Modelo de dominio específico para análisis y minería de datos educativos
graficas, tablas
- Autores:
-
Hernández Leal, Emilcy Juliana
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2024
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/85851
- Palabra clave:
- 000 - Ciencias de la computación, información y obras generales::003 - Sistemas
Análisis de datos
Datos educativos
Dominio específico
Educación básica y media
Minería de datos
Data analysis
Educational data
Specific domain
Basic and secondary education
Data mining
Análisis de inspección
Survey analysis
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_66826b10b2afdb4ba52c6a2f8fd17d95 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/85851 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Modelo de dominio específico para análisis y minería de datos educativos |
dc.title.translated.eng.fl_str_mv |
Specific domain model for educational data mining and analysis |
title |
Modelo de dominio específico para análisis y minería de datos educativos |
spellingShingle |
Modelo de dominio específico para análisis y minería de datos educativos 000 - Ciencias de la computación, información y obras generales::003 - Sistemas Análisis de datos Datos educativos Dominio específico Educación básica y media Minería de datos Data analysis Educational data Specific domain Basic and secondary education Data mining Análisis de inspección Survey analysis |
title_short |
Modelo de dominio específico para análisis y minería de datos educativos |
title_full |
Modelo de dominio específico para análisis y minería de datos educativos |
title_fullStr |
Modelo de dominio específico para análisis y minería de datos educativos |
title_full_unstemmed |
Modelo de dominio específico para análisis y minería de datos educativos |
title_sort |
Modelo de dominio específico para análisis y minería de datos educativos |
dc.creator.fl_str_mv |
Hernández Leal, Emilcy Juliana |
dc.contributor.advisor.none.fl_str_mv |
Duque Méndez, Néstor Darío |
dc.contributor.author.none.fl_str_mv |
Hernández Leal, Emilcy Juliana |
dc.contributor.researchgroup.spa.fl_str_mv |
Gaia Grupo de Ambientes Inteligentes Adaptativos |
dc.contributor.orcid.spa.fl_str_mv |
Hernández Leal, Emilcy Juliana [0000-0002-5865-9604] |
dc.contributor.cvlac.spa.fl_str_mv |
Hernández Leal, Emilcy Juliana [0001402728] |
dc.contributor.googlescholar.spa.fl_str_mv |
Hernández Leal, Emilcy Juliana [Emilcy Juliana Hernández-Leal] |
dc.subject.ddc.spa.fl_str_mv |
000 - Ciencias de la computación, información y obras generales::003 - Sistemas |
topic |
000 - Ciencias de la computación, información y obras generales::003 - Sistemas Análisis de datos Datos educativos Dominio específico Educación básica y media Minería de datos Data analysis Educational data Specific domain Basic and secondary education Data mining Análisis de inspección Survey analysis |
dc.subject.proposal.spa.fl_str_mv |
Análisis de datos Datos educativos Dominio específico Educación básica y media Minería de datos |
dc.subject.proposal.eng.fl_str_mv |
Data analysis Educational data Specific domain Basic and secondary education Data mining |
dc.subject.unesco.spa.fl_str_mv |
Análisis de inspección |
dc.subject.unesco.eng.fl_str_mv |
Survey analysis |
description |
graficas, tablas |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-04-02T18:57:49Z |
dc.date.available.none.fl_str_mv |
2024-04-02T18:57:49Z |
dc.date.issued.none.fl_str_mv |
2024 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.spa.fl_str_mv |
Text |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/85851 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/85851 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Acevedo-Díaz, J. A., García-Carmona, A., Aragón-Méndez, M. del M., & Oliva-Martínez, J. M. (2017). Modelos científicos: significado y papel en la práctica científica- Scientific models: meaning and role in scientific practice. Revista Científica, 3(30), 155. https://doi.org/10.14483/23448350.12288 Agrawal, A. (2003). Metamodel based model transformation language to facilitate Domain Specific Model Driven Architecture. Proceedings of the Conference on Object-Oriented Programming Systems, Languages, and Applications, OOPSLA, 118–119. https://doi.org/10.1145/949344.949379 Agt-Rickauer, H., Kutsche, R. D., & Sack, H. (2019). Automated recommendation of related model elements for domain models. Communications in Computer and Information Science, 991, 134–158. https://doi.org/10.1007/978-3-030-11030-7_7/COVER Arslan, S., & Kardas, G. (2020). DSML4DT: A domain-specific modeling language for device tree software. Computers in Industry, 115, 103179. https://doi.org/10.1016/J.COMPIND.2019.103179 Ayala Franco, E., López Martínez, R. E., & Menéndez Domínguez, V. H. (2021). Modelos predictivos de riesgo académico en carreras de computación con minería de datos educativos. Revista de Educación a Distancia (RED), 21(66), 1–36. https://doi.org/10.6018/RED.463561 Baker, R. S., & Inventado, P. S. (2014). Educational Data Mining and Learning Analytics. In Learning Analytics (pp. 61–75). Springer New York. https://doi.org/10.1007/978-1-4614-3305-7_4 Bhardwaj, B. K., & Pal, S. (2012). Data Mining: A prediction for performance improvement using classification. International Journal of Computer Science and Information Security. http://arxiv.org/abs/1201.3418 Begum, S. H. (2013). Data Mining Tools and Trends – An Overview. International Journal of Emerging Research in Management &Technology, 6–12 Bellifemine, F., Fortino, G., Giannantonio, R., Gravina, R., Guerrieri, A., & Sgroi, M. (2011). SPINE: a domain-specific framework for rapid prototyping of WBSN applications. Software: Practice and Experience, 41(3), 237–265. https://doi.org/10.1002/spe.998 Bermanis, A., Averbuh, A., & Coifman, R. (2013). Multiscale data sampling and function extension. Applied and Computational Harmonic Analysis, 34(1), 15–29. https://doi.org/10.1016/J.ACHA.2012.03.002 Bettini, L. (2016). Implementing domain-specific languages with Xtext and Xtend : learn how to implement a DSL with Xtext and Xtend using easy-to-understand examples and best practices (2nd ed.). Packt Publishing. Bhardwaj, B. K., & Pal, S. (2012). Data Mining: A prediction for performance improvement using classification. International Journal of Computer Science and Information Security. http://arxiv.org/abs/1201.3418 Brownlee, J. (2020). Data preparation for machine learning: data cleaning, feature selection, and data transforms in Python. Machine Learning Mastery. Candia Oviedo, D. I. (2019). Predicción del rendimiento académico de los estudiantes de la UNSAAC a partir de sus datos de ingreso utilizando algoritmos de aprendizaje automático. Cao, L. (2010). Domain-Driven Data Mining: Challenges and Prospects. IEEE Transactions on Knowledge and Data Engineering, 22(6), 755–769. https://doi.org/10.1109/TKDE.2010.32 