Identificación de genes asociados a la producción de withanólidos en Physalideae

ilustraciones, diagramas

Autores:
Perez Moreno, Santiago
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/86466
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/86466
https://repositorio.unal.edu.co/
Palabra clave:
570 - Biología::576 - Genética y evolución
570 - Biología::572 - Bioquímica
Lactona
Physalis
genómica
lactones
Physalis
genomics
Withanolidos
Biosíntesis de withanolidos
Genómica vegetal
Metabolitos secundarios
Evolución metabólica
Solanaceae
Withanolides
Secondary metabolites
Metabolic evolution
Withanolide biosynthesis
Plant genomics
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_669228443183bdf5462c7e9059cff0dc
oai_identifier_str oai:repositorio.unal.edu.co:unal/86466
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Identificación de genes asociados a la producción de withanólidos en Physalideae
dc.title.translated.eng.fl_str_mv Identification of Genes Associated with the Production of Withanolides in Physalideae
title Identificación de genes asociados a la producción de withanólidos en Physalideae
spellingShingle Identificación de genes asociados a la producción de withanólidos en Physalideae
570 - Biología::576 - Genética y evolución
570 - Biología::572 - Bioquímica
Lactona
Physalis
genómica
lactones
Physalis
genomics
Withanolidos
Biosíntesis de withanolidos
Genómica vegetal
Metabolitos secundarios
Evolución metabólica
Solanaceae
Withanolides
Secondary metabolites
Metabolic evolution
Withanolide biosynthesis
Plant genomics
title_short Identificación de genes asociados a la producción de withanólidos en Physalideae
title_full Identificación de genes asociados a la producción de withanólidos en Physalideae
title_fullStr Identificación de genes asociados a la producción de withanólidos en Physalideae
title_full_unstemmed Identificación de genes asociados a la producción de withanólidos en Physalideae
title_sort Identificación de genes asociados a la producción de withanólidos en Physalideae
dc.creator.fl_str_mv Perez Moreno, Santiago
dc.contributor.advisor.spa.fl_str_mv Roda Fornaguera, Federico
dc.contributor.author.spa.fl_str_mv Perez Moreno, Santiago
dc.contributor.researchgroup.spa.fl_str_mv Genómica Evolutiva del Metabolismo Secundario (GEME)
dc.subject.ddc.spa.fl_str_mv 570 - Biología::576 - Genética y evolución
570 - Biología::572 - Bioquímica
topic 570 - Biología::576 - Genética y evolución
570 - Biología::572 - Bioquímica
Lactona
Physalis
genómica
lactones
Physalis
genomics
Withanolidos
Biosíntesis de withanolidos
Genómica vegetal
Metabolitos secundarios
Evolución metabólica
Solanaceae
Withanolides
Secondary metabolites
Metabolic evolution
Withanolide biosynthesis
Plant genomics
dc.subject.agrovoc.spa.fl_str_mv Lactona
Physalis
genómica
dc.subject.agrovoc.eng.fl_str_mv lactones
Physalis
genomics
dc.subject.proposal.spa.fl_str_mv Withanolidos
Biosíntesis de withanolidos
Genómica vegetal
Metabolitos secundarios
Evolución metabólica
dc.subject.proposal.other.fl_str_mv Solanaceae
dc.subject.proposal.eng.fl_str_mv Withanolides
Secondary metabolites
Metabolic evolution
Withanolide biosynthesis
dc.subject.proposal.fra.fl_str_mv Plant genomics
description ilustraciones, diagramas
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-07-16T18:26:49Z
dc.date.available.none.fl_str_mv 2024-07-16T18:26:49Z
dc.date.issued.none.fl_str_mv 2024
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/86466
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/86466
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.indexed.spa.fl_str_mv Agrosavia
Agrovoc
dc.relation.references.spa.fl_str_mv Agarwal, A. V. et al. Comprehensive assessment of the genes involved in withanolide biosynthesis from Withania somnifera: chemotype-specific and elicitor- responsive expression. Funct. Integr. Genomics 17, 477–490 (2017).
Alfonso, D., & Kapetanidis, I. (1994). Withanolidos from Iochroma gesnerioides. Phytochemistry, 36(1), 179-183.
Alharbi, A., & Stevenson, M. (2020). Refining Boolean queries to identify relevant studies for systematic review updates. Journal of the American Medical Informatics Association, 27(11), 1658-1666.
Altenhoff, A. M., Levy, J., Zarowiecki, M., Tomiczek, B., Vesztrocy, A. W., Dalquen, D. A., ... & Dessimoz, C. (2019). OMA standalone: orthology inference among public and custom genomes and transcriptomes. Genome research, 29(7), 1152-1163.
Bharadwaj, R., Kumar, S. R., Sharma, A. & Sathishkumar, R. Plant metabolic gene clusters: evolution, organization, and their applications in synthetic biology. Front. Plant Sci. 12, 697318 (2021).
BLAST: Basic Local Alignment Search Tool. (n.d.). https://blast.ncbi.nlm.nih.gov/
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
Babraham Bioinformatics - FastQC A Quality Control tool for High Throughput Sequence Data. (n.d.). http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).
Chaurasiya, N. D., Sangwan, N. S., Sabir, F., Misra, L., & Sangwan, R. S. (2012). Withanolide biosynthesis recruits both mevalonate and DOXP pathways of isoprenogenesis in Ashwagandha Withania somnifera L.(Dunal). Plant cell reports, 31, 1889-1897.
Conesa, A., Madrigal, P., Tarazona, S. et al. A survey of best practices for RNA-seq data analysis. Genome Biol 17, 13 (2016). https://doi.org/10.1186/s13059-016- 0881-8.
Chen, Y., & Guo, D. (2016). Molecular mechanisms of coronavirus RNA capping and methylation. Virologica Sinica, 31, 3-11.
Chow, K. S., Ghazali, A. K., Hoh, C. C., & Mohd-Zainuddin, Z. (2014). RNA sequencing read depth requirement for optimal transcriptome coverage in Hevea brasiliensis. BMC research notes, 7, 1-13.
Das, S., & Bansal, M. (2019). Variation of gene expression in plants is influenced by gene architecture and structural properties of promoters. PLoS One, 14(3), e0212678.
Dhar, N. et al. A decade of molecular understanding of withanolide biosynthesis and in vitro studies in Withania somnifera (L.) Dunal: prospects and perspectives for pathway engineering. Front. Plant Sci. 6, 1031 (2015).
Deanna, R., Larter, M. D., Barboza, G. E. & Smith, S. D. Repeated evolution of a morphological novelty: a phylogenetic analysis of the inflated fruiting calyx in the Physalideae tribe (Solanaceae). Am. J. Bot. 106, 270–279 (2019).
Dunn, W. B., Broadhurst, D., Begley, P., Zelena, E., Francis-McIntyre, S., Anderson, N., ... & Human Serum Metabolome (HUSERMET) Consortium. (2011). Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nature protocols, 6(7), 1060-1083.
Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 1–14 (2019).
Ellegren, H., & Galtier, N. (2016). Determinants of genetic diversity. Nature Reviews Genetics, 17(7), 422-433.
Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–7 (2004).
Erazo, S., Rocco, G., Zaldivar, M., Delporte, C., Backhouse, N., Castro, C., ... & Garcıía, R. (2008). Active metabolites from Dunalia spinosa resinous exudates. Zeitschrift für Naturforschung C, 63(7-8), 492-496.
Espinoza, J., Echeverría, J., Urzua, A., & Niemeyer, H. M. (2012). Withanolid amine and nicotine from Dunalia spinosa (Solanaceae). Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas, 11(3), 278-284.
Fan, P. et al. Evolution of a plant gene cluster in Solanaceae and emergence of metabolic diversity. Elife 9, 1–26 (2020).
Fang, S. T., Li, B., & Liu, J. K. (2009). Two new withanolidos from Physalis peruviana. Helvetica Chimica Acta, 92(7), 1304-1308.
Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012).
Garzón-Martínez, G. A., Zhu, Z. I., Landsman, D., Barrero, L. S., & Mariño- Ramírez, L. (2012). The Physalis peruviana leaf transcriptome: assembly, annotation and gene model prediction. BMC genomics, 13, 1-12.
Gao, X., Dong, J., Rasouli, F., Pouya, A. K., Tahir, A. T., & Kang, J. (2022). Transcriptome analysis provides new insights into plants responses under phosphate starvation in association with chilling stress. BMC plant biology, 22(1), 1-14.
Gupta, P. et al. Comparative transcriptome analysis of different chemotypes elucidates withanolide biosynthesis pathway from medicinal plant Withania somnifera. Sci. Rep. 5, 18611 (2015).
Gupta, P. et al. De Novo Assembly, Functional Annotation and Comparative Analysis of Withania somnifera Leaf and Root Transcriptomes to Identify Putative Genes Involved in the Withanolidos Biosynthesis. PLoS One 8, (2013).
Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494–1512 (2013).
Hansen, C. C., Nelson, D. R., Møller, B. L. & Werck-Reichhart, D. Plant cytochrome P450 plasticity and evolution. Mol. Plant 14, 1244–1265 (2021).
He, Q. P., Ma, L., Luo, J. Y., He, F. Y., Lou, L. G., & Hu, L. H. (2007). Cytotoxic withanolidos from Physalis angulata L. Chemistry & Biodiversity, 4(3), 443-449.
Huang, M. et al. Withanolidos from the genus Physalis: a review on their phytochemical and pharmacological aspects. J. Pharm. Pharmacol. 72, 649–669 (2020).
Huang, D. W., Sherman, B. T., & Lempicki, R. A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature protocols, 4(1), 44-57.
Huerta-Cepas, J., Szklarczyk, D., Heller, D., Hernández-Plaza, A., Forslund, S. K., Cook, H., ... & Bork, P. (2019). eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic acids research, 47(D1), D309-D314
Itkin, M. et al. Biosynthesis of antinutritional alkaloids in solanaceous crops is mediated by clustered genes. Science (80-. ). 341, 175–179 (2013).
Knoch, E. et al. Third DWF1 paralog in Solanaceae, sterol Δ 24 -isomerase, branches withanolide biosynthesis from the general phytosterol pathway. Proc. Natl. Acad. Sci. 115, E8096–E8103 (2018).
Kriventseva, E. V., Kuznetsov, D., Tegenfeldt, F., Manni, M., Dias, R., Simão, F. A., & Zdobnov, E. M. (2019). OrthoDB v10: sampling the diversity of animal, plant, fungal, protist, bacterial and viral genomes for evolutionary and functional annotations of orthologs. Nucleic acids research, 47(D1), D807-D811.
Lan, Y. H., Chang, F. R., Pan, M. J., Wu, C. C., Wu, S. J., Chen, S. L., ... & Wu, Y. C. (2009). New cytotoxic withanolidos from Physalis peruviana. Food Chemistry, 116(2), 462-469.
Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559 (2008).
Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).
LibGuides: Literature Searching: Searching techniques: using Boolean. (n.d.). https://libguides.dundee.ac.uk/literaturesearching/searchtechniquesboolean
Lobatto VL, García ME, Nicotra VE, Orozco CI, Casero CN. Antibacterial activity of withanolidos and their structure-activity relationship. Steroids. 2023 Nov;199:109297. doi: 10.1016/j.steroids.2023.109297. Epub 2023 Aug 19. PMID: 37598738.
Makarov, A., Denisov, E., & Lange, O. (2009). Performance evaluation of a high- field Orbitrap mass analyzer. Journal of the American Society for Mass Spectrometry, 20(8), 1391-1396.
Mehta, V., Chander, H., & Munshi, A. (2021). Mechanisms of anti-tumor activity of Withania somnifera (Ashwagandha). Nutrition and Cancer, 73(6), 914-926.
Misico, R. I. et al. Withanolidos and related Steroids. in Fortschritte der Chemie organischer Naturstoffe. Progress in the chemistry of organic natural products. Progrès dans la chimie des substances organiques naturelles 94, 127–229 (2011).
Misra, L. et al. Withanolidos from Withania somnifera roots. Phytochemistry 69, 1000–1004 (2008).
Munro, C., Zapata, F., Howison, M., Siebert, S. & Dunn, C. W. Evolution of Gene Expression across Species and Specialized Zooids in Siphonophora. Mol. Biol. Evol. 39, 1–16 (2022).
Nützmann, H.-W., Scazzocchio, C. & Osbourn, A. Metabolic Gene Clusters in Eukaryotes. Annu. Rev. Genet. 52, annurev-genet-120417-031237 (2018).
Pabón-Mora, N., Suárez-Baron, H., Ambrose, B. A., & González, F. (2015). Flower development and perianth identity candidate genes in the basal angiosperm Aristolochia fimbriata (Piperales: Aristolochiaceae). Frontiers in Plant Science, 6, 1095.
Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417– 419 (2017).
Pandey, S. S., Singh, S., Pandey, H., Srivastava, M., Ray, T., Soni, S., ... & Kalra, A. (2018). Endophytes of Withania somnifera modulate in planta content and the site of withanolide biosynthesis. Scientific reports, 8(1), 5450.
Peng, Y., Wang, Z., Li, M., Wang, T., & Su, Y. (2024). Characterization and analysis of multi-organ full-length transcriptomes in Sphaeropteris brunoniana and Alsophila latebrosa highlight secondary metabolism and chloroplast RNA editing pattern of tree ferns. BMC Plant Biology, 24(1), 1-23.
Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2–approximately maximum- likelihood trees for large alignments. PLoS One 5, e9490 (2010).
PubChem. (n.d.). Withanoside v. PubChem. https://pubchem.ncbi.nlm.nih.gov/compound/Withanoside-V
Rana, S. et al. NADPH-Cytochrome P450 Reductase: Molecular Cloning and Functional Characterization of Two Paralogs from Withania somnifera (L.) Dunal. PLoS One 8, (2013).
Razdan, S. et al. Molecular characterization of DWF1 from Withania somnifera (L.) Dunal: its implications in withanolide biosynthesis. J. Plant Biochem. Biotechnol. 26, 52–63 (2017).
evell, L. J. & Harrison, A. S. PCCA: a program for phylogenetic canonical correlation analysis. Bioinformatics 24, 1018–1020 (2008).
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. bioinformatics 26, 139–140 (2010).
Samadi, A. K. (2015). Potential anticancer properties and mechanisms of action of withanolidos. The enzymes, 37, 73-94.
61. Sang-Ngern, M., Youn, U. J., Park, E. J., Kondratyuk, T. P., Simmons, C. J., Wall, M. M., ... & Chang, L. C. (2016). Withanolidos derived from Physalis peruviana (Poha) with potential anti-inflammatory activity. Bioorganic & Medicinal Chemistry Letters, 26(12), 2755-2759.
Schirmer, M., Stražar, M., Ávila-Pacheco, J., Rojas‐Tapias, D. F., Brown, E., Temple, E. R., Deik, A., Bullock, K., Jeanfavre, S., Pierce, K. A., Jin, S., Invernizzi, R., Pust, M., Costliow, Z., Mack, D. R., Griffiths, A. M., Walters, T. D., Boyle, B. M., Kugathasan, S., . . . Xavier, R. J. (2024). Linking microbial genes to plasma and stool metabolites uncovers host-microbial interactions underlying ulcerative colitis disease course. Cell Host & Microbe. https://doi.org/10.1016/j.chom.2023.12.013
Schwander, T., Libbrecht, R. & Keller, L. Supergenes and complex phenotypes. Curr. Biol. 24, R288–R294 (2014).
Sharma, A. et al. Characterization and overexpression of sterol Δ22-desaturase, a key enzyme modulates the biosyntheses of stigmasterol and withanolidos in Withania somnifera (L.) Dunal. Plant Sci. 301, 110642 (2020).
Sharma, A., Rather, G. A., Misra, P., Dhar, M. K. & Lattoo, S. K. Jasmonate responsive transcription factor WsMYC2 regulates the biosynthesis of triterpenoid withanolidos and phytosterol via key pathway genes in Withania somnifera (L.) Dunal. Plant Mol. Biol. 100, 543–560 (2019).
Shilpashree, H. B., Sudharshan, S. J., Shasany, A. K. & Nagegowda, D. A. Molecular characterization of three CYP450 genes reveals their role in withanolidos formation and defense in Withania somnifera, the Indian Ginseng. Sci. Rep. 12, 1– 12 (2022).
Singh, A., Raza, A., Amin, S., Damodaran, C. & Sharma, A. K. Recent advances in the chemistry and therapeutic evaluation of naturally occurring and synthetic withanolidos. Molecules 27, 886 (2022).
Smit, S. J. & Lichman, B. R. Plant biosynthetic gene clusters in the context of metabolic evolution. Nat. Prod. Rep. 39, 1465–1482 (2022).
Stein, A. Withanolidos: Elucidating steroidal lactone biosynthesis in Nightshades. (2022).
Sukanya, D. H., Lokesha, A. N., Datta, G., & Himabindu, K. (2010). Phytochemical diversity in ashwagandha (Withania somnifera). Open Access Journal of Medicinal and Aromatic Plants, 1(2).
The cytochrome P450 enzyme WsCYP71B35 from Withania somnifera has a role in withanolidos biosynthesis and defense against bacteria. (2023).
Tong, X., Zhang, H., & Timmermann, B. N. (2011). Chlorinated withanolidos from Withania somnifera. Phytochemistry Letters, 4(4), 411– 414. https://doi.org/10.1016/j.phytol.2011.04.016
73. Villas-Bas, S. G., Roessner, U., Hansen, M. A. E., Smedsgaard, J., & Nielsen, J. (2007). Metabolome Analysis. doi:10.1002/0470105518
Xia, G., Cao, S., Chen, L. & Qiu, F. Natural withanolidos, an update. Nat. Prod. Rep. 39, 784–813 (2022).
Xu, Z., Chang, L. (2017). Solanaceae. In: Identification and Control of Common Weeds: Volume 3. Springer, Singapore. https://doi.org/10.1007/978-981-10-5403- 7_9
Yang, Y., Xiang, K., Sun, D., Zheng, M., Song, Z., Li, M., ... & Chen, L. (2021). Withanolidos from dietary tomatillo suppress HT1080 cancer cell growth by targeting mutant IDH1. Bioorganic & Medicinal Chemistry, 36, 116095
Zhang, C. & Mirarab, S. ASTRAL-Pro 2: ultrafast species tree reconstruction from multi-copy gene family trees. Bioinformatics 38, 4949–4950 (2022).
Zhan, C. et al. Plant metabolic gene clusters in the multi-omics era. Trends Plant Sci. (2022).
Zhao, Y., Li, M. C., Konaté, M. M., Chen, L., Das, B., Karlovich, C., ... & McShane, L. M. (2021). TPM, FPKM, or normalized counts? A comparative study of quantification measures for the analysis of RNA-seq data from the NCI patient- derived models repository. Journal of translational medicine, 19(1), 1-15.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 132 páginas + 1 anexo
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Biología
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/86466/7/1032465939.2024.pdf
https://repositorio.unal.edu.co/bitstream/unal/86466/3/Anexo3.txt
https://repositorio.unal.edu.co/bitstream/unal/86466/4/license.txt
https://repositorio.unal.edu.co/bitstream/unal/86466/6/1032465939.2024.pdf.jpg
bitstream.checksum.fl_str_mv a4fb1f00f468ef4b808c832250d2eedf
2b1de1629fbdf630c8276c621a5beda7
eb34b1cf90b7e1103fc9dfd26be24b4a
20c54c7f0a2395ad864763a4ff9ae5fd
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089749762146304
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Roda Fornaguera, Federico4d61953eec7a0e32909a2521dbd7a5adPerez Moreno, Santiago4cb94960f1b707b41fe64e15e3f73cb6Genómica Evolutiva del Metabolismo Secundario (GEME)2024-07-16T18:26:49Z2024-07-16T18:26:49Z2024https://repositorio.unal.edu.co/handle/unal/86466Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasEsta tesis explora la biosíntesis y regulación de los withanolidos en la familia Solanaceae, específicamente en la tribu Physalideae, arrojando luz sobre los complejos procesos bioquímicos y genéticos que conforman su diversidad y evolución. El estudio analiza cómo se sintetizan los withanolidos, destacando la importancia de procesos bioquímicos específicos y la interacción de rutas metabólicas clave. Se enfatiza el papel crucial de ciertos procesos biológicos y genes en la modulación de la síntesis de estos compuestos, resaltando la significativa coexpresión de genes vinculados a funciones esenciales en la planta. El papel de las enzimas citocromo P450, genes específicos y clústeres biosintéticos como el propuesto WBC se examinan en profundidad, proporcionando una comprensión más profunda de la regulación genética en la producción de withanolidos. La investigación también revela interesantes interacciones entre diferentes vías metabólicas y muestra cómo la variación genética podría influir en la presencia o ausencia de ciertos withanolidos entre las especies de Solanaceae. Finalmente, la tesis ofrece una mirada a la regulación y los factores de transcripción involucrados en la producción de withanolidos, subrayando el descubrimiento de patrones de expresión genética que podrían ser fundamentales para futuras investigaciones en biotecnología vegetal y desarrollo farmacológico. Este trabajo representa un avance significativo en el conocimiento de la fitoquímica y la biología evolutiva de las plantas, destacando la complejidad y el dinamismo del mundo vegetal. (Texto tomado de la fuente).This thesis explores the biosynthesis and regulation of withanolidos in the Solanaceae family, specifically in the Physalideae tribe, shedding light on the complex biochemicaland genetic processes that shape their diversity and evolution. The study examines howwithanolidos are synthesized, highlighting the importance of specific biochemical processes and the interaction of key metabolic pathways. The crucial role of biologicalprocesses and genes, particularly cytochrome P450 enzymes, specific genes, and proposed biosynthetic clusters like WBC, is examined in depth, providing a deeper understanding of genetic regulation in withanolide production. The research also revealsintriguing interactions between different metabolic pathways and shows how genetic variation might influence the presence or absence of certain withanolidos among Solanaceae species. Finally, the thesis offers insights into the regulation and transcription factors involved in withanolide production, emphasizing the discovery of gene expression patterns that could be key for future research in plant biotechnology and pharmacological development. This work represents a significant advancement in the understanding of plant phytochemistry and evolutionary biology, highlighting the complexity and dynamism of the plant world.El proyecto "Identificación de genes asociados a la producción de withanólidos en Physalideae" recibió apoyo financiero y de recursos del Grupo de investigación de Genómica y fue patrocinado por el Tandem de Max Planck del Metabolismo Especializado (GEME). Este apoyo incluyó financiamiento y recursos necesarios para la investigaciónMaestríaMagíster en Ciencias - BiologíaGenómica evolutiva132 páginas + 1 anexoapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - BiologíaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá570 - Biología::576 - Genética y evolución570 - Biología::572 - BioquímicaLactonaPhysalisgenómicalactonesPhysalisgenomicsWithanolidosBiosíntesis de withanolidosGenómica vegetalMetabolitos secundariosEvolución metabólicaSolanaceaeWithanolidesSecondary metabolitesMetabolic evolutionWithanolide biosynthesisPlant genomicsIdentificación de genes asociados a la producción de withanólidos en PhysalideaeIdentification of Genes Associated with the Production of Withanolides in PhysalideaeTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAgrosaviaAgrovocAgarwal, A. V. et al. Comprehensive assessment of the genes involved in withanolide biosynthesis from Withania somnifera: chemotype-specific and elicitor- responsive expression. Funct. Integr. Genomics 17, 477–490 (2017).Alfonso, D., & Kapetanidis, I. (1994). Withanolidos from Iochroma gesnerioides. Phytochemistry, 36(1), 179-183.Alharbi, A., & Stevenson, M. (2020). Refining Boolean queries to identify relevant studies for systematic review updates. Journal of the American Medical Informatics Association, 27(11), 1658-1666.Altenhoff, A. M., Levy, J., Zarowiecki, M., Tomiczek, B., Vesztrocy, A. W., Dalquen, D. A., ... & Dessimoz, C. (2019). OMA standalone: orthology inference among public and custom genomes and transcriptomes. Genome research, 29(7), 1152-1163.Bharadwaj, R., Kumar, S. R., Sharma, A. & Sathishkumar, R. Plant metabolic gene clusters: evolution, organization, and their applications in synthetic biology. Front. Plant Sci. 12, 697318 (2021).BLAST: Basic Local Alignment Search Tool. (n.d.). https://blast.ncbi.nlm.nih.gov/Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).Babraham Bioinformatics - FastQC A Quality Control tool for High Throughput Sequence Data. (n.d.). http://www.bioinformatics.babraham.ac.uk/projects/fastqc/Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).Chaurasiya, N. D., Sangwan, N. S., Sabir, F., Misra, L., & Sangwan, R. S. (2012). Withanolide biosynthesis recruits both mevalonate and DOXP pathways of isoprenogenesis in Ashwagandha Withania somnifera L.(Dunal). Plant cell reports, 31, 1889-1897.Conesa, A., Madrigal, P., Tarazona, S. et al. A survey of best practices for RNA-seq data analysis. Genome Biol 17, 13 (2016). https://doi.org/10.1186/s13059-016- 0881-8.Chen, Y., & Guo, D. (2016). Molecular mechanisms of coronavirus RNA capping and methylation. Virologica Sinica, 31, 3-11.Chow, K. S., Ghazali, A. K., Hoh, C. C., & Mohd-Zainuddin, Z. (2014). RNA sequencing read depth requirement for optimal transcriptome coverage in Hevea brasiliensis. BMC research notes, 7, 1-13.Das, S., & Bansal, M. (2019). Variation of gene expression in plants is influenced by gene architecture and structural properties of promoters. PLoS One, 14(3), e0212678.Dhar, N. et al. A decade of molecular understanding of withanolide biosynthesis and in vitro studies in Withania somnifera (L.) Dunal: prospects and perspectives for pathway engineering. Front. Plant Sci. 6, 1031 (2015).Deanna, R., Larter, M. D., Barboza, G. E. & Smith, S. D. Repeated evolution of a morphological novelty: a phylogenetic analysis of the inflated fruiting calyx in the Physalideae tribe (Solanaceae). Am. J. Bot. 106, 270–279 (2019).Dunn, W. B., Broadhurst, D., Begley, P., Zelena, E., Francis-McIntyre, S., Anderson, N., ... & Human Serum Metabolome (HUSERMET) Consortium. (2011). Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nature protocols, 6(7), 1060-1083.Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 1–14 (2019).Ellegren, H., & Galtier, N. (2016). Determinants of genetic diversity. Nature Reviews Genetics, 17(7), 422-433.Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–7 (2004).Erazo, S., Rocco, G., Zaldivar, M., Delporte, C., Backhouse, N., Castro, C., ... & Garcıía, R. (2008). Active metabolites from Dunalia spinosa resinous exudates. Zeitschrift für Naturforschung C, 63(7-8), 492-496.Espinoza, J., Echeverría, J., Urzua, A., & Niemeyer, H. M. (2012). Withanolid amine and nicotine from Dunalia spinosa (Solanaceae). Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas, 11(3), 278-284.Fan, P. et al. Evolution of a plant gene cluster in Solanaceae and emergence of metabolic diversity. Elife 9, 1–26 (2020).Fang, S. T., Li, B., & Liu, J. K. (2009). Two new withanolidos from Physalis peruviana. Helvetica Chimica Acta, 92(7), 1304-1308.Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012).Garzón-Martínez, G. A., Zhu, Z. I., Landsman, D., Barrero, L. S., & Mariño- Ramírez, L. (2012). The Physalis peruviana leaf transcriptome: assembly, annotation and gene model prediction. BMC genomics, 13, 1-12.Gao, X., Dong, J., Rasouli, F., Pouya, A. K., Tahir, A. T., & Kang, J. (2022). Transcriptome analysis provides new insights into plants responses under phosphate starvation in association with chilling stress. BMC plant biology, 22(1), 1-14.Gupta, P. et al. Comparative transcriptome analysis of different chemotypes elucidates withanolide biosynthesis pathway from medicinal plant Withania somnifera. Sci. Rep. 5, 18611 (2015).Gupta, P. et al. De Novo Assembly, Functional Annotation and Comparative Analysis of Withania somnifera Leaf and Root Transcriptomes to Identify Putative Genes Involved in the Withanolidos Biosynthesis. PLoS One 8, (2013).Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494–1512 (2013).Hansen, C. C., Nelson, D. R., Møller, B. L. & Werck-Reichhart, D. Plant cytochrome P450 plasticity and evolution. Mol. Plant 14, 1244–1265 (2021).He, Q. P., Ma, L., Luo, J. Y., He, F. Y., Lou, L. G., & Hu, L. H. (2007). Cytotoxic withanolidos from Physalis angulata L. Chemistry & Biodiversity, 4(3), 443-449.Huang, M. et al. Withanolidos from the genus Physalis: a review on their phytochemical and pharmacological aspects. J. Pharm. Pharmacol. 72, 649–669 (2020).Huang, D. W., Sherman, B. T., & Lempicki, R. A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature protocols, 4(1), 44-57.Huerta-Cepas, J., Szklarczyk, D., Heller, D., Hernández-Plaza, A., Forslund, S. K., Cook, H., ... & Bork, P. (2019). eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic acids research, 47(D1), D309-D314Itkin, M. et al. Biosynthesis of antinutritional alkaloids in solanaceous crops is mediated by clustered genes. Science (80-. ). 341, 175–179 (2013).Knoch, E. et al. Third DWF1 paralog in Solanaceae, sterol Δ 24 -isomerase, branches withanolide biosynthesis from the general phytosterol pathway. Proc. Natl. Acad. Sci. 115, E8096–E8103 (2018).Kriventseva, E. V., Kuznetsov, D., Tegenfeldt, F., Manni, M., Dias, R., Simão, F. A., & Zdobnov, E. M. (2019). OrthoDB v10: sampling the diversity of animal, plant, fungal, protist, bacterial and viral genomes for evolutionary and functional annotations of orthologs. Nucleic acids research, 47(D1), D807-D811.Lan, Y. H., Chang, F. R., Pan, M. J., Wu, C. C., Wu, S. J., Chen, S. L., ... & Wu, Y. C. (2009). New cytotoxic withanolidos from Physalis peruviana. Food Chemistry, 116(2), 462-469.Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559 (2008).Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).LibGuides: Literature Searching: Searching techniques: using Boolean. (n.d.). https://libguides.dundee.ac.uk/literaturesearching/searchtechniquesbooleanLobatto VL, García ME, Nicotra VE, Orozco CI, Casero CN. Antibacterial activity of withanolidos and their structure-activity relationship. Steroids. 2023 Nov;199:109297. doi: 10.1016/j.steroids.2023.109297. Epub 2023 Aug 19. PMID: 37598738.Makarov, A., Denisov, E., & Lange, O. (2009). Performance evaluation of a high- field Orbitrap mass analyzer. Journal of the American Society for Mass Spectrometry, 20(8), 1391-1396.Mehta, V., Chander, H., & Munshi, A. (2021). Mechanisms of anti-tumor activity of Withania somnifera (Ashwagandha). Nutrition and Cancer, 73(6), 914-926.Misico, R. I. et al. Withanolidos and related Steroids. in Fortschritte der Chemie organischer Naturstoffe. Progress in the chemistry of organic natural products. Progrès dans la chimie des substances organiques naturelles 94, 127–229 (2011).Misra, L. et al. Withanolidos from Withania somnifera roots. Phytochemistry 69, 1000–1004 (2008).Munro, C., Zapata, F., Howison, M., Siebert, S. & Dunn, C. W. Evolution of Gene Expression across Species and Specialized Zooids in Siphonophora. Mol. Biol. Evol. 39, 1–16 (2022).Nützmann, H.-W., Scazzocchio, C. & Osbourn, A. Metabolic Gene Clusters in Eukaryotes. Annu. Rev. Genet. 52, annurev-genet-120417-031237 (2018).Pabón-Mora, N., Suárez-Baron, H., Ambrose, B. A., & González, F. (2015). Flower development and perianth identity candidate genes in the basal angiosperm Aristolochia fimbriata (Piperales: Aristolochiaceae). Frontiers in Plant Science, 6, 1095.Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417– 419 (2017).Pandey, S. S., Singh, S., Pandey, H., Srivastava, M., Ray, T., Soni, S., ... & Kalra, A. (2018). Endophytes of Withania somnifera modulate in planta content and the site of withanolide biosynthesis. Scientific reports, 8(1), 5450.Peng, Y., Wang, Z., Li, M., Wang, T., & Su, Y. (2024). Characterization and analysis of multi-organ full-length transcriptomes in Sphaeropteris brunoniana and Alsophila latebrosa highlight secondary metabolism and chloroplast RNA editing pattern of tree ferns. BMC Plant Biology, 24(1), 1-23.Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2–approximately maximum- likelihood trees for large alignments. PLoS One 5, e9490 (2010).PubChem. (n.d.). Withanoside v. PubChem. https://pubchem.ncbi.nlm.nih.gov/compound/Withanoside-VRana, S. et al. NADPH-Cytochrome P450 Reductase: Molecular Cloning and Functional Characterization of Two Paralogs from Withania somnifera (L.) Dunal. PLoS One 8, (2013).Razdan, S. et al. Molecular characterization of DWF1 from Withania somnifera (L.) Dunal: its implications in withanolide biosynthesis. J. Plant Biochem. Biotechnol. 26, 52–63 (2017).evell, L. J. & Harrison, A. S. PCCA: a program for phylogenetic canonical correlation analysis. Bioinformatics 24, 1018–1020 (2008).Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. bioinformatics 26, 139–140 (2010).Samadi, A. K. (2015). Potential anticancer properties and mechanisms of action of withanolidos. The enzymes, 37, 73-94.61. Sang-Ngern, M., Youn, U. J., Park, E. J., Kondratyuk, T. P., Simmons, C. J., Wall, M. M., ... & Chang, L. C. (2016). Withanolidos derived from Physalis peruviana (Poha) with potential anti-inflammatory activity. Bioorganic & Medicinal Chemistry Letters, 26(12), 2755-2759.Schirmer, M., Stražar, M., Ávila-Pacheco, J., Rojas‐Tapias, D. F., Brown, E., Temple, E. R., Deik, A., Bullock, K., Jeanfavre, S., Pierce, K. A., Jin, S., Invernizzi, R., Pust, M., Costliow, Z., Mack, D. R., Griffiths, A. M., Walters, T. D., Boyle, B. M., Kugathasan, S., . . . Xavier, R. J. (2024). Linking microbial genes to plasma and stool metabolites uncovers host-microbial interactions underlying ulcerative colitis disease course. Cell Host & Microbe. https://doi.org/10.1016/j.chom.2023.12.013Schwander, T., Libbrecht, R. & Keller, L. Supergenes and complex phenotypes. Curr. Biol. 24, R288–R294 (2014).Sharma, A. et al. Characterization and overexpression of sterol Δ22-desaturase, a key enzyme modulates the biosyntheses of stigmasterol and withanolidos in Withania somnifera (L.) Dunal. Plant Sci. 301, 110642 (2020).Sharma, A., Rather, G. A., Misra, P., Dhar, M. K. & Lattoo, S. K. Jasmonate responsive transcription factor WsMYC2 regulates the biosynthesis of triterpenoid withanolidos and phytosterol via key pathway genes in Withania somnifera (L.) Dunal. Plant Mol. Biol. 100, 543–560 (2019).Shilpashree, H. B., Sudharshan, S. J., Shasany, A. K. & Nagegowda, D. A. Molecular characterization of three CYP450 genes reveals their role in withanolidos formation and defense in Withania somnifera, the Indian Ginseng. Sci. Rep. 12, 1– 12 (2022).Singh, A., Raza, A., Amin, S., Damodaran, C. & Sharma, A. K. Recent advances in the chemistry and therapeutic evaluation of naturally occurring and synthetic withanolidos. Molecules 27, 886 (2022).Smit, S. J. & Lichman, B. R. Plant biosynthetic gene clusters in the context of metabolic evolution. Nat. Prod. Rep. 39, 1465–1482 (2022).Stein, A. Withanolidos: Elucidating steroidal lactone biosynthesis in Nightshades. (2022).Sukanya, D. H., Lokesha, A. N., Datta, G., & Himabindu, K. (2010). Phytochemical diversity in ashwagandha (Withania somnifera). Open Access Journal of Medicinal and Aromatic Plants, 1(2).The cytochrome P450 enzyme WsCYP71B35 from Withania somnifera has a role in withanolidos biosynthesis and defense against bacteria. (2023).Tong, X., Zhang, H., & Timmermann, B. N. (2011). Chlorinated withanolidos from Withania somnifera. Phytochemistry Letters, 4(4), 411– 414. https://doi.org/10.1016/j.phytol.2011.04.01673. Villas-Bas, S. G., Roessner, U., Hansen, M. A. E., Smedsgaard, J., & Nielsen, J. (2007). Metabolome Analysis. doi:10.1002/0470105518Xia, G., Cao, S., Chen, L. & Qiu, F. Natural withanolidos, an update. Nat. Prod. Rep. 39, 784–813 (2022).Xu, Z., Chang, L. (2017). Solanaceae. In: Identification and Control of Common Weeds: Volume 3. Springer, Singapore. https://doi.org/10.1007/978-981-10-5403- 7_9Yang, Y., Xiang, K., Sun, D., Zheng, M., Song, Z., Li, M., ... & Chen, L. (2021). Withanolidos from dietary tomatillo suppress HT1080 cancer cell growth by targeting mutant IDH1. Bioorganic & Medicinal Chemistry, 36, 116095Zhang, C. & Mirarab, S. ASTRAL-Pro 2: ultrafast species tree reconstruction from multi-copy gene family trees. Bioinformatics 38, 4949–4950 (2022).Zhan, C. et al. Plant metabolic gene clusters in the multi-omics era. Trends Plant Sci. (2022).Zhao, Y., Li, M. C., Konaté, M. M., Chen, L., Das, B., Karlovich, C., ... & McShane, L. M. (2021). TPM, FPKM, or normalized counts? A comparative study of quantification measures for the analysis of RNA-seq data from the NCI patient- derived models repository. Journal of translational medicine, 19(1), 1-15.Grupo Genómica Evolutiva del Metabolismo EspecializadoInvestigadoresORIGINAL1032465939.2024.pdf1032465939.2024.pdfTesis de Mestría en Ciencias - Biologíaapplication/pdf3070358https://repositorio.unal.edu.co/bitstream/unal/86466/7/1032465939.2024.pdfa4fb1f00f468ef4b808c832250d2eedfMD57Anexo3.txtAnexo3.txtAnexotext/plain19135693https://repositorio.unal.edu.co/bitstream/unal/86466/3/Anexo3.txt2b1de1629fbdf630c8276c621a5beda7MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86466/4/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD54THUMBNAIL1032465939.2024.pdf.jpg1032465939.2024.pdf.jpgGenerated Thumbnailimage/jpeg4597https://repositorio.unal.edu.co/bitstream/unal/86466/6/1032465939.2024.pdf.jpg20c54c7f0a2395ad864763a4ff9ae5fdMD56unal/86466oai:repositorio.unal.edu.co:unal/864662024-07-17 14:26:08.912Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=