Índices radiométricos, multiespectrales y SAR, para la evaluación a gran escala de la calidad de hábitat en bosque húmedo tropical en zonas del Magdalena Medio, Colombia

ilustraciones, diagramas, mapas, planos

Autores:
Romero Jiménez, Luis Hernando
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
OAI Identifier:
oai:repositorio.unal.edu.co:unal/85570
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/85570
https://repositorio.unal.edu.co/
Palabra clave:
500 - Ciencias naturales y matemáticas::507 - Educación, investigación, temas relacionados
Recursos naturales
Habitat
Natural resources
Ecosistema
Ecosystem
Multispectral
Synthetic Aperture Radar
Supervised Learning
Machine Learning
Ecological Integrity
Habitat Quality
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_667c15b44d1752a40ddc2ddb354e165b
oai_identifier_str oai:repositorio.unal.edu.co:unal/85570
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Índices radiométricos, multiespectrales y SAR, para la evaluación a gran escala de la calidad de hábitat en bosque húmedo tropical en zonas del Magdalena Medio, Colombia
dc.title.translated.eng.fl_str_mv Radiometric, multispectral and SAR indices, for the large-scale evaluation of habitat quality in tropical humid forest in areas of Magdalena Medio, Colombia
title Índices radiométricos, multiespectrales y SAR, para la evaluación a gran escala de la calidad de hábitat en bosque húmedo tropical en zonas del Magdalena Medio, Colombia
spellingShingle Índices radiométricos, multiespectrales y SAR, para la evaluación a gran escala de la calidad de hábitat en bosque húmedo tropical en zonas del Magdalena Medio, Colombia
500 - Ciencias naturales y matemáticas::507 - Educación, investigación, temas relacionados
Recursos naturales
Habitat
Natural resources
Ecosistema
Ecosystem
Multispectral
Synthetic Aperture Radar
Supervised Learning
Machine Learning
Ecological Integrity
Habitat Quality
title_short Índices radiométricos, multiespectrales y SAR, para la evaluación a gran escala de la calidad de hábitat en bosque húmedo tropical en zonas del Magdalena Medio, Colombia
title_full Índices radiométricos, multiespectrales y SAR, para la evaluación a gran escala de la calidad de hábitat en bosque húmedo tropical en zonas del Magdalena Medio, Colombia
title_fullStr Índices radiométricos, multiespectrales y SAR, para la evaluación a gran escala de la calidad de hábitat en bosque húmedo tropical en zonas del Magdalena Medio, Colombia
title_full_unstemmed Índices radiométricos, multiespectrales y SAR, para la evaluación a gran escala de la calidad de hábitat en bosque húmedo tropical en zonas del Magdalena Medio, Colombia
title_sort Índices radiométricos, multiespectrales y SAR, para la evaluación a gran escala de la calidad de hábitat en bosque húmedo tropical en zonas del Magdalena Medio, Colombia
dc.creator.fl_str_mv Romero Jiménez, Luis Hernando
dc.contributor.advisor.none.fl_str_mv Fagua González, Jose Camilo
Rodríguez Buriticá, Susana
dc.contributor.author.none.fl_str_mv Romero Jiménez, Luis Hernando
dc.contributor.researchgroup.spa.fl_str_mv Biodiversidad, Biotecnología y Conservación de Ecosistemas
dc.contributor.orcid.spa.fl_str_mv https://orcid.org/0000-0002-1977-0545
dc.contributor.cvlac.spa.fl_str_mv https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000131287
dc.subject.ddc.spa.fl_str_mv 500 - Ciencias naturales y matemáticas::507 - Educación, investigación, temas relacionados
topic 500 - Ciencias naturales y matemáticas::507 - Educación, investigación, temas relacionados
Recursos naturales
Habitat
Natural resources
Ecosistema
Ecosystem
Multispectral
Synthetic Aperture Radar
Supervised Learning
Machine Learning
Ecological Integrity
Habitat Quality
dc.subject.agrovoc.spa.fl_str_mv Recursos naturales
Habitat
dc.subject.agrovoc.eng.fl_str_mv Natural resources
dc.subject.decs.spa.fl_str_mv Ecosistema
dc.subject.decs.eng.fl_str_mv Ecosystem
dc.subject.proposal.eng.fl_str_mv Multispectral
Synthetic Aperture Radar
Supervised Learning
Machine Learning
Ecological Integrity
Habitat Quality
description ilustraciones, diagramas, mapas, planos
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-01-31T19:41:11Z
dc.date.available.none.fl_str_mv 2024-01-31T19:41:11Z
dc.date.issued.none.fl_str_mv 2024-01-30
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_dc82b40f9837b551
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/85570
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/85570
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.relation.references.spa.fl_str_mv Abdelkareem, M., Bamousa, A. O., Hamimi, Z., & Kamal El-Din, G. M. (2020). Multispectral and RADAR images integration for geologic, geomorphic, and structural investigation in southwestern Arabian Shield, Al Qunfudhah area, Saudi Arabia. Journal of Taibah University for Science, 14(1), 383-401. https://doi.org/10.1080/16583655.2020.1741957
Abdulkareem, N. M., & Abdulazeez, A. M. (2021). Machine Learning Classification Based on Radom Forest Algorithm: A Review. https://doi.org/10.5281/ZENODO.4471118
Abramovich, F., & Pensky, M. (2015). Classification with many classes: Challenges and pluses. https://doi.org/10.48550/ARXIV.1506.01567
Acharya, T., Subedi, A., & Lee, D. (2018). Evaluation of Water Indices for Surface Water Extraction in a Landsat 8 Scene of Nepal. Sensors, 18(8), 2580. https://doi.org/10.3390/s18082580
Achury, R., & Suarez, A. V. (2018). Richness and Composition of Ground-dwelling Ants in Tropical Rainforest and Surrounding Landscapes in the Colombian Inter-Andean Valley. Neotropical Entomology, 47(6), 731-741. https://doi.org/10.1007/s13744-017-0565-4
AghaKouchak, A., Farahmand, A., Melton, F. S., Teixeira, J., Anderson, M. C., Wardlow, B. D., & Hain, C. R. (2015). Remote sensing of drought: Progress, challenges and opportunities: REMOTE SENSING OF DROUGHT. Reviews of Geophysics, 53(2), 452-480. https://doi.org/10.1002/2014RG000456
Aiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B., & Anderson, R. P. (2015). spThin: An R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography, 38(5), 541-545. https://doi.org/10.1111/ecog.01132
Alam, A., Bhat, M. S., & Maheen, M. (2020). Using Landsat satellite data for assessing the land use and land cover change in Kashmir valley. GeoJournal, 85(6), 1529-1543. https://doi.org/10.1007/s10708-019-10037-x
Alaniz, A. J., Carvajal, M. A., Fierro, A., Vergara-Rodríguez, V., Toledo, G., Ansaldo, D., Moreira-Arce, D., Rojas-Osorio, A., & Vergara, P. M. (2021). Remote-sensing estimates of forest structure and dynamics as indicators of habitat quality for Magellanic woodpeckers. Ecological Indicators, 126, 107634. https://doi.org/10.1016/j.ecolind.2021.107634
Allam, M., Bakr, N., & Elbably, W. (2019). Multi-temporal assessment of land use/land cover change in arid region based on landsat satellite imagery: Case study in Fayoum Region, Egypt. Remote Sensing Applications: Society and Environment, 14, 8-19. https://doi.org/10.1016/j.rsase.2019.02.002
Alton, P. B. (2018). Decadal trends in photosynthetic capacity and leaf area index inferred from satellite remote sensing for global vegetation types. Agricultural and Forest Meteorology, 250-251, 361-375. https://doi.org/10.1016/j.agrformet.2017.11.020
Andrew, M. E., Wulder, M. A., & Nelson, T. A. (2014). Potential contributions of remote sensing to ecosystem service assessments. Progress in Physical Geography: Earth and Environment, 38(3), 328-353. https://doi.org/10.1177/0309133314528942
Aniah, P., Bawakyillenuo, S., Codjoe, S. N. A., & Dzanku, F. M. (2023). Land use and land cover change detection and prediction based on CA-Markov chain in the savannah ecological zone of Ghana. Environmental Challenges, 10, 100664. https://doi.org/10.1016/j.envc.2022.100664
Ansaldo, D., Vergara, P. M., Carvajal, M. A., Alaniz, A. J., Fierro, A., ReinaldoVargas-Castillo, Quiroz, M., Moreira-Arce, D., & Pizarro, J. (2021). Tree decay modulates the functional response of lichen communities in Patagonian temperate forests. Science of The Total Environment, 771, 145360. https://doi.org/10.1016/j.scitotenv.2021.145360
Araújo, M. B., & Guisan, A. (2006). Five (or so) challenges for species distribution modelling. Journal of Biogeography, 33(10), 1677-1688. https://doi.org/10.1111/j.1365-2699.2006.01584.x
Arshad, M., Eid, E. M., & Hasan, M. (2020). Mangrove health along the hyper-arid southern Red Sea coast of Saudi Arabia. Environmental Monitoring and Assessment, 192(3), 189. https://doi.org/10.1007/s10661-020-8140-6
Astola, H., Häme, T., Sirro, L., Molinier, M., & Kilpi, J. (2019). Comparison of Sentinel-2 and Landsat 8 imagery for forest variable prediction in boreal region. Remote Sensing of Environment, 223, 257-273. https://doi.org/10.1016/j.rse.2019.01.019
aba, K. A., Lal, D., & Bello, A. (2019). Application of Remote sensing and GIS Techniques in Urban Planning, Development and Management. (A case study of Allahabad District, India). 10(6).
Bechara, F. C., Dickens, S. J., Farrer, E. C., Larios, L., Spotswood, E. N., Mariotte, P., & Suding, K. N. (2016). Neotropical rainforest restoration: Comparing passive, plantation and nucleation approaches. Biodiversity and Conservation, 25(11), 2021-2034. https://doi.org/10.1007/s10531-016-1186-7
Beck, J., Böller, M., Erhardt, A., & Schwanghart, W. (2014). Spatial bias in the GBIF database and its effect on modeling species’ geographic distributions. Ecological Informatics, 19, 10-15. https://doi.org/10.1016/j.ecoinf.2013.11.002
Bodart, C., Brink, A. B., Donnay, F., Lupi, A., Mayaux, P., & Achard, F. (2013). Continental estimates of forest cover and forest cover changes in the dry ecosystems of Africa between 1990 and 2000. Journal of Biogeography, 40(6), 1036-1047. https://doi.org/10.1111/jbi.12084
Bolyn, C., Michez, A., Gaucher, P., Lejeune, P., & Bonnet, S. (2018). Forest mapping and species composition using supervised per pixel classification of Sentinel-2 imagery. BASE, 172-187. https://doi.org/10.25518/1780-4507.16524
Booth, T. H. (2018). Why understanding the pioneering and continuing contributions of BIOCLIM to species distribution modelling is important. Austral Ecology, 43(8), 852-860. https://doi.org/10.1111/aec.12628
Borja, A., Bricker, S. B., Dauer, D. M., Demetriades, N. T., Ferreira, J. G., Forbes, A. T., Hutchings, P., Jia, X., Kenchington, R., Marques, J. C., & Zhu, C. (2008). Overview of integrative tools and methods in assessing ecological integrity in estuarine and coastal systems worldwide. Marine Pollution Bulletin, 56(9), 1519-1537. https://doi.org/10.1016/j.marpolbul.2008.07.005
Bowler, D. E., Callaghan, C. T., Bhandari, N., Henle, K., Benjamin Barth, M., Koppitz, C., Klenke, R., Winter, M., Jansen, F., Bruelheide, H., & Bonn, A. (2022). Temporal trends in the spatial bias of species occurrence records. Ecography, 2022(8). https://doi.org/10.1111/ecog.06219
Brennan, A., Beytell, P., Aschenborn, O., Du Preez, P., Funston, P. J., Hanssen, L., Kilian, J. W., Stuart‐Hill, G., Taylor, R. D., & Naidoo, R. (2020). Characterizing multispecies connectivity across a transfrontier conservation landscape. Journal of Applied Ecology, 57(9), 1700-1710. https://doi.org/10.1111/1365-2664.13716
Callaghan, C. T., Major, R. E., Lyons, M. B., Martin, J. M., & Kingsford, R. T. (2018). The effects of local and landscape habitat attributes on bird diversity in urban greenspaces. Ecosphere, 9(7), e02347. https://doi.org/10.1002/ecs2.2347
Caradima, B., Schuwirth, N., & Reichert, P. (2019). From individual to joint species distribution models: A comparison of model complexity and predictive performance. Journal of Biogeography, 46(10), 2260-2274. https://doi.org/10.1111/jbi.13668
Carella, E., Orusa, T., Viani, A., Meloni, D., Borgogno-Mondino, E., & Orusa, R. (2022). An Integrated, Tentative Remote-Sensing Approach Based on NDVI Entropy to Model Canine Distemper Virus in Wildlife and to Prompt Science-Based Management Policies. Animals, 12(8), 1049. https://doi.org/10.3390/ani12081049
Casal, R., Costa, J., & Oviedo, M. (2021). Aprendizaje Estadístico. https://rubenfcasal.github.io/aprendizaje_estadistico/index.html
Chamberlain, S. A., & Boettiger, C. (2017). R Python, and Ruby clients for GBIF species occurrence data [Preprint]. PeerJ Preprints. https://doi.org/10.7287/peerj.preprints.3304v1
Chen, R.-C., Dewi, C., Huang, S.-W., & Caraka, R. E. (2020). Selecting critical features for data classification based on machine learning methods. Journal of Big Data, 7(1), 52. https://doi.org/10.1186/s40537-020-00327-4
Cheng, J., Song, C., Liu, K., Fan, C., Ke, L., Chen, T., Zhan, P., & Yao, J. (2022). Satellite and UAV-based remote sensing for assessing the flooding risk from Tibetan lake expansion and optimizing the village relocation site. Science of The Total Environment, 802, 149928. https://doi.org/10.1016/j.scitotenv.2021.149928
Chuvieco, E. (2020). Fundamentals of satellite remote sensing: An environmental approach (Third edition). CRC Press.
Cismondi, F., Fialho, A. S., Vieira, S. M., Reti, S. R., Sousa, J. M. C., & Finkelstein, S. N. (2013). Missing data in medical databases: Impute, delete or classify? Artificial Intelligence in Medicine, 58(1), 63-72. https://doi.org/10.1016/j.artmed.2013.01.003
Correa Ayram, C. A., Etter, A., Díaz-Timoté, J., Rodríguez Buriticá, S., Ramírez, W., & Corzo, G. (2020). Spatiotemporal evaluation of the human footprint in Colombia: Four decades of anthropic impact in highly biodiverse ecosystems. Ecological Indicators, 117, 106630. https://doi.org/10.1016/j.ecolind.2020.106630
Curd, A., Chevalier, M., Vasquez, M., Boyé, A., Firth, L. B., Marzloff, M. P., Bricheno, L. M., Burrows, M. T., Bush, L. E., Cordier, C., Davies, A. J., Green, J. A. M., Hawkins, S. J., Lima, F. P., Meneghesso, C., Mieszkowska, N., Seabra, R., & Dubois, S. F. (2023). Applying landscape metrics to species distribution model predictions to characterize internal range structure and associated changes. Global Change Biology, 29(3), 631-647. https://doi.org/10.1111/gcb.16496
Dantas De Paula, M., Groeneveld, J., & Huth, A. (2016). The extent of edge effects in fragmented landscapes: Insights from satellite measurements of tree cover. Ecological Indicators, 69, 196-204. https://doi.org/10.1016/j.ecolind.2016.04.018
De Araujo Barbosa, C. C., Atkinson, P. M., & Dearing, J. A. (2015). Remote sensing of ecosystem services: A systematic review. Ecological Indicators, 52, 430-443. https://doi.org/10.1016/j.ecolind.2015.01.007
Delegido, J., Verrelst, J., Alonso, L., & Moreno, J. (2011). Evaluation of Sentinel-2 Red-Edge Bands for Empirical Estimation of Green LAI and Chlorophyll Content. Sensors, 11(7), 7063-7081. https://doi.org/10.3390/s110707063
Dhingra, S., & Kumar, D. (2019). A review of remotely sensed satellite image classification. International Journal of Electrical and Computer Engineering (IJECE), 9(3), 1720. https://doi.org/10.11591/ijece.v9i3.pp1720-1731
Di Febbraro, M., Sallustio, L., Vizzarri, M., De Rosa, D., De Lisio, L., Loy, A., Eichelberger, B. A., & Marchetti, M. (2018). Expert-based and correlative models to map habitat quality: Which gives better support to conservation planning? Global Ecology and Conservation, 16, e00513. https://doi.org/10.1016/j.gecco.2018.e00513
DiMiceli, C., Townshend, J., Carroll, M., & Sohlberg, R. (2021). Evolution of the representation of global vegetation by vegetation continuous fields. Remote Sensing of Environment, 254, 112271. https://doi.org/10.1016/j.rse.2020.112271
Dronova, I., Taddeo, S., Hemes, K. S., Knox, S. H., Valach, A., Oikawa, P. Y., Kasak, K., & Baldocchi, D. D. (2021). Remotely sensed phenological heterogeneity of restored wetlands: Linking vegetation structure and function. Agricultural and Forest Meteorology, 296, 108215. https://doi.org/10.1016/j.agrformet.2020.108215
Dubertret, F., Le Tourneau, F.-M., Villarreal, M. L., & Norman, L. M. (2022). Monitoring Annual Land Use/Land Cover Change in the Tucson Metropolitan Area with Google Earth Engine (1986–2020). Remote Sensing, 14(9), 2127. https://doi.org/10.3390/rs14092127
Dubovik, O., Schuster, G. L., Xu, F., Hu, Y., Bösch, H., Landgraf, J., & Li, Z. (2021). Grand Challenges in Satellite Remote Sensing. Frontiers in Remote Sensing, 2, 619818. https://doi.org/10.3389/frsen.2021.619818
Elbeih, S. F. (2021). Evaluation of agricultural expansion areas in the Egyptian deserts: A review using remote sensing and GIS. The Egyptian Journal of Remote Sensing and Space Science, 24(3), 889-906. https://doi.org/10.1016/j.ejrs.2021.10.004
Fachinetti, R., & Grilli, M. P. (2023). The quality matters: Assessing the roles of patch quality and configuration on the abundance of an invading cerambycid species through a multi‐model inference approach. Ecological Entomology, 48(5), 557-567. https://doi.org/10.1111/een.13247
Fagua, J. C., Jantz, P., Rodriguez-Buritica, S., Duncanson, L., & Goetz, S. J. (2019). Integrating LiDAR, Multispectral and SAR Data to Estimate and Map Canopy Height in Tropical Forests. Remote Sensing, 11(22), 2697. https://doi.org/10.3390/rs11222697
Fagua, J. C., Rodríguez-Buriticá, S., & Jantz, P. (2023). Advancing High-Resolution Land Cover Mapping in Colombia: The Importance of a Locally Appropriate Legend. Remote Sensing, 15(10), 2522. https://doi.org/10.3390/rs15102522
Fan, X., Song, Y., Zhu, C., Balzter, H., & Bai, Z. (2021). Estimating Ecological Responses to Climatic Variability on Reclaimed and Unmined Lands Using Enhanced Vegetation Index. Remote Sensing, 13(6), 1100. https://doi.org/10.3390/rs13061100
Fatehi, P., Damm, A., Schaepman, M., & Kneubühler, M. (2015). Estimation of Alpine Forest Structural Variables from Imaging Spectrometer Data. Remote Sensing, 7(12), 16315-16338. https://doi.org/10.3390/rs71215830
Feranec, J. (Ed.). (2016). European landscape dynamics: Corine land cover data. CRC Press.