Cao, L., & Zhang, C. (2007). The Evolution of KDD: Towards Domain-Driven Data Mining. International Journal of Pattern Recognition and Artificial Intelligence, 21(04), 677–692. https://doi.org/10.1142/S0218001407005612 Castellanos, C., Varela, C. A., & Correal, D. (2021). ACCORDANT: A domain specific-model and DevOps approach for big data analytics architectures. Journal of Systems and Software, 172, 110869. https://doi.org/10.1016/J.JSS.2020.110869 Castro, M., & Lizasoain, L. (2012). Las técnicas de modelización estadística en la investigación educativa: minería de datos, modelos de ecuaciones estructurales y modelos jerárquicos lineales. Revista Española de Pedagogía, 70(251), 131–148. Cechinel, C., Ochoa, X., Lemos dos Santos, H., Carvalho Nunes, J. B., Rodés, V., & Marques Queiroga, E. (2020). Mapping Learning Analytics initiatives in Latin America. British Journal of Educational Technology, 1–23. https://doi.org/10.1111/bjet.12941 Chan, J. Y. Le, Bea, K. T., Leow, S. M. H., Phoong, S. W., & Cheng, W. K. (2023). State of the art: a review of sentiment analysis based on sequential transfer learning. Artificial Intelligence Review, 56(1), 749–780. https://doi.org/10.1007/S10462-022-10183-8/TABLES/7 Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C., & Wirth, R. (1999). The CRISP-DM User Guide. Che, D., Safran, M., & Peng, Z. (2013). From Big Data to Big Data Mining: Challenges, Issues, and Opportunities. In B. Hong, X. Meng, L. Chen, W. Winiwarter, & W. Song (Eds.), Database Systems for Advanced Applications: 18th International Conference, DASFAA 2013, International Workshops: BDMA, SNSM, SeCoP, Wuhan, China, April 22-25, 2013. Proceedings (pp. 1–15). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-40270-8_1 Chiok, M., & Higinio, C. (2017). Predicción del rendimiento académico aplicando técnicas de minería de datos - Dialnet. Anales Científicos, 78(1), 26–33. Chen, G., Iwen, M., Chin, S., & Maggioni, M. (2012). A fast multiscale framework for data in high-dimensions: Measure estimation, anomaly detection, and compressive measurements. Visual Communications and Image Processing, 1–6. https://doi.org/10.1109/VCIP.2012.6410789 Cios, K. J., Pedrycz, W., Swiniarski, R., & Kurgan, L. (2007). Data mining : a knowledge discovery approach. Springer. Clark, T., Van Den Brand, M., Combemale, B., & Rumpe, B. (2015). Conceptual model of the globalization for domain-specific languages. In Globalizing Domain-Specific Languages (Vol. 9400, pp. 7–20). Springer Verlag. https://doi.org/10.1007/978-3-319-26172-0_2 Csikszentmihalyi, M., & Wolfe, R. (2014). New Conceptions and Research Approaches to Creativity: Implications of a Systems Perspective for Creativity in Education. In The Systems Model of Creativity (pp. 161–184). Springer Netherlands. https://doi.org/10.1007/978-94-017-9085-7_10 Contreras, L. E., Fuentes, H. J., & Rodríguez, J. I. (2020). Predicción del rendimiento académico como indicador de éxito/fracaso de los estudiantes de ingeniería, mediante aprendizaje automático. Formación Universitaria, 13(5), 233–246. https://doi.org/10.4067/S0718-50062020000500233 ANE. (2018). Boletín Técnico Educación Formal (EDUC) 2018. De Almeida Neto, F. A., & Castro, A. (2017). A reference architecture for educational data mining. Proceedings – Frontiers in Education Conference, FIE, 2017-October, 1–8. https://doi.org/10.1109/FIE.2017.8190728 De Lara, J., & Guerra, E. (2012). Domain-specific textual meta-modelling languages for model driven engineering. ECMFA’12: Proceedings of the 8th European Conference on Modelling Foundations and Applications, 7349 LNCS, 259–274. https://doi.org/10.1007/978-3-642-31491-9_20 Desolda, G., Ardito, C., & Matera, M. (2017). Empowering end users to customize their smart environments: Model, composition paradigms, and domain-specific tools. ACM Transactions on Computer-Human Interaction, 24(2), 1–52. https://doi.org/10.1145/3057859 Díaz-Landa, B., Meleán-Romero, R., & Marín-Rodriguez, W. (2021). Rendimiento académico de estudiantes en Educación Superior: predicciones de factores influyentes a partir de árboles de decisión. Revista de Estudios Interdisciplinarios En Ciencias Sociales, 23(3), 616–639. Dsilva, C. J., Talmon, R., Gear, C. W., Coifman, R. R., & Kevrekidis, I. G. (2015). Data-Driven Reduction for Multiscale Stochastic Dynamical Systems. Applied Dynamical Systems. http://arxiv.org/abs/1501.05195 Edwards, G., & Medvidovic, N. (2008). A methodology and framework for creating domain-specific development infrastructures. ASE 2008 – 23rd IEEE/ACM International Conference on Automated Software Engineering, Proceedings, 168–177. https://doi.org/10.1109/ASE.2008.27 El Ghosh, M., Naja, H., Abdulrab, H., & Khalil, M. (2017). Ontology learning process as a bottom-up strategy for building domain-specific ontology from legal texts. ICAART 2017 – Proceedings of the 9th International Conference on Agents and Artificial Intelligence, 2, 473–480. https://doi.org/10.5220/0006188004730480 Evans, E. (2004). Domain-driven design: tackling complexity in the heart of software. Addison-Wesley Professional. http://books.google.com/books?hl=en&lr=&id=7dlaMs0SECsC&pgis=1 Fayyad, U. M., Piatetsky-Shapiro, G., & Smyth, P. (1996). Advances in knowledge discovery and data mining. In Advances in knowledge discovery and data mining. AAAI Press. https://dl.acm.org/citation.cfm?id=257942 Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From Data Mining to Knowledge Discovery in Databases. AI Magazine, 17, 37–54. https://doi.org/10.1609/aimag.v17i3.1230 Fernandez, D. B., & Lujan-Mora, S. (2017). Comparison of applications for educational data mining in Engineering Education. 2017 IEEE World Engineering Education Conference (EDUNINE), 81–85. https://doi.org/10.1109/EDUNINE.2017.7918187 Gerbig, R. (2017). Deep, seamless, multi-format, multi-notation definition and use of domain-specific languages. Verlag Dr. Hut. Hübscher, R., Puntambekar, S., & Nye, A. H. (2007). Domain Specific Interactive Data Mining. Workshop on Data Mining for User Modeling at the 11th International Conference on User Modeling, 81–90. http://www.educationaldatamining.org/UM2007/Hubscher.pdf Hand, D. J. (David J. ), Mannila, Heikki., & Smyth, Padhraic. (2001). Principles of data mining. MIT Press. He, X., Zhao, K., & Chu, X. (2021). AutoML: A survey of the state-of-the-art. Knowledge-Based Systems, 212, 106622. Inmon, W. H., & Linstedt, D. (2014). Data architecture: a primer for the data scientist: big data, data warehouse and data vault. Morgan Kaufmann. Iung, A., Carbonell, J., Marchezan, L., Rodrigues, E., Bernardino, M., Basso, F. P., & Medeiros, B. (2020). Systematic mapping study on domain-specific language development tools. Empirical Software Engineering, 25(5), 4205–4249. https://doi.org/10.1007/S10664-020-09872-1/TABLES/9 Jaramillo Valvuena, S., & Londoño, J. M. (2014). Sistemas para almacenar grandes volúmenes de datos. Revista