respecto a la salida de voltaje del dispositivo, el compuesto basado en barras de ZnO evidenció una mayor salida en comparación con el compuesto basado en hojas. Esto podría deberse a la formación de una red conductora que favorece la transferencia de carga dentro del compuesto. (Texto tomado de la fuente)PENGs (Piezoelectric nanogenerators) used as sensors have caused great interest in recent years across several areas of engineering and medicine. The development of these devices requires the use of piezoelectric materials. Several piezoelectric materials that can be synthesized, the lead zirconate titanate (PZT), is the most used materials; however, the presence of lead and its environmental and human impacts have increased interest in materials that do not contain this element in their composition. Zinc oxide (ZnO) is considered an alternative since it is not toxic and can be subjected to large mechanical deformations for long periods, both features being beneficial for the development of these devices. However, the d33 value of PZT (~117 pC/N) is higher than ZnO (~12 pC/N), this suggest that the electrical output of ZnO-based devices could be lower. The most used strategy has been the dopants and the effect of morphology on electrical output has been little studied. Additionally, several works use less robust mechanical systems for the evaluation of the electrical output of PENG devices and could induce errors during the analysis. In this work, two morphologies of zinc oxide were synthesized in order to develop a device that could be used as a sensor. Additionally, a testing methodology for this type of device was proposed in order to standardize the testing method. The SEM microgaph evidenced the obtaining of particles with morphology of rods and sheets. The XRD analysis confirmed that both types of particles evidenced the Wurtzite crystalline phase, the most common in ZnO. Through TGA analysis, the amount of ZnO present in the two developed compounds was evaluated, the difference between the boths was 0.02%. Additionally, a mechanical system was proposed to perform the electrical output tests. This system consists of a universal testing machine adapted for this purpose. The system delivers the force applied during each cycle and in this way the electrical output can be normalized. Regarding the voltage output of the device, the ZnO rod-based composite exhibited a higher output compared to the sheet-based composite. This could be due to the formation of a conducting network that favors charge transfer within the compound.MaestríaMagíster en Ingeniería - Materiales y ProcesosNuevos materialesÁrea Curricular de Materiales y Nanotecnologíaxxii, 109 páginasapplication/pdfspaUniversidad Nacional de Colombia - Sede MedellínMedellín - Minas - Maestría en Ingeniería - Materiales y ProcesosFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaOxido de cincDispositivos piezoeléctricosPiezoelectric devicesÓxido de zincSalida eléctricaSensorTextilPENGZinc oxideElectrical outputSensorPENGTextilesDesarrollo de un nanogenerador piezoeléctrico para aplicaciones en sensores biomédicosDevelopment of a piezoelectric nanogenerator for applications in biomedical sensorsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMRedColLaReferenciaAbd El-Ghaffar, M. A., Shaffei, K. A., Fouad Zikry, A. A., Mohamed, M. B., & Marzouq, K. A. G. (2016). Novel conductive nano-composite ink based on poly aniline, silver nanoparticles and nitrocellulose. Egyptian Journal of Chemistry, 59(4), 429–443. https://doi.org/10.21608/ejchem.2016.1101Acosta, M., Novak, N., Rojas, V., Patel, S., Vaish, R., Koruza, J., & Rossetti, G. A. (2017). BaTiO3-based piezoelectrics: Fundamentals, current status, and perspectives. 041305.Ahmad, M., Iqbal, M. A., Kiely, J., Luxton, R., & Jabeen, M. (2017). Enhanced output voltage generation via ZnO nanowires (50 nm): Effect of diameter thinning on voltage enhancement. Journal of Physics and Chemistry of Solids, 104, 281–285. https://doi.org/10.1016/j.jpcs.2017.01.006Al-Heniti, S., Umar, A., & Zaki, H. M. (2015). Synthesis and characterization of zinc oxide nanosheets for dye-sensitized solar cells. Journal of Nanoscience and Nanotechnology, 15(12), 9954–9959. https://doi.org/10.1166/jnn.2015.10693AlAhzm, A. M., Alejli, M. O., Ponnamma, D., Elgawady, Y., & Al-Maadeed, M. A. A. (2021). Piezoelectric properties of zinc oxide/iron oxide filled polyvinylidene fluoride nanocomposite fibers. Journal of Materials Science: Materials in Electronics, 32(11), 14610–14622. https://doi.org/10.1007/s10854-021-06020-3Alamer, F. A. (2018). Structural and electrical properties of conductive cotton fabrics coated with the composite polyaniline/carbon black. Cellulose, 25(3), 2075–2082. https://doi.org/10.1007/s10570-018-1667-9Alhashmi Alamer, F. (2017). A simple method for fabricating highly electrically conductive cotton fabric without metals or nanoparticles, using PEDOT:PSS. Journal of Alloys and Compounds, 702, 266–273. https://doi.org/10.1016/j.jallcom.2017.01.001Ali, A., Nguyen, N. H. A., Baheti, V., Ashraf, M., Militky, J., Mansoor, T., Noman, M. T., & Ahmad, S. (2018). Electrical conductivity and physiological comfort of silver coated cotton fabrics. Journal of the Textile Institute, 109(5), 620–628. https://doi.org/10.1080/00405000.2017.1362148Alshehri, N. A., Lewis, A. R., Pleydell-Pearce, C., & Maffeis, T. G. G. (2018). Investigation of the growth parameters of hydrothermal ZnO nanowires for scale up applications. Journal of Saudi Chemical Society, 22(5), 538–545. https://doi.org/10.1016/j.jscs.2017.09.004Amin, G., Asif, M. H., Zainelabdin, A., Zaman, S., Nur, O., & Willander, M. (2011). Influence of pH, precursor concentration, growth time, and temperature on the morphology of ZnO nanostructures grown by the hydrothermal method. Journal of Nanomaterials, 2011. https://doi.org/10.1155/2011/269692Ariosa, D., Elhordoy, F., Dalchiele, E. A., Marotti, R. E., & Stari, C. (2011). Texture vs morphology in ZnO nano-rods: On the x-ray diffraction characterization of electrochemically grown samples. Journal of Applied Physics, 110(12). https://doi.org/10.1063/1.3669026Askari, H., Hashemi, E., Khajepour, A., Khamesee, M. B., & Wang, Z. L. (2018). Towards self-powered sensing using nanogenerators for automotive systems. Nano Energy, 53, 1003–1019. https://doi.org/10.1016/j.nanoen.2018.09.032Augustine, R., Dan, P., Sosnik, A., Kalarikkal, N., Tran, N., Vincent, B., Thomas, S., Menu, P., Rouxel, D., Augustine, R., Dan, P., Sosnik, A., Kalarikkal, N., & Tran, N. (2022). Electrospun poly ( vinylidene fluoride-trifluoroethylene )/ zinc oxide nanocomposite tissue engineering scaffolds with enhanced cell adhesion and blood vessel formation To cite this version : HAL Id : hal-01712240.Babick, F., Mielke, J., Wohlleben, W., Weigel, S., & Hodoroaba, V. D. (2016). How reliably can a material be classified as a nanomaterial? Available particle-sizing techniques at work. Journal of Nanoparticle Research, 18(6), 1–40. https://doi.org/10.1007/s11051-016-3461-7Bai, H., Wang, X., Zhou, Y., & Zhang, L. (2012). Preparation and characterization of poly(vinylidene fluoride) composite membranes blended with nano-crystalline cellulose. Progress in Natural Science: Materials International, 22(3), 250–257. https://doi.org/10.1016/j.pnsc.2012.04.011Bairagi, S., & Ali, S. W. (2019). A unique piezoelectric nanogenerator composed of melt-spun PVDF/KNN nanorod-based nanocomposite fibre. European Polymer Journal, 116(April), 554–561. https://doi.org/10.1016/j.eurpolymj.2019.04.043Bairagi, S., & Ali, S. W. (2020a). A hybrid piezoelectric nanogenerator comprising of KNN/ZnO nanorods incorporated PVDF electrospun