Fraga, H., Amraoui, M., Malheiro, A. C., Moutinho-Pereira, J., Eiras-Dias, J., Silvestre, J., & Santos, J. A. (2014). Examining the relationship between the Enhanced Vegetation Index and grapevine phenology. European Journal of Remote Sensing, 47(1), 753-771. https://doi.org/10.5721/EuJRS20144743
Gao, W., Zheng, C., Liu, X., Lu, Y., Chen, Y., Wei, Y., & Ma, Y. (2022). NDVI-based vegetation dynamics and their responses to climate change and human activities from 1982 to 2020: A case study in the Mu Us Sandy Land, China. Ecological Indicators, 137, 108745. https://doi.org/10.1016/j.ecolind.2022.108745
Gibson, R., Danaher, T., Hehir, W., & Collins, L. (2020). A remote sensing approach to mapping fire severity in south-eastern Australia using sentinel 2 and random forest. Remote Sensing of Environment, 240, 111702. https://doi.org/10.1016/j.rse.2020.111702
Gómez-Lora, J. W., Gallo-Ramos, V. H., & Camacho-Zorogastúa, K. D. C. (2021). Evaluación del bosque húmedo tropical mediante el análisis de la cobertura fraccional y técnicas SIG en la subcuenca del río Yuracyacu, Amazonía peruana. Madera y Bosques, 27(2). https://doi.org/10.21829/myb.2021.2722109
Goswami, S., Gamon, J., Vargas, S., & Tweedie, C. (2015). Relationships of NDVI, Biomass, and Leaf Area Index (LAI) for six key plant species in Barrow, Alaska [Preprint]. PeerJ PrePrints. https://doi.org/10.7287/peerj.preprints.913v1
Grabska, E., Hostert, P., Pflugmacher, D., & Ostapowicz, K. (2019). Forest Stand Species Mapping Using the Sentinel-2 Time Series. Remote Sensing, 11(10), 1197. https://doi.org/10.3390/rs11101197
Grantham, H. S., Duncan, A., Evans, T. D., Jones, K. R., Beyer, H. L., Schuster, R., Walston, J., Ray, J. C., Robinson, J. G., Callow, M., Clements, T., Costa, H. M., DeGemmis, A., Elsen, P. R., Ervin, J., Franco, P., Goldman, E., Goetz, S., Hansen, A., … Watson, J. E. M. (2020). Anthropogenic modification of forests means only 40% of remaining forests have high ecosystem integrity. Nature Communications, 11(1), 5978. https://doi.org/10.1038/s41467-020-19493-3
Greenwell, B. M., Boehmke, B. C., & McCarthy, A. J. (2018). A Simple and Effective Model-Based Variable Importance Measure. https://doi.org/10.48550/ARXIV.1805.04755
Halder, B., Bandyopadhyay, J., & Banik, P. (2021). Monitoring the effect of urban development on urban heat island based on remote sensing and geo-spatial approach in Kolkata and adjacent areas, India. Sustainable Cities and Society, 74, 103186. https://doi.org/10.1016/j.scs.2021.103186
Hank, T. B., Berger, K., Bach, H., Clevers, J. G. P. W., Gitelson, A., Zarco-Tejada, P., & Mauser, W. (2019). Spaceborne Imaging Spectroscopy for Sustainable Agriculture: Contributions and Challenges. Surveys in Geophysics, 40(3), 515-551. https://doi.org/10.1007/s10712-018-9492-0
Hansen, A., Barnett, K., Jantz, P., Phillips, L., Goetz, S. J., Hansen, M., Venter, O., Watson, J. E. M., Burns, P., Atkinson, S., Rodríguez-Buritica, S., Ervin, J., Virnig, A., Supples, C., & De Camargo, R. (2019). Global humid tropics forest structural condition and forest structural integrity maps. Scientific Data, 6(1), 232. https://doi.org/10.1038/s41597-019-0214-3
Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., Thau, D., Stehman, S. V., Goetz, S. J., Loveland, T. R., Kommareddy, A., Egorov, A., Chini, L., Justice, C. O., & Townshend, J. R. G. (2013). High-Resolution Global Maps of 21st-Century Forest Cover Change. Science, 342(6160), 850-853. https://doi.org/10.1126/science.1244693
Hasanah, A., Supriatna, & Indrawan, M. (2020). Assessment of tropical forest degradation on a small island using the enhanced vegetation index. IOP Conference Series: Earth and Environmental Science, 481(1), 012061. https://doi.org/10.1088/1755-1315/481/1/012061
He, C., Gao, B., Huang, Q., Ma, Q., & Dou, Y. (2017). Environmental degradation in the urban areas of China: Evidence from multi-source remote sensing data. Remote Sensing of Environment, 193, 65-75. https://doi.org/10.1016/j.rse.2017.02.027
He, K. S., Bradley, B. A., Cord, A. F., Rocchini, D., Tuanmu, M., Schmidtlein, S., Turner, W., Wegmann, M., & Pettorelli, N. (2015). Will remote sensing shape the next generation of species distribution models? Remote Sensing in Ecology and Conservation, 1(1), 4-18. https://doi.org/10.1002/rse2.7
Hong Han, Xiaoling Guo, & Hua Yu. (2016). Variable selection using Mean Decrease Accuracy and Mean Decrease Gini based on Random Forest. 2016 7th IEEE International Conference on Software Engineering and Service Science (ICSESS), 219-224. https://doi.org/10.1109/ICSESS.2016.7883053
Huang, S., Tang, L., Hupy, J. P., Wang, Y., & Shao, G. (2021). A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. Journal of Forestry Research, 32(1), 1-6. https://doi.org/10.1007/s11676-020-01155-1
Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., & Ferreira, L. G. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(1-2), 195-213. https://doi.org/10.1016/S0034-4257(02)00096-2
Huo, L., Persson, H. J., & Lindberg, E. (2021). Early detection of forest stress from European spruce bark beetle attack, and a new vegetation index: Normalized distance red & SWIR (NDRS). Remote Sensing of Environment, 255, 112240. https://doi.org/10.1016/j.rse.2020.112240
Hussain, S., & Karuppannan, S. (2023). Land use/land cover changes and their impact on land surface temperature using remote sensing technique in district Khanewal, Punjab Pakistan. Geology, Ecology, and Landscapes, 7(1), 46-58. https://doi.org/10.1080/24749508.2021.1923272
Ige, S. O., Ajayi, V. O., Adeyeri, O. E., & Oyekan, K. S. A. (2017). Assessing remotely sensed temperature humidity index as human comfort indicator relative to landuse landcover change in Abuja, Nigeria. Spatial Information Research, 25(4), 523-533. https://doi.org/10.1007/s41324-017-0118-2
Ishwaran, H., & Lu, M. (2019). Standard errors and confidence intervals for variable importance in random forest regression, classification, and survival. Statistics in Medicine, 38(4), 558-582. https://doi.org/10.1002/sim.7803
Jarchow, C., Didan, K., Barreto-Muñoz, A., Nagler, P., & Glenn, E. (2018). Application and Comparison of the MODIS-Derived Enhanced Vegetation Index to VIIRS, Landsat 5 TM and Landsat 8 OLI Platforms: A Case Study in the Arid Colorado River Delta, Mexico. Sensors, 18(5), 1546. https://doi.org/10.3390/s18051546
Jaybhay, J., & Shastri, R. (2015). A Study of Speckle Noise Reduction Filters. Signal & Image Processing : An International Journal, 6(3), 71-80. https://doi.org/10.5121/sipij.2015.6306
Jindo, K., Kozan, O., Iseki, K., Maestrini, B., Van Evert, F. K., Wubengeda, Y., Arai, E., Shimabukuro, Y. E., Sawada, Y., & Kempenaar, C. (2021). Potential utilization of satellite remote sensing for field-based agricultural studies. Chemical and Biological Technologies in Agriculture, 8(1), 58. https://doi.org/10.1186/s40538-021-00253-4
Jog, S., & Dixit, M. (2016). Supervised classification of satellite images. 2016 Conference on Advances in Signal Processing (CASP), 93-98. https://doi.org/10.1109/CASP.2016.7746144
Joshi, N., Baumann, M., Ehammer, A., Fensholt, R., Grogan, K., Hostert, P., Jepsen, M., Kuemmerle, T., Meyfroidt, P., Mitchard, E., Reiche, J., Ryan, C., & Waske, B. (2016). A Review of the Application of Optical and Radar Remote Sensing Data Fusion to Land Use Mapping and Monitoring. Remote Sensing, 8(1), 70. https://doi.org/10.3390/rs8010070
Jung, M., Dahal, P. R., Butchart, S. H. M., Donald, P. F., De Lamo, X., Lesiv, M., Kapos, V., Rondinini, C., & Visconti, P. (2020). A global map of terrestrial habitat types. Scientific Data, 7(1), 256. https://doi.org/10.1038/s41597-020-00599-8
Kalacska, M. (2004). Leaf area index measurements in a tropical moist forest: A case study from Costa Rica. Remote Sensing of Environment, 91(2), 134-152. https://doi.org/10.1016/j.rse.2004.02.011
Kanniah, K. D., Kang, C. S., Sharma, S., & Amir, A. A. (2021). Remote Sensing to Study Mangrove Fragmentation and Its Impacts on Leaf Area Index and Gross Primary Productivity in the South of Peninsular Malaysia. Remote Sensing, 13(8), 1427. https://doi.org/10.3390/rs13081427
Karr, J. R., Larson, E. R., & Chu, E. W. (2022). Ecological integrity is both real and valuable. Conservation Science and Practice, 4(2). https://doi.org/10.1111/csp2.583
Kganyago, M., Mhangara, P., Alexandridis, T., Laneve, G., Ovakoglou, G., & Mashiyi, N. (2020). Validation of sentinel-2 leaf area index (LAI) product derived from SNAP toolbox and its comparison with global LAI products in an African semi-arid agricultural landscape. Remote Sensing Letters, 11(10), 883-892. https://doi.org/10.1080/2150704X.2020.1767823
Klimes, P., Idigel, C., Rimandai, M., Fayle, T. M., Janda, M., Weiblen, G. D., & Novotny, V. (2012). Why are there more arboreal ant species in primary than in secondary tropical forests?: Why are there more arboreal ants in primary forests? Journal of Animal Ecology, 81(5), 1103-1112. https://doi.org/10.1111/j.1365-2656.2012.02002.x
Kohzuma, K., Sonoike, K., & Hikosaka, K. (2021). Imaging, screening and remote sensing of photosynthetic activity and stress responses. Journal of Plant Research, 134(4), 649-651. https://doi.org/10.1007/s10265-021-01324-1
Kupfer, J. A. (2006). National assessments of forest fragmentation in the US. Global Environmental Change, 16(1), 73-82. https://doi.org/10.1016/j.gloenvcha.2005.10.003
Kursa, M. B., & Rudnicki, W. R. (2010). Feature Selection with the Boruta Package. Journal of Statistical Software, 36(11). https://doi.org/10.18637/jss.v036.i11
Lastovicka, J., Svec, P., Paluba, D., Kobliuk, N., Svoboda, J., Hladky, R., & Stych, P. (2020). Sentinel-2 Data in an Evaluation of the Impact of the Disturbances on Forest Vegetation. Remote Sensing, 12(12), 1914. https://doi.org/10.3390/rs12121914
Lawrence, R. (2004). Classification of remotely sensed imagery using stochastic gradient boosting as a refinement of classification tree analysis. Remote Sensing of Environment, 90(3), 331-336. https://doi.org/10.1016/j.rse.2004.01.007
Lazic, S. E., Mellor, J. R., Ashby, M. C., & Munafo, M. R. (2020). A Bayesian predictive approach for dealing with pseudoreplication. Scientific Reports, 10(1), 2366. https://doi.org/10.1038/s41598-020-59384-7
Lechner, A. M., Foody, G. M., & Boyd, D. S. (2020). Applications in Remote Sensing to Forest Ecology and Management. One Earth, 2(5), 405-412. https://doi.org/10.1016/j.oneear.2020.05.001
Leitão, P. J., & Santos, M. J. (2019). Improving Models of Species Ecological Niches: A Remote Sensing Overview. Frontiers in Ecology and Evolution, 7, 9. https://doi.org/10.3389/fevo.2019.00009
Lembrechts, J. J., Nijs, I., & Lenoir, J. (2019). Incorporating microclimate into species distribution models. Ecography, 42(7), 1267-1279. https://doi.org/10.1111/ecog.03947
Leta, M. K., Demissie, T. A., & Tränckner, J. (2021). Modeling and Prediction of Land Use Land Cover Change Dynamics Based on Land Change Modeler (LCM) in Nashe Watershed, Upper Blue Nile Basin, Ethiopia. Sustainability, 13(7), 3740. https://doi.org/10.3390/su13073740
Li, P., Wang, J., Liu, M., Xue, Z., Bagherzadeh, A., & Liu, M. (2021). Spatio-temporal variation characteristics of NDVI and its response to climate on the Loess Plateau from 1985 to 2015. CATENA, 203, 105331. https://doi.org/10.1016/j.catena.2021.105331
Li, Q., Lu, X., Wang, Y., Huang, X., Cox, P. M., & Luo, Y. (2018). Leaf area index identified as a major source of variability in modeled CO<sub>2</sub> fertilization. Biogeosciences, 15(22), 6909-6925. https://doi.org/10.5194/bg-15-6909-2018
Li, S., Xu, L., Jing, Y., Yin, H., Li, X., & Guan, X. (2021). High-quality vegetation index product generation: A review of NDVI time series reconstruction techniques. International Journal of Applied Earth Observation and Geoinformation, 105, 102640. https://doi.org/10.1016/j.jag.2021.102640
Liao, J., Li, Z., Hiebeler, D. E., Iwasa, Y., Bogaert, J., & Nijs, I. (2013). Species persistence in landscapes with spatial variation in habitat quality: A pair approximation model. Journal of Theoretical Biology, 335, 22-30. https://doi.org/10.1016/j.jtbi.2013.06.015
Liu, T., & Yang, X. (2015). Monitoring land changes in an urban area using satellite imagery, GIS and landscape metrics. Applied Geography, 56, 42-54. https://doi.org/10.1016/j.apgeog.2014.10.002
Louw, A. S., Fu, J., Raut, A., Zulhilmi, A., Yao, S., McAlinn, M., Fujikawa, A., Siddique, M. T., Wang, X., Yu, X., Mandvikar, K., & Avtar, R. (2022). The role of remote sensing during a global disaster: COVID-19 pandemic as case study. Remote Sensing Applications: Society and Environment, 27, 100789. https://doi.org/10.1016/j.rsase.2022.100789
Lu, Y., Zhao, J., Qi, J., Rong, T., Wang, Z., Yang, Z., & Han, F. (2022). Monitoring the Spatiotemporal Dynamics of Habitat Quality and Its Driving Factors Based on the Coupled NDVI-InVEST Model: A Case Study from the Tianshan Mountains in Xinjiang, China. Land, 11(10), 1805. https://doi.org/10.3390/land11101805
Luque, A., Carrasco, A., Martín, A., & De Las Heras, A. (2019). The impact of class imbalance in classification performance metrics based on the binary confusion matrix. Pattern Recognition, 91, 216-231. https://doi.org/10.1016/j.patcog.2019.02.023
Ma, H., & Liang, S. (2022). Development of the GLASS 250-m leaf area index product (version 6) from MODIS data using the bidirectional LSTM deep learning model. Remote Sensing of Environment, 273, 112985. https://doi.org/10.1016/j.rse.2022.112985
Maalouf, M. (2011). Logistic regression in data analysis: An overview. International Journal of Data Analysis Techniques and Strategies, 3(3), 281. https://doi.org/10.1504/IJDATS.2011.041335
Maimaitijiang, M., Sagan, V., Sidike, P., Daloye, A. M., Erkbol, H., & Fritschi, F. B. (2020). Crop Monitoring Using Satellite/UAV Data Fusion and Machine Learning. Remote Sensing, 12(9), 1357. https://doi.org/10.3390/rs12091357
Mairota, P., Cafarelli, B., Labadessa, R., Lovergine, F. P., Tarantino, C., Nagendra, H., & Didham, R. K. (2015). Very high resolution Earth Observation features for testing the direct and indirect effects of landscape structure on local habitat quality. International Journal of Applied Earth Observation and Geoinformation, 34, 96-102. https://doi.org/10.1016/j.jag.2014.07.003
Mallegowda, P., Rengaian, G., Krishnan, J., & Niphadkar, M. (2015). Assessing Habitat Quality of Forest-Corridors through NDVI Analysis in Dry Tropical Forests of South India: Implications for Conservation. Remote Sensing, 7(2), 1619-1639. https://doi.org/10.3390/rs70201619
Mancera, R. (2019). Evaluación de imágenes de radar Sentinel-1ª e imágenes multiespectrales Sentinel-2ª en la clasificación de cobertura del suelo en diferentes niveles de detalle. [Tesis de maestría no publicada]. Universidad Nacional de Colombia.
Martos, V., Ahmad, A., Cartujo, P., & Ordoñez, J. (2021). Ensuring Agricultural Sustainability through Remote Sensing in the Era of Agriculture 5.0. Applied Sciences, 11(13), 5911. https://doi.org/10.3390/app11135911
Masrur Ahmed, A. A., Deo, R. C., Feng, Q., Ghahramani, A., Raj, N., Yin, Z., & Yang, L. (2021). Deep learning hybrid model with Boruta-Random forest optimiser algorithm for streamflow forecasting with climate mode indices, rainfall, and periodicity. Journal of Hydrology, 599, 126350. https://doi.org/10.1016/j.jhydrol.2021.126350
McNairn, H., & Shang, J. (2016). A Review of Multitemporal Synthetic Aperture Radar (SAR) for Crop Monitoring. En Y. Ban (Ed.), Multitemporal Remote Sensing (Vol. 20, pp. 317-340). Springer International Publishing. https://doi.org/10.1007/978-3-319-47037-5_15
Melo-Merino, S. M., Reyes-Bonilla, H., & Lira-Noriega, A. (2020). Ecological niche models and species distribution models in marine environments: A literature review and spatial analysis of evidence. Ecological Modelling, 415, 108837. https://doi.org/10.1016/j.ecolmodel.2019.108837
Messier, A. (2023). Patterns of greenness (NDVI) in the Southern Great Plains and their influence on the habitat quality and reproduction of a declining prairie grouse [Thesis]. https://krex.k-state.edu/handle/2097/42970
Minghelli, A., Vadakke-Chanat, S., Chami, M., Guillaume, M., & Peirache, M. (2021). Benefit of the Potential Future Hyperspectral Satellite Sensor (BIODIVERSITY) for Improving the Determination of Water Column and Seabed Features in Coastal Zones. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 1222-1232. https://doi.org/10.1109/JSTARS.2020.3031729
Misra, G., Cawkwell, F., & Wingler, A. (2020). Status of Phenological Research Using Sentinel-2 Data: A Review. Remote Sensing, 12(17), 2760. https://doi.org/10.3390/rs12172760
Mondanaro, A., Di Febbraro, M., Castiglione, S., Melchionna, M., Serio, C., Girardi, G., Belfiore, A. M., & Raia, P. (2023). ENPHYLO : A new method to model the distribution of extremely rare species. Methods in Ecology and Evolution, 14(3), 911-922. https://doi.org/10.1111/2041-210X.14066
Mora, F. (2017). A structural equation modeling approach for formalizing and evaluating ecological integrity in terrestrial ecosystems. Ecological Informatics, 41, 74-90. https://doi.org/10.1016/j.ecoinf.2017.05.002
Mora, F. (2019). The use of ecological integrity indicators within the natural capital index framework: The ecological and economic value of the remnant natural capital of México. Journal for Nature Conservation, 47, 77-92. https://doi.org/10.1016/j.jnc.2018.11.007
Morcillo-Pallarés, P., Rivera-Caicedo, J. P., Belda, S., De Grave, C., Burriel, H., Moreno, J., & Verrelst, J. (2019). Quantifying the Robustness of Vegetation Indices through Global Sensitivity Analysis of Homogeneous and Forest Leaf-Canopy Radiative Transfer Models. Remote Sensing, 11(20), 2418. https://doi.org/10.3390/rs11202418
Moreira, A., Prats-Iraola, P., Younis, M., Krieger, G., Hajnsek, I., & Papathanassiou, K. P. (2013). A tutorial on synthetic aperture radar. IEEE Geoscience and Remote Sensing Magazine, 1(1), 6-43. https://doi.org/10.1109/MGRS.2013.2248301
Moudrý, V., Moudrá, L., Barták, V., Bejček, V., Gdulová, K., Hendrychová, M., Moravec, D., Musil, P., Rocchini, D., Šťastný, K., Volf, O., & Šálek, M. (2021). The role of the vegetation structure, primary productivity and senescence derived from airborne LiDAR and hyperspectral data for birds diversity and rarity on a restored site. Landscape and Urban Planning, 210, 104064. https://doi.org/10.1016/j.landurbplan.2021.104064
Moumane, A., Al Karkouri, J., Benmansour, A., El Ghazali, F. E., Fico, J., Karmaoui, A., & Batchi, M. (2022). Monitoring long-term land use, land cover change, and desertification in the Ternata oasis, Middle Draa Valley, Morocco. Remote Sensing Applications: Society and Environment, 26, 100745. https://doi.org/10.1016/j.rsase.2022.100745
Mu, S., Yang, G., Xu, X., Wan, R., & Li, B. (2022). Assessing the inundation dynamics and its impacts on habitat suitability in Poyang Lake based on integrating Landsat and MODIS observations. Science of The Total Environment, 834, 154936. https://doi.org/10.1016/j.scitotenv.2022.154936
Mutanga, O., & Skidmore, A. K. (2007). Red edge shift and biochemical content in grass canopies. ISPRS Journal of Photogrammetry and Remote Sensing, 62(1), 34-42. https://doi.org/10.1016/j.isprsjprs.2007.02.001
Nagendra, H., Lucas, R., Honrado, J. P., Jongman, R. H. G., Tarantino, C., Adamo, M., & Mairota, P. (2013). Remote sensing for conservation monitoring: Assessing protected areas, habitat extent, habitat condition, species diversity, and threats. Ecological Indicators, 33, 45-59. https://doi.org/10.1016/j.ecolind.2012.09.014
Nasir, S. M., Kamran, K. V., Blaschke, T., & Karimzadeh, S. (2022). Change of land use / land cover in kurdistan region of Iraq: A semi-automated object-based approach. Remote Sensing Applications: Society and Environment, 26, 100713. https://doi.org/10.1016/j.rsase.2022.100713
Nemani, R., Pierce, L., Running, S., & Band, L. (1993). Forest ecosystem processes at the watershed scale: Sensitivity to remotely-sensed Leaf Area Index estimates. International Journal of Remote Sensing, 14(13), 2519-2534. https://doi.org/10.1080/01431169308904290
Ogilvie, A., Belaud, G., Massuel, S., Mulligan, M., Le Goulven, P., & Calvez, R. (2018). Surface water monitoring in small water bodies: Potential and limits of multi-sensor Landsat time series. Hydrology and Earth System Sciences, 22(8), 4349-4380. https://doi.org/10.5194/hess-22-4349-2018
Pal, S., Talukdar, S., & Ghosh, R. (2020). Damming effect on habitat quality of riparian corridor. Ecological Indicators, 114, 106300. https://doi.org/10.1016/j.ecolind.2020.106300
Pan, Z., He, J., Liu, D., Wang, J., & Guo, X. (2021). Ecosystem health assessment based on ecological integrity and ecosystem services demand in the Middle Reaches of the Yangtze River Economic Belt, China. Science of The Total Environment, 774, 144837. https://doi.org/10.1016/j.scitotenv.2020.144837
Pandey, P. C., Koutsias, N., Petropoulos, G. P., Srivastava, P. K., & Ben Dor, E. (2021). Land use/land cover in view of earth observation: Data sources, input dimensions, and classifiers—a review of the state of the art. Geocarto International, 36(9), 957-988. https://doi.org/10.1080/10106049.2019.1629647
Pandey, R., Goswami, S., Sarup, J., & Matin, S. (2021). The thermal–optical trapezoid model-based soil moisture estimation using Landsat-8 data. Modeling Earth Systems and Environment, 7(2), 1029-1037. https://doi.org/10.1007/s40808-020-00975-8
Parker, G. G. (2020). Tamm review: Leaf Area Index (LAI) is both a determinant and a consequence of important processes in vegetation canopies. Forest Ecology and Management, 477, 118496. https://doi.org/10.1016/j.foreco.2020.118496
Peng, D., Zhang, H., Yu, L., Wu, M., Wang, F., Huang, W., Liu, L., Sun, R., Li, C., Wang, D., & Xu, F. (2018). Assessing spectral indices to estimate the fraction of photosynthetically active radiation absorbed by the vegetation canopy. International Journal of Remote Sensing, 39(22), 8022-8040. https://doi.org/10.1080/01431161.2018.1479795
Perilla, G. A., & Mas, J.-F. (2020). Google Earth Engine (GEE): Una poderosa herramienta que vincula el potencial de los datos masivos y la eficacia del procesamiento en la nube. Investigaciones Geográficas, 101. https://doi.org/10.14350/rig.59929
Perumal, K., & Bhaskaran, R. (2010). Supervised Classification Performance of Multispectral Images (arXiv:1002.4046). arXiv. http://arxiv.org/abs/1002.4046
Pettorelli, N., Schulte To Bühne, H., Tulloch, A., Dubois, G., Macinnis-Ng, C., Queirós, A. M., Keith, D. A., Wegmann, M., Schrodt, F., Stellmes, M., Sonnenschein, R., Geller, G. N., Roy, S., Somers, B., Murray, N., Bland, L., Geijzendorffer, I., Kerr, J. T., Broszeit, S., … Nicholson, E. (2018). Satellite remote sensing of ecosystem functions: Opportunities, challenges and way forward. Remote Sensing in Ecology and Conservation, 4(2), 71-93. https://doi.org/10.1002/rse2.59
Pires, M. M., & Galetti, M. (2023). Beyond the “empty forest”: The defaunation syndromes of Neotropical forests in the Anthropocene. Global Ecology and Conservation, 41, e02362. https://doi.org/10.1016/j.gecco.2022.e02362
Qiu, B., Chen, J. M., Ju, W., Zhang, Q., & Zhang, Y. (2019). Simulating emission and scattering of solar-induced chlorophyll fluorescence at far-red band in global vegetation with different canopy structures. Remote Sensing of Environment, 233, 111373. https://doi.org/10.1016/j.rse.2019.111373
Rahimi, L., Malekmohammadi, B., & Yavari, A. R. (2020). Assessing and Modeling the Impacts of Wetland Land Cover Changes on Water Provision and Habitat Quality Ecosystem Services. Natural Resources Research, 29(6), 3701-3718. https://doi.org/10.1007/s11053-020-09667-7
Randin, C. F., Ashcroft, M. B., Bolliger, J., Cavender-Bares, J., Coops, N. C., Dullinger, S., Dirnböck, T., Eckert, S., Ellis, E., Fernández, N., Giuliani, G., Guisan, A., Jetz, W., Joost, S., Karger, D., Lembrechts, J., Lenoir, J., Luoto, M., Morin, X., … Payne, D. (2020). Monitoring biodiversity in the Anthropocene using remote sensing in species distribution models. Remote Sensing of Environment, 239, 111626. https://doi.org/10.1016/j.rse.2019.111626
Raschka, S., Liu, Y. H. & Mirjalili, V. (2023). Machine Learning con PyTorch y Scikit-Learn: Cómo desarrollar modelos de Machine Learning y Deep Learning con Python. Alpha Editorial.
Ray, S. (2019). A Quick Review of Machine Learning Algorithms. 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), 35-39. https://doi.org/10.1109/COMITCon.2019.8862451
Reddy, C. S. (2021). Remote sensing of biodiversity: What to measure and monitor from space to species? Biodiversity and Conservation, 30(10), 2617-2631. https://doi.org/10.1007/s10531-021-02216-5
Reich, P. B. (2012). Key canopy traits drive forest productivity. Proceedings of the Royal Society B: Biological Sciences, 279(1736), 2128-2134. https://doi.org/10.1098/rspb.2011.2270
Requena-Mullor, J. M., López, E., Castro, A. J., Alcaraz-Segura, D., Castro, H., Reyes, A., & Cabello, J. (2017). Remote-sensing based approach to forecast habitat quality under climate change scenarios. PLOS ONE, 12(3), e0172107. https://doi.org/10.1371/journal.pone.0172107
Requena-Mullor, J. M., López, E., Castro, A. J., Cabello, J., Virgós, E., González-Miras, E., & Castro, H. (2014). Modeling spatial distribution of European badger in arid landscapes: An ecosystem functioning approach. Landscape Ecology, 29(5), 843-855. https://doi.org/10.1007/s10980-014-0020-4
Roques, L., & Stoica, R. S. (2007). Species persistence decreases with habitat fragmentation: An analysis in periodic stochastic environments. Journal of Mathematical Biology, 55(2), 189-205. https://doi.org/10.1007/s00285-007-0076-8
Rosa, I. M. D., Purves, D., Souza, C., & Ewers, R. M. (2013). Predictive Modelling of Contagious Deforestation in the Brazilian Amazon. PLoS ONE, 8(10), e77231. https://doi.org/10.1371/journal.pone.0077231
Rosenfield, M. F., Jakovac, C. C., Vieira, D. L. M., Poorter, L., Brancalion, P. H. S., Vieira, I. C. G., De Almeida, D. R. A., Massoca, P., Schietti, J., Albernaz, A. L. M., Ferreira, M. J., & Mesquita, R. C. G. (2023). Ecological integrity of tropical secondary forests: Concepts and indicators. Biological Reviews, 98(2), 662-676. https://doi.org/10.1111/brv.12924
Roy, P. S., Behera, M. D., & Srivastav, S. K. (2017). Satellite Remote Sensing: Sensors, Applications and Techniques. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 87(4), 465-472. https://doi.org/10.1007/s40010-017-0428-8
Ruelland, D., Dezetter, A., Puech, C., & Ardoin‐Bardin, S. (2008). Long‐term monitoring of land cover changes based on Landsat imagery to improve hydrological modelling in West Africa. International Journal of Remote Sensing, 29(12), 3533-3551. https://doi.org/10.1080/01431160701758699
Ruggeri, S., Henao-Cespedes, V., Garcés-Gómez, Y. A., & Parra Uzcátegui, A. (2021). Optimized unsupervised CORINE Land Cover mapping using linear spectral mixture analysis and object-based image analysis. The Egyptian Journal of Remote Sensing and Space Science, 24(3), 1061-1069. https://doi.org/10.1016/j.ejrs.2021.10.009
Sajjad, H., & Kumar, P. (2019). Future Challenges and Perspective of Remote Sensing Technology. En P. Kumar, M. Rani, P. Chandra Pandey, H. Sajjad, & B. S. Chaudhary (Eds.), Applications and Challenges of Geospatial Technology (pp. 275-277). Springer International Publishing. https://doi.org/10.1007/978-3-319-99882-4_16
Sánchez-Giraldo, C., Correa Ayram, C., & Daza, J. M. (2021). Environmental sound as a mirror of landscape ecological integrity in monitoring programs. Perspectives in Ecology and Conservation, 19(3), 319-328. https://doi.org/10.1016/j.pecon.2021.04.003
Sangpradid, S., Uttaruk, Y., Rotjanakusol, T., & Laosuwan, T. (2021). FORECASTING TIME SERIES CHANGE OF THE AVERAGE ENHANCED VEGETATION INDEX TO MONITORING DROUGHT CONDITION BY USING TERRA/MODIS DATA. The Journal «Agriculture and Forestry», 67(4). https://doi.org/10.17707/AgricultForest.67.4.11
Santin-Janin, H., Garel, M., Chapuis, J.-L., & Pontier, D. (2009). Assessing the performance of NDVI as a proxy for plant biomass using non-linear models: A case study on the Kerguelen archipelago. Polar Biology, 32(6), 861-871. https://doi.org/10.1007/s00300-009-0586-5
Sarker, I. H. (2021). Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Computer Science, 2(3), 160. https://doi.org/10.1007/s42979-021-00592-x
Sasmito, S. D., Taillardat, P., Clendenning, J. N., Cameron, C., Friess, D. A., Murdiyarso, D., & Hutley, L. B. (2019). Effect of land‐use and land‐cover change on mangrove blue carbon: A systematic review. Global Change Biology, 25(12), 4291-4302. https://doi.org/10.1111/gcb.14774
Schipper, J. (s. f.). Magdalena-Urabá Moist Forests [Divulgativa]. https://www.oneearth.org/ecoregions/magdalena-uraba-moist-forests/
Schulte To Bühne, H., & Pettorelli, N. (2018). Better together: Integrating and fusing multispectral and radar satellite imagery to inform biodiversity monitoring, ecological research and conservation science. Methods in Ecology and Evolution, 9(4), 849-865. https://doi.org/10.1111/2041-210X.12942
Sexton, J. O., Song, X.-P., Feng, M., Noojipady, P., Anand, A., Huang, C., Kim, D.-H., Collins, K. M., Channan, S., DiMiceli, C., & Townshend, J. R. (2013). Global, 30-m resolution continuous fields of tree cover: Landsat-based rescaling of MODIS vegetation continuous fields with lidar-based estimates of error. International Journal of Digital Earth, 6(5), 427-448. https://doi.org/10.1080/17538947.2013.786146
Shahzaman, M., Zhu, W., Bilal, M., Habtemicheal, B. A., Mustafa, F., Arshad, M., Ullah, I., Ishfaq, S., & Iqbal, R. (2021). Remote Sensing Indices for Spatial Monitoring of Agricultural Drought in South Asian Countries. Remote Sensing, 13(11), 2059. https://doi.org/10.3390/rs13112059
Shao, Z., Sumari, N. S., Portnov, A., Ujoh, F., Musakwa, W., & Mandela, P. J. (2021). Urban sprawl and its impact on sustainable urban development: A combination of remote sensing and social media data. Geo-Spatial Information Science, 24(2), 241-255. https://doi.org/10.1080/10095020.2020.1787800
Sheykhmousa, M., Mahdianpari, M., Ghanbari, H., Mohammadimanesh, F., Ghamisi, P., & Homayouni, S. (2020). Support Vector Machine Versus Random Forest for Remote Sensing Image Classification: A Meta-Analysis and Systematic Review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 6308-6325. https://doi.org/10.1109/JSTARS.2020.3026724
Sims, D., Rahman, A., Cordova, V., Elmasri, B., Baldocchi, D., Bolstad, P., Flanagan, L., Goldstein, A., Hollinger, D., & Misson, L. (2008). A new model of gross primary productivity for North American ecosystems based solely on the enhanced vegetation index and land surface temperature from MODIS. Remote Sensing of Environment, 112(4), 1633-1646. https://doi.org/10.1016/j.rse.2007.08.004
Skowno, A. L., Jewitt, D., & Slingsby, J. A. (2021). Rates and patterns of habitat loss across South Africa’s vegetation biomes. South African Journal of Science, 117(1/2). https://doi.org/10.17159/sajs.2021/8182
Song, C. (2013). Optical remote sensing of forest leaf area index and biomass. Progress in Physical Geography: Earth and Environment, 37(1), 98-113. https://doi.org/10.1177/0309133312471367
Song, J., Lu, X., Liu, M., & Wu, X. (2011). A new LogitBoost algorithm for multiclass unbalanced data classification. 2011 Eighth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), 974-977. https://doi.org/10.1109/FSKD.2011.6019654
Song, Z., Li, X., Su, X., & Li, C. (2023). Analyzing the recovery mechanisms of patchy degradation and its response to mowing and plateau pika disturbances in alpine meadow. Ecological Indicators, 154, 110565. https://doi.org/10.1016/j.ecolind.2023.110565
Soto, G. E., Pérez-Hernández, C. G., Hahn, I. J., Rodewald, A. D., & Vergara, P. M. (2017). Tree senescence as a direct measure of habitat quality: Linking red-edge Vegetation Indices to space use by Magellanic woodpeckers. Remote Sensing of Environment, 193, 1-10. https://doi.org/10.1016/j.rse.2017.02.018
Soubry, I., Doan, T., Chu, T., & Guo, X. (2021). A Systematic Review on the Integration of Remote Sensing and GIS to Forest and Grassland Ecosystem Health Attributes, Indicators, and Measures. Remote Sensing, 13(16), 3262. https://doi.org/10.3390/rs13163262
Souza, C. M., Z. Shimbo, J., Rosa, M. R., Parente, L. L., A. Alencar, A., Rudorff, B. F. T., Hasenack, H., Matsumoto, M., G. Ferreira, L., Souza-Filho, P. W. M., De Oliveira, S. W., Rocha, W. F., Fonseca, A. V., Marques, C. B., Diniz, C. G., Costa, D., Monteiro, D., Rosa, E. R., Vélez-Martin, E., … Azevedo, T. (2020). Reconstructing Three Decades of Land Use and Land Cover Changes in Brazilian Biomes with Landsat Archive and Earth Engine. Remote Sensing, 12(17), 2735. https://doi.org/10.3390/rs12172735
Srivastava, V., Lafond, V., & Griess, V. C. (2019). Species distribution models (SDM): Applications, benefits and challenges in invasive species management. CABI Reviews, 2019, 1-13. https://doi.org/10.1079/PAVSNNR201914020
Stenberg, P., Mõttus, M., & Rautiainen, M. (2008). Modeling the Spectral Signature of Forests: Application of Remote Sensing Models to Coniferous Canopies. En S. Liang (Ed.), Advances in Land Remote Sensing (pp. 147-171). Springer Netherlands. https://doi.org/10.1007/978-1-4020-6450-0_6
Strobl, C., Malley, J., & Tutz, G. (2009). An introduction to recursive partitioning: Rationale, application, and characteristics of classification and regression trees, bagging, and random forests. Psychological Methods, 14(4), 323-348. https://doi.org/10.1037/a0016973
Sun, Y., Liu, H., & Guo, Z. (2021). Capsule network-based approach for estimating grassland coverage using time series data from enhanced vegetation index. Artificial Intelligence in Geosciences, 2, 26-34. https://doi.org/10.1016/j.aiig.2021.08.001
Szpakowski, D., & Jensen, J. (2019). A Review of the Applications of Remote Sensing in Fire Ecology. Remote Sensing, 11(22), 2638. https://doi.org/10.3390/rs11222638
Taiwo, B. E., Kafy, A.-A., Samuel, A. A., Rahaman, Z. A., Ayowole, O. E., Shahrier, M., Duti, B. M., Rahman, M. T., Peter, O. T., & Abosede, O. O. (2023). Monitoring and predicting the influences of land use/land cover change on cropland characteristics and drought severity using remote sensing techniques. Environmental and Sustainability Indicators, 18, 100248. https://doi.org/10.1016/j.indic.2023.100248
Temitope Yekeen, S., & Balogun, A.-L. (2020). Advances in Remote Sensing Technology, Machine Learning and Deep Learning for Marine Oil Spill Detection, Prediction and Vulnerability Assessment. Remote Sensing, 12(20), 3416. https://doi.org/10.3390/rs12203416
Thamaga, K. H., Dube, T., & Shoko, C. (2022). Advances in satellite remote sensing of the wetland ecosystems in Sub-Saharan Africa. Geocarto International, 37(20), 5891-5913. https://doi.org/10.1080/10106049.2021.1926552
Tierney, G. L., Faber-Langendoen, D., Mitchell, B. R., Shriver, W. G., & Gibbs, J. P. (2009). Monitoring and evaluating the ecological integrity of forest ecosystems. Frontiers in Ecology and the Environment, 7(6), 308-316. https://doi.org/10.1890/070176
Ul Din, S., & Mak, H. W. L. (2021). Retrieval of Land-Use/Land Cover Change (LUCC) Maps and Urban Expansion Dynamics of Hyderabad, Pakistan via Landsat Datasets and Support Vector Machine Framework. Remote Sensing, 13(16), 3337. https://doi.org/10.3390/rs13163337
Ullo, S. L., & Sinha, G. R. (2021). Advances in IoT and Smart Sensors for Remote Sensing and Agriculture Applications. Remote Sensing, 13(13), 2585. https://doi.org/10.3390/rs13132585
Vergara, P. M., Fierro, A., Alaniz, A. J., Carvajal, M. A., Lizama, M., & Llanos, J. L. (2021). Landscape-scale effects of forest degradation on insectivorous birds and invertebrates in austral temperate forests. Landscape Ecology, 36(1), 191-208. https://doi.org/10.1007/s10980-020-01133-2
Vergara, P. M., Soto, G. E., Rodewald, A. D., & Quiroz, M. (2019). Behavioral switching in Magellanic woodpeckers reveals perception of habitat quality at different spatial scales. Landscape Ecology, 34(1), 79-92. https://doi.org/10.1007/s10980-018-0746-5
Vihervaara, P., Auvinen, A.-P., Mononen, L., Törmä, M., Ahlroth, P., Anttila, S., Böttcher, K., Forsius, M., Heino, J., Heliölä, J., Koskelainen, M., Kuussaari, M., Meissner, K., Ojala, O., Tuominen, S., Viitasalo, M., & Virkkala, R. (2017). How Essential Biodiversity Variables and remote sensing can help national biodiversity monitoring. Global Ecology and Conservation, 10, 43-59. https://doi.org/10.1016/j.gecco.2017.01.007
Villard, M.-A., & Metzger, J. P. (2014). REVIEW: Beyond the fragmentation debate: a conceptual model to predict when habitat configuration really matters. Journal of Applied Ecology, 51(2), 309-318. https://doi.org/10.1111/1365-2664.12190
Viña, A., Gitelson, A. A., Nguy-Robertson, A. L., & Peng, Y. (2011). Comparison of different vegetation indices for the remote assessment of green leaf area index of crops. Remote Sensing of Environment, 115(12), 3468-3478. https://doi.org/10.1016/j.rse.2011.08.010
Vishnu, C. L., Sajinkumar, K. S., Oommen, T., Coffman, R. A., Thrivikramji, K. P., Rani, V. R., & Keerthy, S. (2019). Satellite-based assessment of the August 2018 flood in parts of Kerala, India. Geomatics, Natural Hazards and Risk, 10(1), 758-767. https://doi.org/10.1080/19475705.2018.1543212
Vogeler, J. C., & Cohen, W. B. (2016). A review of the role of active remote sensing and data fusion for characterizing forest in wildlife habitat models. Revista de Teledetección, 45, 1. https://doi.org/10.4995/raet.2016.3981
Vollrath, A., Mullissa, A., & Reiche, J. (2020). Angular-Based Radiometric Slope Correction for Sentinel-1 on Google Earth Engine. Remote Sensing, 12(11), 1867. https://doi.org/10.3390/rs12111867
Waltari, E., Schroeder, R., McDonald, K., Anderson, R. P., & Carnaval, A. (2014). Bioclimatic variables derived from remote sensing: Assessment and application for species distribution modelling. Methods in Ecology and Evolution, 5(10), 1033-1042. https://doi.org/10.1111/2041-210X.12264
Wang, H., Tang, L., Qiu, Q., & Chen, H. (2020). Assessing the Impacts of Urban Expansion on Habitat Quality by Combining the Concepts of Land Use, Landscape, and Habitat in Two Urban Agglomerations in China. Sustainability, 12(11), 4346. https://doi.org/10.3390/su12114346
Wang, R., & Gamon, J. A. (2019). Remote sensing of terrestrial plant biodiversity. Remote Sensing of Environment, 231, 111218. https://doi.org/10.1016/j.rse.2019.111218
Wang, X., Liu, C., Lv, G., Xu, J., & Cui, G. (2022). Integrating Multi-Source Remote Sensing to Assess Forest Aboveground Biomass in the Khingan Mountains of North-Eastern China Using Machine-Learning Algorithms. Remote Sensing, 14(4), 1039. https://doi.org/10.3390/rs14041039
Wiegand, T., Naves, J., Garbulsky, M. F., & Fernández, N. (2008). ANIMAL HABITAT QUALITY AND ECOSYSTEM FUNCTIONING: EXPLORING SEASONAL PATTERNS USING NDVI. Ecological Monographs, 78(1), 87-103. https://doi.org/10.1890/06-1870.1
Wisz, M. S., Hijmans, R. J., Li, J., Peterson, A. T., Graham, C. H., Guisan, A., & NCEAS Predicting Species Distributions Working Group†. (2008). Effects of sample size on the performance of species distribution models. Diversity and Distributions, 14(5), 763-773. https://doi.org/10.1111/j.1472-4642.2008.00482.x
Wulder, M. A., Loveland, T. R., Roy, D. P., Crawford, C. J., Masek, J. G., Woodcock, C. E., Allen, R. G., Anderson, M. C., Belward, A. S., Cohen, W. B., Dwyer, J., Erb, A., Gao, F., Griffiths, P., Helder, D., Hermosilla, T., Hipple, J. D., Hostert, P., Hughes, M. J., … Zhu, Z. (2019). Current status of Landsat program, science, and applications. Remote Sensing of Environment, 225, 127-147. https://doi.org/10.1016/j.rse.2019.02.015
Xu, H. (2006). Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, 27(14), 3025-3033. https://doi.org/10.1080/01431160600589179
Xu, Y., Yang, Y., Chen, X., & Liu, Y. (2022). Bibliometric Analysis of Global NDVI Research Trends from 1985 to 2021. Remote Sensing, 14(16), 3967. https://doi.org/10.3390/rs14163967
Yin, J., Dong, J., Hamm, N. A. S., Li, Z., Wang, J., Xing, H., & Fu, P. (2021). Integrating remote sensing and geospatial big data for urban land use mapping: A review. International Journal of Applied Earth Observation and Geoinformation, 103, 102514. https://doi.org/10.1016/j.jag.2021.102514
Yohannes, H., Soromessa, T., Argaw, M., & Dewan, A. (2021). Spatio-temporal changes in habitat quality and linkage with landscape characteristics in the Beressa watershed, Blue Nile basin of Ethiopian highlands. Journal of Environmental Management, 281, 111885. https://doi.org/10.1016/j.jenvman.2020.111885
Yu, T., Liu, P., Zhang, Q., Ren, Y., & Yao, J. (2021). Detecting Forest Degradation in the Three-North Forest Shelterbelt in China from Multi-Scale Satellite Images. Remote Sensing, 13(6), 1131. https://doi.org/10.3390/rs13061131
Zattara, E. E., & Aizen, M. A. (2021). Worldwide occurrence records suggest a global decline in bee species richness. One Earth, 4(1), 114-123. https://doi.org/10.1016/j.oneear.2020.12.005
Zelený, J., Mercado-Bettín, D., & Müller, F. (2021). Towards the evaluation of regional ecosystem integrity using NDVI, brightness temperature and surface heterogeneity. Science of The Total Environment, 796, 148994. https://doi.org/10.1016/j.scitotenv.2021.148994
Zhang, Y., Liu, J., & Shen, W. (2022). A Review of Ensemble Learning Algorithms Used in Remote Sensing Applications. Applied Sciences, 12(17), 8654. https://doi.org/10.3390/app12178654
Zhang, Y., Zhao, L., Zhao, H., & Gao, X. (2021). Urban development trend analysis and spatial simulation based on time series remote sensing data: A case study of Jinan, China. PLOS ONE, 16(10), e0257776. https://doi.org/10.1371/journal.pone.0257776
Zheng, G., & Moskal, L. M. (2009). Retrieving Leaf Area Index (LAI) Using Remote Sensing: Theories, Methods and Sensors. Sensors, 9(4), 2719-2745. https://doi.org/10.3390/s90402719
Zheng, Y., Xiao, Z., Li, J., Yang, H., & Song, J. (2022). Evaluation of Global Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) Products at 500 m Spatial Resolution. Remote Sensing, 14(14), 3304. https://doi.org/10.3390/rs14143304
Zhong, R., Wang, P., Mao, G., Chen, A., & Liu, J. (2021). Spatiotemporal variation of enhanced vegetation index in the Amazon Basin and its response to climate change. Physics and Chemistry of the Earth, Parts A/B/C, 123, 103024. https://doi.org/10.1016/j.pce.2021.103024
Zielewska-Büttner, K., Heurich, M., Müller, J., & Braunisch, V. (2018). Remotely Sensed Single Tree Data Enable the Determination of Habitat Thresholds for the Three-Toed Woodpecker (Picoides tridactylus). Remote Sensing, 10(12), 1972. https://doi.org/10.3390/rs10121972
Zipkin, E. F., Zylstra, E. R., Wright, A. D., Saunders, S. P., Finley, A. O., Dietze, M. C., Itter, M. S., & Tingley, M. W. (2021). Addressing data integration challenges to link ecological processes across scales. Frontiers in Ecology and the Environment, 19(1), 30-38. https://doi.org/10.1002/fee.2290
Zizka, A., Antunes Carvalho, F., Calvente, A., Rocio Baez-Lizarazo, M., Cabral, A., Coelho, J. F. R., Colli-Silva, M., Fantinati, M. R., Fernandes, M. F., Ferreira-Araújo, T., Gondim Lambert Moreira, F., Santos, N. M. C., Santos, T. A. B., Dos Santos-Costa, R. C., Serrano, F. C., Alves Da Silva, A. P., De Souza Soares, A., Cavalcante De Souza, P. G., Calisto Tomaz, E., … Antonelli, A. (2020). No one-size-fits-all solution to clean GBIF. PeerJ, 8, e9916. https://doi.org/10.7717/peerj.9916
Zizka, A., Silvestro, D., Andermann, T., Azevedo, J., Duarte Ritter, C., Edler, D., Farooq, H., Herdean, A., Ariza, M., Scharn, R., Svantesson, S., Wengström, N., Zizka, V., & Antonelli, A. (2019). COORDINATECLEANER: Standardized cleaning of occurrence records from biological collection databases. Methods in Ecology and Evolution, 10(5), 744-751. https://doi.org/10.1111/2041-210X.13152
Zurell, D., Franklin, J., König, C., Bouchet, P. J., Dormann, C. F., Elith, J., Fandos, G., Feng, X., Guillera‐Arroita, G., Guisan, A., Lahoz‐Monfort, J. J., Leitão, P. J., Park, D. S., Peterson, A. T., Rapacciuolo, G., Schmatz, D. R., Schröder, B., Serra‐Diaz, J. M., Thuiller, W., … Merow, C. (2020). A standard protocol for reporting species distribution models. Ecography, 43(9), 1261-1277. https://doi.org/10.1111/ecog.04960
Zwinkels, J. (2015). Light, Electromagnetic Spectrum. En R. Luo (Ed.), Encyclopedia of Color Science and Technology (pp. 1-8). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-27851-8_204-1
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 132 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.country.none.fl_str_mv Colombia
dc.coverage.region.none.fl_str_mv Magdalena Medio
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias Agrarias - Maestría en Geomática
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Agrarias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/85570/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/85570/2/1013646905.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/85570/3/1013646905.2023.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
a41a16743220f0243a641ec81835637e
3ad2cd3dff463e5a272d91a6948836e6
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089507471884288
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Fagua González, Jose Camiloc8bc1a68873be62c740ff8a96db3689bRodríguez Buriticá, Susana961305fd226b4085be9a7f1602b20a9cRomero Jiménez, Luis Hernando3e8052e51570beb2ea52ac5af319da12Biodiversidad, Biotecnología y Conservación de Ecosistemashttps://orcid.org/0000-0002-1977-0545https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=00001312872024-01-31T19:41:11Z2024-01-31T19:41:11Z2024-01-30https://repositorio.unal.edu.co/handle/unal/85570Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, mapas, planosEl uso de información espacial para el estudio de fenómenos ecológicos que involucran múltiples especies, es fundamental para el planteamiento de estrategias para la conservación, planeación y monitoreo de la biodiversidad. El hábitat, definido en este trabajo como las condiciones biofísicas que permiten la persistencia de la población de una especie en el espacio y en el tiempo, ha sido analizado tradicionalmente por medio de diferentes productos derivados de sensores remotos (SR), con la desventaja de que muchos de estos carecen de validación en campo, o tienen resoluciones espaciales o temáticas insuficientes para la planeación y el monitoreo de acciones de conservación. Para superar estas limitaciones, integramos información espectral de datos SAR (Radar de Apertura Sintética como Sentinel-1 y PALSAR), datos multiespectrales (Sentinel-2 y MODIS), y registros de especies tomados en campo y consultados en bases de datos nacionales e internacionales. Utilizando cinco algoritmos de aprendizaje (Machine Learning), proponemos un índice de calidad de hábitat específico para ecosistemas de bosque húmedo tropical, en una zona de estudio ubicada en el Magdalena Medio, entre los municipios de Puerto Berrío, Yondó, Cantagallo y Puerto Wilches. Como aproximación a la medida de calidad de bosques se utilizó el Índice de Condición Estructural de Hansen (SCI), que evalúa la estructura de los bosques, aunque no considera otros elementos relacionados con la integridad de este ecosistema, como su composición y función. Por esta razón, se modificó el SCI con datos de registros biológicos, ajustados para representar la dependencia que las especies tienen del bosque, y se construyó un índice de calidad de hábitat integral con datos de sensores remotos e información de campo. El algoritmo de Random Forest fue el que mostró el error más bajo de estimación del SCI (Accuracy = 0.675 y Kappa = 0.532); mientras que para la estimación de la dependencia de las especies hacia el bosque, fue el algoritmo de Máquinas de Soporte Vectorial (Accuracy = 0.643 y Kappa= 0.397). Se encontró que las variables que aportan mayor información para la estimación del SCI son Red edge 1, Red, SWIR_2, Green, el índice PSRI de Sentinel-2A y los índices de Radar HV, VHdivVV y VHdivHH. Se comprobó que los valores de exactitud temática son más bajos al utilizar las 18 categorías de SCI, por lo que se simplificó a cinco categorías. De manera similar, para la estimación de la calidad del bosque se encontró que las variables que aportan mayor información son HVdivHH y HV de Sentinel-1A y el Tasseled cap wetness, el índice MNDWI y la banda SWIR_1. Finalmente, el modelo que integra el SCI con la calidad de los bosques resultó con la mayor exactitud temática, desarrollado con el algoritmo de Potenciación del Gradiente (Accuracy= 0.724 y Kappa= 0.493), permitiendo identificar áreas de incongruencia entre estos dos componentes. La exactitud de los modelos evidencia que las variables predictoras derivadas de SR, presentan relaciones que no son capturadas por las variables originales del SCI y que pueden contribuir a su mejoramiento, mientras que la estimación de dependencia de las especies al bosque refleja un sesgo en el muestreo. No obstante, el modelo final incorpora la incertidumbre de los dos primeros modelos, lo que fortalece los resultados encontrados en los modelos 1 y 2, pero así mismo con la capacidad de retroalimentarse con una mayor disponibilidad de registros biológicos curados. (Texto tomado de la fuente)The use of spatial information for the study of ecological phenomena that involve multiple species, is fundamental for the approach of strategies for the conservation, planning and monitoring of biodiversity. The habitat, defined in this work as the biophysical conditions that allow the persistence of the population of a species in space and time, has traditionally been analyzed by means of different products derived from remote sensing (RS), with the disadvantage of that many of these lack validation in the field, or have insufficient spatial or thematic resolution for planning and monitoring conservation actions. To overcome these limitations, we integrate spectral information from SAR data (Synthetic Aperture Radar such as Sentinel-1 and PALSAR), multispectral data (Sentinel-2 and MODIS), and records of species taken in the field and consulted in national and international databases. Using five learning algorithms (Machine Learning), we propose a specific habitat quality index for tropical humid forest ecosystems, in a study area located in Magdalena Medio, between the municipalities of Puerto Berrío, Yondó, Cantagallo and Puerto Wilches. As an approximation to measure forest quality, we use the Hansen Structural Condition Index (SCI), which evaluates the structure of forests, although it does not consider other elements related to the integrity of this ecosystem, such as its composition and function. For this reason, the SCI was modified with biological records, adjusted to represent the dependence that species have on the forest, and a comprehensive habitat quality index was constructed with data from remote sensors and field information. The Random Forest algorithm was the one that showed the lowest SCI estimation error (Accuracy = 0.675 and Kappa = 0.532); while for the estimation of the dependence of the species on the forest, it was the Support Vector Machines algorithm (Accuracy = 0.643 and Kappa = 0.397). It was found that the variables that provide the most information for estimating the SCI are Red edge 1, Red, SWIR_2, Green, the PSRI index of Sentinel-2A and the Radar HV, VHdivVV and VHdivHH indices. It was found that the thematic accuracy values are lower when using the 18 SCI categories, so it was simplified to five categories. Similarly, for the estimation of forest quality it was found that the variables that provide the most information are HVdivHH and HV of Sentinel-1A and the Tasseled cap wetness, the MNDWI index and the SWIR_1 band. Finally, the model that integrates the SCI with the quality of the forests resulted with the greatest thematic accuracy, developed with the Gradient Boosting algorithm (Accuracy= 0.724 and Kappa= 0.493), allowing the identification of areas of incongruence between these two components. The accuracy of the models shows that the predictor variables derived from SR present relationships that are not captured by the original variables of the SCI and that can contribute to their improvement, while the estimate of dependence of the species on the forest reflects a bias in the sampling. However, the final model incorporates the uncertainty of the first two models, which strengthens the results found in models 1 and 2, but also with the ability to feed back with a greater availability of curated biological records.MaestríaMagíster en GeomáticaGeoinformación para el uso sostenible de los recursos naturales132 páginasapplication/pdf500 - Ciencias naturales y matemáticas::507 - Educación, investigación, temas relacionadosRecursos naturalesHabitatNatural resourcesEcosistemaEcosystemMultispectralSynthetic Aperture RadarSupervised LearningMachine LearningEcological IntegrityHabitat QualityÍndices radiométricos, multiespectrales y SAR, para la evaluación a gran escala de la calidad de hábitat en bosque húmedo tropical en zonas del Magdalena Medio, ColombiaRadiometric, multispectral and SAR indices, for the large-scale evaluation of habitat quality in tropical humid forest in areas of Magdalena Medio, ColombiaTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesishttp://purl.org/coar/version/c_dc82b40f9837b551http://purl.org/redcol/resource_type/TMBogotá - Ciencias Agrarias - Maestría en GeomáticaFacultad de Ciencias AgrariasBogotá, ColombiaUniversidad Nacional de Colombia - Sede BogotáColombiaMagdalena MedioAbdelkareem, M., Bamousa, A. O., Hamimi, Z., & Kamal El-Din, G. M. (2020). Multispectral and RADAR images integration for geologic, geomorphic, and structural investigation in southwestern Arabian Shield, Al Qunfudhah area, Saudi Arabia. Journal of Taibah University for Science, 14(1), 383-401. https://doi.org/10.1080/16583655.2020.1741957Abdulkareem, N. M., & Abdulazeez, A. M. (2021). Machine Learning Classification Based on Radom Forest Algorithm: A Review. https://doi.org/10.5281/ZENODO.4471118Abramovich, F., & Pensky, M. (2015). Classification with many classes: Challenges and pluses. https://doi.org/10.48550/ARXIV.1506.01567Acharya, T., Subedi, A., & Lee, D. (2018). Evaluation of Water Indices for Surface Water Extraction in a Landsat 8 Scene of Nepal. Sensors, 18(8), 2580. https://doi.org/10.3390/s18082580Achury, R., & Suarez, A. V. (2018). Richness and Composition of Ground-dwelling Ants in Tropical Rainforest and Surrounding Landscapes in the Colombian Inter-Andean Valley. Neotropical Entomology, 47(6), 731-741. https://doi.org/10.1007/s13744-017-0565-4AghaKouchak, A., Farahmand, A., Melton, F. S., Teixeira, J., Anderson, M. C., Wardlow, B. D., & Hain, C. R. (2015). Remote sensing of drought: Progress, challenges and opportunities: REMOTE SENSING OF DROUGHT. Reviews of Geophysics, 53(2), 452-480. https://doi.org/10.1002/2014RG000456Aiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B., & Anderson, R. P. (2015). spThin: An R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography, 38(5), 541-545. https://doi.org/10.1111/ecog.01132Alam, A., Bhat, M. S., & Maheen, M. (2020). Using Landsat satellite data for assessing the land use and land cover change in Kashmir valley. GeoJournal, 85(6), 1529-1543. https://doi.org/10.1007/s10708-019-10037-xAlaniz, A. J., Carvajal, M. A., Fierro, A., Vergara-Rodríguez, V., Toledo, G., Ansaldo, D., Moreira-Arce, D., Rojas-Osorio, A., & Vergara, P. M. (2021). Remote-sensing estimates of forest structure and dynamics as indicators of habitat quality for Magellanic woodpeckers. Ecological Indicators, 126, 107634. https://doi.org/10.1016/j.ecolind.2021.107634Allam, M., Bakr, N., & Elbably, W. (2019). Multi-temporal assessment of land use/land cover change in arid region based on landsat satellite imagery: Case study in Fayoum Region, Egypt. Remote Sensing Applications: Society and Environment, 14, 8-19. https://doi.org/10.1016/j.rsase.2019.02.002Alton, P. B. (2018). Decadal trends in photosynthetic capacity and leaf area index inferred from satellite remote sensing for global vegetation types. Agricultural and Forest Meteorology, 250-251, 361-375. https://doi.org/10.1016/j.agrformet.2017.11.020Andrew, M. E., Wulder, M. A., & Nelson, T. A. (2014). Potential contributions of remote sensing to ecosystem service assessments. Progress in Physical Geography: Earth and Environment, 38(3), 328-353. https://doi.org/10.1177/0309133314528942Aniah, P., Bawakyillenuo, S., Codjoe, S. N. A., & Dzanku, F. M. (2023). Land use and land cover change detection and prediction based on CA-Markov chain in the savannah ecological zone of Ghana. Environmental Challenges, 10, 100664. https://doi.org/10.1016/j.envc.2022.100664Ansaldo, D., Vergara, P. M., Carvajal, M. A., Alaniz, A. J., Fierro, A., ReinaldoVargas-Castillo, Quiroz, M., Moreira-Arce, D., & Pizarro, J. (2021). Tree decay modulates the functional response of lichen communities in Patagonian temperate forests. Science of The Total Environment, 771, 145360. https://doi.org/10.1016/j.scitotenv.2021.145360Araújo, M. B., & Guisan, A. (2006). Five (or so) challenges for species distribution modelling. Journal of Biogeography, 33(10), 1677-1688. https://doi.org/10.1111/j.1365-2699.2006.01584.xArshad, M., Eid, E. M., & Hasan, M. (2020). Mangrove health along the hyper-arid southern Red Sea coast of Saudi Arabia. Environmental Monitoring and Assessment, 192(3), 189. https://doi.org/10.1007/s10661-020-8140-6Astola, H., Häme, T., Sirro, L., Molinier, M., & Kilpi, J. (2019). Comparison of Sentinel-2 and Landsat 8 imagery for forest variable prediction in boreal region. Remote Sensing of Environment, 223, 257-273. https://doi.org/10.1016/j.rse.2019.01.019aba, K. A., Lal, D., & Bello, A. (2019). Application of Remote sensing and GIS Techniques in Urban Planning, Development and Management. (A case study of Allahabad District, India). 10(6).Bechara, F. C., Dickens, S. J., Farrer, E. C., Larios, L., Spotswood, E. N., Mariotte, P., & Suding, K. N. (2016). Neotropical rainforest restoration: Comparing passive, plantation and nucleation approaches. Biodiversity and Conservation, 25(11), 2021-2034. https://doi.org/10.1007/s10531-016-1186-7Beck, J., Böller, M., Erhardt, A., & Schwanghart, W. (2014). Spatial bias in the GBIF database and its effect on modeling species’ geographic distributions. Ecological Informatics, 19, 10-15. https://doi.org/10.1016/j.ecoinf.2013.11.002Bodart, C., Brink, A. B., Donnay, F., Lupi, A., Mayaux, P., & Achard, F. (2013). Continental estimates of forest cover and forest cover changes in the dry ecosystems of Africa between 1990 and 2000. Journal of Biogeography, 40(6), 1036-1047. https://doi.org/10.1111/jbi.12084Bolyn, C., Michez, A., Gaucher, P., Lejeune, P., & Bonnet, S. (2018). Forest mapping and species composition using supervised per pixel classification of Sentinel-2 imagery. BASE, 172-187. https://doi.org/10.25518/1780-4507.16524Booth, T. H. (2018). Why understanding the pioneering and continuing contributions of BIOCLIM to species distribution modelling is important. Austral Ecology, 43(8), 852-860. https://doi.org/10.1111/aec.12628Borja, A., Bricker, S. B., Dauer, D. M., Demetriades, N. T., Ferreira, J. G., Forbes, A. T., Hutchings, P., Jia, X., Kenchington, R., Marques, J. C., & Zhu, C. (2008). Overview of integrative tools and methods in assessing ecological integrity in estuarine and coastal systems worldwide. Marine Pollution Bulletin, 56(9), 1519-1537. https://doi.org/10.1016/j.marpolbul.2008.07.005Bowler, D. E., Callaghan, C. T., Bhandari, N., Henle, K., Benjamin Barth, M., Koppitz, C., Klenke, R., Winter, M., Jansen, F., Bruelheide, H., & Bonn, A. (2022). Temporal trends in the spatial bias of species occurrence records. Ecography, 2022(8). https://doi.org/10.1111/ecog.06219Brennan, A., Beytell, P., Aschenborn, O., Du Preez, P., Funston, P. J., Hanssen, L., Kilian, J. W., Stuart‐Hill, G., Taylor, R. D., & Naidoo, R. (2020). Characterizing multispecies connectivity across a transfrontier conservation landscape. Journal of Applied Ecology, 57(9), 1700-1710. https://doi.org/10.1111/1365-2664.13716Callaghan, C. T., Major, R. E., Lyons, M. B., Martin, J. M., & Kingsford, R. T. (2018). The effects of local and landscape habitat attributes on bird diversity in urban greenspaces. Ecosphere, 9(7), e02347. https://doi.org/10.1002/ecs2.2347Caradima, B., Schuwirth, N., & Reichert, P. (2019). From individual to joint species distribution models: A comparison of model complexity and predictive performance. Journal of Biogeography, 46(10), 2260-2274. https://doi.org/10.1111/jbi.13668Carella, E., Orusa, T., Viani, A., Meloni, D., Borgogno-Mondino, E., & Orusa, R. (2022). An Integrated, Tentative Remote-Sensing Approach Based on NDVI Entropy to Model Canine Distemper Virus in Wildlife and to Prompt Science-Based Management Policies. Animals, 12(8), 1049. https://doi.org/10.3390/ani12081049Casal, R., Costa, J., & Oviedo, M. (2021). Aprendizaje Estadístico. https://rubenfcasal.github.io/aprendizaje_estadistico/index.htmlChamberlain, S. A., & Boettiger, C. (2017). R Python, and Ruby clients for GBIF species occurrence data [Preprint]. PeerJ Preprints. https://doi.org/10.7287/peerj.preprints.3304v1Chen, R.-C., Dewi, C., Huang, S.-W., & Caraka, R. E. (2020). Selecting critical features for data classification based on machine learning methods. Journal of Big Data, 7(1), 52. https://doi.org/10.1186/s40537-020-00327-4Cheng, J., Song, C., Liu, K., Fan, C., Ke, L., Chen, T., Zhan, P., & Yao, J. (2022). Satellite and UAV-based remote sensing for assessing the flooding risk from Tibetan lake expansion and optimizing the village relocation site. Science of The Total Environment, 802, 149928. https://doi.org/10.1016/j.scitotenv.2021.149928Chuvieco, E. (2020). Fundamentals of satellite remote sensing: An environmental approach (Third edition). CRC Press.Cismondi, F., Fialho, A. S., Vieira, S. M., Reti, S. R., Sousa, J. M. C., & Finkelstein, S. N. (2013). Missing data in medical databases: Impute, delete or classify? Artificial Intelligence in Medicine, 58(1), 63-72. https://doi.org/10.1016/j.artmed.2013.01.003Correa Ayram, C. A., Etter, A., Díaz-Timoté, J., Rodríguez Buriticá, S., Ramírez, W., & Corzo, G. (2020). Spatiotemporal evaluation of the human footprint in Colombia: Four decades of anthropic impact in highly biodiverse ecosystems. Ecological Indicators, 117, 106630. https://doi.org/10.1016/j.ecolind.2020.106630Curd, A., Chevalier, M., Vasquez, M., Boyé, A., Firth, L. B., Marzloff, M. P., Bricheno, L. M., Burrows, M. T., Bush, L. E., Cordier, C., Davies, A. J., Green, J. A. M., Hawkins, S. J., Lima, F. P., Meneghesso, C., Mieszkowska, N., Seabra, R., & Dubois, S. F. (2023). Applying landscape metrics to species distribution model predictions to characterize internal range structure and associated changes. Global Change Biology, 29(3), 631-647. https://doi.org/10.1111/gcb.16496Dantas De Paula, M., Groeneveld, J., & Huth, A. (2016). The extent of edge effects in fragmented landscapes: Insights from satellite measurements of tree cover. Ecological Indicators, 69, 196-204. https://doi.org/10.1016/j.ecolind.2016.04.018De Araujo Barbosa, C. C., Atkinson, P. M., & Dearing, J. A. (2015). Remote sensing of ecosystem services: A systematic review. Ecological Indicators, 52, 430-443. https://doi.org/10.1016/j.ecolind.2015.01.007Delegido, J., Verrelst, J., Alonso, L., & Moreno, J. (2011). Evaluation of Sentinel-2 Red-Edge Bands for Empirical Estimation of Green LAI and Chlorophyll Content. Sensors, 11(7), 7063-7081. https://doi.org/10.3390/s110707063Dhingra, S., & Kumar, D. (2019). A review of remotely sensed satellite image classification. International Journal of Electrical and Computer Engineering (IJECE), 9(3), 1720. https://doi.org/10.11591/ijece.v9i3.pp1720-1731Di Febbraro, M., Sallustio, L., Vizzarri, M., De Rosa, D., De Lisio, L., Loy, A., Eichelberger, B. A., & Marchetti, M. (2018). Expert-based and correlative models to map habitat quality: Which gives better support to conservation planning? Global Ecology and Conservation, 16, e00513. https://doi.org/10.1016/j.gecco.2018.e00513DiMiceli, C., Townshend, J., Carroll, M., & Sohlberg, R. (2021). Evolution of the representation of global vegetation by vegetation continuous fields. Remote Sensing of Environment, 254, 112271. https://doi.org/10.1016/j.rse.2020.112271Dronova, I., Taddeo, S., Hemes, K. S., Knox, S. H., Valach, A., Oikawa, P. Y., Kasak, K., & Baldocchi, D. D. (2021). Remotely sensed phenological heterogeneity of restored wetlands: Linking vegetation structure and function. Agricultural and Forest Meteorology, 296, 108215. https://doi.org/10.1016/j.agrformet.2020.108215Dubertret, F., Le Tourneau, F.-M., Villarreal, M. L., & Norman, L. M. (2022). Monitoring Annual Land Use/Land Cover Change in the Tucson Metropolitan Area with Google Earth Engine (1986–2020). Remote Sensing, 14(9), 2127. https://doi.org/10.3390/rs14092127Dubovik, O., Schuster, G. L., Xu, F., Hu, Y., Bösch, H., Landgraf, J., & Li, Z. (2021). Grand Challenges in Satellite Remote Sensing. Frontiers in Remote Sensing, 2, 619818. https://doi.org/10.3389/frsen.2021.619818Elbeih, S. F. (2021). Evaluation of agricultural expansion areas in the Egyptian deserts: A review using remote sensing and GIS. The Egyptian Journal of Remote Sensing and Space Science, 24(3), 889-906. https://doi.org/10.1016/j.ejrs.2021.10.004Fachinetti, R., & Grilli, M. P. (2023). The quality matters: Assessing the roles of patch quality and configuration on the abundance of an invading cerambycid species through a multi‐model inference approach. Ecological Entomology, 48(5), 557-567. https://doi.org/10.1111/een.13247Fagua, J. C., Jantz, P., Rodriguez-Buritica, S., Duncanson, L., & Goetz, S. J. (2019). Integrating LiDAR, Multispectral and SAR Data to Estimate and Map Canopy Height in Tropical Forests. Remote Sensing, 11(22), 2697. https://doi.org/10.3390/rs11222697Fagua, J. C., Rodríguez-Buriticá, S., & Jantz, P. (2023). Advancing High-Resolution Land Cover Mapping in Colombia: The Importance of a Locally Appropriate Legend. Remote Sensing, 15(10), 2522. https://doi.org/10.3390/rs15102522Fan, X., Song, Y., Zhu, C., Balzter, H., & Bai, Z. (2021). Estimating Ecological Responses to Climatic Variability on Reclaimed and Unmined Lands Using Enhanced Vegetation Index. Remote Sensing, 13(6), 1100. https://doi.org/10.3390/rs13061100Fatehi, P., Damm, A., Schaepman, M., & Kneubühler, M. (2015). Estimation of Alpine Forest Structural Variables from Imaging Spectrometer Data. Remote Sensing, 7(12), 16315-16338. https://doi.org/10.3390/rs71215830Feranec, J. (Ed.). (2016). European landscape dynamics: Corine land cover data. CRC Press.Fraga, H., Amraoui, M., Malheiro, A. C., Moutinho-Pereira, J., Eiras-Dias, J., Silvestre, J., & Santos, J. A. (2014). Examining the relationship between the Enhanced Vegetation Index and grapevine phenology. European Journal of Remote Sensing, 47(1), 753-771. https://doi.org/10.5721/EuJRS20144743Gao, W., Zheng, C., Liu, X., Lu, Y., Chen, Y., Wei, Y., & Ma, Y. (2022). NDVI-based vegetation dynamics and their responses to climate change and human activities from 1982 to 2020: A case study in the Mu Us Sandy Land, China. Ecological Indicators, 137, 108745. https://doi.org/10.1016/j.ecolind.2022.108745Gibson, R., Danaher, T., Hehir, W., & Collins, L. (2020). A remote sensing approach to mapping fire severity in south-eastern Australia using sentinel 2 and random forest. Remote Sensing of Environment, 240, 111702. https://doi.org/10.1016/j.rse.2020.111702Gómez-Lora, J. W., Gallo-Ramos, V. H., & Camacho-Zorogastúa, K. D. C. (2021). Evaluación del bosque húmedo tropical mediante el análisis de la cobertura fraccional y técnicas SIG en la subcuenca del río Yuracyacu, Amazonía peruana. Madera y Bosques, 27(2). https://doi.org/10.21829/myb.2021.2722109Goswami, S., Gamon, J., Vargas, S., & Tweedie, C. (2015). Relationships of NDVI, Biomass, and Leaf Area Index (LAI) for six key plant species in Barrow, Alaska [Preprint]. PeerJ PrePrints. https://doi.org/10.7287/peerj.preprints.913v1Grabska, E., Hostert, P., Pflugmacher, D., & Ostapowicz, K. (2019). Forest Stand Species Mapping Using the Sentinel-2 Time Series. Remote Sensing, 11(10), 1197. https://doi.org/10.3390/rs11101197Grantham, H. S., Duncan, A., Evans, T. D., Jones, K. R., Beyer, H. L., Schuster, R., Walston, J., Ray, J. C., Robinson, J. G., Callow, M., Clements, T., Costa, H. M., DeGemmis, A., Elsen, P. R., Ervin, J., Franco, P., Goldman, E., Goetz, S., Hansen, A., … Watson, J. E. M. (2020). Anthropogenic modification of forests means only 40% of remaining forests have high ecosystem integrity. Nature Communications, 11(1), 5978. https://doi.org/10.1038/s41467-020-19493-3Greenwell, B. M., Boehmke, B. C., & McCarthy, A. J. (2018). A Simple and Effective Model-Based Variable Importance Measure. https://doi.org/10.48550/ARXIV.1805.04755Halder, B., Bandyopadhyay, J., & Banik, P. (2021). Monitoring the effect of urban development on urban heat island based on remote sensing and geo-spatial approach in Kolkata and adjacent areas, India. Sustainable Cities and Society, 74, 103186. https://doi.org/10.1016/j.scs.2021.103186Hank, T. B., Berger, K., Bach, H., Clevers, J. G. P. W., Gitelson, A., Zarco-Tejada, P., & Mauser, W. (2019). Spaceborne Imaging Spectroscopy for Sustainable Agriculture: Contributions and Challenges. Surveys in Geophysics, 40(3), 515-551. https://doi.org/10.1007/s10712-018-9492-0Hansen, A., Barnett, K., Jantz, P., Phillips, L., Goetz, S. J., Hansen, M., Venter, O., Watson, J. E. M., Burns, P., Atkinson, S., Rodríguez-Buritica, S., Ervin, J., Virnig, A., Supples, C., & De Camargo, R. (2019). Global humid tropics forest structural condition and forest structural integrity maps. Scientific Data, 6(1), 232. https://doi.org/10.1038/s41597-019-0214-3Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., Thau, D., Stehman, S. V., Goetz, S. J., Loveland, T. R., Kommareddy, A., Egorov, A., Chini, L., Justice, C. O., & Townshend, J. R. G. (2013). High-Resolution Global Maps of 21st-Century Forest Cover Change. Science, 342(6160), 850-853. https://doi.org/10.1126/science.1244693Hasanah, A., Supriatna, & Indrawan, M. (2020). Assessment of tropical forest degradation on a small island using the enhanced vegetation index. IOP Conference Series: Earth and Environmental Science, 481(1), 012061. https://doi.org/10.1088/1755-1315/481/1/012061He, C., Gao, B., Huang, Q., Ma, Q., & Dou, Y. (2017). Environmental degradation in the urban areas of China: Evidence from multi-source remote sensing data. Remote Sensing of Environment, 193, 65-75. https://doi.org/10.1016/j.rse.2017.02.027He, K. S., Bradley, B. A., Cord, A. F., Rocchini, D., Tuanmu, M., Schmidtlein, S., Turner, W., Wegmann, M., & Pettorelli, N. (2015). Will remote sensing shape the next generation of species distribution models? Remote Sensing in Ecology and Conservation, 1(1), 4-18. https://doi.org/10.1002/rse2.7Hong Han, Xiaoling Guo, & Hua Yu. (2016). Variable selection using Mean Decrease Accuracy and Mean Decrease Gini based on Random Forest. 2016 7th IEEE International Conference on Software Engineering and Service Science (ICSESS), 219-224. https://doi.org/10.1109/ICSESS.2016.7883053Huang, S., Tang, L., Hupy, J. P., Wang, Y., & Shao, G. (2021). A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. Journal of Forestry Research, 32(1), 1-6. https://doi.org/10.1007/s11676-020-01155-1Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., & Ferreira, L. G. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(1-2), 195-213. https://doi.org/10.1016/S0034-4257(02)00096-2Huo, L., Persson, H. J., & Lindberg, E. (2021). Early detection of forest stress from European spruce bark beetle attack, and a new vegetation index: Normalized distance red & SWIR (NDRS). Remote Sensing of Environment, 255, 112240. https://doi.org/10.1016/j.rse.2020.112240Hussain, S., & Karuppannan, S. (2023). Land use/land cover changes and their impact on land surface temperature using remote sensing technique in district Khanewal, Punjab Pakistan. Geology, Ecology, and Landscapes, 7(1), 46-58. https://doi.org/10.1080/24749508.2021.1923272Ige, S. O., Ajayi, V. O., Adeyeri, O. E., & Oyekan, K. S. A. (2017). Assessing remotely sensed temperature humidity index as human comfort indicator relative to landuse landcover change in Abuja, Nigeria. Spatial Information Research, 25(4), 523-533. https://doi.org/10.1007/s41324-017-0118-2Ishwaran, H., & Lu, M. (2019). Standard errors and confidence intervals for variable importance in random forest regression, classification, and survival. Statistics in Medicine, 38(4), 558-582. https://doi.org/10.1002/sim.7803Jarchow, C., Didan, K., Barreto-Muñoz, A., Nagler, P., & Glenn, E. (2018). Application and Comparison of the MODIS-Derived Enhanced Vegetation Index to VIIRS, Landsat 5 TM and Landsat 8 OLI Platforms: A Case Study in the Arid Colorado River Delta, Mexico. Sensors, 18(5), 1546. https://doi.org/10.3390/s18051546Jaybhay, J., & Shastri, R. (2015). A Study of Speckle Noise Reduction Filters. Signal & Image Processing : An International Journal, 6(3), 71-80. https://doi.org/10.5121/sipij.2015.6306Jindo, K., Kozan, O., Iseki, K., Maestrini, B., Van Evert, F. K., Wubengeda, Y., Arai, E., Shimabukuro, Y. E., Sawada, Y., & Kempenaar, C. (2021). Potential utilization of satellite remote sensing for field-based agricultural studies. Chemical and Biological Technologies in Agriculture, 8(1), 58. https://doi.org/10.1186/s40538-021-00253-4Jog, S., & Dixit, M. (2016). Supervised classification of satellite images. 2016 Conference on Advances in Signal Processing (CASP), 93-98. https://doi.org/10.1109/CASP.2016.7746144Joshi, N., Baumann, M., Ehammer, A., Fensholt, R., Grogan, K., Hostert, P., Jepsen, M., Kuemmerle, T., Meyfroidt, P., Mitchard, E., Reiche, J., Ryan, C., & Waske, B. (2016). A Review of the Application of Optical and Radar Remote Sensing Data Fusion to Land Use Mapping and Monitoring. Remote Sensing, 8(1), 70. https://doi.org/10.3390/rs8010070Jung, M., Dahal, P. R., Butchart, S. H. M., Donald, P. F., De Lamo, X., Lesiv, M., Kapos, V., Rondinini, C., & Visconti, P. (2020). A global map of terrestrial habitat types. Scientific Data, 7(1), 256. https://doi.org/10.1038/s41597-020-00599-8Kalacska, M. (2004). Leaf area index measurements in a tropical moist forest: A case study from Costa Rica. Remote Sensing of Environment, 91(2), 134-152. https://doi.org/10.1016/j.rse.2004.02.011Kanniah, K. D., Kang, C. S., Sharma, S., & Amir, A. A. (2021). Remote Sensing to Study Mangrove Fragmentation and Its Impacts on Leaf Area Index and Gross Primary Productivity in the South of Peninsular Malaysia. Remote Sensing, 13(8), 1427. https://doi.org/10.3390/rs13081427Karr, J. R., Larson, E. R., & Chu, E. W. (2022). Ecological integrity is both real and valuable. Conservation Science and Practice, 4(2). https://doi.org/10.1111/csp2.583Kganyago, M., Mhangara, P., Alexandridis, T., Laneve, G., Ovakoglou, G., & Mashiyi, N. (2020). Validation of sentinel-2 leaf area index (LAI) product derived from SNAP toolbox and its comparison with global LAI products in an African semi-arid agricultural landscape. Remote Sensing Letters, 11(10), 883-892. https://doi.org/10.1080/2150704X.2020.1767823Klimes, P., Idigel, C., Rimandai, M., Fayle, T. M., Janda, M., Weiblen, G. D., & Novotny, V. (2012). Why are there more arboreal ant species in primary than in secondary tropical forests?: Why are there more arboreal ants in primary forests? Journal of Animal Ecology, 81(5), 1103-1112. https://doi.org/10.1111/j.1365-2656.2012.02002.xKohzuma, K., Sonoike, K., & Hikosaka, K. (2021). Imaging, screening and remote sensing of photosynthetic activity and stress responses. Journal of Plant Research, 134(4), 649-651. https://doi.org/10.1007/s10265-021-01324-1Kupfer, J. A. (2006). National assessments of forest fragmentation in the US. Global Environmental Change, 16(1), 73-82. https://doi.org/10.1016/j.gloenvcha.2005.10.003Kursa, M. B., & Rudnicki, W. R. (2010). Feature Selection with the Boruta Package. Journal of Statistical Software, 36(11). https://doi.org/10.18637/jss.v036.i11Lastovicka, J., Svec, P., Paluba, D., Kobliuk, N., Svoboda, J., Hladky, R., & Stych, P. (2020). Sentinel-2 Data in an Evaluation of the Impact of the Disturbances on Forest Vegetation. Remote Sensing, 12(12), 1914. https://doi.org/10.3390/rs12121914Lawrence, R. (2004). Classification of remotely sensed imagery using stochastic gradient boosting as a refinement of classification tree analysis. Remote Sensing of Environment, 90(3), 331-336. https://doi.org/10.1016/j.rse.2004.01.007Lazic, S. E., Mellor, J. R., Ashby, M. C., & Munafo, M. R. (2020). A Bayesian predictive approach for dealing with pseudoreplication. Scientific Reports, 10(1), 2366. https://doi.org/10.1038/s41598-020-59384-7Lechner, A. M., Foody, G. M., & Boyd, D. S. (2020). Applications in Remote Sensing to Forest Ecology and Management. One Earth, 2(5), 405-412. https://doi.org/10.1016/j.oneear.2020.05.001Leitão, P. J., & Santos, M. J. (2019). Improving Models of Species Ecological Niches: A Remote Sensing Overview. Frontiers in Ecology and Evolution, 7, 9. https://doi.org/10.3389/fevo.2019.00009Lembrechts, J. J., Nijs, I., & Lenoir, J. (2019). Incorporating microclimate into species distribution models. Ecography, 42(7), 1267-1279. https://doi.org/10.1111/ecog.03947Leta, M. K., Demissie, T. A., & Tränckner, J. (2021). Modeling and Prediction of Land Use Land Cover Change Dynamics Based on Land Change Modeler (LCM) in Nashe Watershed, Upper Blue Nile Basin, Ethiopia. Sustainability, 13(7), 3740. https://doi.org/10.3390/su13073740Li, P., Wang, J., Liu, M., Xue, Z., Bagherzadeh, A., & Liu, M. (2021). Spatio-temporal variation characteristics of NDVI and its response to climate on the Loess Plateau from 1985 to 2015. CATENA, 203, 105331. https://doi.org/10.1016/j.catena.2021.105331Li, Q., Lu, X., Wang, Y., Huang, X., Cox, P. M., & Luo, Y. (2018). Leaf area index identified as a major source of variability in modeled CO<sub>2</sub> fertilization. Biogeosciences, 15(22), 6909-6925. https://doi.org/10.5194/bg-15-6909-2018Li, S., Xu, L., Jing, Y., Yin, H., Li, X., & Guan, X. (2021). High-quality vegetation index product generation: A review of NDVI time series reconstruction techniques. International Journal of Applied Earth Observation and Geoinformation, 105, 102640. https://doi.org/10.1016/j.jag.2021.102640Liao, J., Li, Z., Hiebeler, D. E., Iwasa, Y., Bogaert, J., & Nijs, I. (2013). Species persistence in landscapes with spatial variation in habitat quality: A pair approximation model. Journal of Theoretical Biology, 335, 22-30. https://doi.org/10.1016/j.jtbi.2013.06.015Liu, T., & Yang, X. (2015). Monitoring land changes in an urban area using satellite imagery, GIS and landscape metrics. Applied Geography, 56, 42-54. https://doi.org/10.1016/j.apgeog.2014.10.002Louw, A. S., Fu, J., Raut, A., Zulhilmi, A., Yao, S., McAlinn, M., Fujikawa, A., Siddique, M. T., Wang, X., Yu, X., Mandvikar, K., & Avtar, R. (2022). The role of remote sensing during a global disaster: COVID-19 pandemic as case study. Remote Sensing Applications: Society and Environment, 27, 100789. https://doi.org/10.1016/j.rsase.2022.100789Lu, Y., Zhao, J., Qi, J., Rong, T., Wang, Z., Yang, Z., & Han, F. (2022). Monitoring the Spatiotemporal Dynamics of Habitat Quality and Its Driving Factors Based on the Coupled NDVI-InVEST Model: A Case Study from the Tianshan Mountains in Xinjiang, China. Land, 11(10), 1805. https://doi.org/10.3390/land11101805Luque, A., Carrasco, A., Martín, A., & De Las Heras, A. (2019). The impact of class imbalance in classification performance metrics based on the binary confusion matrix. Pattern Recognition, 91, 216-231. https://doi.org/10.1016/j.patcog.2019.02.023Ma, H., & Liang, S. (2022). Development of the GLASS 250-m leaf area index product (version 6) from MODIS data using the bidirectional LSTM deep learning model. Remote Sensing of Environment, 273, 112985. https://doi.org/10.1016/j.rse.2022.112985Maalouf, M. (2011). Logistic regression in data analysis: An overview. International Journal of Data Analysis Techniques and Strategies, 3(3), 281. https://doi.org/10.1504/IJDATS.2011.041335Maimaitijiang, M., Sagan, V., Sidike, P., Daloye, A. M., Erkbol, H., & Fritschi, F. B. (2020). Crop Monitoring Using Satellite/UAV Data Fusion and Machine Learning. Remote Sensing, 12(9), 1357. https://doi.org/10.3390/rs12091357Mairota, P., Cafarelli, B., Labadessa, R., Lovergine, F. P., Tarantino, C., Nagendra, H., & Didham, R. K. (2015). Very high resolution Earth Observation features for testing the direct and indirect effects of landscape structure on local habitat quality. International Journal of Applied Earth Observation and Geoinformation, 34, 96-102. https://doi.org/10.1016/j.jag.2014.07.003Mallegowda, P., Rengaian, G., Krishnan, J., & Niphadkar, M. (2015). Assessing Habitat Quality of Forest-Corridors through NDVI Analysis in Dry Tropical Forests of South India: Implications for Conservation. Remote Sensing, 7(2), 1619-1639. https://doi.org/10.3390/rs70201619Mancera, R. (2019). Evaluación de imágenes de radar Sentinel-1ª e imágenes multiespectrales Sentinel-2ª en la clasificación de cobertura del suelo en diferentes niveles de detalle. [Tesis de maestría no publicada]. Universidad Nacional de Colombia.Martos, V., Ahmad, A., Cartujo, P., & Ordoñez, J. (2021). Ensuring Agricultural Sustainability through Remote Sensing in the Era of Agriculture 5.0. Applied Sciences, 11(13), 5911. https://doi.org/10.3390/app11135911Masrur Ahmed, A. A., Deo, R. C., Feng, Q., Ghahramani, A., Raj, N., Yin, Z., & Yang, L. (2021). Deep learning hybrid model with Boruta-Random forest optimiser algorithm for streamflow forecasting with climate mode indices, rainfall, and periodicity. Journal of Hydrology, 599, 126350. https://doi.org/10.1016/j.jhydrol.2021.126350McNairn, H., & Shang, J. (2016). A Review of Multitemporal Synthetic Aperture Radar (SAR) for Crop Monitoring. En Y. Ban (Ed.), Multitemporal Remote Sensing (Vol. 20, pp. 317-340). Springer International Publishing. https://doi.org/10.1007/978-3-319-47037-5_15Melo-Merino, S. M., Reyes-Bonilla, H., & Lira-Noriega, A. (2020). Ecological niche models and species distribution models in marine environments: A literature review and spatial analysis of evidence. Ecological Modelling, 415, 108837. https://doi.org/10.1016/j.ecolmodel.2019.108837Messier, A. (2023). Patterns of greenness (NDVI) in the Southern Great Plains and their influence on the habitat quality and reproduction of a declining prairie grouse [Thesis]. https://krex.k-state.edu/handle/2097/42970Minghelli, A., Vadakke-Chanat, S., Chami, M., Guillaume, M., & Peirache, M. (2021). Benefit of the Potential Future Hyperspectral Satellite Sensor (BIODIVERSITY) for Improving the Determination of Water Column and Seabed Features in Coastal Zones. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 1222-1232. https://doi.org/10.1109/JSTARS.2020.3031729Misra, G., Cawkwell, F., & Wingler, A. (2020). Status of Phenological Research Using Sentinel-2 Data: A Review. Remote Sensing, 12(17), 2760. https://doi.org/10.3390/rs12172760Mondanaro, A., Di Febbraro, M., Castiglione, S., Melchionna, M., Serio, C., Girardi, G., Belfiore, A. M., & Raia, P. (2023). ENPHYLO : A new method to model the distribution of extremely rare species. Methods in Ecology and Evolution, 14(3), 911-922. https://doi.org/10.1111/2041-210X.14066Mora, F. (2017). A structural equation modeling approach for formalizing and evaluating ecological integrity in terrestrial ecosystems. Ecological Informatics, 41, 74-90. https://doi.org/10.1016/j.ecoinf.2017.05.002Mora, F. (2019). The use of ecological integrity indicators within the natural capital index framework: The ecological and economic value of the remnant natural capital of México. Journal for Nature Conservation, 47, 77-92. https://doi.org/10.1016/j.jnc.2018.11.007Morcillo-Pallarés, P., Rivera-Caicedo, J. P., Belda, S., De Grave, C., Burriel, H., Moreno, J., & Verrelst, J. (2019). Quantifying the Robustness of Vegetation Indices through Global Sensitivity Analysis of Homogeneous and Forest Leaf-Canopy Radiative Transfer Models. Remote Sensing, 11(20), 2418. https://doi.org/10.3390/rs11202418Moreira, A., Prats-Iraola, P., Younis, M., Krieger, G., Hajnsek, I., & Papathanassiou, K. P. (2013). A tutorial on synthetic aperture radar. IEEE Geoscience and Remote Sensing Magazine, 1(1), 6-43. https://doi.org/10.1109/MGRS.2013.2248301Moudrý, V., Moudrá, L., Barták, V., Bejček, V., Gdulová, K., Hendrychová, M., Moravec, D., Musil, P., Rocchini, D., Šťastný, K., Volf, O., & Šálek, M. (2021). The role of the vegetation structure, primary productivity and senescence derived from airborne LiDAR and hyperspectral data for birds diversity and rarity on a restored site. Landscape and Urban Planning, 210, 104064. https://doi.org/10.1016/j.landurbplan.2021.104064Moumane, A., Al Karkouri, J., Benmansour, A., El Ghazali, F. E., Fico, J., Karmaoui, A., & Batchi, M. (2022). Monitoring long-term land use, land cover change, and desertification in the Ternata oasis, Middle Draa Valley, Morocco. Remote Sensing Applications: Society and Environment, 26, 100745. https://doi.org/10.1016/j.rsase.2022.100745Mu, S., Yang, G., Xu, X., Wan, R., & Li, B. (2022). Assessing the inundation dynamics and its impacts on habitat suitability in Poyang Lake based on integrating Landsat and MODIS observations. Science of The Total Environment, 834, 154936. https://doi.org/10.1016/j.scitotenv.2022.154936Mutanga, O., & Skidmore, A. K. (2007). Red edge shift and biochemical content in grass canopies. ISPRS Journal of Photogrammetry and Remote Sensing, 62(1), 34-42. https://doi.org/10.1016/j.isprsjprs.2007.02.001Nagendra, H., Lucas, R., Honrado, J. P., Jongman, R. H. G., Tarantino, C., Adamo, M., & Mairota, P. (2013). Remote sensing for conservation monitoring: Assessing protected areas, habitat extent, habitat condition, species diversity, and threats. Ecological Indicators, 33, 45-59. https://doi.org/10.1016/j.ecolind.2012.09.014Nasir, S. M., Kamran, K. V., Blaschke, T., & Karimzadeh, S. (2022). Change of land use / land cover in kurdistan region of Iraq: A semi-automated object-based approach. Remote Sensing Applications: Society and Environment, 26, 100713. https://doi.org/10.1016/j.rsase.2022.100713Nemani, R., Pierce, L., Running, S., & Band, L. (1993). Forest ecosystem processes at the watershed scale: Sensitivity to remotely-sensed Leaf Area Index estimates. International Journal of Remote Sensing, 14(13), 2519-2534. https://doi.org/10.1080/01431169308904290Ogilvie, A., Belaud, G., Massuel, S., Mulligan, M., Le Goulven, P., & Calvez, R. (2018). Surface water monitoring in small water bodies: Potential and limits of multi-sensor Landsat time series. Hydrology and Earth System Sciences, 22(8), 4349-4380. https://doi.org/10.5194/hess-22-4349-2018Pal, S., Talukdar, S., & Ghosh, R. (2020). Damming effect on habitat quality of riparian corridor. Ecological Indicators, 114, 106300. https://doi.org/10.1016/j.ecolind.2020.106300Pan, Z., He, J., Liu, D., Wang, J., & Guo, X. (2021). Ecosystem health assessment based on ecological integrity and ecosystem services demand in the Middle Reaches of the Yangtze River Economic Belt, China. Science of The Total Environment, 774, 144837. https://doi.org/10.1016/j.scitotenv.2020.144837Pandey, P. C., Koutsias, N., Petropoulos, G. P., Srivastava, P. K., & Ben Dor, E. (2021). Land use/land cover in view of earth observation: Data sources, input dimensions, and classifiers—a review of the state of the art. Geocarto International, 36(9), 957-988. https://doi.org/10.1080/10106049.2019.1629647Pandey, R., Goswami, S., Sarup, J., & Matin, S. (2021). The thermal–optical trapezoid model-based soil moisture estimation using Landsat-8 data. Modeling Earth Systems and Environment, 7(2), 1029-1037. https://doi.org/10.1007/s40808-020-00975-8Parker, G. G. (2020). Tamm review: Leaf Area Index (LAI) is both a determinant and a consequence of important processes in vegetation canopies. Forest Ecology and Management, 477, 118496. https://doi.org/10.1016/j.foreco.2020.118496Peng, D., Zhang, H., Yu, L., Wu, M., Wang, F., Huang, W., Liu, L., Sun, R., Li, C., Wang, D., & Xu, F. (2018). Assessing spectral indices to estimate the fraction of photosynthetically active radiation absorbed by the vegetation canopy. International Journal of Remote Sensing, 39(22), 8022-8040. https://doi.org/10.1080/01431161.2018.1479795Perilla, G. A., & Mas, J.-F. (2020). Google Earth Engine (GEE): Una poderosa herramienta que vincula el potencial de los datos masivos y la eficacia del procesamiento en la nube. Investigaciones Geográficas, 101. https://doi.org/10.14350/rig.59929Perumal, K., & Bhaskaran, R. (2010). Supervised Classification Performance of Multispectral Images (arXiv:1002.4046). arXiv. http://arxiv.org/abs/1002.4046Pettorelli, N., Schulte To Bühne, H., Tulloch, A., Dubois, G., Macinnis-Ng, C., Queirós, A. M., Keith, D. A., Wegmann, M., Schrodt, F., Stellmes, M., Sonnenschein, R., Geller, G. N., Roy, S., Somers, B., Murray, N., Bland, L., Geijzendorffer, I., Kerr, J. T., Broszeit, S., … Nicholson, E. (2018). Satellite remote sensing of ecosystem functions: Opportunities, challenges and way forward. Remote Sensing in Ecology and Conservation, 4(2), 71-93. https://doi.org/10.1002/rse2.59Pires, M. M., & Galetti, M. (2023). Beyond the “empty forest”: The defaunation syndromes of Neotropical forests in the Anthropocene. Global Ecology and Conservation, 41, e02362. https://doi.org/10.1016/j.gecco.2022.e02362Qiu, B., Chen, J. M., Ju, W., Zhang, Q., & Zhang, Y. (2019). Simulating emission and scattering of solar-induced chlorophyll fluorescence at far-red band in global vegetation with different canopy structures. Remote Sensing of Environment, 233, 111373. https://doi.org/10.1016/j.rse.2019.111373Rahimi, L., Malekmohammadi, B., & Yavari, A. R. (2020). Assessing and Modeling the Impacts of Wetland Land Cover Changes on Water Provision and Habitat Quality Ecosystem Services. Natural Resources Research, 29(6), 3701-3718. https://doi.org/10.1007/s11053-020-09667-7Randin, C. F., Ashcroft, M. B., Bolliger, J., Cavender-Bares, J., Coops, N. C., Dullinger, S., Dirnböck, T., Eckert, S., Ellis, E., Fernández, N., Giuliani, G., Guisan, A., Jetz, W., Joost, S., Karger, D., Lembrechts, J., Lenoir, J., Luoto, M., Morin, X., … Payne, D. (2020). Monitoring biodiversity in the Anthropocene using remote sensing in species distribution models. Remote Sensing of Environment, 239, 111626. https://doi.org/10.1016/j.rse.2019.111626Raschka, S., Liu, Y. H. & Mirjalili, V. (2023). Machine Learning con PyTorch y Scikit-Learn: Cómo desarrollar modelos de Machine Learning y Deep Learning con Python. Alpha Editorial.Ray, S. (2019). A Quick Review of Machine Learning Algorithms. 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), 35-39. https://doi.org/10.1109/COMITCon.2019.8862451Reddy, C. S. (2021). Remote sensing of biodiversity: What to measure and monitor from space to species? Biodiversity and Conservation, 30(10), 2617-2631. https://doi.org/10.1007/s10531-021-02216-5Reich, P. B. (2012). Key canopy traits drive forest productivity. Proceedings of the Royal Society B: Biological Sciences, 279(1736), 2128-2134. https://doi.org/10.1098/rspb.2011.2270Requena-Mullor, J. M., López, E., Castro, A. J., Alcaraz-Segura, D., Castro, H., Reyes, A., & Cabello, J. (2017). Remote-sensing based approach to forecast habitat quality under climate change scenarios. PLOS ONE, 12(3), e0172107. https://doi.org/10.1371/journal.pone.0172107Requena-Mullor, J. M., López, E., Castro, A. J., Cabello, J., Virgós, E., González-Miras, E., & Castro, H. (2014). Modeling spatial distribution of European badger in arid landscapes: An ecosystem functioning approach. Landscape Ecology, 29(5), 843-855. https://doi.org/10.1007/s10980-014-0020-4Roques, L., & Stoica, R. S. (2007). Species persistence decreases with habitat fragmentation: An analysis in periodic stochastic environments. Journal of Mathematical Biology, 55(2), 189-205. https://doi.org/10.1007/s00285-007-0076-8Rosa, I. M. D., Purves, D., Souza, C., & Ewers, R. M. (2013). Predictive Modelling of Contagious Deforestation in the Brazilian Amazon. PLoS ONE, 8(10), e77231. https://doi.org/10.1371/journal.pone.0077231Rosenfield, M. F., Jakovac, C. C., Vieira, D. L. M., Poorter, L., Brancalion, P. H. S., Vieira, I. C. G., De Almeida, D. R. A., Massoca, P., Schietti, J., Albernaz, A. L. M., Ferreira, M. J., & Mesquita, R. C. G. (2023). Ecological integrity of tropical secondary forests: Concepts and indicators. Biological Reviews, 98(2), 662-676. https://doi.org/10.1111/brv.12924Roy, P. S., Behera, M. D., & Srivastav, S. K. (2017). Satellite Remote Sensing: Sensors, Applications and Techniques. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 87(4), 465-472. https://doi.org/10.1007/s40010-017-0428-8Ruelland, D., Dezetter, A., Puech, C., & Ardoin‐Bardin, S. (2008). Long‐term monitoring of land cover changes based on Landsat imagery to improve hydrological modelling in West Africa. International Journal of Remote Sensing, 29(12), 3533-3551. https://doi.org/10.1080/01431160701758699Ruggeri, S., Henao-Cespedes, V., Garcés-Gómez, Y. A., & Parra Uzcátegui, A. (2021). Optimized unsupervised CORINE Land Cover mapping using linear spectral mixture analysis and object-based image analysis. The Egyptian Journal of Remote Sensing and Space Science, 24(3), 1061-1069. https://doi.org/10.1016/j.ejrs.2021.10.009Sajjad, H., & Kumar, P. (2019). Future Challenges and Perspective of Remote Sensing Technology. En P. Kumar, M. Rani, P. Chandra Pandey, H. Sajjad, & B. S. Chaudhary (Eds.), Applications and Challenges of Geospatial Technology (pp. 275-277). Springer International Publishing. https://doi.org/10.1007/978-3-319-99882-4_16Sánchez-Giraldo, C., Correa Ayram, C., & Daza, J. M. (2021). Environmental sound as a mirror of landscape ecological integrity in monitoring programs. Perspectives in Ecology and Conservation, 19(3), 319-328. https://doi.org/10.1016/j.pecon.2021.04.003Sangpradid, S., Uttaruk, Y., Rotjanakusol, T., & Laosuwan, T. (2021). FORECASTING TIME SERIES CHANGE OF THE AVERAGE ENHANCED VEGETATION INDEX TO MONITORING DROUGHT CONDITION BY USING TERRA/MODIS DATA. The Journal «Agriculture and Forestry», 67(4). https://doi.org/10.17707/AgricultForest.67.4.11Santin-Janin, H., Garel, M., Chapuis, J.-L., & Pontier, D. (2009). Assessing the performance of NDVI as a proxy for plant biomass using non-linear models: A case study on the Kerguelen archipelago. Polar Biology, 32(6), 861-871. https://doi.org/10.1007/s00300-009-0586-5Sarker, I. H. (2021). Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Computer Science, 2(3), 160. https://doi.org/10.1007/s42979-021-00592-xSasmito, S. D., Taillardat, P., Clendenning, J. N., Cameron, C., Friess, D. A., Murdiyarso, D., & Hutley, L. B. (2019). Effect of land‐use and land‐cover change on mangrove blue carbon: A systematic review. Global Change Biology, 25(12), 4291-4302. https://doi.org/10.1111/gcb.14774Schipper, J. (s. f.). Magdalena-Urabá Moist Forests [Divulgativa]. https://www.oneearth.org/ecoregions/magdalena-uraba-moist-forests/Schulte To Bühne, H., & Pettorelli, N. (2018). Better together: Integrating and fusing multispectral and radar satellite imagery to inform biodiversity monitoring, ecological research and conservation science. Methods in Ecology and Evolution, 9(4), 849-865. https://doi.org/10.1111/2041-210X.12942Sexton, J. O., Song, X.-P., Feng, M., Noojipady, P., Anand, A., Huang, C., Kim, D.-H., Collins, K. M., Channan, S., DiMiceli, C., & Townshend, J. R. (2013). Global, 30-m resolution continuous fields of tree cover: Landsat-based rescaling of MODIS vegetation continuous fields with lidar-based estimates of error. International Journal of Digital Earth, 6(5), 427-448. https://doi.org/10.1080/17538947.2013.786146Shahzaman, M., Zhu, W., Bilal, M., Habtemicheal, B. A., Mustafa, F., Arshad, M., Ullah, I., Ishfaq, S., & Iqbal, R. (2021). Remote Sensing Indices for Spatial Monitoring of Agricultural Drought in South Asian Countries. Remote Sensing, 13(11), 2059. https://doi.org/10.3390/rs13112059Shao, Z., Sumari, N. S., Portnov, A., Ujoh, F., Musakwa, W., & Mandela, P. J. (2021). Urban sprawl and its impact on sustainable urban development: A combination of remote sensing and social media data. Geo-Spatial Information Science, 24(2), 241-255. https://doi.org/10.1080/10095020.2020.1787800Sheykhmousa, M., Mahdianpari, M., Ghanbari, H., Mohammadimanesh, F., Ghamisi, P., & Homayouni, S. (2020). Support Vector Machine Versus Random Forest for Remote Sensing Image Classification: A Meta-Analysis and Systematic Review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 6308-6325. https://doi.org/10.1109/JSTARS.2020.3026724Sims, D., Rahman, A., Cordova, V., Elmasri, B., Baldocchi, D., Bolstad, P., Flanagan, L., Goldstein, A., Hollinger, D., & Misson, L. (2008). A new model of gross primary productivity for North American ecosystems based solely on the enhanced vegetation index and land surface temperature from MODIS. Remote Sensing of Environment, 112(4), 1633-1646. https://doi.org/10.1016/j.rse.2007.08.004Skowno, A. L., Jewitt, D., & Slingsby, J. A. (2021). Rates and patterns of habitat loss across South Africa’s vegetation biomes. South African Journal of Science, 117(1/2). https://doi.org/10.17159/sajs.2021/8182Song, C. (2013). Optical remote sensing of forest leaf area index and biomass. Progress in Physical Geography: Earth and Environment, 37(1), 98-113. https://doi.org/10.1177/0309133312471367Song, J., Lu, X., Liu, M., & Wu, X. (2011). A new LogitBoost algorithm for multiclass unbalanced data classification. 2011 Eighth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), 974-977. https://doi.org/10.1109/FSKD.2011.6019654Song, Z., Li, X., Su, X., & Li, C. (2023). Analyzing the recovery mechanisms of patchy degradation and its response to mowing and plateau pika disturbances in alpine meadow. Ecological Indicators, 154, 110565. https://doi.org/10.1016/j.ecolind.2023.110565Soto, G. E., Pérez-Hernández, C. G., Hahn, I. J., Rodewald, A. D., & Vergara, P. M. (2017). Tree senescence as a direct measure of habitat quality: Linking red-edge Vegetation Indices to space use by Magellanic woodpeckers. Remote Sensing of Environment, 193, 1-10. https://doi.org/10.1016/j.rse.2017.02.018Soubry, I., Doan, T., Chu, T., & Guo, X. (2021). A Systematic Review on the Integration of Remote Sensing and GIS to Forest and Grassland Ecosystem Health Attributes, Indicators, and Measures. Remote Sensing, 13(16), 3262. https://doi.org/10.3390/rs13163262Souza, C. M., Z. Shimbo, J., Rosa, M. R., Parente, L. L., A. Alencar, A., Rudorff, B. F. T., Hasenack, H., Matsumoto, M., G. Ferreira, L., Souza-Filho, P. W. M., De Oliveira, S. W., Rocha, W. F., Fonseca, A. V., Marques, C. B., Diniz, C. G., Costa, D., Monteiro, D., Rosa, E. R., Vélez-Martin, E., … Azevedo, T. (2020). Reconstructing Three Decades of Land Use and Land Cover Changes in Brazilian Biomes with Landsat Archive and Earth Engine. Remote Sensing, 12(17), 2735. https://doi.org/10.3390/rs12172735Srivastava, V., Lafond, V., & Griess, V. C. (2019). Species distribution models (SDM): Applications, benefits and challenges in invasive species management. CABI Reviews, 2019, 1-13. https://doi.org/10.1079/PAVSNNR201914020Stenberg, P., Mõttus, M., & Rautiainen, M. (2008). Modeling the Spectral Signature of Forests: Application of Remote Sensing Models to Coniferous Canopies. En S. Liang (Ed.), Advances in Land Remote Sensing (pp. 147-171). Springer Netherlands. https://doi.org/10.1007/978-1-4020-6450-0_6Strobl, C., Malley, J., & Tutz, G. (2009). An introduction to recursive partitioning: Rationale, application, and characteristics of classification and regression trees, bagging, and random forests. Psychological Methods, 14(4), 323-348. https://doi.org/10.1037/a0016973Sun, Y., Liu, H., & Guo, Z. (2021). Capsule network-based approach for estimating grassland coverage using time series data from enhanced vegetation index. Artificial Intelligence in Geosciences, 2, 26-34. https://doi.org/10.1016/j.aiig.2021.08.001Szpakowski, D., & Jensen, J. (2019). A Review of the Applications of Remote Sensing in Fire Ecology. Remote Sensing, 11(22), 2638. https://doi.org/10.3390/rs11222638Taiwo, B. E., Kafy, A.-A., Samuel, A. A., Rahaman, Z. A., Ayowole, O. E., Shahrier, M., Duti, B. M., Rahman, M. T., Peter, O. T., & Abosede, O. O. (2023). Monitoring and predicting the influences of land use/land cover change on cropland characteristics and drought severity using remote sensing techniques. Environmental and Sustainability Indicators, 18, 100248. https://doi.org/10.1016/j.indic.2023.100248Temitope Yekeen, S., & Balogun, A.-L. (2020). Advances in Remote Sensing Technology, Machine Learning and Deep Learning for Marine Oil Spill Detection, Prediction and Vulnerability Assessment. Remote Sensing, 12(20), 3416. https://doi.org/10.3390/rs12203416Thamaga, K. H., Dube, T., & Shoko, C. (2022). Advances in satellite remote sensing of the wetland ecosystems in Sub-Saharan Africa. Geocarto International, 37(20), 5891-5913. https://doi.org/10.1080/10106049.2021.1926552Tierney, G. L., Faber-Langendoen, D., Mitchell, B. R., Shriver, W. G., & Gibbs, J. P. (2009). Monitoring and evaluating the ecological integrity of forest ecosystems. Frontiers in Ecology and the Environment, 7(6), 308-316. https://doi.org/10.1890/070176Ul Din, S., & Mak, H. W. L. (2021). Retrieval of Land-Use/Land Cover Change (LUCC) Maps and Urban Expansion Dynamics of Hyderabad, Pakistan via Landsat Datasets and Support Vector Machine Framework. Remote Sensing, 13(16), 3337. https://doi.org/10.3390/rs13163337Ullo, S. L., & Sinha, G. R. (2021). Advances in IoT and Smart Sensors for Remote Sensing and Agriculture Applications. Remote Sensing, 13(13), 2585. https://doi.org/10.3390/rs13132585Vergara, P. M., Fierro, A., Alaniz, A. J., Carvajal, M. A., Lizama, M., & Llanos, J. L. (2021). Landscape-scale effects of forest degradation on insectivorous birds and invertebrates in austral temperate forests. Landscape Ecology, 36(1), 191-208. https://doi.org/10.1007/s10980-020-01133-2Vergara, P. M., Soto, G. E., Rodewald, A. D., & Quiroz, M. (2019). Behavioral switching in Magellanic woodpeckers reveals perception of habitat quality at different spatial scales. Landscape Ecology, 34(1), 79-92. https://doi.org/10.1007/s10980-018-0746-5Vihervaara, P., Auvinen, A.-P., Mononen, L., Törmä, M., Ahlroth, P., Anttila, S., Böttcher, K., Forsius, M., Heino, J., Heliölä, J., Koskelainen, M., Kuussaari, M., Meissner, K., Ojala, O., Tuominen, S., Viitasalo, M., & Virkkala, R. (2017). How Essential Biodiversity Variables and remote sensing can help national biodiversity monitoring. Global Ecology and Conservation, 10, 43-59. https://doi.org/10.1016/j.gecco.2017.01.007Villard, M.-A., & Metzger, J. P. (2014). REVIEW: Beyond the fragmentation debate: a conceptual model to predict when habitat configuration really matters. Journal of Applied Ecology, 51(2), 309-318. https://doi.org/10.1111/1365-2664.12190Viña, A., Gitelson, A. A., Nguy-Robertson, A. L., & Peng, Y. (2011). Comparison of different vegetation indices for the remote assessment of green leaf area index of crops. Remote Sensing of Environment, 115(12), 3468-3478. https://doi.org/10.1016/j.rse.2011.08.010Vishnu, C. L., Sajinkumar, K. S., Oommen, T., Coffman, R. A., Thrivikramji, K. P., Rani, V. R., & Keerthy, S. (2019). Satellite-based assessment of the August 2018 flood in parts of Kerala, India. Geomatics, Natural Hazards and Risk, 10(1), 758-767. https://doi.org/10.1080/19475705.2018.1543212Vogeler, J. C., & Cohen, W. B. (2016). A review of the role of active remote sensing and data fusion for characterizing forest in wildlife habitat models. Revista de Teledetección, 45, 1. https://doi.org/10.4995/raet.2016.3981Vollrath, A., Mullissa, A., & Reiche, J. (2020). Angular-Based Radiometric Slope Correction for Sentinel-1 on Google Earth Engine. Remote Sensing, 12(11), 1867. https://doi.org/10.3390/rs12111867Waltari, E., Schroeder, R., McDonald, K., Anderson, R. P., & Carnaval, A. (2014). Bioclimatic variables derived from remote sensing: Assessment and application for species distribution modelling. Methods in Ecology and Evolution, 5(10), 1033-1042. https://doi.org/10.1111/2041-210X.12264Wang, H., Tang, L., Qiu, Q., & Chen, H. (2020). Assessing the Impacts of Urban Expansion on Habitat Quality by Combining the Concepts of Land Use, Landscape, and Habitat in Two Urban Agglomerations in China. Sustainability, 12(11), 4346. https://doi.org/10.3390/su12114346Wang, R., & Gamon, J. A. (2019). Remote sensing of terrestrial plant biodiversity. Remote Sensing of Environment, 231, 111218. https://doi.org/10.1016/j.rse.2019.111218Wang, X., Liu, C., Lv, G., Xu, J., & Cui, G. (2022). Integrating Multi-Source Remote Sensing to Assess Forest Aboveground Biomass in the Khingan Mountains of North-Eastern China Using Machine-Learning Algorithms. Remote Sensing, 14(4), 1039. https://doi.org/10.3390/rs14041039Wiegand, T., Naves, J., Garbulsky, M. F., & Fernández, N. (2008). ANIMAL HABITAT QUALITY AND ECOSYSTEM FUNCTIONING: EXPLORING SEASONAL PATTERNS USING NDVI. Ecological Monographs, 78(1), 87-103. https://doi.org/10.1890/06-1870.1Wisz, M. S., Hijmans, R. J., Li, J., Peterson, A. T., Graham, C. H., Guisan, A., & NCEAS Predicting Species Distributions Working Group†. (2008). Effects of sample size on the performance of species distribution models. Diversity and Distributions, 14(5), 763-773. https://doi.org/10.1111/j.1472-4642.2008.00482.xWulder, M. A., Loveland, T. R., Roy, D. P., Crawford, C. J., Masek, J. G., Woodcock, C. E., Allen, R. G., Anderson, M. C., Belward, A. S., Cohen, W. B., Dwyer, J., Erb, A., Gao, F., Griffiths, P., Helder, D., Hermosilla, T., Hipple, J. D., Hostert, P., Hughes, M. J., … Zhu, Z. (2019). Current status of Landsat program, science, and applications. Remote Sensing of Environment, 225, 127-147. https://doi.org/10.1016/j.rse.2019.02.015Xu, H. (2006). Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, 27(14), 3025-3033. https://doi.org/10.1080/01431160600589179Xu, Y., Yang, Y., Chen, X., & Liu, Y. (2022). Bibliometric Analysis of Global NDVI Research Trends from 1985 to 2021. Remote Sensing, 14(16), 3967. https://doi.org/10.3390/rs14163967Yin, J., Dong, J., Hamm, N. A. S., Li, Z., Wang, J., Xing, H., & Fu, P. (2021). Integrating remote sensing and geospatial big data for urban land use mapping: A review. International Journal of Applied Earth Observation and Geoinformation, 103, 102514. https://doi.org/10.1016/j.jag.2021.102514Yohannes, H., Soromessa, T., Argaw, M., & Dewan, A. (2021). Spatio-temporal changes in habitat quality and linkage with landscape characteristics in the Beressa watershed, Blue Nile basin of Ethiopian highlands. Journal of Environmental Management, 281, 111885. https://doi.org/10.1016/j.jenvman.2020.111885Yu, T., Liu, P., Zhang, Q., Ren, Y., & Yao, J. (2021). Detecting Forest Degradation in the Three-North Forest Shelterbelt in China from Multi-Scale Satellite Images. Remote Sensing, 13(6), 1131. https://doi.org/10.3390/rs13061131Zattara, E. E., & Aizen, M. A. (2021). Worldwide occurrence records suggest a global decline in bee species richness. One Earth, 4(1), 114-123. https://doi.org/10.1016/j.oneear.2020.12.005Zelený, J., Mercado-Bettín, D., & Müller, F. (2021). Towards the evaluation of regional ecosystem integrity using NDVI, brightness temperature and surface heterogeneity. Science of The Total Environment, 796, 148994. https://doi.org/10.1016/j.scitotenv.2021.148994Zhang, Y., Liu, J., & Shen, W. (2022). A Review of Ensemble Learning Algorithms Used in Remote Sensing Applications. Applied Sciences, 12(17), 8654. https://doi.org/10.3390/app12178654Zhang, Y., Zhao, L., Zhao, H., & Gao, X. (2021). Urban development trend analysis and spatial simulation based on time series remote sensing data: A case study of Jinan, China. PLOS ONE, 16(10), e0257776. https://doi.org/10.1371/journal.pone.0257776Zheng, G., & Moskal, L. M. (2009). Retrieving Leaf Area Index (LAI) Using Remote Sensing: Theories, Methods and Sensors. Sensors, 9(4), 2719-2745. https://doi.org/10.3390/s90402719Zheng, Y., Xiao, Z., Li, J., Yang, H., & Song, J. (2022). Evaluation of Global Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) Products at 500 m Spatial Resolution. Remote Sensing, 14(14), 3304. https://doi.org/10.3390/rs14143304Zhong, R., Wang, P., Mao, G., Chen, A., & Liu, J. (2021). Spatiotemporal variation of enhanced vegetation index in the Amazon Basin and its response to climate change. Physics and Chemistry of the Earth, Parts A/B/C, 123, 103024. https://doi.org/10.1016/j.pce.2021.103024Zielewska-Büttner, K., Heurich, M., Müller, J., & Braunisch, V. (2018). Remotely Sensed Single Tree Data Enable the Determination of Habitat Thresholds for the Three-Toed Woodpecker (Picoides tridactylus). Remote Sensing, 10(12), 1972. https://doi.org/10.3390/rs10121972Zipkin, E. F., Zylstra, E. R., Wright, A. D., Saunders, S. P., Finley, A. O., Dietze, M. C., Itter, M. S., & Tingley, M. W. (2021). Addressing data integration challenges to link ecological processes across scales. Frontiers in Ecology and the Environment, 19(1), 30-38. https://doi.org/10.1002/fee.2290Zizka, A., Antunes Carvalho, F., Calvente, A., Rocio Baez-Lizarazo, M., Cabral, A., Coelho, J. F. R., Colli-Silva, M., Fantinati, M. R., Fernandes, M. F., Ferreira-Araújo, T., Gondim Lambert Moreira, F., Santos, N. M. C., Santos, T. A. B., Dos Santos-Costa, R. C., Serrano, F. C., Alves Da Silva, A. P., De Souza Soares, A., Cavalcante De Souza, P. G., Calisto Tomaz, E., … Antonelli, A. (2020). No one-size-fits-all solution to clean GBIF. PeerJ, 8, e9916. https://doi.org/10.7717/peerj.9916Zizka, A., Silvestro, D., Andermann, T., Azevedo, J., Duarte Ritter, C., Edler, D., Farooq, H., Herdean, A., Ariza, M., Scharn, R., Svantesson, S., Wengström, N., Zizka, V., & Antonelli, A. (2019). COORDINATECLEANER: Standardized cleaning of occurrence records from biological collection databases. Methods in Ecology and Evolution, 10(5), 744-751. https://doi.org/10.1111/2041-210X.13152Zurell, D., Franklin, J., König, C., Bouchet, P. J., Dormann, C. F., Elith, J., Fandos, G., Feng, X., Guillera‐Arroita, G., Guisan, A., Lahoz‐Monfort, J. J., Leitão, P. J., Park, D. S., Peterson, A. T., Rapacciuolo, G., Schmatz, D. R., Schröder, B., Serra‐Diaz, J. M., Thuiller, W., … Merow, C. (2020). A standard protocol for reporting species distribution models. Ecography, 43(9), 1261-1277. https://doi.org/10.1111/ecog.04960Zwinkels, J. (2015). Light, Electromagnetic Spectrum. En R. Luo (Ed.), Encyclopedia of Color Science and Technology (pp. 1-8). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-27851-8_204-1Instituto de Investigación de Recursos Biológicos Alexander von HumboldtEstudiantesInvestigadoresMaestrosLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85570/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1013646905.2023.pdf1013646905.2023.pdfTesis de Maestría en Geomáticaapplication/pdf4079894https://repositorio.unal.edu.co/bitstream/unal/85570/2/1013646905.2023.pdfa41a16743220f0243a641ec81835637eMD52THUMBNAIL1013646905.2023.pdf.jpg1013646905.2023.pdf.jpgGenerated Thumbnailimage/jpeg4548https://repositorio.unal.edu.co/bitstream/unal/85570/3/1013646905.2023.pdf.jpg3ad2cd3dff463e5a272d91a6948836e6MD53unal/85570oai:repositorio.unal.edu.co:unal/855702024-08-22 23:10:24.38Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=