Gerencia Tecnológica Informática, 13(37), 17–28. http://revistas.uis.edu.co/index.php/revistagti/article/view/4689 Jiménez Celorrio, S., & de la Rosa Turbides, T. (2009). Learning-Based Planning. In Encyclopedia of Artificial Intelligence (pp. 1024–1028). IGI Global. https://doi.org/10.4018/978-1-59904-849-9.ch151 Jindal, R., & Borah, M. D. (2013). A Survey on Educational Data Mining and Research Trends. International Journal of Database Management Systems, 5(3), 53–73. https://doi.org/10.5121/ijdms.2013.5304 Kantardzic, M. (2011). Data mining : concepts, models, methods, and algorithms (Segunda). John Wiley & Sons, Inc. Karagiannis, D., Mayr, H. C., & Mylopoulos, J. (2016). Domain-specific conceptual modeling: Concepts, methods and tools. In Domain-Specific Conceptual Modeling: Concepts, Methods and Tools. Springer International Publishing. https://doi.org/10.1007/978-3-319-39417-6 Kautz, H., & Selman, B. (1998). The Role of Domain-Specific Knowledge in the Planning as Satisfiability Framework. In American Association for Artificial Intelligence (pp. 181–189). http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.1259 Karmaker, S. K., Hassan, M. M., Smith, M. J., Xu, L., Zhai, C., & Veeramachaneni, K. (2021). Automl to date and beyond: Challenges and opportunities. ACM Computing Surveys (CSUR), 54(8), 1-36. Krahn, H., Rumpe, B., & Völkel, S. (2014, September 22). Roles in Software Development using Domain Specific Modeling Languages. 6th OOPSLA Workshop on Domain-Specific Modeling (DSM’ 06). http://arxiv.org/abs/1409.6618 Larose, D. T., & Larose, C. D. (2014). Discovering knowledge in data : an introduction to data mining (Second). John Wiley & Sons, Inc. Leédeczi, Á., Bakay, Á., MarÓti, M., Völgyesi, P., Nordstrom, G., Sprinkle, J., & Karsai, G. (2001). Composing domain-specific design environments. Computer, 34(11), 44–51. https://doi.org/10.1109/2.963443 Lin, Y., Gray, J., & Jouault, F. (2017). DSMDiff: a differentiation tool for domain-specific models. European Journal of Information Systems, 16(4), 349–361. https://doi.org/10.1057/PALGRAVE.EJIS.3000685 Liu, Y., Li, J., Ming, Z., Song, H., Weng, X., & Wang, J. (2019). Domain-specific data mining for residents’ transit pattern retrieval from incomplete information. Journal of Network and Computer Applications, 134, 62–71. https://doi.org/10.1016/J.JNCA.2019.02.016 López, C. P. (2007). Minería de datos: técnicas y herramientas. In Paraninfo. Paraninfo. https://books.google.com.pe/books?id=wz-D_8uPFCEC&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false Lu, W., Zhou, Y., Yu, J., & Jia, C. (2019). Concept Extraction and Prerequisite Relation Learning from Educational Data. Proceedings of the AAAI Conference on Artificial Intelligence, 33(01), 9678–9685. https://doi.org/10.1609/AAAI.V33I01.33019678 Maldonado, C. E. (2017). Tipología de modelos científicos de explicación. Ciencia y complejidad. Sociología y Tecnociencia, 7(2), 58–72. https://doi.org/https://doi.org/10.24197/st.2.2017.58-72 Matignon, R. (2007). Data mining using SAS enterprise miner. https://books.google.com/books?hl=es&lr=&id=h7FAN3lijRMC&oi=fnd&pg=PP1&dq=semma+data+mining&ots=C9RYcqzLYC&sig=vk2668sC7hkUa2Y97SpkPybfLfc Ministerio de Educación. (2019). Marco Estratégico 2019 – 2022. https://www.mineducacion.gov.co/1759/articles-382974_recurso_3.pdf Ministerio de Educación. (2020ª). Funciones y deberes – Ministerio de Educación Nacional de Colombia. https://www.mineducacion.gov.co/portal/Ministerio/ oodle ción-Institucional/85252:Funciones-y-deberes Ministerio de Educación. (2020b). Normatividad y documentos – Ministerio de Educación Nacional de Colombia. https://www.mineducacion.gov.co/1759/w3-article-357542.html?_noredirect=1 Ministerio de Educación. (2020c). Sistemas de Información. https://www.mineducacion.gov.co/portal/micrositios-institucionales/Sistemas-de-Informacion/ Ministerio de Educación Nacional. (2020). Sistema educativo colombiano . https://www.mineducacion.gov.co/portal/Preescolar-basica-y-media/Sistema-de-educacion-basica-y-media/233839:Sistema-educativo-colombiano Mitrofanova, Y. S., Sherstobitova, A. A., & Filippova, O. A. (2019). Modeling smart learning processes based on educational data mining tools. In V. Uskov, R. Howlett, & L. Jain (Eds.), Smart Education and e-Learning 2019. Smart Innovation, Systems and Technologies (Vol. 144, pp. 561–571). Springer. https://doi.org/10.1007/978-981-13-8260-4_49 Nguyen, B.-A., & Yang, D.-L. (2012). A Semi-Automatic Approach to Construct Vietnamese Ontology from Online Text. INTERNATIONAL REVIEW OF RESEARCH IN OPEN AND DISTANCE LEARNING, 13(5, SI), 148–172. Niu, S., Liu, Y., Wang, J., & Song, H. (2020). A Decade Survey of Transfer Learning (2010–2020). IEEE Transactions on Artificial Intelligence, 1(2) Nordstrom, G., Sztipanovits, J., Karsai, G., & Ledeczi, A. (1999). Metamodeling-rapid design and evolution of domain-specific modeling environments. Proceedings – ECBS 1999, IEEE Conference and Workshop on Engineering of Computer-Based Systems, 68–74. https://doi.org/10.1109/ECBS.1999.755863 Oliveira, C., & Da Silva, J. C. (2009). Mineração de Dados: Conceitos, Tarefas, Métodos e Ferramentas. www.inf.ufg.br Orozco Iguasnia, W. A., Villao Balón, A. J., Orozco Iguasnia, J., & Villarroel Sánchez, M. V. (2021). Aplicación de técnicas de minería de datos para predecir el desempeño académico de los estudiantes de la escuela ‘Lic. Angélica Villón L.’ Revista Científica y Tecnológica UPSE, 8(2), 68–75. https://doi.org/10.26423/RCTU.V8I2.637 Parekh, V., Gwo, J., & Finin, T. (2004). Mining Domain Specific Texts and Glossaries to Evaluate and Enrich Domain Ontologies. International Conference of Information and Knowledge Engineering. http://aisl.umbc.edu/resources/94.pdf Patwari, P., Chaudhuri, S. R., Banerjee, A., Natarajan, S., & Pandey, S. (2016, November 22). A complementary domain specific design environment aiding SysML. ISSE 2016 – 2016 International Symposium on Systems Engineering – Proceedings Papers. https://doi.org/10.1109/SysEng.2016.7753164 Peinado, H. S. (2013). Legislación educativa colombiana. Editorial Magisterio. https://www.magisterio.com.co/libro/legislacion-educativa-colombiana Peña-Ayala, A. (2014). Educational data mining: A survey and a data mining-based analysis of recent works. Expert Systems with Applications, 41(4), 1432–1462. Pérez Marqués, M. (2014). Minería de Datos a través de ejemplos (1aed.). RC Libros. Probert, D. R., & Ridgman, T. W. (2013). Structuring technology and innovation management executive education: the research contribution. ISPIM Conference Proceedings. www.ispim.org. Recker, M., & Lee, J. E. (2016). Analyzing Learner and Instructor Interactions within Learning Management Systems: Approaches and Examples. In Learning, Design, and Technology (pp. 1–23). Springer International Publishing. https://doi.org/10.1007/978-3-319-17727-4_7-1 Riquelme, J. C., Ruiz, R., & Gilbert, K. (2006). Minería de Datos: Conceptos y Tendencias. Revista Iberoamericana de Inteligencia Artificial, 29, 11–18. http://www.aepia.org Romero, C., & Ventura, S. (2007). Educational data mining: A survey from 1995 to 2005. Expert Systems with Applications, 33(1), 135–146. https://doi.org/10.1016/J.ESWA.2006.04.005 Romero, C. & Ventura, S. (2013). Data mining in education. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 3(1), 12–27. https://doi.org/10.1002/widm.1075 Romero, C. & Ventura, S. (2020). Educational data mining and learning analytics: An updated survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 10(3), e1355. https://doi.org/10.1002/widm.1355 Romero, C. & Ventura, S. (2010). Educational Data Mining: A Review of the State of the Art. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 40(6), 601–618. https://doi.org/10.1109/TSMCC.2010.2053532 Salgado Reyes, N., Beltrán Morales, J., Guaña Moya, J., Escobar Teran, C., Nicolalde Rodriguez, D., & Chafla Altamirano, G. (2019). Modelo para predecir el rendimiento académico basado en redes neuronales y analítica de aprendizaje. RISTI, 17, 258–266. Scheuer, O., & McLaren, B. M. (2012). Educational Data Mining. In Encyclopedia of the Sciences of Learning (pp. 1075–1079). Springer US. https://doi.org/10.1007/978-1-4419-1428-6_618 Selvaraj, P., Burugari, V. K., Sumathi, D., Nayak, R. K., & Tripathy, R. (2019). Ontology based Recommendation System for Domain Specific Seekers. Third International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud), 341–345. https://doi.org/10.1109/i-smac47947.2019.9032634 Shafique, U., & Qaiser, H. (2014). A Comparative Study of Data Mining Process Models (KDD, CRISP-DM and SEMMA). International Journal of Innovation and Scientific Research, 12(1), 217–222. https://www.researchgate.net/publication/268770881_A_Comparative_Study_of_Data_Mining_Process_Models_KDD_CRISP-DM_and_SEMMA Slater, S., Joksimović, S., Kovanovic, V., Baker, R. S., & Gasevic, D. (2016). Tools for Educational Data Mining: A Review. Educational and Behavioral Statistics, 42(1), 85–106. Timarán Pereira, R., Hidalgo Troya, A., & Caicedo Zambrano, J. (2020). Factores asociados al desempeño académico en Lectura Crítica en las pruebas Saber 11° con árboles de decisión - Dialnet. Investigación e Innovación En Ingenierías, 8(3), 29–37. Tsiakmaki, M., Kostopoulos, G., Kotsiantis, S., & Ragos, O. (2020). Transfer Learning from Deep Neural Networks for Predicting Student Performance. Applied Sciences, 10(6), 2145. https://doi.org/10.3390/APP10062145 Vaisman, A., & Zimányi, E. (2014a). Data Warehouse Concepts. In Data Warehouse Systems (pp. 53–87). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-54655-6_3 Vaisman, A., & Zimányi, E. (2014b). Extraction, Transformation, and Loading. In Data Warehouse Systems (pp. 285–327). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-54655-6_8 Varde, A. S., & Tatti, N. (2014). A Panorama of Imminent Doctoral Research in Data Mining. ACM SIGMOD Record, 43(3), 71–74. https://doi.org/10.1145/2694428.2694442 Winch, C., Oancea, A., & Orchard, J. (2015). The contribution of educational research to teachers’ professional learning: philosophical understandings. Oxford Review of Education, 41(2), 202–216. Winner, E., & Veloso, M. (2003). DISTILL: Towards Learning Domain-Specific Planners by Example. Itwentieth Nternational Conference on Machine Learning. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.2.3010 Xiao, W., Ji, P., & Hu, J. (2022). A survey on educational data mining methods used for predicting students’ performance. Engineering Reports, 4(5), e12482. https://doi.org/10.1002/ENG2.12482 Xu, Y., Rajpathak, D., Gibbs, I., & Klabjan, D. (2019). Automatic Ontology Learning from Domain-Specific Short Unstructured Text Data. Computer Science. http://arxiv.org/abs/1903.04360 Yang, Q., Zhang, Y., Dai, W., & Pan, S. J. (2020). Transfer Learining (1st ed.). Cambridge University Press. Yukselturk, E., Ozekes, S., & Türel, Y. K. (2014). Predicting Dropout Student: An Application of Data Mining Methods in an Online Education Program. European Journal of Open, Distance and E-Learning, 17(1), 118–133. https://doi.org/10.2478/EURODL-2014-0008 Zeineddine, H., Braendle, U., & Farah, A. (2021). Enhancing prediction of student success: Automated machine learning approach. Computers & Electrical Engineering, 89, 106903. Zhu, Y., Zhu, H., Liu, Q., Chen, E., Li, H., & Zhao, H. (2016). Exploring the procrastination of college students: A data-driven behavioral perspective. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 9642). https://doi.org/10.1007/978-3-319-32025-0_17 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
187 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Manizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - Industria y Organizaciones |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería y Arquitectura |
dc.publisher.place.spa.fl_str_mv |
Manizales, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Manizales |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/85851/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/85851/2/1090175695.2024.pdf https://repositorio.unal.edu.co/bitstream/unal/85851/3/1090175695.2024.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a a66c24e73271678321d7c572202a5bd4 6faa1f2a166737ea54677ed375c0dbc9 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089625185026048 |
spelling |
Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Duque Méndez, Néstor Darío4ff01dafa0154c79f67190343ead16e7600Hernández Leal, Emilcy Juliana958d544aa3ea592164d0b354d46250b2600Gaia Grupo de Ambientes Inteligentes AdaptativosHernández Leal, Emilcy Juliana [0000-0002-5865-9604]Hernández Leal, Emilcy Juliana [0001402728]Hernández Leal, Emilcy Juliana [Emilcy Juliana Hernández-Leal]2024-04-02T18:57:49Z2024-04-02T18:57:49Z2024https://repositorio.unal.edu.co/handle/unal/85851Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/graficas, tablasEl uso de técnicas de análisis de datos para el apoyo de procesos educativos, al igual que en otros dominios de datos, busca potencializar la toma de decisiones y la planeación de estos. Las tecnologías de información y comunicación contribuyen a dichos procesos de análisis. En particular, desde la minería de datos se tiene una opción para dar atención a las necesidades presentes en cuanto a gestión de datos académicos, datos que se producen desde el proceso de enseñanza-aprendizaje como tal, así como también desde procesos de carácter administrativo que están asociados. Dependiendo del nivel educativo, para el caso de Colombia estos niveles se distribuyen en educación pre-escolar, básica, media y superior, los sistemas de información donde son almacenados los datos educativos varían, influyendo también el carácter de la institución (pública o privada). Para el caso de la educación superior, estos sistemas