nanocomposite webs. International Journal of Energy Research, 44(7), 5545–5563. https://doi.org/10.1002/er.5306Bairagi, S., & Ali, S. W. (2020b). Poly (vinylidine fluoride) (PVDF)/Potassium Sodium Niobate (KNN) nanorods based flexible nanocomposite film: Influence of KNN concentration in the performance of nanogenerator. Organic Electronics, 78(October 2019), 105547. https://doi.org/10.1016/j.orgel.2019.105547Balan, V., Mihai, C. T., Cojocaru, F. D., Uritu, C. M., Dodi, G., Botezat, D., & Gardikiotis, I. (2019). Vibrational spectroscopy fingerprinting in medicine: From molecular to clinical practice. Materials, 12(18), 1–40. https://doi.org/10.3390/ma12182884Bandeira, M., Giovanela, M., Roesch-Ely, M., Devine, D. M., & da Silva Crespo, J. (2020). Green synthesis of zinc oxide nanoparticles: A review of the synthesis methodology and mechanism of formation. Sustainable Chemistry and Pharmacy, 15(February), 100223. https://doi.org/10.1016/j.scp.2020.100223Basnet, P., & Chatterjee, S. (2020). Structure-directing property and growth mechanism induced by capping agents in nanostructured ZnO during hydrothermal synthesis—A systematic review. Nano-Structures and Nano-Objects, 22, 100426. https://doi.org/10.1016/j.nanoso.2020.100426Bergström, J. (2015). Experimental Characterization Techniques. In Mechanics of Solid Polymers. https://doi.org/10.1016/b978-0-323-31150-2.00002-9Bhat, T. S., Bhogale, S. B., Patil, S. S., Pisal, S. H., Phaltane, S. A., & Patil, P. S. (2020). Synthesis and characterization of hexagonal zinc oxide nanorods for Eosin-Y dye sensitized solar cell. Materials Today: Proceedings, 43, 2800–2804. https://doi.org/10.1016/j.matpr.2020.08.687Bhatia, D., Sharma, H., Meena, R. S., & Palkar, V. R. (2016). A novel ZnO piezoelectric microcantilever energy scavenger: Fabrication and characterization. Sensing and Bio-Sensing Research, 9, 45–52. https://doi.org/10.1016/j.sbsr.2016.05.008Bhunia, R., Ghosh, B., Ghosh, D., Hussain, S., Bhar, R., & Pal, A. K. (2015). Free-standing and flexible nano-ZnO/PVDF composite thin films: Impedance spectroscopic studies. Polymers for Advanced Technologies, 26(9), 1176–1183. https://doi.org/10.1002/pat.3551Bi, H., Meng, S., Li, Y., Guo, K., Chen, Y., Kong, J., Yang, P., Zhong, W., & Liu, B. (2006). Deposition of PEG onto PMMA microchannel surface to minimize nonspecific adsorption. Lab on a Chip, 6(6), 769–775. https://doi.org/10.1039/b600326eBoppella, R., Anjaneyulu, K., Basak, P., & Manorama, S. V. (2013). Facile synthesis of face oriented ZnO crystals: Tunable polar facets and shape induced enhanced photocatalytic performance. Journal of Physical Chemistry C, 117(9), 4597–4605. https://doi.org/10.1021/jp311443sBoukir, A., Fellak, S., & Doumenq, P. (2019). Structural characterization of Argania spinosa Moroccan wooden artifacts during natural degradation progress using infrared spectroscopy (ATR-FTIR) and X-Ray diffraction (XRD). Heliyon, 5(9), e02477. https://doi.org/10.1016/j.heliyon.2019.e02477Briscoe, J., Jalali, N., Woolliams, P., Stewart, M., Weaver, P. M., Cain, M., & Dunn, S. (2013). Measurement techniques for piezoelectric nanogenerators. Energy and Environmental Science, 6(10), 3035–3045. https://doi.org/10.1039/c3ee41889hBruno, T. J. (1999). Sampling accessories for infrared spectrometry. Applied Spectroscopy Reviews, 34(1–2), 91–120. https://doi.org/10.1081/ASR-100100840Cano-Raya, C., Denchev, Z. Z., Cruz, S. F., & Viana, J. C. (2019). Chemistry of solid metal-based inks and pastes for printed electronics – A review. Applied Materials Today, 15, 416–430. https://doi.org/10.1016/j.apmt.2019.02.012Cao, F., Li, C., Li, M., Li, H., Huang, X., & Yang, B. (2018). Direct growth of Al-doped ZnO ultrathin nanosheets on electrode for ethanol gas sensor application. Applied Surface Science, 447, 173–181. https://doi.org/10.1016/j.apsusc.2018.03.217Cao, X. T., Bach, L. G., Islam, M. R., & Lim, K. T. (2015). A simple synthesis, characterization, and properties of poly(methyl methacrylate) grafted CdTe nanocrystals. Molecular Crystals and Liquid Crystals, 618(1), 111–119. https://doi.org/10.1080/15421406.2015.1076305Ceylan, Ö., Van Landuyt, L., Rahier, H., & De Clerck, K. (2013). The effect of water immersion on the thermal degradation of cotton fibers. Cellulose, 20(4), 1603–1612. https://doi.org/10.1007/s10570-013-9936-0Chamakh, M. M., Mrlík, M., Leadenham, S., Bažant, P., Osička, J., Almaadeed, M. A. A., Erturk, A., & Kuřitka, I. (2020). Vibration sensing systems based on poly(Vinylidene fluoride) and microwave-assisted synthesized zno star-like particles with controllable structural and physical properties. Nanomaterials, 10(12), 1–15. https://doi.org/10.3390/nano10122345Chand, N., & Fahim, M. (2020). Tribology of Natural Fiber Polymer Composites (2nd Editio, Vol. 148). https://doi.org/10.1016/C2018-0-04814-8Chen, C., Bai, Z., Cao, Y., Dong, M., Jiang, K., Zhou, Y., Tao, Y., Gu, S., Xu, J., Yin, X., & Xu, W. (2020). Enhanced piezoelectric performance of BiCl3/PVDF nanofibers-based nanogenerators. Composites Science and Technology, 192, 108100. https://doi.org/10.1016/j.compscitech.2020.108100Chen, F., Jing, M. xiang, Yang, H., Yuan, W. yong, Liu, M. quan, Ji, Y. sheng, Hussain, S., & Shen, X. qian. (2021). Improved ionic conductivity and Li dendrite suppression of PVDF-based solid electrolyte membrane by LLZO incorporation and mechanical reinforcement. Ionics, 27(3), 1101–1111. https://doi.org/10.1007/s11581-020-03891-0Chen, J., Nabulsi, N., Wang, W., Kim, J. Y., Kwon, M. K., & Ryou, J. H. (2019). Output characteristics of thin-film flexible piezoelectric generators: A numerical and experimental investigation. Applied Energy, 255(June). https://doi.org/10.1016/j.apenergy.2019.113856Cheng, L. C., Brahma, S., Huang, J. L., & Liu, C. P. (2022a). Enhanced piezoelectric coefficient and the piezoelectric nanogenerator output performance in Y-doped ZnO thin films. Materials Science in Semiconductor Processing, 146(February), 106703. https://doi.org/10.1016/j.mssp.2022.106703Cheng, L. C., Brahma, S., Huang, J. L., & Liu, C. P. (2022b). Enhanced piezoelectric coefficient and the piezoelectric nanogenerator output performance in Y-doped ZnO thin films. Materials Science in Semiconductor Processing, 146(March), 106703. https://doi.org/10.1016/j.mssp.2022.106703Cheon, J., Lee, J., & Kim, J. (2012). Inkjet printing using copper nanoparticles synthesized by electrolysis. Thin Solid Films, 520(7), 2639–2643. https://doi.org/10.1016/j.tsf.2011.11.021Choi, D., & Park, Y. T. (2019). Nanogenerators in Korea. In Nanogenerators in Korea. https://doi.org/10.3390/books978-3-03897-623-3Chowdhury, A. R., Jaksik, J., Hussain, I., Longoria, R., Faruque, O., Cesano, F., Scarano, D., Parsons, J., & Uddin, M. J. (2019). Multicomponent nanostructured materials and interfaces for efficient piezoelectricity. Nano-Structures and Nano-Objects, 17, 148–184. https://doi.org/10.1016/j.nanoso.2018.12.002Christian, B., Volk, J., Lukàcs, I. E., Sautieff, E., Sturm, C., Graillot, A., Dauksevicius, R., O’Reilly, E., Ambacher, O., & Lebedev, V. (2016). Piezo-force and Vibration Analysis of ZnO Nanowire Arrays for Sensor Application. Procedia Engineering, 168, 1192–1195. https://doi.org/10.1016/j.proeng.2016.11.406Coates, J. (2004). Encyclopedia of Analytical Chemistry -Interpretation of Infrared Spectra, A Practical Approach. Encyclopedia of Analytical Chemistry, 1–23. http://www3.uma.pt/jrodrigues/disciplinas/QINO-II/Teorica/IR.pdfCosta, S. V., Azana, N. T., Shieh, P., & Mazon, T. (2018). Synthesis of ZnO rod arrays on aluminum recyclable paper and effect of the rod size on power density of eco-friendly nanogenerators. Ceramics International, 44(11), 