de información o fuentes de datos suelen estar bastante estructurados, facilitando el acceso a los datos y por tanto la extracción de información y conocimiento. No obstante, a nivel de educación básica y media, las fuentes de datos resultan más difíciles de acceder y el tratamiento que requieren los datos antes de ser analizados puede ser considerable. En este sentido, esta tesis doctoral propone un modelo conceptual con enfoque de dominio específico para minería de datos educativos, que ofrece mecanismos de solución a los problemas particulares de cada etapa del proceso de minería de datos educativos y en general de los modelos de dominio genérico, además, de atender la problemática asociada a los datos que provienen de múltiples fuentes y escalas para una aplicación puntual con datos de educación básica y media en Colombia, acotado también a técnicas de aprendizaje supervisado. De la mano del modelo conceptual, se presenta una estrategia de validación y aplicación de este. El modelo propuesto puede ser aplicado a diferentes contextos educativos y para diferentes fuentes de datos, contando con el conocimiento de los expertos y con la información que puede ofrecer dicho contexto académico particular, teniendo como conclusión general que los procesos de análisis de datos educativos mediante minería de datos pueden ser abordados desde un enfoque de dominio específico, contribuyendo al logro de resultados satisfactorios en términos de los modelos de minería construidos y del apoyo al usuario por medio de la guía que puede ofrecer contar con el conocimiento del dominio particular. Además, se ofrecen modelos pre-entrenados y mecanismos de transferencia de aprendizaje que permiten aprovechar las ventajas de la minería de datos en ambientes con pocos datos y sin requerimientos de expertos en técnicas de análisis de datos (Texto tomado de la fuente)The use of data analysis techniques to support educational processes, as in other data domains, seeks to enhance decision-making and planning. Information and communication technologies contribute to these analysis processes. From data mining there is an option to attend to the present needs in terms of academic data management, data that is produced from the teaching-learning process as such, as well as from administrative processes that are associated. Depending on the educational level, in the case of Colombia these levels are distributed in pre-school, basic, secondary, and higher education, the information systems where the educational data are stored vary, also influencing the nature of the institution (public or private). In the case of higher education, these information systems or data sources are usually quite structured, facilitating access to data and therefore the extraction of information and knowledge. However, at the basic and secondary education level, the data sources are more difficult to access and the treatment that the data requires before being analyzed can be considerable. In this sense, this doctoral thesis proposes a conceptual model with a specific domain approach for educational data mining, which offers solution mechanisms to the problems of each stage of the educational data mining process and in general of generic domain models. In addition, to address the problems associated with data that come from multiple sources and scales for a specific application with data from basic and secondary education in Colombia, also limited to supervised learning techniques. Hand in hand with the conceptual model, a validation and application strategy of this model is presented. The proposed model can be applied to different educational contexts and for different data sources, counting on the knowledge of the experts and with the information that this particular academic context can offer, having as a general conclusion that the educational data analysis processes through mining Data can be approached from a specific domain approach, contributing to the achievement of satisfactory results in terms of the mining models built and the support to the user through the guidance that having knowledge of the particular domain can offer. In addition, pre-trained models and transfer learning mechanisms are offered that allow taking advantage of data mining in environments with little data and without requiring experts in data analysis techniques.Programa de Formación de Capital Humano de Alto Nivel para el Departamento de Norte de Santander en el marco de la Convocatoria N°753 de Colciencias.DoctoradoDoctor en IngenieríaAnálisis y Minería de datosIndustrial, Organizaciones Y Logística.Sede Manizales187 páginasapplication/pdfspaUniversidad Nacional de ColombiaManizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - Industria y OrganizacionesFacultad de Ingeniería y ArquitecturaManizales, ColombiaUniversidad Nacional de Colombia - Sede Manizales000 - Ciencias de la computación, información y obras generales::003 - SistemasAnálisis de datosDatos educativosDominio específicoEducación básica y mediaMinería de datosData analysisEducational dataSpecific domainBasic and secondary educationData miningAnálisis de inspecciónSurvey analysisModelo de dominio específico para análisis y minería de datos educativosSpecific domain model for educational data mining and analysisTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06TextAcevedo-Díaz, J. A., García-Carmona, A., Aragón-Méndez, M. del M., & Oliva-Martínez, J. M. (2017). Modelos científicos: significado y papel en la práctica científica- Scientific models: meaning and role in scientific practice. Revista Científica, 3(30), 155. https://doi.org/10.14483/23448350.12288Agrawal, A. (2003). Metamodel based model transformation language to facilitate Domain Specific Model Driven Architecture. Proceedings of the Conference on Object-Oriented Programming Systems, Languages, and Applications, OOPSLA, 118–119. https://doi.org/10.1145/949344.949379Agt-Rickauer, H., Kutsche, R. D., & Sack, H. (2019). Automated recommendation of related model elements for domain models. Communications in Computer and Information Science, 991, 134–158. https://doi.org/10.1007/978-3-030-11030-7_7/COVERArslan, S., & Kardas, G. (2020). DSML4DT: A domain-specific modeling language for device tree software. Computers in Industry, 115, 103179. https://doi.org/10.1016/J.COMPIND.2019.103179Ayala Franco, E., López Martínez, R. E., & Menéndez Domínguez, V. H. (2021). Modelos predictivos de riesgo académico en carreras de computación con minería de datos educativos. Revista de Educación a Distancia (RED), 21(66), 1–36. https://doi.org/10.6018/RED.463561Baker, R. S., & Inventado, P. S. (2014). Educational Data Mining and Learning Analytics. In Learning Analytics (pp. 61–75). Springer New York. https://doi.org/10.1007/978-1-4614-3305-7_4Bhardwaj, B. K., & Pal, S. (2012). Data Mining: A prediction for performance improvement using classification. International Journal of Computer Science and Information Security. http://arxiv.org/abs/1201.3418Begum, S. H. (2013). Data Mining Tools and Trends – An Overview. International Journal of Emerging Research in Management &Technology, 6–12Bellifemine, F., Fortino, G., Giannantonio, R., Gravina, R., Guerrieri, A., & Sgroi, M. (2011). SPINE: a domain-specific framework for rapid prototyping of WBSN applications. Software: Practice and Experience, 41(3), 237–265. https://doi.org/10.1002/spe.998Bermanis, A., Averbuh, A., & Coifman, R. (2013). Multiscale data sampling and function extension. Applied and Computational Harmonic Analysis, 34(1), 15–29. https://doi.org/10.1016/J.ACHA.2012.03.002Bettini, L. (2016). Implementing domain-specific languages with Xtext and Xtend : learn how to implement a DSL with Xtext and Xtend using easy-to-understand examples and best practices (2nd ed.). Packt Publishing.Bhardwaj, B. K., & Pal, S. (2012). Data Mining: A prediction for performance improvement using classification. International Journal of Computer Science and Information Security. http://arxiv.org/abs/1201.3418Brownlee, J. (2020). Data preparation for machine learning: data cleaning, feature selection, and data transforms in Python. Machine Learning Mastery.Candia Oviedo, D. I. (2019). Predicción del rendimiento académico de los estudiantes de la UNSAAC a partir de sus datos de ingreso utilizando algoritmos de aprendizaje automático.Cao, L. (2010). Domain-Driven Data Mining: Challenges and Prospects. IEEE Transactions on Knowledge and Data Engineering, 22(6), 755–769. https://doi.org/10.1109/TKDE.2010.32Cao, L., & Zhang, C. (2007). The Evolution of KDD: Towards Domain-Driven Data Mining. International Journal of Pattern Recognition and Artificial Intelligence, 21(04), 677–692. https://doi.org/10.1142/S0218001407005612Castellanos, C., Varela, C. A., & Correal, D. (2021). ACCORDANT: A domain specific-model and DevOps approach for big data analytics architectures. Journal of Systems and Software, 172, 110869. https://doi.org/10.1016/J.JSS.2020.110869Castro, M., & Lizasoain, L. (2012). Las técnicas de modelización estadística en la investigación educativa: minería de datos, modelos de ecuaciones estructurales y modelos jerárquicos lineales. Revista Española de Pedagogía, 70(251), 131–148.Cechinel, C., Ochoa, X., Lemos dos Santos, H., Carvalho Nunes, J. B., Rodés, V., & Marques Queiroga, E. (2020). Mapping Learning Analytics initiatives in Latin America. British Journal of Educational Technology, 1–23. https://doi.org/10.1111/bjet.12941Chan, J. Y. Le, Bea, K. T., Leow, S. M. H., Phoong, S. W., & Cheng, W. K. (2023). State of the art: a review of sentiment analysis based on sequential transfer learning. Artificial Intelligence Review, 56(1), 749–780. https://doi.org/10.1007/S10462-022-10183-8/TABLES/7Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C., & Wirth, R. (1999). The CRISP-DM User Guide.Che, D., Safran, M., & Peng, Z. (2013). From Big Data to Big Data Mining: Challenges, Issues, and Opportunities. In B. Hong, X. Meng, L. Chen, W. Winiwarter, & W. Song (Eds.), Database Systems for Advanced Applications: 18th International Conference, DASFAA 2013, International Workshops: BDMA, SNSM, SeCoP, Wuhan, China, April 22-25, 2013. Proceedings (pp. 1–15). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-40270-8_1Chiok, M., & Higinio, C. (2017). Predicción del rendimiento académico aplicando técnicas de minería de datos - Dialnet. Anales Científicos, 78(1), 26–33.Chen, G., Iwen, M., Chin, S., & Maggioni, M. (2012). A fast multiscale framework for data in high-dimensions: Measure estimation, anomaly detection, and compressive measurements. Visual Communications and Image Processing, 1–6. https://doi.org/10.1109/VCIP.2012.6410789Cios, K. J., Pedrycz, W., Swiniarski, R., & Kurgan, L. (2007). Data mining : a knowledge discovery approach. Springer.Clark, T., Van Den Brand, M., Combemale, B., & Rumpe, B. (2015). Conceptual model of the globalization for domain-specific languages. In Globalizing Domain-Specific Languages (Vol. 9400, pp. 7–20). Springer Verlag. https://doi.org/10.1007/978-3-319-26172-0_2Csikszentmihalyi, M., & Wolfe, R. (2014). New Conceptions and Research Approaches to Creativity: Implications of a Systems Perspective for Creativity in Education. In The Systems Model of Creativity (pp. 161–184). Springer Netherlands. https://doi.org/10.1007/978-94-017-9085-7_10Contreras, L. E., Fuentes, H. J., & Rodríguez, J. I. (2020). Predicción del rendimiento académico como indicador de éxito/fracaso de los estudiantes de ingeniería, mediante aprendizaje automático. Formación Universitaria, 13(5), 233–246. https://doi.org/10.4067/S0718-50062020000500233ANE. (2018). Boletín Técnico Educación Formal (EDUC) 2018.De Almeida Neto, F. A., & Castro, A. (2017). A reference architecture for educational data mining. Proceedings – Frontiers in Education Conference, FIE, 2017-October, 1–8. https://doi.org/10.1109/FIE.2017.8190728De Lara, J., & Guerra, E. (2012). Domain-specific textual meta-modelling languages for model driven engineering. ECMFA’12: Proceedings of the 8th European Conference on Modelling Foundations and Applications, 7349 LNCS, 259–274. https://doi.org/10.1007/978-3-642-31491-9_20Desolda, G., Ardito, C., & Matera, M. (2017). Empowering end users to customize their smart environments: Model, composition paradigms, and domain-specific tools. ACM Transactions on Computer-Human Interaction, 24(2), 1–52. https://doi.org/10.1145/3057859Díaz-Landa, B., Meleán-Romero, R., & Marín-Rodriguez, W. (2021). Rendimiento académico de estudiantes en Educación Superior: predicciones de factores influyentes a partir de árboles de decisión. Revista de Estudios Interdisciplinarios En Ciencias Sociales, 23(3), 616–639.Dsilva, C. J., Talmon, R., Gear, C. W., Coifman, R. R., & Kevrekidis, I. G. (2015). Data-Driven Reduction for Multiscale Stochastic Dynamical Systems. Applied Dynamical Systems. http://arxiv.org/abs/1501.05195Edwards, G., & Medvidovic, N. (2008). A methodology and framework for creating domain-specific development infrastructures. ASE 2008 – 23rd IEEE/ACM International Conference on Automated Software Engineering, Proceedings, 168–177. https://doi.org/10.1109/ASE.2008.27El Ghosh, M., Naja, H., Abdulrab, H., & Khalil, M. (2017). Ontology learning process as a bottom-up strategy for building domain-specific ontology from legal texts. ICAART 2017 – Proceedings of the 9th International Conference on Agents and Artificial Intelligence, 2, 473–480. https://doi.org/10.5220/0006188004730480Evans, E. (2004). Domain-driven design: tackling complexity in the heart of software. Addison-Wesley Professional. http://books.google.com/books?hl=en&lr=&id=7dlaMs0SECsC&pgis=1Fayyad, U. M., Piatetsky-Shapiro, G., & Smyth, P. (1996). Advances in knowledge discovery and data mining. In Advances in knowledge discovery and data mining. AAAI Press. https://dl.acm.org/citation.cfm?id=257942Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From Data Mining to Knowledge Discovery in Databases. AI Magazine, 17, 37–54. https://doi.org/10.1609/aimag.v17i3.1230Fernandez, D. B., & Lujan-Mora, S. (2017). Comparison of applications for educational data mining in Engineering Education. 