12174–12179. https://doi.org/10.1016/j.ceramint.2018.03.272Covaci, C., & Gontean, A. (2020). Piezoelectric energy harvesting solutions: A review. Sensors (Switzerland), 20(12), 1–37. https://doi.org/10.3390/s20123512Crossley, S., & Kar-Narayan, S. (2015). Energy harvesting performance of piezoelectric ceramic and polymer nanowires. Nanotechnology, 26(34). https://doi.org/10.1088/0957-4484/26/34/344001Deng, W., Yang, T., Jin, L., Yan, C., Huang, H., Chu, X., Wang, Z., Xiong, D., Tian, G., Gao, Y., Zhang, H., & Yang, W. (2019). Cowpea-structured PVDF/ZnO nanofibers based flexible self-powered piezoelectric bending motion sensor towards remote control of gestures. Nano Energy, 55, 516–525. https://doi.org/10.1016/j.nanoen.2018.10.049Dong, K., Peng, X., & Wang, Z. L. (2020). Fiber/Fabric-Based Piezoelectric and Triboelectric Nanogenerators for Flexible/Stretchable and Wearable Electronics and Artificial Intelligence. Advanced Materials, 32(5), 1–43. https://doi.org/10.1002/adma.201902549Dossin Zanrosso, C., Piazza, D., & Lansarin, M. A. (2020). PVDF/ZnO composite films for photocatalysis: A comparative study of solution mixing and melt blending methods. Polymer Engineering and Science, 60(6), 1146–1157. https://doi.org/10.1002/pen.25368Dukali, R. M., Radovic, I. M., Stojanovic, D. B., Sevic, D. M., Radojevic, V. J., Jocic, D. M., & Aleksic, R. R. (2014). Electrospinning of the laser dye rhodamine B-doped poly(methyl methacrylate) nanofibers. Journal of the Serbian Chemical Society, 79(7), 867–880. https://doi.org/10.2298/JSC131014011DElton N. Kaufmann. (2003). Characterization of materials.Erer, K. S. (2007). Adaptive usage of the Butterworth digital filter. Journal of Biomechanics, 40(13), 2934–2943. https://doi.org/10.1016/j.jbiomech.2007.02.019Fang, L., Wu, W., Huang, X., He, J., & Jiang, P. (2015). Hydrangea-like zinc oxide superstructures for ferroelectric polymer composites with high thermal conductivity and high dielectric constant. Composites Science and Technology, 107, 67–74. https://doi.org/10.1016/j.compscitech.2014.12.009Fangueiro, R., & Soutinho, F. (2011). Textile structures. In Fibrous and Composite Materials for Civil Engineering Applications. Woodhead Publishing Limited. https://doi.org/10.1533/9780857095583.1.62Fateh, T., Richard, F., Rogaume, T., & Joseph, P. (2016). Experimental and modelling studies on the kinetics and mechanisms of thermal degradation of polymethyl methacrylate in nitrogen and air. Journal of Analytical and Applied Pyrolysis, 120, 423–433. https://doi.org/10.1016/j.jaap.2016.06.014Feng, W., Wang, B., Huang, P., Wang, X., Yu, J., & Wang, C. (2016). Wet chemistry synthesis of ZnO crystals with hexamethylenetetramine(HMTA): Understanding the role of HMTA in the formation of ZnO crystals. Materials Science in Semiconductor Processing, 41, 462–469. https://doi.org/10.1016/j.mssp.2015.10.017Fonoberov, V. A., & Balandin, A. A. (2006). ZnO Quantum Dots: Physical Properties and Optoelectronic Applications. Journal of Nanoelectronics and Optoelectronics, 1(1), 19–38. https://doi.org/10.1166/jno.2006.002Fraga, M. A., Furlan, H., Pessoa, R. S., & Massi, M. (2014). Wide bandgap semiconductor thin films for piezoelectric and piezoresistive MEMS sensors applied at high temperatures: An overview. Microsystem Technologies, 20(1), 9–21. https://doi.org/10.1007/s00542-013-2029-zGaan, S., & Sun, G. (2009). Effect of nitrogen additives on thermal decomposition of cotton. Journal of Analytical and Applied Pyrolysis, 84(1), 108–115. https://doi.org/10.1016/j.jaap.2008.12.004Gad, S. E., & Sullivan, D. W. (2014). Methyl Ethyl Ketone. In Encyclopedia of Toxicology: Third Edition (Third Edit, Vol. 3). Elsevier. https://doi.org/10.1016/B978-0-12-386454-3.00879-4Gerbreders, V., Krasovska, M., Sledevskis, E., Gerbreders, A., Mihailova, I., Tamanis, E., & Ogurcovs, A. (2020). Hydrothermal synthesis of ZnO nanostructures with controllable morphology change. CrystEngComm, 22(8), 1346–1358. https://doi.org/10.1039/c9ce01556fGhasemian, M. B., Lin, Q., Adabifiroozjaei, E., Wang, F., Chu, D., & Wang, D. (2017). Morphology control and large piezoresponse of hydrothermally synthesized lead-free piezoelectric (Bi0.5Na0.5)TiO3 nanofibres. RSC Advances, 7(25), 15020–15026. https://doi.org/10.1039/c7ra01293dGodfrey, D., Nirmal, D., Arivazhagan, L., Rathes Kannan, R., Issac Nelson, P., Rajesh, S., Vidhya, B., & Mohankumar, N. (2020). A novel ZnPc nanorod derived piezoelectric nanogenerator for energy harvesting. Physica E: Low-Dimensional Systems and Nanostructures, 118, 113931. https://doi.org/10.1016/j.physe.2019.113931Goel, S., & Kumar, B. (2020). A review on piezo-/ferro-electric properties of morphologically diverse ZnO nanostructures. Journal of Alloys and Compounds, 816, 152491. https://doi.org/10.1016/j.jallcom.2019.152491Golubevas, R., Zarkov, A., Alinauskas, L., Stankeviciute, Z., Balciunas, G., Garskaite, E., & Kareiva, A. (2017). Fabrication and investigation of high-quality glass-ceramic (GC)-polymethyl methacrylate (PMMA) composite for regenerative medicine. RSC Advances, 7(53), 33558–33567. https://doi.org/10.1039/c7ra05188cgowayed, Y. (2013). Types of fiber and fiber arrangement in fi ber-reinforced polymer (FRP) composites. In N. Uddin (Ed.), Developments in fiber-reinforced polymer (FRP) composites for civil engineering (pp. 3–17).Gulia, S., & Kakkar, R. (2013). Zno quantum dots for biomedical applications. Advanced Materials Letters, 4(12), 876–887. https://doi.org/10.5185/amlett.2013.3440He, Q., Li, X., Zhang, J., Zhang, H., & Briscoe, J. (2021). P–N junction-based ZnO wearable textile nanogenerator for biomechanical energy harvesting. Nano Energy, 85(February), 105938. https://doi.org/10.1016/j.nanoen.2021.105938Homayounfar, S. Z., & Andrew, T. L. (2020). Wearable Sensors for Monitoring Human Motion: A Review on Mechanisms, Materials, and Challenges. SLAS Technology, 25(1), 9–24. https://doi.org/10.1177/2472630319891128Hou, Q., Zhu, L., Chen, H., Liu, H., & Li, W. (2013). Highly regular and ultra-thin porous ZnO nanosheets: An indirect electrodeposition method using acetate-containing precursor and their application in quantum dots-sensitized solar cells. Electrochimica Acta, 94(3), 72–79. https://doi.org/10.1016/j.electacta.2013.01.122Hsu, C. L., & Chen, K. C. (2012). Improving piezoelectric nanogenerator comprises ZnO nanowires by bending the flexible PET substrate at low vibration frequency. Journal of Physical Chemistry C, 116(16), 9351–9355. https://doi.org/10.1021/jp301527yHu, D., Yao, M., Fan, Y., Ma, C., Fan, M., & Liu, M. (2019). Strategies to achieve high performance piezoelectric nanogenerators. Nano Energy, 55(November 2018), 288–304. https://doi.org/10.1016/j.nanoen.2018.10.053Ibrahim, N., Akindoyo, J. O., & Mariatti, M. (2022). Recent development in silver-based ink for flexible electronics. Journal of Science: Advanced Materials and Devices, 7(1), 100395. https://doi.org/10.1016/j.jsamd.2021.09.002Inamuddin, & Abbas Kashmery, H. (2019). Polyvinylidene fluoride/sulfonated graphene oxide blend membrane coated with polypyrrole/platinum electrode for ionic polymer metal composite actuator applications. Scientific Reports, 9(1), 1–11. https://doi.org/10.1038/s41598-019-46305-6Indira, S. S., Vaithilingam, C. A., Oruganti, K. S. P., Mohd, F., & Rahman, S. (2019). Nanogenerators as a sustainable power source: state of art, applications, and challenges. In Nanomaterials (Vol. 9, Issue 5). https://doi.org/10.3390/nano9050773Indolia, A. P., & Gaur, M. S. (2013). Investigation of structural and thermal characteristics of PVDF/ZnO nanocomposites. Journal of Thermal Analysis and Calorimetry, 113(2), 821–830. https://doi.org/10.1007/s10973-012-2834-0Io, W. F., Wong, M. C., Pang, S. Y., Zhao, Y., Ding, R., Guo, F., & Hao, J. (2022). Strong piezoelectric response in layered CuInP2S6 nanosheets for piezoelectric nanogenerators. Nano Energy, 99(May), 107371. https://doi.org/10.1016/j.nanoen.2022.107371Jain, G., Rocks, C., Maguire, P., & Mariotti, D. (2020). One-step synthesis of strongly confined, defect-free and hydroxy-terminated ZnO quantum dots. Nanotechnology, 31(21). https://doi.org/10.1088/1361-6528/ab72b5Javed, Z., Rafiq, L., Nazeer, M. A., Siddiqui, S., Ramzan, M. B., Khan, M. Q., & Naeem, M. S. (2022). Piezoelectric nanogenerator for bio-mechanical strain measurement. Beilstein Journal of Nanotechnology, 13, 192–200. https://doi.org/10.3762/BJNANO.13.14Jenkins, K., Kelly, S., Nguyen, V., Wu, Y., & Yang, R. (2018). Piezoelectric diphenylalanine peptide for greatly improved flexible nanogenerators. Nano Energy, 51, 317–323. https://doi.org/10.1016/j.nanoen.2018.06.061Jia, G., Lu, X., Hao, B., Wang, X., Li, Y., & Yao, J. (2013). Kinetic mechanism of ZnO hexagonal single crystal slices on GaN/sapphire by a layer-by-layer growth mode. RSC Advances, 3(31), 12826–12830. https://doi.org/10.1039/c3ra23261aJiang, H., Wang, H., & Wang, X. (2011). Facile and mild preparation of fluorescent ZnO nanosheets and their bioimaging applications. Applied Surface Science, 257(15), 6991–6995. https://doi.org/10.1016/j.apsusc.2011.03.053Jiang, Y., Deng, Y., & Qi, H. (2021). Microstructure dependence of output performance in flexible pvdf piezoelectric nanogenerators. Polymers, 13(19). https://doi.org/10.3390/polym13193252Jiao, P. (2021). Emerging artificial intelligence in piezoelectric and triboelectric nanogenerators. Nano Energy, 88, 106227. https://doi.org/10.1016/j.nanoen.2021.106227Jin, C., Hao, N., Xu, Z., Trase, I., Nie, Y., Dong, L., Closson, A., Chen, Z., & Zhang, J. X. J. (2020). Flexible piezoelectric nanogenerators using metal-doped ZnO-PVDF films. Sensors and Actuators, A: Physical, 305, 111912. https://doi.org/10.1016/j.sna.2020.111912Joe, A., Park, S. H., Shim, K. D., Kim, D. J., Jhee, K. H., Lee, H. W., Heo, C. H., Kim, H. M., & Jang, E. S. (2017). Antibacterial mechanism of ZnO nanoparticles under dark conditions. Journal of Industrial and Engineering Chemistry, 45, 430–439. https://doi.org/10.1016/j.jiec.2016.10.013Jung, D. Y., Baek, S. H., Hasan, M. R., & Park, I. K. (2015). Performance-enhanced ZnO nanorod-based piezoelectric nanogenerators on double-sided stainless steel foil. Journal of Alloys and Compounds, 641, 163–169. https://doi.org/10.1016/j.jallcom.2015.03.066Kammel, R. S., & Sabry, R. S. (2019). Effects of the aspect ratio of ZnO nanorods on the performance of piezoelectric nanogenerators. Journal of Science: Advanced Materials and Devices, 4(3), 420–424. https://doi.org/10.1016/j.jsamd.2019.08.002Kamyshny, A., & Magdassi, S. (2014). Conductive nanomaterials for printed electronics. Small, 10(17), 3515–3535. https://doi.org/10.1002/smll.201303000Karmakar, S. R. (1998). Application of biotechnology in the pre-treatment processes of textiles. In Colourage (Vol. 45, Issue ANNUAL).Karthikeyan, C., Arun, L., Hameed, A. S. H., Gopinath, K., Umaralikahan, L., Vijayaprasath, G., & Malathi, P. (2019). Structural, optical, thermal and magnetic properties of nickel calcium and nickel iron co-doped ZnO nanoparticles. Journal of Materials Science: Materials in Electronics, 0(0), 0. https://doi.org/10.1007/s10854-019-01160-zKasaw, E., Haile, A., & Getnet, M. (2020). Conductive Coatings of Cotton Fabric Consisting of. Coatings, 1–17.Kaur, J., & Singh, H. (2020). Fabrication and analysis of piezoelectricity in 0D, 1D and 2D Zinc Oxide nanostructures. Ceramics International, 46(11), 19401–19407. https://doi.org/10.1016/j.ceramint.2020.04.283Kawamura, G., Alvarez, S., Stewart, I. E., Catenacci, M., Chen, Z., & Ha, Y. C. (2015). Production of Oxidation-Resistant Cu-Based Nanoparticles by Wire Explosion. Scientific Reports, 5, 1–8. https://doi.org/10.1038/srep18333Kim, H. G., Kim, E. H., & Kim, S. S. (2021). Growth of zno nanorods on ito film for piezoelectric nanogenerators. Materials, 14(6). https://doi.org/10.3390/ma14061461Kim, M., & Fan, J. (2021). Piezoelectric Properties of Three Types of PVDF and ZnO Nanofibrous Composites. Advanced Fiber Materials, 3(3), 160–171. https://doi.org/10.1007/s42765-021-00068-wKim, M., Wu, Y. S., Kan, E. C., & Fan, J. (2018). Breathable and flexible piezoelectric ZnO@PVDF fibrous nanogenerator for wearable applications. Polymers, 10(7). https://doi.org/10.3390/polym10070745Kolodziejczak-Radzimska, A., & Jesionowski, T. (2014). Zinc oxide-from synthesis to application: A review. Materials, 7(4), 2833–2881. https://doi.org/10.3390/ma7042833Król, A., Pomastowski, P., Rafińska, K., Railean-Plugaru, V., & Buszewski, B. (2017). Zinc oxide nanoparticles: Synthesis, antiseptic activity and toxicity mechanism. Advances in Colloid and Interface Science, 249, 37–52. https://doi.org/10.1016/j.cis.2017.07.033Kumar, P., Yadav, A. K., Joshi, A. G., Bhattacharyya, D., Jha, S. N., & Pandey, P. C. (2018). Influence of Li co-doping on structural property of sol-gel derived terbium doped zinc oxide nanoparticles. Materials Characterization, 142(December 2017), 593–601. https://doi.org/10.1016/j.matchar.2018.06.024Kumar Prajapati, G., Katla, R., & Singh, B. (2021). Effect of variation of MoS2concentration on the piezoelectric performance of PVDF-MoS2based flexible nanogenerator. Materials Today: Proceedings, 47, 4861–4865. https://doi.org/10.1016/j.matpr.2021.06.084Kurort, T., Sekiguchi, Y., Ogawa, T., Sawaguchi, T., Ikemusa, T., & Honda, T. (1977). Thermal Degradation of Polystyrene. Nippon Kagaku Kaishi, 1977(6), 894–901. https://doi.org/10.1246/nikkashi.1977.894Kwon, Y. H., Kim, D. H., Kim, H. K., & Nah, J. (2015). Phosphorus-doped zinc oxide p-n homojunction thin film for flexible piezoelectric nanogenerators. Nano Energy, 18, 126–132. https://doi.org/10.1016/j.nanoen.2015.10.009Lee, E., Park, J., Yim, M., Jeong, S., & Yoon, G. (2014). High-efficiency micro-energy generation based on free-carrier-modulated ZnO:N piezoelectric thin films. Applied Physics Letters, 104(21), 1–6. https://doi.org/10.1063/1.4880935Lee, Y., Kim, S., Kim, D., Lee, C., Park, H., & Lee, J. H. (2020). Direct-current flexible piezoelectric nanogenerators based on two-dimensional ZnO nanosheet. Applied Surface Science, 509, 145328. https://doi.org/10.1016/j.apsusc.2020.145328Leong, S. S., Ng, W. M., Lim, J. K., & Yeap, S. P. (2018). Handbook of Materials Characterization. https://doi.org/10.1007/978-3-319-92955-2_3Li, G. Y., Zhang, H. Di, Guo, K., Ma, X. S., & Long, Y. Z. (2020). Fabrication and piezoelectric-pyroelectric properties of electrospun PVDF/ZnO composite fibers. Materials Research Express, 7(9). https://doi.org/10.1088/2053-1591/abb264Li, M., Katsouras, I., Piliego, C., Glasser, G., Lieberwirth, I., Blom, P. W. M., & De Leeuw, D. M. (2013). Controlling the microstructure of poly(vinylidene-fluoride) (PVDF) thin films for microelectronics. Journal of Materials Chemistry C, 1(46), 7695–7702. https://doi.org/10.1039/c3tc31774aLi, T., Li, Y. T., Qin, W. W., Zhang, P. P., Chen, X. Q., Hu, X. F., & Zhang, W. (2015). Piezoelectric Size Effects in a Zinc Oxide Micropillar. Nanoscale Research Letters, 10(1). https://doi.org/10.1186/s11671-015-1081-2Li, Wanxi, Qi, H., Guo, F., Niu, X., Du, Y., & Chen, Y. (2019). NiFe2O4 nanoparticles supported on cotton-based carbon fibers and their application as a novel broadband microwave absorbent. RSC Advances, 9(51), 29959–29966. https://doi.org/10.1039/c9ra05844cLi, Weiwei, Meredov, A., & Shamim, A. (2019). Coat-and-print patterning of silver nanowires for flexible and transparent electronics. Npj Flexible Electronics, 3(1). https://doi.org/10.1038/s41528-019-0063-3Li, Y., Feng, J., Zhao, Y., Wang, J., & Xu, C. (2022). Ultrathin flexible linear-piezoelectric ZnO thin film actuators: Tuning the piezoelectric responses by in-plane epitaxial strain. Applied Surface Science, 599(December 2021), 153969. https://doi.org/10.1016/j.apsusc.2022.153969Liao, Y., Zhang, R., & Qian, J. (2019). Printed electronics based on inorganic conductive nanomaterials and their applications in intelligent food packaging. RSC Advances, 9(50), 29154–29172. https://doi.org/10.1039/c9ra05954gLiu, J., Yang, B., Lu, L., Wang, X., Li, X., Chen, X., & Liu, J. (2020). Flexible and lead-free piezoelectric nanogenerator as self-powered sensor based on electrospinning BZT-BCT/P(VDF-TrFE) nanofibers. Sensors and Actuators, A: Physical, 303(July), 111796. https://doi.org/10.1016/j.sna.2019.111796Liu, M., Chang, J., Sun, J., & Gao, L. (2013). Synthesis of porous NiO using NaBH4 dissolved in ethylene glycol as precipitant for high-performance supercapacitor. Electrochimica Acta, 107, 9–15. https://doi.org/10.1016/j.electacta.2013.05.122Liu, Yangsi, & Gao, W. (2015). Growth process, crystal size and alignment of ZnO nanorods synthesized under neutral and acid conditions. Journal of Alloys and Compounds, 629, 84–91. https://doi.org/10.1016/j.jallcom.2014.12.139Liu, Yiming, Wang, L., Zhao, L., Yu, X., & Zi, Y. (2020). Recent progress on flexible nanogenerators toward self‐powered systems. InfoMat, 2(2), 318–340. https://doi.org/10.1002/inf2.12079Liu, Z., Zhang, S., Jin, Y. M., Ouyang, H., Zou, Y., Wang, X. X., Xie, L. X., & Li, Z. (2017). Flexible piezoelectric nanogenerator in wearable self-powered active sensor for respiration and healthcare monitoring. Semiconductor Science and Technology, 32(6). https://doi.org/10.1088/1361-6641/aa68d1Liu, Z., Zhang, S., Jin, Y. M., Ouyang, H., Zou, Y., Wang, X. X., Xie, L. X., & Li, Z. (2019). Flexible Piezoelectric Nanogenerator for Wearable Self-powered Respiration Active Sensor and Healthcare Monitoring. Materials Research Express, 0–12.Lu, L., Ding, W., Liu, J., & Yang, B. (2020a). Flexible PVDF based piezoelectric nanogenerators. Nano Energy, 78(June), 105251. https://doi.org/10.1016/j.nanoen.2020.105251Lu, L., Ding, W., Liu, J., & Yang, B. (2020b). Flexible PVDF based piezoelectric nanogenerators. Nano Energy, 78(July), 105251. https://doi.org/10.1016/j.nanoen.2020.105251Luo, J. T., Yang, Y. C., Zhu, X. Y., Chen, G., Zeng, F., & Pan, F. (2010). Enhanced electromechanical response of Fe-doped ZnO films by modulating the chemical state and ionic size of the Fe dopant. Physical Review B - Condensed Matter and Materials Physics, 82(1). https://doi.org/10.1103/PhysRevB.82.014116Lv, J., Zhang, L., Zhong, Y., Sui, X., Wang, B., Chen, Z., Feng, X., Xu, H., & Mao, Z. (2019). High-performance polypyrrole coated knitted cotton fabric electrodes for wearable energy storage. Organic Electronics, 74(May), 59–68. https://doi.org/10.1016/j.orgel.2019.06.027Ma, X., Zhang, F., Han, K., Yang, B., & Song, G. (2015). Evaporation characteristics of acetone-butanol-ethanol and diesel blends droplets at high ambient temperatures. Fuel, 160, 43–49. https://doi.org/10.1016/j.fuel.2015.07.079Mahalakshmi, S., Hema, N., & Vijaya, P. P. (2020). In Vitro Biocompatibility and Antimicrobial activities of Zinc Oxide Nanoparticles (ZnO NPs) Prepared by Chemical and Green Synthetic Route— A Comparative Study. BioNanoScience, 10(1), 112–121. https://doi.org/10.1007/s12668-019-00698-wMahanty, B., Ghosh, S. K., Jana, S., Mallick, Z., Sarkar, S., & Mandal, D. (2021). ZnO nanoparticle confined stress amplified all-fiber piezoelectric nanogenerator for self-powered healthcare monitoring. Sustainable Energy and Fuels, 5(17), 4389–4400. https://doi.org/10.1039/d1se00444aMahapatra, A., Ajimsha, R. S., & Misra, P. (2022). Oxygen annealing induced enhancement in output characteristics of ZnO based flexible piezoelectric nanogenerators. Journal of Alloys and Compounds, 913, 165277. https://doi.org/10.1016/j.jallcom.2022.165277Manjula, Y., Kumar, R. R., Raju, P. M. S., Kumar, G. A., Rao, T. V., Akshaykranth, A., & Suparaja, P. (2020). Piezoelectric Flexible Nanogenerator Based on ZnO Nanosheet Networks for Mechanical a Department. Chemical Physics, 110699. https://doi.org/10.1016/j.chemphys.2020.110699Manoharan, C., Sutharsan, P., Venkatachalapathy, R., Vasanthi, S., Dhanapandian, S., & Veeramuthu, K. (2015). Spectroscopic and rock magnetic studies on some ancient Indian pottery samples. Egyptian Journal of Basic and Applied Sciences, 2(1), 39–49. https://doi.org/10.1016/j.ejbas.2014.11.001Matin Nazar, A., Egbe, K. J. I., Jiao, P., Wang, Y., & Yang, Y. (2021). Magnetic lifting triboelectric nanogenerators (ml-TENG) for energy harvesting and active sensing. APL Materials, 9(9). https://doi.org/10.1063/5.0064300Mayeen, A., & Kalarikkal, N. (2018). Development of ceramic-controlled piezoelectric devices for biomedical applications. In Fundamental Biomaterials: Ceramics. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-102203-0.00002-0Medina Cruz, D., Mostafavi, E., Vernet-Crua, A., Barabadi, H., Shah, V., Cholula-Díaz, J. L., Guisbiers, G., & Webster, T. J. (2020). Green nanotechnology-based zinc oxide (ZnO) nanomaterials for biomedical applications: a review. Journal of Physics: Materials, 3(3), 034005. https://doi.org/10.1088/2515-7639/ab8186Meng, X., Cui, H., Dong, J., Zheng, J., Zhu, Y., Wang, Z., Zhang, J., Jia, S., Zhao, J., & Zhu, Z. (2013). Synthesis and electrocatalytic performance of nitrogen-doped macroporous carbons. Journal of Materials Chemistry A, 1(33), 9469–9476. https://doi.org/10.1039/c3ta10306dMesa, A. M., Castro-Autié, G. I., & Díaz-garcía, A. (2018). Evaluación de nanoestructuras de ZnO en la separación de CH4-CO2 (Issue June). https://doi.org/10.13140/RG.2.2.28587.54566Mishra, S., Supraja, P., Jaiswal, V. V., Sankar, P. R., Kumar, R. R., Prakash, K., Kumar, K. U., & Haranath, D. (2021). Enhanced output of ZnO nanosheet-based piezoelectric nanogenerator with a novel device structure. Engineering Research Express, 3(4). https://doi.org/10.1088/2631-8695/ac34Mo, L., Guo, Z., Yang, L., Zhang, Q., Fang, Y., Xin, Z., Chen, Z., Hu, K., Han, L., & Li, L. (2019). Silver nanoparticles based ink with moderate sintering in flexible and printed electronics. International Journal of Molecular Sciences, 20(9). https://doi.org/10.3390/ijms20092124Mo, X., Zhou, H., Li, W., Xu, Z., Duan, J., Huang, L., Hu, B., & Zhou, J. (2019). Piezoelectrets for wearable energy harvesters and sensors. Nano Energy, 65(May), 104033. https://doi.org/10.1016/j.nanoen.2019.104033Mokhatab, S., & Poe, W. A. (2012). Process Control Fundamentals. Handbook of Natural Gas Transmission and Processing, 473–509. https://doi.org/10.1016/b978-0-12-386914-2.00014-5Musbah, S. S., Radojevic, V. J., Borna, N. V., Stojanovic, D. B., Dramicanin, M. D., Marinkovic, A. D., & Aleksic, R. R. (2011). PMMA-Y2O3 (Eu3+) nanocomposites: Optical and mechanical properties. Journal of the Serbian Chemical Society, 76(8), 1153–1161. https://doi.org/10.2298/JSC100330094MNagaraju, G., Udayabhanu, Shivaraj, Prashanth, S. A., Shastri, M., Yathish, K. V., Anupama, C., & Rangappa, D. (2017). Electrochemical heavy metal detection, photocatalytic, photoluminescence, biodiesel production and antibacterial activities of Ag–ZnO nanomaterial. Materials Research Bulletin, 94(September), 54–63. https://doi.org/10.1016/j.materresbull.2017.05.043Naghdi, S., Rhee, K. Y., Hui, D., & Park, S. J. (2018). A review of conductive metal nanomaterials as conductive, transparent, and flexible coatings, thin films, and conductive fillers: Different deposition methods and applications. Coatings, 8(8). https://doi.org/10.3390/coatings8080278Nain, V., Kaur, M., Sandhu, K. S., Thory, R., & Sinhmar, A. (2020). Development, characterization, and biocompatibility of zinc oxide coupled starch nanocomposites from different botanical sources. International Journal of Biological Macromolecules, 162, 24–30. https://doi.org/10.1016/j.ijbiomac.2020.06.125Nair, K. S., Varghese, H., Chandran, A., Hareesh, U. N. S., Chouprik, A., Spiridonov, M., & Surendran, K. P. (2022). Synthesis of KNN nanoblocks through surfactant-assisted hot injection method and fabrication of flexible piezoelectric nanogenerator based on KNN-PVDF nanocomposite. Materials Today Communications, 31(February), 103291. https://doi.org/10.1016/j.mtcomm.2022.103291Narita, F., & Fox, M. (2018). A Review on Piezoelectric, Magnetostrictive, and Magnetoelectric Materials and Device Technologies for Energy Harvesting Applications. Advanced Engineering Materials, 20(5), 1–22. https://doi.org/10.1002/adem.201700743Naveed Ul Haq, A., Nadhman, A., Ullah, I., Mustafa, G., Yasinzai, M., & Khan, I. (2017). Synthesis Approaches of Zinc Oxide Nanoparticles: The Dilemma of Ecotoxicity. Journal of Nanomaterials, 2017(Table 1). https://doi.org/10.1155/2017/8510342Nayan, M. B., Jagadish, K., Abhilash, M. R., Namratha, K., & Srikantaswamy, S. (2019). Comparative Study on the Effects of Surface Area, Conduction Band and Valence Band Positions on the Photocatalytic Activity of ZnO-M&lt;sub&gt;x&lt;/sub&gt;O&lt;sub&gt;y&lt;/sub&gt; Heterostructures. Journal of Water Resource and Protection, 11(03), 357–370. https://doi.org/10.4236/jwarp.2019.113021Nikolaidis, A. K., & Achilias, D. S. (2018). Thermal degradation kinetics and viscoelastic behavior of poly(methyl methacrylate)/ organomodified montmorillonite nanocomposites prepared via in situ bulk radical polymerization. Polymers, 10(5). https://doi.org/10.3390/polym10050491Omidi, M., Fatehinya, A., Farahani, M., Akbari, Z., Shahmoradi, S., Yazdian, F., Tahriri, M., Moharamzadeh, K., Tayebi, L., & Vashaee, D. (2017). Characterization of biomaterials. In Biomaterials for Oral and Dental Tissue Engineering. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-100961-1.00007-4Ono, Y. (1997). Catalysis in the production and reactions of dimethyl carbonate, an environmentally benign building block. Applied Catalysis A: General, 155(2), 133–166. https://doi.org/10.1016/S0926-860X(96)00402-4Opoku, H., Nketia-Yawson, B., Shin, E. S., & Noh, Y. Y. (2017). Controlling organization of conjugated polymer films from binary solvent mixtures for high performance organic field-effect transistors. Organic Electronics, 41, 198–204. https://doi.org/10.1016/j.orgel.2016.11.004Outline, C. (2019). Methods for Assessing Surface Cleanliness. In Developments in Surface Contamination and Cleaning, Volume 12 (Vol. 12). https://doi.org/10.1016/b978-0-12-816081-7.00003-6Ouyang, J. (2018). Recent advances of intrinsically conductive polymers. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 34(11), 1211–1220. https://doi.org/10.3866/PKU.WHXB201804095Öztürk, S., Klnç, N., Taşaltn, N., & Öztürk, Z. Z. (2012). Fabrication of ZnO nanowires and nanorods. Physica E: Low-Dimensional Systems and Nanostructures, 44(6), 1062–1065. https://doi.org/10.1016/j.physe.2011.01.015Parangusan, H., Ponnamma, D., & Al-Maadeed, M. A. A. (2018). Stretchable Electrospun PVDF-HFP/Co-ZnO Nanofibers as Piezoelectric Nanogenerators. Scientific Reports, 8(1), 1–11. https://doi.org/10.1038/s41598-017-19082-3Parangusan, H., Ponnamma, D., & Almaadeed, M. A. A. (2018). Investigation on the effect of γ-irradiation on the dielectric and piezoelectric properties of stretchable PVDF/Fe-ZnO nanocomposites for self-powering devices. Soft Matter, 14(43), 8803–8813. https://doi.org/10.1039/c8sm01655kParize, R., Garnier, J., Chaix-Pluchery, O., Verrier, C., Appert, E., & Consonni, V. (2016). Effects of Hexamethylenetetramine on the Nucleation and Radial Growth of ZnO Nanowires by Chemical Bath Deposition. Journal of Physical Chemistry C, 120(9), 5242–5250. https://doi.org/10.1021/acs.jpcc.6b00479Park, K. Il, Jeong, C. K., Kim, N. K., & Lee, K. J. (2016). Stretchable piezoelectric nanocomposite generator. Nano Convergence, 3(1), 1–12. https://doi.org/10.1186/s40580-016-0072-zPark, J. S. (2010). A Review of Piezoelectric PVDF Film by Electrospinning and Its Applications. Advances in Natural Sciences: Nanoscience and Nanotechnology, 1(4). https://doi.org/10.1088/2043-6262/1/4/043002Pedroso Silva Santos, B., Rubio Arias, J. J., Elias Jorge, F., Értola Pereira de Deus Santos, R., da Silva Fernandes, B., da Silva Candido, L., Cesar de Carvalho Peres, A., Gervasoni Chaves, E., & Vieira Marques, M. de F. (2021). Preparation, characterization and permeability evaluation of poly(vinylidene fluoride) composites with ZnO particles for flexible pipelines. Polymer Testing, 94(January). https://doi.org/10.1016/j.polymertesting.2021.107064Peterson, J. D., Vyazovkin, S., & Wight, C. A. (1999). Stabilizing effect of oxygen on thermal degradation of poly(methyl methacrylate). Macromolecular Rapid Communications, 20(9), 480–483. https://doi.org/10.1002/(sici)1521-3927(19990901)20:9<480::aid-marc480>3.3.co;2-zPigliacelli, C., D’Elicio, A., Milani, R., Terraneo, G., Resnati, G., Baldelli Bombelli, F., & Metrangolo, P. (2015). Hydrophobin-stabilized dispersions of PVDF nanoparticles in water. Journal of Fluorine Chemistry, 177, 62–69. https://doi.org/10.1016/j.jfluchem.2015.02.004Porkalai, V., Sathya, B., Benny Anburaj, D., Nedunchezhian, G., Joshua Gnanamuthu, S., & Meenambika, R. (2018). Photoluminescences properties of lanthanum-silver co-doped ZnO nano particles. Modern Electronic Materials, 4(4), 135–141. https://doi.org/10.3897/j.moem.4.4.35063Pratihar, S., Medda, S. K., Sen, S., & Devi, P. S. (2020). Tailored piezoelectric performance of self-polarized PVDF-ZnO composites by optimization of aspect ratio of ZnO nanorods. Polymer Composites, 41(8), 3351–3363. https://doi.org/10.1002/pc.25624Proto, A., Penhaker, M., Conforto, S., & Schmid, M. (2017). Nanogenerators for Human Body Energy Harvesting. Trends in Biotechnology, 35(7), 610–624. https://doi.org/10.1016/j.tibtech.2017.04.005Rafique, S., Kasi, A. K., Kasi, J. K., Aminullah, Bokhari, M., & Shakoor, Z. (2020). Fabrication of silver-doped zinc oxide nanorods piezoelectric nanogenerator on cotton fabric to utilize and optimize the charging system. Nanomaterials and Nanotechnology, 10, 1–12. https://doi.org/10.1177/1847980419895741Rai, P., Tripathy, S. K., Park, N. H., & Yu, Y. T. (2009). Hydrothermal synthesis, characterization and optical property of single crystal ZnO nanorods. AIP Conference Proceedings, 1147, 152–159. https://doi.org/10.1063/1.3183424Rao, J., Chen, Z., Zhao, D., Yin, Y., Wang, X., & Yi, F. (2019). Recent Progress in Self-Powered Skin Sensors. 1–19.Razza, S., Castro-Hermosa, S., Di Carlo, A., & Brown, T. M. (2016). Research Update: Large-area deposition, coating, printing, and processing techniques for the upscaling of perovskite solar cell technology. APL Materials, 4(9). https://doi.org/10.1063/1.4962478Ren, J., Wang, C., Zhang, X., Carey, T., Chen, K., Yin, Y., & Torrisi, F. (2017). Environmentally-friendly conductive cotton fabric as flexible strain sensor based on hot press reduced graphene oxide. Carbon, 111, 622–630. https://doi.org/10.1016/j.carbon.2016.10.045Roji, A. M. M., Jiji, G., & Raj, A. B. T. (2017). A retrospect on the role of piezoelectric nanogenerators in the development of the green world. RSC Advances, 7(53), 33642–33670. https://doi.org/10.1039/c7ra05256aRojo, M. M., Calero, O. C., Lopeandia, A. F., Rodriguez-Viejo, J., & Martín-Gonzalez, M. (2013). Review on measurement techniques of transport properties of nanowires. Nanoscale, 5(23), 11526–11544. https://doi.org/10.1039/c3nr03242fRojo, M. M., Manzano, C. V., Granados, D., Osorio, M. R., Borca-Tasciuc, T., & Martín-González, M. (2015). High electrical conductivity in out of plane direction of electrodeposited Bi2Te3 films. AIP Advances, 5(8). https://doi.org/10.1063/1.4928863Rosen, Y., Marrach, R., Gutkin, V., & Magdassi, S. (2019). Thin Copper Flakes for Conductive Inks Prepared by Decomposition of Copper Formate and Ultrafine Wet Milling. Advanced Materials Technologies, 4(1), 1–8. https://doi.org/10.1002/admt.201800426Sabry, R. S., & Hussein, A. D. (2019). Nanogenerator based on nanocomposites PVDF/ZnO with different concentrations. Materials Research Express, 6(10), 0–9. https://doi.org/10.1088/2053-1591/ab4296Sahu, K., Choudhary, S., Singh, J., Kuriakose, S., Singhal, R., & Mohapatra, S. (2018). Facile wet chemical synthesis of ZnO nanosheets: Effects of counter ions on the morphological, structural, optical and photocatalytic properties. Ceramics International, 44(18), 23094–23101. https://doi.org/10.1016/j.ceramint.2018.09.116Sayyah, S. M., El-Shafiey, Z. A., Barsoum, B. N., & Khaliel, A. B. (2004). Infrared spectroscopic studies of poly(methyl methacrylate) doped with a new sulfur-Science: Advanced Materials and Devices, 7(3), 100461. https://doi.org/10.1016/j.jsamd.2022.100461Sriphan, S., & Vittayakorn, N. (2022b). Hybrid piezoelectric-triboelectric nanogenerators for flexible electronics: Recent advances and perspectives. Journal of Science: Advanced Materials and Devices, 7(3), 100461. https://doi.org/10.1016/j.jsamd.2022.100461Stassi, S., Cauda, V., Ottone, C., Chiodoni, A., Pirri, C. F., & Canavese, G. (2015). Flexible piezoelectric energy nanogenerator based on ZnO nanotubes hosted in a polycarbonate membrane. Nano Energy, 13, 474–481. https://doi.org/10.1016/j.nanoen.2015.03.024Stoppa, M., & Chiolerio, A. (2016). Testing and evaluation of wearable electronic textiles and assessment thereof. In Performance Testing of Textiles: Methods, Technology and Applications. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-100570-5.00005-0Sun, H., Luo, M., Weng, W., Cheng, K., Du, P., Shen, G., & Han, G. (2008). Room-temperature preparation of ZnO nanosheets grown on Si substrates by a seed-layer assisted solution route. Nanotechnology, 19(12). https://doi.org/10.1088/0957-4484/19/12/125603Sun, M., Li, Z., Yang, C., Lv, Y., Yuan, L., Shang, C., Liang, S., Guo, B., Liu, Y., Li, Z., & Luo, D. (2021). Nanogenerator-based devices for biomedical applications. Nano Energy, 89(PB), 106461. https://doi.org/10.1016/j.nanoen.2021.106461Świerzy, A. P., Pawłowski, R., Warszyński, P., & Szczepanowicz, K. (2020). The conductive properties of ink coating based on Ni–Ag core–shell nanoparticles with the bimodal size distribution. Journal of Materials Science: Materials in Electronics, 31, 12991–12999.Tan, K. S., Gan, W. C., Velayutham, T. S., & Majid, W. H. A. (2014). Pyroelectricity enhancement of PVDF nanocomposite thin films doped with ZnO nanoparticles. Smart Materials and Structures, 23(12). https://doi.org/10.1088/0964-1726/23/12/125006Tan, W. K., Abdul Razak, K., Lockman, Z., Kawamura, G., Muto, H., & Matsuda, A. (2014). Synthesis of ZnO nanorod-nanosheet composite via facile hydrothermal method and their photocatalytic activities under visible-light irradiation. Journal of Solid State Chemistry, 211, 146–153. https://doi.org/10.1016/j.jssc.2013.12.026Tandon, B., Blaker, J. J., & Cartmell, S. H. (2018). Piezoelectric materials as stimulatory biomedical materials and scaffolds for bone repair. Acta Biomaterialia, 73(April), 1–20. https://doi.org/10.1016/j.actbio.2018.04.026Tang, B., Cai, G., Wang, X., Xu, Z., & Yang, M. (2016). Functionalization of cotton fabrics through thermal reduction of graphene oxide. Applied Surface Science, 393, 441–448. https://doi.org/10.1016/j.apsusc.2016.10.046Thakur, P., Kool, A., Hoque, N. A., Bagchi, B., Khatun, F., Biswas, P., Brahma, D., Roy, S., Banerjee, S., & Das, S. (2018a). Superior performances of in situ synthesized ZnO/PVDF thin film based self-poled piezoelectric nanogenerator and self-charged photo-power bank with high durability. Nano Energy, 44, 456–467. https://doi.org/10.1016/j.nanoen.2017.11.065Thein, M. T., Pung, S. Y., Aziz, A., & Itoh, M. (2015). Stacked ZnO nanorods synthesized by solution precipitation method and their photocatalytic activity study. Journal of Sol-Gel Science and Technology, 74(1), 260–271. https://doi.org/10.1007/s10971-015-3646-zTorreblanca González, J., García Ovejero, R., Lozano Murciego, Á., Villarrubia González, G., & De Paz, J. F. (2019). Effects of Environmental Conditions and Composition on the Electrical Properties of Textile Fabrics. Sensors (Basel, Switzerland), 19(23). https://doi.org/10.3390/s19235145Vinoth Pandi, D., Muthukumarasamy, N., Agilan, S., & Velauthapillai, D. (2018). CdSe quantum dots sensitized ZnO nanorods for solar cell application. Materials Letters, 223, 227–230. https://doi.org/10.1016/j.matlet.2018.04.022Wahab, R., Ansari, S. G., Kim, Y. S., Seo, H. K., Kim, G. S., Khang, G., & Shin, H. S. (2007). Low temperature solution synthesis and characterization of ZnO nano-flowers. Materials Research Bulletin, 42(9), 1640–1648. https://doi.org/10.1016/j.materresbull.2006.11.035Wang, A. C., Wu, C., Pisignano, D., Wang, Z. L., & Persano, L. (2018). Polymer nanogenerators: Opportunities and challenges for large-scale applications. Journal of Applied Polymer Science, 135(24), 1–17. https://doi.org/10.1002/app.45674Wang, Q., Yang, D., Qiu, Y., Zhang, X., Song, W., & Hu, L. (2018). Two-dimensional ZnO nanosheets grown on flexible ITO-PET substrate for self-powered energy-harvesting nanodevices. Applied Physics Letters, 112(6). https://doi.org/10.1063/1.5012950Wang, W., & Sun, H. (2020). Effect of different forms of nano-ZnO on the properties of PVDF/ZnO hybrid membranes. Journal of Applied Polymer Science, 137(36), 1–14. https://doi.org/10.1002/app.49070Wang, Y. W., Shen, R., Wang, Q., & Vasquez, Y. (2018). ZnO Microstructures as Flame-Retardant Coatings on Cotton Fabrics. ACS Omega, 3(6), 6330–6338. https://doi.org/10.1021/acsomega.8b00371Wang, Y., Zhu, L., & Du, C. (2021). Progress in piezoelectric nanogenerators based on pvdf composite films. Micromachines, 12(11). https://doi.org/10.3390/mi12111278Wang, Z. L. (2009). ZnO nanowire and nanobelt platform for nanotechnology. Materials Science and Engineering R: Reports, 64(3–4), 33–71. https://doi.org/10.1016/j.mser.2009.02.001Wang, Z. L., Zhu, G., Yang, Y., Wang, S., & Pan, C. (2012). Progress in nanogenerators for portable electronics. Materials Today, 15(12), 532–543. https://doi.org/10.1016/S1369-7021(13)70011-7Wang, Z., & Song, J. (2006). Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays. Science, 312(5771), 242–246. https://doi.org/10.1126/science.1124005Wei, H., Wang, H., Xia, Y., Cui, D., Shi, Y., Dong, M., Liu, C., Ding, T., Zhang, J., Ma, Y., Wang, N., Wang, Z., Sun, Y., Wei, R., & Guo, Z. (2018). An overview of lead-free piezoelectric materials and devices. Journal of Materials Chemistry C, 6(46), 12446–12467. https://doi.org/10.1039/c8tc04515aWei, S. F., Lian, J. S., & Jiang, Q. (2009). Controlling growth of ZnO rods by polyvinylpyrrolidone (PVP) and their optical properties. Applied Surface Science, 255(15), 6978–6984. https://doi.org/10.1016/j.apsusc.2009.03.023Weng, L., Ju, P., Li, H., Yan, L., & Liu, L. (2017). Preparation and characterization of multi shape ZnO/PVDF composite materials. Journal Wuhan University of Technology, Materials Science Edition, 32(4), 958–962. https://doi.org/10.1007/s11595-017-1696-5Whiter, R. A., Narayan, V., & Kar-Narayan, S. (2014). A scalable nanogenerator based on self-poled piezoelectric polymer nanowires with high energy conversion efficiency. Advanced Energy Materials, 4(18), 1–7. https://doi.org/10.1002/aenm.201400519Wilson, S., & Laing, R. (2019). Fabrics and garments as sensors: A research update. In Sensors (Switzerland) (Vol. 19, Issue 16). https://doi.org/10.3390/s19163570Xu, B., & Cai, Z. (2008). Fabrication of a superhydrophobic ZnO nanorod array film on cotton fabrics via a wet chemical route and hydrophobic modification. Applied Surface Science, 254(18), 5899–5904. https://doi.org/10.1016/j.apsusc.2008.03.160Xu, L.-L., Guo, M.-X., Liu, S., & Bian, S.-W. (2015). Graphene/cotton composite fabrics as flexible electrode materials for electrochemical capacitors. RSC Advances, 5(32), 25244–25249. https://doi.org/10.1039/C4RA16063KYaghoubidoust, F., Salimi, E., Wicaksono, D. H. B., & Nur, H. (2020). Physical and electrochemical appraisal of cotton textile modified with polypyrrole and graphene/reduced graphene oxide for flexible electrode. Journal of the Textile Institute, 0(0), 1–13. https://doi.org/10.1080/00405000.2020.1835171Yang, Gang, Tian, M. Z., Huang, P., Fu, Y. F., Li, Y. Q., Fu, Y. Q., Wang, X. Q., Li, Y., Hu, N., & Fu, S. Y. (2021). Flexible pressure sensor with a tunable pressure-detecting range for various human motions. Carbon, 173, 736–743. https://doi.org/10.1016/j.carbon.2020.11.066Yang, Geng, Pang, G., Pang, Z., Gu, Y., Mantysalo, M., & Yang, H. (2019). Non-Invasive Flexible and Stretchable Wearable Sensors with Nano-Based Enhancement for Chronic Disease Care. IEEE Reviews in Biomedical Engineering, 12, 34–71. https://doi.org/10.1109/RBME.2018.2887301Yang, J., Zhang, Y., Li, Y., Wang, Z., Wang, W., An, Q., & Tong, W. (2021). Piezoelectric Nanogenerators based on Graphene Oxide/PVDF Electrospun Nanofiber with Enhanced Performances by In-Situ Reduction. Materials Today Communications, 26. https://doi.org/10.1016/j.mtcomm.2020.101629Yang leng. (2008). Characterization of Surfaces and Nanostructures Academic and Industrial Applications Characterization of Solid Materials and Heterogeneous Catalysts From Structure to Surface Reactivity Characterization Techniques for Polymer Nanocomposites Basic Concepts.Yang, R., Qin, Y., Li, C., Dai, L., & Wang, Z. L. (2009). Characteristics of output voltage and current of integrated nanogenerators. Applied Physics Letters, 94(2), 4–6. https://doi.org/10.1063/1.3072362Yi, G. C., Wang, C., & Park, W. Il. (2005). ZnO nanorods: Synthesis, characterization and applications. Semiconductor Science and Technology, 20(4). https://doi.org/10.1088/0268-1242/20/4/003Yi, J., Song, Y., Cao, Z., Li, C., & Xiong, C. (2021). Gram-scale Y-doped ZnO and PVDF electrospun film for piezoelectric nanogenerators. Composites Science and Technology, 215(August), 109011. https://doi.org/10.1016/j.compscitech.2021.109011Yu, D., Zhao, J., Wang, W., Qi, J., & Hu, Y. (2019). Mono-acrylated isosorbide as a bio-based monomer for the improvement of thermal and mechanical properties of poly(methyl methacrylate). RSC Advances, 9(61), 35532–35538. https://doi.org/10.1039/c9ra07548hYu, J., Wu, W., Dai, D., Song, Y., Li, C., & Jiang, N. (2014). Crystal structure transformation and dielectric properties of polymer composites incorporating zinc oxide nanorods. Macromolecular Research, 22(1), 19–25. https://doi.org/10.1007/s13233-014-2009-xYu, Q., Weng, P., Han, L., Yin, X., Chen, Z., Hu, X., Wang, L., & Wang, H. (2019). Enhanced thermal conductivity of flexible cotton fabrics coated with reactive MWCNT nanofluid for potential application in thermal conductivity coatings and fire warning. Cellulose, 26(12), 7523–7535. https://doi.org/10.1007/s10570-019-02592-wYue, R., Ramaraj, S. G., Liu, H., Elamaran, D., Elamaran, V., Gupta, V., Arya, S., Verma, S., Satapathi, S., hayawaka, Y., & Liu, X. (2022). A review of flexible lead-free piezoelectric energy harvester. Journal of Alloys and Compounds, 918, 165653. https://doi.org/10.1016/j.jallcom.2022.165653Zapata-Hernandez, C., Durango-Giraldo, G., Cacua, K., & Buitrago-Sierra, R. (2020). Influence of graphene oxide synthesis methods on the electrical conductivity of cotton/graphene oxide composites. Journal of the Textile Institute, 0(0), 1–11. https://doi.org/10.1080/00405000.2020.1865507Zeyrek Ongun, M., Oguzlar, S., Kartal, U., Yurddaskal, M., & Cihanbegendi, O. (2021). Energy harvesting nanogenerators: Electrospun β-PVDF nanofibers accompanying ZnO NPs and ZnO@Ag NPs. Solid State Sciences, 122(October), 106772. https://doi.org/10.1016/j.solidstatesciences.2021.106772Zhang, D., Zhang, X., Li, X., Wang, H., Sang, X., Zhu, G., & Yeung, Y. (2022). Enhanced piezoelectric performance of PVDF/BiCl3/ZnO nanofiber-based piezoelectric nanogenerator. European Polymer Journal, 166(December 2021), 110956. https://doi.org/10.1016/j.eurpolymj.2021.110956Zhang, Y., Ram, M. K., Stefanakos, E. K., & Goswami, D. Y. (2012). Synthesis, characterization, and applications of ZnO nanowires. Journal of Nanomaterials, 2012. https://doi.org/10.1155/2012/624520Zhang, Z., Chen, Y., & Guo, J. (2019). ZnO nanorods patterned-textile using a novel hydrothermal method for sandwich structured-piezoelectric nanogenerator for human energy harvesting. Physica E: Low-Dimensional Systems and Nanostructures, 105, 212–218. https://doi.org/10.1016/j.physe.2018.09.007Zhao, C., Jia, C., Zhu, Y., & Zhao, T. (2021). An effective self-powered piezoelectric sensor for monitoring basketball skills. Sensors, 21(15). https://doi.org/10.3390/s21155144Zhao, M., Wang, Z., & Mao, S. X. (2004). Piezoelectric Characterization of Individual Zinc Oxide Nanobelt Probed by Piezoresponse Force Microscope.Zhao, Z., Dai, Y., Dou, S. X., & Liang, J. (2021). Flexible nanogenerators for wearable electronic applications based on piezoelectric materials. Materials Today Energy, 20, 100690. https://doi.org/10.1016/j.mtener.2021.100690Zhou, X., Parida, K., Halevi, O., Liu, Y., Xiong, J., Magdassi, S., & Lee, P. S. (2020). All 3D-printed stretchable piezoelectric nanogenerator with non-protruding kirigami structure. Nano Energy, 72, 104676. https://doi.org/10.1016/j.nanoen.2020.104676Zhou, Z., Zhao, Y., & Cai, Z. (2010). Low-temperature growth of ZnO nanorods on PET fabrics with two-step hydrothermal method. Applied Surface Science, 256(14), 4724–4728. https://doi.org/10.1016/j.apsusc.2010.02.081Zhu, L., Xiang, Y., Liu, Y., Geng, K., Yao, R., & Li, B. (2022). Comparison of piezoelectric responses of flexible tactile sensors based on hydrothermally-grown ZnO nanorods on ZnO seed layers with different thicknesses. Sensors and Actuators A: Physical, 341(April), 113552. https://doi.org/10.1016/j.sna.2022.113552Zhu, M., Shi, Q., He, T., Yi, Z., Ma, Y., Yang, B., Chen, T., & Lee, C. (2019). Self-Powered and Self-Functional Cotton Sock Using Piezoelectric and Triboelectric Hybrid Mechanism for Healthcare and Sports Monitoring. ACS Nano. https://doi.org/10.1021/acsnano.8b08329InvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/83074/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1036662665.2022.pdf1036662665.2022.pdfTesis de Maestría en Ingeniería - Materiales y Procesosapplication/pdf3648464https://repositorio.unal.edu.co/bitstream/unal/83074/2/1036662665.2022.pdfa097fc38089e760837cdf5c46cdec81cMD52THUMBNAIL1036662665.2022.pdf.jpg1036662665.2022.pdf.jpgGenerated Thumbnailimage/jpeg4905https://repositorio.unal.edu.co/bitstream/unal/83074/3/1036662665.2022.pdf.jpgfd263a4e92871565b89d19ee63b25043MD53unal/83074oai:repositorio.unal.edu.co:unal/830742023-08-13 23:04:46.59Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=