2017 IEEE World Engineering Education Conference (EDUNINE), 81–85. https://doi.org/10.1109/EDUNINE.2017.7918187Gerbig, R. (2017). Deep, seamless, multi-format, multi-notation definition and use of domain-specific languages. Verlag Dr. Hut.Hübscher, R., Puntambekar, S., & Nye, A. H. (2007). Domain Specific Interactive Data Mining. Workshop on Data Mining for User Modeling at the 11th International Conference on User Modeling, 81–90. http://www.educationaldatamining.org/UM2007/Hubscher.pdfHand, D. J. (David J. ), Mannila, Heikki., & Smyth, Padhraic. (2001). Principles of data mining. MIT Press.He, X., Zhao, K., & Chu, X. (2021). AutoML: A survey of the state-of-the-art. Knowledge-Based Systems, 212, 106622.Inmon, W. H., & Linstedt, D. (2014). Data architecture: a primer for the data scientist: big data, data warehouse and data vault. Morgan Kaufmann.Iung, A., Carbonell, J., Marchezan, L., Rodrigues, E., Bernardino, M., Basso, F. P., & Medeiros, B. (2020). Systematic mapping study on domain-specific language development tools. Empirical Software Engineering, 25(5), 4205–4249. https://doi.org/10.1007/S10664-020-09872-1/TABLES/9Jaramillo Valvuena, S., & Londoño, J. M. (2014). Sistemas para almacenar grandes volúmenes de datos. Revista Gerencia Tecnológica Informática, 13(37), 17–28. http://revistas.uis.edu.co/index.php/revistagti/article/view/4689Jiménez Celorrio, S., & de la Rosa Turbides, T. (2009). Learning-Based Planning. In Encyclopedia of Artificial Intelligence (pp. 1024–1028). IGI Global. https://doi.org/10.4018/978-1-59904-849-9.ch151Jindal, R., & Borah, M. D. (2013). A Survey on Educational Data Mining and Research Trends. International Journal of Database Management Systems, 5(3), 53–73. https://doi.org/10.5121/ijdms.2013.5304Kantardzic, M. (2011). Data mining : concepts, models, methods, and algorithms (Segunda). John Wiley & Sons, Inc.Karagiannis, D., Mayr, H. C., & Mylopoulos, J. (2016). Domain-specific conceptual modeling: Concepts, methods and tools. In Domain-Specific Conceptual Modeling: Concepts, Methods and Tools. Springer International Publishing. https://doi.org/10.1007/978-3-319-39417-6Kautz, H., & Selman, B. (1998). The Role of Domain-Specific Knowledge in the Planning as Satisfiability Framework. In American Association for Artificial Intelligence (pp. 181–189). http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.1259Karmaker, S. K., Hassan, M. M., Smith, M. J., Xu, L., Zhai, C., & Veeramachaneni, K. (2021). Automl to date and beyond: Challenges and opportunities. ACM Computing Surveys (CSUR), 54(8), 1-36.Krahn, H., Rumpe, B., & Völkel, S. (2014, September 22). Roles in Software Development using Domain Specific Modeling Languages. 6th OOPSLA Workshop on Domain-Specific Modeling (DSM’ 06). http://arxiv.org/abs/1409.6618Larose, D. T., & Larose, C. D. (2014). Discovering knowledge in data : an introduction to data mining (Second). John Wiley & Sons, Inc.Leédeczi, Á., Bakay, Á., MarÓti, M., Völgyesi, P., Nordstrom, G., Sprinkle, J., & Karsai, G. (2001). Composing domain-specific design environments. Computer, 34(11), 44–51. https://doi.org/10.1109/2.963443Lin, Y., Gray, J., & Jouault, F. (2017). DSMDiff: a differentiation tool for domain-specific models. European Journal of Information Systems, 16(4), 349–361. https://doi.org/10.1057/PALGRAVE.EJIS.3000685Liu, Y., Li, J., Ming, Z., Song, H., Weng, X., & Wang, J. (2019). Domain-specific data mining for residents’ transit pattern retrieval from incomplete information. Journal of Network and Computer Applications, 134, 62–71. https://doi.org/10.1016/J.JNCA.2019.02.016López, C. P. (2007). Minería de datos: técnicas y herramientas. In Paraninfo. Paraninfo. https://books.google.com.pe/books?id=wz-D_8uPFCEC&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=falseLu, W., Zhou, Y., Yu, J., & Jia, C. (2019). Concept Extraction and Prerequisite Relation Learning from Educational Data. Proceedings of the AAAI Conference on Artificial Intelligence, 33(01), 9678–9685. https://doi.org/10.1609/AAAI.V33I01.33019678Maldonado, C. E. (2017). Tipología de modelos científicos de explicación. Ciencia y complejidad. Sociología y Tecnociencia, 7(2), 58–72. https://doi.org/https://doi.org/10.24197/st.2.2017.58-72Matignon, R. (2007). Data mining using SAS enterprise miner. https://books.google.com/books?hl=es&lr=&id=h7FAN3lijRMC&oi=fnd&pg=PP1&dq=semma+data+mining&ots=C9RYcqzLYC&sig=vk2668sC7hkUa2Y97SpkPybfLfcMinisterio de Educación. (2019). Marco Estratégico 2019 – 2022. https://www.mineducacion.gov.co/1759/articles-382974_recurso_3.pdfMinisterio de Educación. (2020ª). Funciones y deberes – Ministerio de Educación Nacional de Colombia. https://www.mineducacion.gov.co/portal/Ministerio/ oodle ción-Institucional/85252:Funciones-y-deberesMinisterio de Educación. (2020b). Normatividad y documentos – Ministerio de Educación Nacional de Colombia. https://www.mineducacion.gov.co/1759/w3-article-357542.html?_noredirect=1Ministerio de Educación. (2020c). Sistemas de Información. https://www.mineducacion.gov.co/portal/micrositios-institucionales/Sistemas-de-Informacion/Ministerio de Educación Nacional. (2020). Sistema educativo colombiano . https://www.mineducacion.gov.co/portal/Preescolar-basica-y-media/Sistema-de-educacion-basica-y-media/233839:Sistema-educativo-colombianoMitrofanova, Y. S., Sherstobitova, A. A., & Filippova, O. A. (2019). Modeling smart learning processes based on educational data mining tools. In V. Uskov, R. Howlett, & L. Jain (Eds.), Smart Education and e-Learning 2019. Smart Innovation, Systems and Technologies (Vol. 144, pp. 561–571). Springer. https://doi.org/10.1007/978-981-13-8260-4_49Nguyen, B.-A., & Yang, D.-L. (2012). A Semi-Automatic Approach to Construct Vietnamese Ontology from Online Text. INTERNATIONAL REVIEW OF RESEARCH IN OPEN AND DISTANCE LEARNING, 13(5, SI), 148–172.Niu, S., Liu, Y., Wang, J., & Song, H. (2020). A Decade Survey of Transfer Learning (2010–2020). IEEE Transactions on Artificial Intelligence, 1(2)Nordstrom, G., Sztipanovits, J., Karsai, G., & Ledeczi, A. (1999). Metamodeling-rapid design and evolution of domain-specific modeling environments. Proceedings – ECBS 1999, IEEE Conference and Workshop on Engineering of Computer-Based Systems, 68–74. https://doi.org/10.1109/ECBS.1999.755863Oliveira, C., & Da Silva, J. C. (2009). Mineração de Dados: Conceitos, Tarefas, Métodos e Ferramentas. www.inf.ufg.brOrozco Iguasnia, W. A., Villao Balón, A. J., Orozco Iguasnia, J., & Villarroel Sánchez, M. V. (2021). Aplicación de técnicas de minería de datos para predecir el desempeño académico de los estudiantes de la escuela ‘Lic. Angélica Villón L.’ Revista Científica y Tecnológica UPSE, 8(2), 68–75. https://doi.org/10.26423/RCTU.V8I2.637Parekh, V., Gwo, J., & Finin, T. (2004). Mining Domain Specific Texts and Glossaries to Evaluate and Enrich Domain Ontologies. International Conference of Information and Knowledge Engineering. http://aisl.umbc.edu/resources/94.pdfPatwari, P., Chaudhuri, S. R., Banerjee, A., Natarajan, S., & Pandey, S. (2016, November 22). A complementary domain specific design environment aiding SysML. ISSE 2016 – 2016 International Symposium on Systems Engineering – Proceedings Papers. https://doi.org/10.1109/SysEng.2016.7753164Peinado, H. S. (2013). Legislación educativa colombiana. Editorial Magisterio. https://www.magisterio.com.co/libro/legislacion-educativa-colombianaPeña-Ayala, A. (2014). Educational data mining: A survey and a data mining-based analysis of recent works. Expert Systems with Applications, 41(4), 1432–1462.Pérez Marqués, M. (2014). Minería de Datos a través de ejemplos (1aed.). RC Libros.Probert, D. R., & Ridgman, T. W. (2013). Structuring technology and innovation management executive education: the research contribution. ISPIM Conference Proceedings. www.ispim.org.Recker, M., & Lee, J. E. (2016). Analyzing Learner and Instructor Interactions within Learning Management Systems: Approaches and Examples. In Learning, Design, and Technology (pp. 1–23). Springer International Publishing. https://doi.org/10.1007/978-3-319-17727-4_7-1Riquelme, J. C., Ruiz, R., & Gilbert, K. (2006). Minería de Datos: Conceptos y Tendencias. Revista Iberoamericana de Inteligencia Artificial, 29, 11–18. http://www.aepia.orgRomero, C., & Ventura, S. (2007). Educational data mining: A survey from 1995 to 2005. Expert Systems with Applications, 33(1), 135–146. https://doi.org/10.1016/J.ESWA.2006.04.005Romero, C. & Ventura, S. (2013). Data mining in education. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 3(1), 12–27. https://doi.org/10.1002/widm.1075Romero, C. & Ventura, S. (2020). Educational data mining and learning analytics: An updated survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 10(3), e1355. https://doi.org/10.1002/widm.1355Romero, C. & Ventura, S. (2010). Educational Data Mining: A Review of the State of the Art. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 40(6), 601–618. https://doi.org/10.1109/TSMCC.2010.2053532Salgado Reyes, N., Beltrán Morales, J., Guaña Moya, J., Escobar Teran, C., Nicolalde Rodriguez, D., & Chafla Altamirano, G. (2019). Modelo para predecir el rendimiento académico basado en redes neuronales y analítica de aprendizaje. RISTI, 17, 258–266.Scheuer, O., & McLaren, B. M. (2012). Educational Data Mining. In Encyclopedia of the Sciences of Learning (pp. 1075–1079). Springer US. https://doi.org/10.1007/978-1-4419-1428-6_618Selvaraj, P., Burugari, V. K., Sumathi, D., Nayak, R. K., & Tripathy, R. (2019). Ontology based Recommendation System for Domain Specific Seekers. Third International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud), 341–345. https://doi.org/10.1109/i-smac47947.2019.9032634Shafique, U., & Qaiser, H. (2014). A Comparative Study of Data Mining Process Models (KDD, CRISP-DM and SEMMA). International Journal of Innovation and Scientific Research, 12(1), 217–222. https://www.researchgate.net/publication/268770881_A_Comparative_Study_of_Data_Mining_Process_Models_KDD_CRISP-DM_and_SEMMASlater, S., Joksimović, S., Kovanovic, V., Baker, R. S., & Gasevic, D. (2016). Tools for Educational Data Mining: A Review. Educational and Behavioral Statistics, 42(1), 85–106.Timarán Pereira, R., Hidalgo Troya, A., & Caicedo Zambrano, J. (2020). Factores asociados al desempeño académico en Lectura Crítica en las pruebas Saber 11° con árboles de decisión - Dialnet. Investigación e Innovación En Ingenierías, 8(3), 29–37.Tsiakmaki, M., Kostopoulos, G., Kotsiantis, S., & Ragos, O. (2020). Transfer Learning from Deep Neural Networks for Predicting Student Performance. Applied Sciences, 10(6), 2145. https://doi.org/10.3390/APP10062145Vaisman, A., & Zimányi, E. (2014a). Data Warehouse Concepts. In Data Warehouse Systems (pp. 53–87). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-54655-6_3Vaisman, A., & Zimányi, E. (2014b). Extraction, Transformation, and Loading. In Data Warehouse Systems (pp. 285–327). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-54655-6_8Varde, A. S., & Tatti, N. (2014). A Panorama of Imminent Doctoral Research in Data Mining. ACM SIGMOD Record, 43(3), 71–74. https://doi.org/10.1145/2694428.2694442Winch, C., Oancea, A., & Orchard, J. (2015). The contribution of educational research to teachers’ professional learning: philosophical understandings. Oxford Review of Education, 41(2), 202–216.Winner, E., & Veloso, M. (2003). DISTILL: Towards Learning Domain-Specific Planners by Example. Itwentieth Nternational Conference on Machine Learning. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.2.3010Xiao, W., Ji, P., & Hu, J. (2022). A survey on educational data mining methods used for predicting students’ performance. Engineering Reports, 4(5), e12482. https://doi.org/10.1002/ENG2.12482Xu, Y., Rajpathak, D., Gibbs, I., & Klabjan, D. (2019). Automatic Ontology Learning from Domain-Specific Short Unstructured Text Data. Computer Science. http://arxiv.org/abs/1903.04360Yang, Q., Zhang, Y., Dai, W., & Pan, S. J. (2020). Transfer Learining (1st ed.). Cambridge University Press.Yukselturk, E., Ozekes, S., & Türel, Y. K. (2014). Predicting Dropout Student: An Application of Data Mining Methods in an Online Education Program. European Journal of Open, Distance and E-Learning, 17(1), 118–133. https://doi.org/10.2478/EURODL-2014-0008Zeineddine, H., Braendle, U., & Farah, A. (2021). Enhancing prediction of student success: Automated machine learning approach. Computers & Electrical Engineering, 89, 106903.Zhu, Y., Zhu, H., Liu, Q., Chen, E., Li, H., & Zhao, H. (2016). Exploring the procrastination of college students: A data-driven behavioral perspective. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 9642). https://doi.org/10.1007/978-3-319-32025-0_17BibliotecariosEstudiantesInvestigadoresMaestrosPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85851/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1090175695.2024.pdf1090175695.2024.pdfTesis de Doctorado en Ingeniería - Industria y Organizacionesapplication/pdf5523882https://repositorio.unal.edu.co/bitstream/unal/85851/2/1090175695.2024.pdfa66c24e73271678321d7c572202a5bd4MD52THUMBNAIL1090175695.2024.pdf.jpg1090175695.2024.pdf.jpgGenerated Thumbnailimage/jpeg4522https://repositorio.unal.edu.co/bitstream/unal/85851/3/1090175695.2024.pdf.jpg6faa1f2a166737ea54677ed375c0dbc9MD53unal/85851oai:repositorio.unal.edu.co:unal/858512024-08-23 23:11:24.761Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |