Obtención de furfural a partir de residuos del cultivo de café empleando materiales catalíticos de hierro soportado en óxido de silicio
ilustraciones, diagramas, fotografías, planos
- Autores:
-
Suárez Suárez, Kevin René
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/84882
- Palabra clave:
- 540 - Química y ciencias afines::547 - Química orgánica
Catalizadores
Catalisis
Activación química
Catalysts
Catalysis
Activation (Chemistry)
Xilosa
Sol-gel
Catálisis heterogénea
Furfural
Biomasa
Residuos de café
Xylose
Sol-gel
Heterogeneous catalysis
Furfural
Biomass
Coffee residues
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_6620def531f5a287c8da68c93ce68ec9 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/84882 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Obtención de furfural a partir de residuos del cultivo de café empleando materiales catalíticos de hierro soportado en óxido de silicio |
dc.title.translated.eng.fl_str_mv |
Obtaining furfural from coffee crop residues using iron catalytic materials supported on silicon oxide. |
title |
Obtención de furfural a partir de residuos del cultivo de café empleando materiales catalíticos de hierro soportado en óxido de silicio |
spellingShingle |
Obtención de furfural a partir de residuos del cultivo de café empleando materiales catalíticos de hierro soportado en óxido de silicio 540 - Química y ciencias afines::547 - Química orgánica Catalizadores Catalisis Activación química Catalysts Catalysis Activation (Chemistry) Xilosa Sol-gel Catálisis heterogénea Furfural Biomasa Residuos de café Xylose Sol-gel Heterogeneous catalysis Furfural Biomass Coffee residues |
title_short |
Obtención de furfural a partir de residuos del cultivo de café empleando materiales catalíticos de hierro soportado en óxido de silicio |
title_full |
Obtención de furfural a partir de residuos del cultivo de café empleando materiales catalíticos de hierro soportado en óxido de silicio |
title_fullStr |
Obtención de furfural a partir de residuos del cultivo de café empleando materiales catalíticos de hierro soportado en óxido de silicio |
title_full_unstemmed |
Obtención de furfural a partir de residuos del cultivo de café empleando materiales catalíticos de hierro soportado en óxido de silicio |
title_sort |
Obtención de furfural a partir de residuos del cultivo de café empleando materiales catalíticos de hierro soportado en óxido de silicio |
dc.creator.fl_str_mv |
Suárez Suárez, Kevin René |
dc.contributor.advisor.none.fl_str_mv |
Guerrero Fajardo, Carlos Alberto Cortéz Ortiz, William Geovanni |
dc.contributor.author.none.fl_str_mv |
Suárez Suárez, Kevin René |
dc.subject.ddc.spa.fl_str_mv |
540 - Química y ciencias afines::547 - Química orgánica |
topic |
540 - Química y ciencias afines::547 - Química orgánica Catalizadores Catalisis Activación química Catalysts Catalysis Activation (Chemistry) Xilosa Sol-gel Catálisis heterogénea Furfural Biomasa Residuos de café Xylose Sol-gel Heterogeneous catalysis Furfural Biomass Coffee residues |
dc.subject.lemb.spa.fl_str_mv |
Catalizadores Catalisis Activación química |
dc.subject.lemb.eng.fl_str_mv |
Catalysts Catalysis Activation (Chemistry) |
dc.subject.proposal.spa.fl_str_mv |
Xilosa Sol-gel Catálisis heterogénea Furfural Biomasa Residuos de café |
dc.subject.proposal.eng.fl_str_mv |
Xylose Sol-gel Heterogeneous catalysis Furfural Biomass Coffee residues |
description |
ilustraciones, diagramas, fotografías, planos |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-11-03T16:16:05Z |
dc.date.available.none.fl_str_mv |
2023-11-03T16:16:05Z |
dc.date.issued.none.fl_str_mv |
2023-11-02 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/84882 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/84882 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
[1] Organización Internacional del Café, “Informe de la OIC sobre desarrollo cafetero de 2019 Sumario,” 2019. [2] D. Gerente, “87 CONGRESO NACIONAL DE CAFETEROS IG INFORME,” 2019. [Online]. Available: www.federaciondecafeteros.org. [3] H. Escalante, J. Orduz, and H. Zapata, Atlas del potencial energético de la biomasa residual en Colombia. 2011. [4] N. Echavarría, N. Atehortúa, and O. Tobón, Manual de Gestión del Recurso Hídrico Sector Cafetero. 2016. [5] M. A. Hernández, M. Rodríguez Susa, and Y. Andres, “Use of coffee mucilage as a new substrate for hydrogen production in anaerobic co-digestion with swine manure,” Bioresour. Technol., vol. 168, pp. 112–118, 2014, doi: 10.1016/j.biortech.2014.02.101. [6] A. K. Neu, D. Pleissner, K. Mehlmann, R. Schneider, G. I. Puerta-Quintero, and J. Venus, “Fermentative utilization of coffee mucilage using Bacillus coagulans and investigation of down-stream processing of fermentation broth for optically pure l(+)-lactic acid production,” Bioresour. Technol., vol. 211, pp. 398–405, 2016, doi: 10.1016/j.biortech.2016.03.122. [7] S. Ríos and G. I. Puerta, “Composición Química Del Mucílago De Café, Según El Tiempo De Fermentación Y Refrigeración,” Cenicafé, vol. 2, no. 62, pp. 23–40, 2011. [8] C. M.N. and W. K.C., COFFEE: BOTANY, BIOCHEMISTRY AND PRODUCTION OF BEANS AND BEVERAGE. 1985. [9] S. Peleteiro, S. Rivas, J. L. Alonso, V. Santos, and J. C. Parajó, “Furfural production using ionic liquids: A review,” Bioresour. Technol., vol. 202, pp. 181–191, 2016, doi: 10.1016/j.biortech.2015.12.017. [10] S. Dutta, S. De, B. Saha, and M. I. Alam, “Advances in conversion of hemicellulosic biomass to furfural and upgrading to biofuels,” Catal. Sci. Technol., vol. 2, no. 10, pp. 2025–2036, 2012, doi: 10.1039/c2cy20235b. [11] C. M. Cai, T. Zhang, R. Kumar, and C. E. Wyman, “Integrated furfural production as a renewable fuel and chemical platform from lignocellulosic biomass,” J. Chem. Technol. Biotechnol., vol. 89, no. 1, pp. 2–10, 2014, doi: 10.1002/jctb.4168. [12] R. Mariscal, P. Maireles-Torres, M. Ojeda, I. Sádaba, and M. López Granados, “Furfural: A renewable and versatile platform molecule for the synthesis of chemicals and fuels,” Energy Environ. Sci., vol. 9, no. 4, pp. 1144–1189, 2016, doi: 10.1039/c5ee02666k. [13] R. N. Ntimbani, S. Farzad, and J. F. Görgens, “Techno-economic assessment of one-stage furfural and cellulosic ethanol co-production from sugarcane bagasse and harvest residues feedstock mixture,” Ind. Crops Prod., vol. 162, no. January, 2021, doi: 10.1016/j.indcrop.2021.113272. [14] H. Li et al., “Effect of structural characteristics of corncob hemicelluloses fractionated by graded ethanol precipitation on furfural production,” Carbohydr. Polym., vol. 136, pp. 203–209, 2016, doi: 10.1016/j.carbpol.2015.09.045. [15] Y. Shao et al., “Cooperation between hydrogenation and acidic sites in Cu-based catalyst for selective conversion of furfural to γ -valerolactone,” Fuel, vol. 293, no. December 2020, p. 120457, 2021, doi: 10.1016/j.fuel.2021.120457. [16] T. Werpy and G. Petersen, “Top Value Added Chemicals from Biomass: Volume I -- Results of Screening for Potential Candidates from Sugars and Synthesis Gas. Office of Scientific and Technical Information (OSTI),” Off. Sci. Tech. Inf., p. 69, 2004, [Online]. Available: http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA436528. [17] W. Li et al., “Hf-based metal organic frameworks as bifunctional catalysts for the one-pot conversion of furfural to Γ-valerolactone,” Mol. Catal., vol. 472, no. May, pp. 17–26, 2019, doi: 10.1016/j.mcat.2019.04.010. [18] S. Richardson and K. Weaver, “Ionic Liquids and Their Interaction with Cellulose,” Chem. Rev, vol. 11, no. 4, pp. 6712–6728, 2009, doi: 10.1177/1477750916657663. [19] L. and J. M. Palmowski, “Influence of the size reduction of organic waste on their anaerobic digestion. Proceedings of the 2nd International Symposium on Anaerobic Digestion of Solid Waste,” no. July, p. Influence of the size reduction of organic waste o, 1999. [20] R. F. do N. V. de O. S. N. D. de Q. Melo, Uso de bioadsorventes lignocelulósicos na remoção de poluentes de efluentes aquosos, vol. 01, no. Coleção de Estudos da Pós-Graduação. 2014. [21] D. Fengel and G. Wegner, Wood Chemistry, Ultrastructure, Reactions. 1989. [22] J. P. Delgenes, R. Moletta, and J. M. Navarro, “Effects of lignocellulose degradation products on ethanol fermentations of glucose and xylose by Saccharomyces cerevisiae, Zymomonas mobilis, Pichia stipitis, and Candida shehatae,” Enzyme Microb. Technol., vol. 19, no. 3, pp. 220–225, 1996, doi: 10.1016/0141-0229(95)00237-5. [23] A. Brandt, J. Gräsvik, J. P. Hallett, and T. Welton, “Deconstruction of lignocellulosic biomass with ionic liquids,” Green Chem., vol. 15, no. 3, pp. 550–583, 2013, doi: 10.1039/c2gc36364j. [24] O. Bobleter, “Hydrothermal degradation of polymers derived from plants,” Prog. Polym. Sci., vol. 19, no. 5, pp. 797–841, 1994, doi: 10.1016/0079-6700(94)90033-7. [25] J. C. Parajo, G. Garrote, and H. Domı, “Mild autohydrolysis : an environmentally friendly technology for xylooligosaccharide production from wood,” J. Chem. Technol. Biotechnol., vol. 74, no. January, pp. 1101–1109, 1999. [26] BEALL FC and EICKNER HW, “Thermal Degradation of Wood Components. a Review of the Literature,” U S For. Prod Lab, Res Pap FPL 130, no. May, 1970. [27] O. Yemiş and G. Mazza, “Acid-catalyzed conversion of xylose, xylan and straw into furfural by microwave-assisted reaction,” Bioresour. Technol., vol. 102, no. 15, pp. 7371–7378, 2011, doi: 10.1016/j.biortech.2011.04.050. [28] L. Mao, L. Zhang, N. Gao, and A. Li, “Seawater based furfural production via corncob hydrolysis catalyzed by FeCl3 in acetic acid steam,” Green Chem., no. 207890, pp. 1–19, 2013. [29] P. Bhaumik and P. L. Dhepe, “Solid acid catalyzed synthesis of furans from carbohydrates,” Catal. Rev. - Sci. Eng., vol. 58, no. 1, pp. 36–112, 2016, doi: 10.1080/01614940.2015.1099894. [30] L. Zhang, H. Yu, P. Wang, and Y. Li, “Production of furfural from xylose, xylan and corncob in gamma-valerolactone using FeCl3·6H2O as catalyst,” Bioresour. Technol., vol. 151, pp. 355–360, 2014, doi: 10.1016/j.biortech.2013.10.099. [31] H. B. Sharma, S. Panigrahi, A. K. Sarmah, and B. K. Dubey, “Properties of mesoporous Al-SBA-15 from one-pot hydrothermal synthesis with different aluminium precursors and catalytic performances in xylose conversion to furfural,” Sci. Total Environ., p. 135907, 2019, doi: 10.1016/j.micromeso.2021.110999. [32] M. R. Nimlos, X. Qian, M. Davis, M. E. Himmel, and D. K. Johnson, “Energetics of xylose decomposition as determined using quantum mechanics modeling,” J. Phys. Chem. A, vol. 110, no. 42, pp. 11824–11838, 2006, doi: 10.1021/jp0626770. [33] G. Marcotullio and W. De Jong, “Furfural formation from D-xylose: The use of different halides in dilute aqueous acidic solutions allows for exceptionally high yields,” Carbohydr. Res., vol. 346, no. 11, pp. 1291–1293, 2011, doi: 10.1016/j.carres.2011.04.036. [34] K. . J. Zeitsch, The chemistry and technology of furfural and its many by-products. Elsevier B.V., 2000. [35] M. Kabbour and R. Luque, “Furfural as a platform chemical: From production to applications,” in Biomass, Biofuels, Biochemicals: Recent Advances in Development of Platform Chemicals, A. PANDEY, Ed. Elsevier B.V., 2019, pp. 283–297. [36] Q. Wang et al., “Rapid and simultaneous production of furfural and cellulose-rich residue from sugarcane bagasse using a pressurized phosphoric acid-acetone-water system,” Chem. Eng. J., vol. 334, no. October 2017, pp. 698–706, 2018, doi: 10.1016/j.cej.2017.10.089. [37] X. Li, Q. Liu, C. Luo, X. Gu, L. Lu, and X. Lu, “Kinetics of Furfural Production from Corn Cob in γ-Valerolactone Using Dilute Sulfuric Acid as Catalyst,” ACS Sustain. Chem. Eng., vol. 5, no. 10, pp. 8587–8593, 2017, doi: 10.1021/acssuschemeng.7b00950. [38] X. Zhang, Y. Bai, X. Cao, and R. Sun, “Pretreatment of Eucalyptus in biphasic system for furfural production and accelerated enzymatic hydrolysis,” Bioresour. Technol., vol. 238, pp. 1–6, 2017, doi: 10.1016/j.biortech.2017.04.011. [39] X. Lyu, “Furfural and hydrogen production from corncob via tandem chemical and electrochemical approach,” Bioresour. Technol. Reports, vol. 15, 2021, doi: 10.1016/j.biteb.2021.100790. [40] C. Sener, A. H. Motagamwala, D. M. Alonso, and J. A. Dumesic, “Enhanced Furfural Yields from Xylose Dehydration in the Γ-Valerolactone/Water Solvent System at Elevated Temperatures,” ChemSusChem, vol. 11, no. 14, pp. 2321–2331, 2018, doi: 10.1002/cssc.201800730. [41] L. Zhang, L. Tian, R. Sun, C. Liu, Q. Kou, and H. Zuo, “Transformation of corncob into furfural by a bifunctional solid acid catalyst,” Bioresour. Technol., vol. 276, no. November 2018, pp. 60–64, 2019, doi: 10.1016/j.biortech.2018.12.094. [42] X. Li et al., “Conversion of waste lignocellulose to furfural using sulfonated carbon microspheres as catalyst,” Waste Manag., vol. 108, pp. 119–126, 2020, doi: 10.1016/j.wasman.2020.04.039. [43] J. Zhang, L. Lin, and S. Liu, “Efficient production of furan derivatives from a sugar mixture by catalytic process,” Energy and Fuels, vol. 26, no. 7, pp. 4560–4567, 2012, doi: 10.1021/ef300606v. [44] Q. Zhang, C. Wang, J. Mao, S. Ramaswamy, X. Zhang, and F. Xu, “Insights on the efficiency of bifunctional solid organocatalysts in converting xylose and biomass into furfural in a GVL-water solvent,” Ind. Crops Prod., vol. 138, no. June, p. 111454, 2019, doi: 10.1016/j.indcrop.2019.06.017. [45] S. L. Hu, H. Cheng, R. Y. Xu, J. S. Huang, P. J. Zhang, and J. N. Qin, “Conversion of xylose into furfural over Cr/Mg hydrotalcite catalysts,” Mol. Catal., vol. 538, no. 10, 2023, doi: 10.1016/j.mcat.2023.113009. [46] L. Carballo, “Introducción a la catálisis heterogénea,” 2002. [47] R. Schlögl, Heterogeneous catalysis, vol. 54, no. 11. 2015. [48] C. Alberto, G. Fajardo, Y. N. Guyen, C. Courson, and A. Roger, “Catalizadores Fe/SiO2 para la oxidación selectiva de metano hasta formaldehído,” vol. 26, no. 2, pp. 37–44, 2006. [49] N. T. Tinh et al., “Optimization of synthesis conditions of furfural from sugarcane bagasse using magnetic iron oxide nanoparticles/sulfonated graphene oxide as a catalyst,” Diam. Relat. Mater., vol. 136, no. May, p. 110024, 2023, doi: 10.1016/j.diamond.2023.110024. [50] C. Wu et al., “Conversion of Xylose into Furfural Catalyzed by Bifunctional Acidic Ionic Liquid Immobilized on the Surface of Magnetic γ-Al2O3,” Catal. Letters, vol. 147, no. 4, pp. 953–963, 2017, doi: 10.1007/s10562-017-1982-z. [51] A. Rusanen, R. Kupila, K. Lappalainen, J. Kärkkäinen, T. Hu, and U. Lassi, “Conversion of xylose to furfural over lignin-based activated carbon-supported iron catalysts,” Catalysts, vol. 10, no. 8, 2020, doi: 10.3390/catal10080821. [52] M. Rojas, Diseño y síntesis de materiales “a medida” mediante el método sol-gel, Primera ed. Madrid: Librería UNED, 2012. [53] T. Zhang et al., “Efficient transformation of corn stover to furfural using p-hydroxybenzenesulfonic acid-formaldehyde resin solid acid,” Bioresour. Technol., vol. 264, no. May, pp. 261–267, 2018, doi: 10.1016/j.biortech.2018.05.081. [54] Y. Liu, C. Ma, C. Huang, Y. Fu, and J. Chang, “Efficient Conversion of Xylose into Furfural Using Sulfonic Acid-Functionalized Metal-Organic Frameworks in a Biphasic System,” Ind. Eng. Chem. Res., vol. 57, no. 49, pp. 16628–16634, 2018, doi: 10.1021/acs.iecr.8b04070. [55] T. T. V. Tran et al., “Highly productive xylose dehydration using a sulfonic acid functionalized KIT-6 catalyst,” Fuel, vol. 236, no. September 2018, pp. 1156–1163, 2019, doi: 10.1016/j.fuel.2018.09.089. [56] S. Xu et al., “Efficient production of furfural from xylose and wheat straw by bifunctional chromium phosphate catalyst in biphasic systems,” Fuel Process. Technol., vol. 175, no. March, pp. 90–96, 2018, doi: 10.1016/j.fuproc.2018.04.005. [57] H. Li et al., “A modified biphasic system for the dehydration of d-xylose into furfural using SO42-/TiO2-ZrO2/La 3+ as a solid catalyst,” Catal. Today, vol. 234, pp. 251–256, 2014, doi: 10.1016/j.cattod.2013.12.043. [58] Q. Jia et al., “Production of furfural from xylose and hemicelluloses using tin-loaded sulfonated diatomite as solid acid catalyst in biphasic system,” Bioresour. Technol. Reports, vol. 6, no. February, pp. 145–151, 2019, doi: 10.1016/j.biteb.2019.03.001. [59] K. Yan, G. Wu, T. Lafleur, and C. Jarvis, “Production, properties and catalytic hydrogenation of furfural to fuel additives and value-added chemicals,” Renew. Sustain. Energy Rev., vol. 38, pp. 663–676, 2014, doi: 10.1016/j.rser.2014.07.003. [60] R. Weingarten, J. Cho, W. C. Conner, and G. W. Huber, “Kinetics of furfural production by dehydration of xylose in a biphasic reactor with microwave heating,” Green Chem., vol. 12, no. 8, pp. 1423–1429, 2010, doi: 10.1039/c003459b. [61] E. I. Gürbüz, J. M. R. Gallo, D. M. Alonso, S. G. Wettstein, W. Y. Lim, and J. A. Dumesic, “Conversion of hemicellulose into furfural using solid acid catalysts in γ-valerolactone,” Angew. Chemie - Int. Ed., vol. 52, no. 4, pp. 1270–1274, 2013, doi: 10.1002/anie.201207334. [62] W. Wang, J. Ren, H. Li, A. Deng, and R. Sun, “Direct transformation of xylan-type hemicelluloses to furfural via SnCl4 catalysts in aqueous and biphasic systems,” Bioresour. Technol., vol. 183, pp. 188–194, 2015, doi: 10.1016/j.biortech.2015.02.068. [63] W. Daengprasert, P. Boonnoun, N. Laosiripojana, M. Goto, and A. Shotipruk, “Application of sulfonated carbon-based catalyst for solvothermal conversion of cassava waste to hydroxymethylfurfural and furfural,” Ind. Eng. Chem. Res., vol. 50, no. 13, pp. 7903–7910, 2011, doi: 10.1021/ie102487w. [64] E. I. Gürbüz, S. G. Wettstein, and J. A. Dumesic, “Conversion of hemicellulose to furfural and levulinic acid using biphasic reactors with alkylphenol solvents,” ChemSusChem, vol. 5, no. 2, pp. 383–387, 2012, doi: 10.1002/cssc.201100608. [65] E. Nikolla, Y. Román-Leshkov, M. Moliner, and M. E. Davis, “‘One-pot’ synthesis of 5-(hydroxymethyl)furfural from carbohydrates using tin-beta zeolite,” ACS Catal., vol. 1, no. 4, pp. 408–410, 2011, doi: 10.1021/cs2000544. [66] A. Deng et al., “A feasible process for furfural production from the pre-hydrolysis liquor of corncob via biochar catalysts in a new biphasic system,” Bioresour. Technol., vol. 216, pp. 754–760, 2016, doi: 10.1016/j.biortech.2016.06.002. [67] G. Marcotullio and W. De Jong, “Chloride ions enhance furfural formation from D-xylose in dilute aqueous acidic solutions,” Green Chem., vol. 12, no. 10, pp. 1739–1746, 2010, doi: 10.1039/b927424c. [68] Z. Liu, E. Shi, F. Ma, and K. Jiang, “An integrated biorefinery process for co-production of xylose and glucose using maleic acid as efficient catalyst,” Bioresour. Technol., vol. 325, no. 481, p. 124698, 2021, doi: 10.1016/j.biortech.2021.124698. [69] L. Zhang, H. Yu, P. Wang, H. Dong, and X. Peng, “Conversion of xylan, d-xylose and lignocellulosic biomass into furfural using AlCl3 as catalyst in ionic liquid,” Bioresour. Technol., vol. 130, pp. 110–116, 2013, doi: 10.1016/j.biortech.2012.12.018. [70] B. Hames, R. Ruiz, C. Scarlata, A. Sluiter, J. Sluiter, and D. Templeton, “Preparation of Samples for Compositional Analysis: Laboratory Analytical Procedure (LAP); Issue Date 08/08/2008,” no. August, 2008. [71] ASTM, “Standard Practice for Preparation of Biomass for Compositional Analysis 1,” Annu. B. ASTM Stand., vol. 01, no. Reapproved 2007, pp. 6–9, 2011, doi: 10.1520/E1757-01R07.2. [72] A. Sluiter et al., “Determination of total solids in biomass and total dissolved solids in liquid process samples,” Natl. Renew. Energy Lab., no. March, pp. 3–5, 2008, doi: NREL/TP-510-42621. [73] A. Sluiter, B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, and D. Templeton, “Determination of Ash in Biomass Laboratory Analytical Procedure ( LAP ) Issue Date : 7 / 17 / 2005 Determination of Ash in Biomass Laboratory Analytical Procedure ( LAP ),” no. January, 2008. [74] P. J. Van Soest, J. B. Robertson, and B. A. Lewis, “Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition,” J. Dairy Sci., vol. 74, no. 10, pp. 3583–3597, 1991, doi: 10.3168/jds.S0022-0302(91)78551-2. [75] G. Licitra, T. M. Hernandez, and P. J. Van Soest, “Feedbunk management evaluation techniques,” Anim. Feed Sci. Technol., vol. 57, pp. 347–358, 1996. [76] A. International, AOAC: Official Methods of Analysis (Volume 1), vol. 1, no. Volume 1. 1990. [77] Astm, “Standard Test Method for Heat of Combustion of Liquid Hydrocarbon Fuels by Bomb Calorimeter,” ASTM D 240-92 (reapproved 1997), pp. 144–151, 1997, doi: 10.1520/D0240-19.2. [78] W. Conshohocken, “Standard Test Method for Sulfate Ion in Water 1,” vol. 90, no. April 2002, pp. 1–5, 1995, doi: 10.1520/D0516-16.2. [79] W. G. Cortés Ortiz et al., “Partial oxidation of methane and methanol on FeOx-, MoOx- and FeMoOx -SiO2 catalysts prepared by sol-gel method: A comparative study,” Mol. Catal., vol. 491, no. May, p. 110982, 2020, doi: 10.1016/j.mcat.2020.110982. [80] X. Li, L. Zhang, S. Wang, and Y. Wu, “Recent Advances in Aqueous-Phase Catalytic Conversions of Biomass Platform Chemicals Over Heterogeneous Catalysts,” Front. Chem., vol. 7, no. February, pp. 1–21, 2020, doi: 10.3389/fchem.2019.00948. [81] M. J. C. Molina, M. L. Granados, A. Gervasini, and P. Carniti, “Exploitment of niobium oxide effective acidity for xylose dehydration to furfural,” Catal. Today, vol. 254, pp. 90–98, 2015, doi: 10.1016/j.cattod.2015.01.018. [82] R. K. Mishra, V. B. Kumar, A. Victor, I. N. Pulidindi, and A. Gedanken, “Selective production of furfural from the dehydration of xylose using Zn doped CuO catalyst,” Ultrason. Sonochem., vol. 56, no. July 2018, pp. 55–62, 2019, doi: 10.1016/j.ultsonch.2019.03.015. [83] T. V. dos Santos, D. O. da Silva Avelino, D. B. A. Pryston, M. R. Meneghetti, and S. M. P. Meneghetti, “Tin, molybdenum and tin-molybdenum oxides: Influence of Lewis and Bronsted acid sites on xylose conversion,” Catal. Today, vol. 394–396, no. February, pp. 125–132, 2022, doi: 10.1016/j.cattod.2021.10.018. [84] J. E. Ortiz García, D. E. González Morales, Y. Mejía Agudelo, L. S. García-Alzate, and X. Cifuentes-Wchima, “Evaluación de la biomasa residual (cereza) de café como sustrato para el cultivo del hongo comestible Pleurotus ostreatus,” Rev. ION, vol. 33, no. 1, pp. 93–102, 2020, doi: 10.18273/revion.v33n1-2020009. [85] N. Fierro-Cabrales, A. Contreras-Oliva, O. González-Ríos, E. S. Rosas-Mendoza, and V. Morales-Ramos, “CARACTERIZACIÓN QUÍMICA Y NUTRIMENTAL DE LA PULPA DE CAFÉ ( Coffea arabica L.) = CHEMICAL AND NUTRITIONAL CHARACTERIZATION OF COFFEE PULP ( Coffea arabica L.),” Agroproductividad, vol. 11, no. 4, pp. 9–13, 2018, [Online]. Available: http://revista-agroproductividad.org/index.php/agroproductividad/article/view/261. [86] R. P. Munirwan, A. Mohd Taib, M. R. Taha, N. Abd Rahman, and M. Munirwansyah, “Utilization of coffee husk ash for soil stabilization: A systematic review,” Phys. Chem. Earth, vol. 128, no. September, p. 103252, 2022, doi: 10.1016/j.pce.2022.103252. [87] S. I. Mussatto, E. M. S. Machado, S. Martins, and J. A. Teixeira, “Production, Composition, and Application of Coffee and Its Industrial Residues,” Food Bioprocess Technol., vol. 4, no. 5, pp. 661–672, 2011, doi: 10.1007/s11947-011-0565-z. [88] T. R. L. A. Veiga, J. T. Lima, A. L. de A. Dessimoni, M. F. F. Pego, J. R. Soares, and P. F. Trugilho, “Caracterização de diferentes biomassas vegetais para produção de biocarvões,” Cerne, vol. 23, no. 4, pp. 529–536, 2017, doi: 10.1590/01047760201723042373. [89] N. de la C. Tobón Arroyave, A. F. Cerón Cárdenas, and L. F. Garcés Giraldo, “Análisis y modelamiento de la granulometría en la cáscara del café (Coffea arabica L.) variedad Castillo,” Prod. + Limpia, vol. 10, no. 2, pp. 80–91, 2015, doi: 10.22507/pml.v10n2a7. [90] N. Tangmankongworakoon, “An approach to produce biochar from coffee residue for fuel and soil amendment purpose,” Int. J. Recycl. Org. Waste Agric., vol. 8, no. 0123456789, pp. 37–44, 2019, doi: 10.1007/s40093-019-0267-5. [91] W. T. Tsai, S. C. Liu, and C. H. Hsieh, “Preparation and fuel properties of biochars from the pyrolysis of exhausted coffee residue,” J. Anal. Appl. Pyrolysis, vol. 93, pp. 63–67, 2012, doi: 10.1016/j.jaap.2011.09.010. [92] R. García, C. Pizarro, A. G. Lavín, and J. L. Bueno, “Characterization of Spanish biomass wastes for energy use,” Bioresour. Technol., vol. 103, no. 1, pp. 249–258, 2012, doi: 10.1016/j.biortech.2011.10.004. [93] J. A. Suárez, C. A. Luengo, F. F. Felfli, G. Bezzon, and P. A. Beatón, “Thermochemical properties of cuban biomass,” Energy Sources, vol. 22, no. 10, pp. 851–857, 2000, doi: 10.1080/00908310051128156. [94] S. Marx, R. Venter, S. K. Karmee, J. Louw, and C. Truter, “Biofuels from spent coffee grounds: comparison of processing routes,” Biofuels, no. July, pp. 1–7, 2020, doi: 10.1080/17597269.2020.1793538. [95] A. S. Noushabadi, A. Dashti, F. Ahmadijokani, J. Hu, and A. H. Mohammadi, “Estimation of higher heating values (HHVs) of biomass fuels based on ultimate analysis using machine learning techniques and improved equation,” Renew. Energy, vol. 179, pp. 550–562, 2021, doi: 10.1016/j.renene.2021.07.003. [96] A. Dashti, A. S. Noushabadi, M. Raji, A. Razmi, S. Ceylan, and A. H. Mohammadi, “Estimation of biomass higher heating value (HHV) based on the proximate analysis: Smart modeling and correlation,” Fuel, vol. 257, no. August, p. 115931, 2019, doi: 10.1016/j.fuel.2019.115931. [97] S.-Y. Jeong and J.-W. Lee, “Hydrothermal treatment,” in Pretreatmen of biomass processes and technologies, Elsevier B.V., 2015, pp. 1–6. [98] A. T. W. M. Hendriks and G. Zeeman, “Pretreatments to enhance the digestibility of lignocellulosic biomass,” Bioresour. Technol., vol. 100, no. 1, pp. 10–18, 2009, doi: 10.1016/j.biortech.2008.05.027. [99] S. Y. Jeong and J. W. Lee, “Hydrothermal Treatment,” Pretreat. Biomass Process. Technol., pp. 61–74, 2015, doi: 10.1016/B978-0-12-800080-9.00005-0. [100] Gunjan, L. Chopra, and Manikanika, “Extraction of cellulose from agro waste – A short review,” Mater. Today Proc., no. xxxx, 2023, doi: 10.1016/j.matpr.2023.04.378. [101] B. C. Saha, “Hemicellulose bioconversion,” J. Ind. Microbiol. Biotechnol., vol. 30, no. 5, pp. 279–291, 2003, doi: 10.1007/s10295-003-0049-x. [102] J. Rao, Z. Lv, G. Chen, and F. Peng, “Hemicellulose: Structure, Chemical Modification, and Application,” Prog. Polym. Sci., vol. 140, p. 101675, 2023, doi: 10.1016/j.progpolymsci.2023.101675. [103] Z. Qi et al., “Highly Efficient Conversion of Xylose to Furfural in a Water-MIBK System Catalyzed by Magnetic Carbon-Based Solid Acid,” Ind. Eng. Chem. Res., vol. 59, no. 39, pp. 17046–17056, 2020, doi: 10.1021/acs.iecr.9b06349. [104] J. Gao et al., “Nitrogen doped carbon solid acid for improving its catalytic transformation of xylose and agricultural biomass residues to furfural,” Mol. Catal., vol. 535, no. December 2022, p. 112890, 2023, doi: 10.1016/j.mcat.2022.112890. [105] R. Ji et al., “Core-shell catalyst WO3@mSiO2-SO3H interfacial synergy catalyzed the preparation of furfural from xylose,” Mol. Catal., vol. 530, no. April, 2022, doi: 10.1016/j.mcat.2022.112592. [106] A. F. Aldana, J. A. Bustillo, J. C. Urueta, and A. J. Bula, “Computational fluid dynamics of the soybean oil hydrolysis under subcritical water conditions in a stirred-tank reactor,” Inf. Tecnol., vol. 29, no. 5, pp. 47–59, 2018, doi: 10.4067/S0718-07642018000500047. [107] J. Sun, Z. Xu, W. Li, and X. Shen, “Effect of nano-SiO2 on the early hydration of alite-sulphoaluminate cement,” Nanomaterials, vol. 7, no. 5, pp. 1–15, 2017, doi: 10.3390/nano7050102. [108] Y. Liang, J. Ouyang, H. Wang, W. Wang, P. Chui, and K. Sun, “Synthesis and characterization of core-shell structured SiO 2 @YVO 4 :Yb 3+ ,Er 3+ microspheres,” Appl. Surf. Sci., vol. 258, no. 8, pp. 3689–3694, 2012, doi: 10.1016/j.apsusc.2011.12.006. [109] A. Alayat, D. N. Mcllroy, and A. G. McDonald, “Effect of synthesis and activation methods on the catalytic properties of silica nanospring (NS)-supported iron catalyst for Fischer-Tropsch synthesis,” Fuel Process. Technol., vol. 169, no. June 2017, pp. 132–141, 2018, doi: 10.1016/j.fuproc.2017.09.011. [110] X. Zhang, Y. Niu, X. Meng, Y. Li, and J. Zhao, “Structural evolution and characteristics of the phase transformations between α-Fe2O3, Fe3O4 and γ-Fe2O3 nanoparticles under reducing and oxidizing atmospheres,” CrystEngComm, vol. 15, no. 40, pp. 8166–8172, 2013, doi: 10.1039/c3ce41269e. [111] Z. Yang, M. Luo, Q. Liu, and B. Shi, “In situ XRD and Raman Investigation of the Activation Process over K–Cu–Fe/SiO2 Catalyst for Fischer–Tropsch Synthesis Reaction,” Catal. Letters, vol. 150, no. 8, pp. 2437–2445, 2020, doi: 10.1007/s10562-020-03147-6. [112] S. Sobhanardakani, A. Jafari, R. Zandipak, and A. Meidanchi, “Removal of heavy metal (Hg(II) and Cr(VI)) ions from aqueous solutions using Fe2O3@SiO2 thin films as a novel adsorbent,” Process Saf. Environ. Prot., vol. 120, pp. 348–357, 2018, doi: 10.1016/j.psep.2018.10.002. [113] W. G. Cortes Ortiz, “Obtención de metanol a partir de la oxidación selectiva de metano empleando materiales catalíticos de hierro y molibdeno soportados en óxido de silicio,” p. 234, 2020, [Online]. Available: https://repositorio.unal.edu.co/handle/unal/77809. [114] I. Ramalla, R. K. Gupta, and K. Bansal, “Effect on superhydrophobic surfaces on electrical porcelain insulator, improved technique at polluted areas for longer life and reliability,” Int. J. Eng. Technol., vol. 4, no. 4, p. 509, 2015, doi: 10.14419/ijet.v4i4.5405. [115] A. Nikmah, A. Taufiq, and A. Hidayat, “Synthesis and Characterization of Fe3O4/SiO2 nanocomposites,” IOP Conf. Ser. Earth Environ. Sci., vol. 276, no. 1, 2019, doi: 10.1088/1755-1315/276/1/012046. [116] R. Ellerbrock, M. Stein, and J. Schaller, “Comparing amorphous silica, short-range-ordered silicates and silicic acid species by FTIR,” Sci. Rep., vol. 12, no. 1, pp. 1–8, 2022, doi: 10.1038/s41598-022-15882-4. [117] E. A. Paukshtis, M. A. Yaranova, I. S. Batueva, and B. S. Bal’zhinimaev, “A FTIR study of silanol nests over mesoporous silicate materials,” Microporous Mesoporous Mater., vol. 288, no. June, 2019, doi: 10.1016/j.micromeso.2019.109582. [118] M. D. L. Ángeles and L. Lascano, “Precipitación controlada Materiales y métodos,” Epn, no. 1, pp. 91–99, 2008, [Online]. Available: http://bibdigital.epn.edu.ec/handle/15000/5547. [119] J. Gao et al., “Chemical Speciation and Interaction Mechanism of U in ‘Shewanella putrefaciens-Mineral-U’ System,” Water. Air. Soil Pollut., vol. 232, no. 8, pp. 1–8, 2021, doi: 10.1007/s11270-021-05283-0. [120] D. Van Quy et al., “Synthesis of silica-coated magnetic nanoparticles and application in the detection of pathogenic viruses,” J. Nanomater., vol. 2013, 2013, doi: 10.1155/2013/603940. [121] N. S. F. Trotte, M. T. G. Aben-Athar, and N. M. F. Carvalho, “Yerba mate tea extract: A green approach for the synthesis of silica supported iron nanoparticles for dye degradation,” J. Braz. Chem. Soc., vol. 27, no. 11, pp. 2093–2104, 2016, doi: 10.5935/0103-5053.20160100. [122] D. Fu et al., “Probing the structure evolution of iron-based Fischer-tropsch to produce olefins by operando Raman spectroscopy,” ChemCatChem, vol. 7, no. 5, pp. 752–756, 2015, doi: 10.1002/cctc.201402980. [123] J. Hrubý et al., “Deposition of Tetracoordinate Co(II) Complex with Chalcone Ligands on Graphene,” Molecules, vol. 25, no. 21, 2020, doi: 10.3390/molecules25215021. [124] G. Xu, Z. Tu, X. Hu, M. Li, X. Zhang, and Y. Wu, “Ionic buffering biphase systems as catalysts and solvents for efficient dehydration of xylose and hemicellulose to furfural,” J. Mol. Liq., vol. 381, no. April, p. 121836, 2023, doi: 10.1016/j.molliq.2023.121836. [125] N. Zhou et al., “Conversion of xylose into furfural over MC-SnOx and NaCl catalysts in a biphasic system,” J. Clean. Prod., vol. 311, no. February, p. 127780, 2021, doi: 10.1016/j.jclepro.2021.127780. [126] V. Choudhary, S. I. Sandler, and D. G. Vlachos, “Conversion of xylose to furfural using Lewis and Brønsted acid catalysts in aqueous media,” ACS Catal., vol. 2, no. 9, pp. 2022–2028, 2012, doi: 10.1021/cs300265d. [127] T. Yang, Y. H. Zhou, S. Z. Zhu, H. Pan, and Y. B. Huang, “Insight into Aluminum Sulfate-Catalyzed Xylan Conversion into Furfural in a Γ-Valerolactone/Water Biphasic Solvent under Microwave Conditions,” ChemSusChem, vol. 10, no. 20, pp. 4066–4079, 2017, doi: 10.1002/cssc.201701290. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xxi, 115 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Maestría en Ciencias - Química |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/84882/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/84882/2/1031127909.2023.pdf https://repositorio.unal.edu.co/bitstream/unal/84882/3/1031127909.2023.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a 0b6790b2fab82fa749711d81fcd57867 044c24f72c74782ba5e5c6e84653125a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089867405033472 |
spelling |
Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Guerrero Fajardo, Carlos Alberto8158c2ed082a222d8fcff4117ee21159Cortéz Ortiz, William Geovanni71d4472815e78251c6244406ddf0977aSuárez Suárez, Kevin René0d26ebebc05a49e5f9fbf34d343a4e7d2023-11-03T16:16:05Z2023-11-03T16:16:05Z2023-11-02https://repositorio.unal.edu.co/handle/unal/84882Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, fotografías, planosLa industria cafetera en Colombia genera grandes cantidades de biomasa residual, la cual puede ser aprovechada en procesos de biorrefinería como por ejemplo la obtención de moléculas plataforma de alto valor agregado. En el presente estudio se evaluó la posibilidad de implementar residuos del cultivo de café en la producción de moléculas plataforma de alto valor agregado como el furfural a partir de materiales catalíticos de hierro soportado en óxido de silicio (Fe/SiO2) sintetizados por el método sol-gel. Se resalta que hasta la fecha no se reporta en la literatura la producción de furfural a partir de la cereza residual del café. Para la producción de furfural se utilizaron cuatro materiales catalíticos con cargas de 0,5 y 1,5 % de hierro calcinados a dos temperaturas diferentes, 450 y 750 °C. Como hipótesis se mantiene que la biomasa seleccionada cuenta con los carbohidratos estructurales suficientes para ser implementados en la producción de la molécula plataforma de interés, además de esto, se considera que los materiales catalíticos son activos y selectivos en la obtención de furfural. Los catalizadores fueron evaluados inicialmente con patrones de xilosa con concentración de 3,0 g por L de agua. Se determinó que el catalizador con mayor carga de hierro y calcinado a 750 °C presenta mayor conversión (54,76 %) y selectividad (40,09 %) hacia furfural. Posteriormente, empleando la cereza del café se aplicaron tratamientos de hidrólisis hidrotermal a 170 y 190 °C por 30 y 60 min. Los hidrolizados resultantes fueron implementados en la producción de furfural a 170 °C por 2 horas, en un reactor de diseño propio con atmósfera inerte, usando el catalizador que presenta mayor selectividad obteniendo 9,26 mg de furfural por g de cereza de café. Las condiciones de reacción fueron determinadas tomando en cuenta lo reportado en múltiples estudios. La evaluación del efecto de la temperatura, tiempo en el proceso y carga del metal de transición no fueron evaluadas ya que la cantidad disponible de catalizador era limitada y su síntesis es un proceso altamente costoso. Se destaca que, la actividad catalítica de los materiales de hierro se debe a la presencia de centros activos (ácidos de Lewis) correspondientes a Fe3+ los cuales promueven la isomerización de la xilosa a xilulosa, facilitando la deshidratación de la pentosa para la formación de furfural. Se concluye que el catalizador es activo y selectivo en el proceso de obtención furfural, a partir de residuos de cultivo café como precursor de moléculas de alto valor agregado como el furfural. (Texto tomado de la fuente)The coffee industry in Colombia generates large amounts of residual biomass, which can be used in biorefinery processes such as obtaining high value-added platform molecules. In the present study, the possibility of implementing coffee crop residues in the production of high value-added platform molecules such as furfural from iron catalytic materials supported on silicon oxide (Fe/SiO2) synthesized by the sol-gel method was evaluated. It should be noted that to date, the production of furfural from residual coffee cherry has not been reported in the literature. For the production of furfural, four catalytic materials with loadings of 0.5 and 1.5 % iron calcined at two different temperatures, 450 and 750 °C, were used. As a hypothesis it is maintained that the selected biomass has sufficient structural carbohydrates to be implemented in the production of the platform molecule of interest, in addition to this, it is considered that the catalytic materials are active and selective in obtaining furfural. The catalysts were initially evaluated with xylose standards with a concentration of 3.0 g per L of water. It was determined that the catalyst with higher iron loading and calcined at 750 °C presented higher conversion (54.76 %) and selectivity (40.09 %) towards furfural. Subsequently, using coffee cherry, hydrothermal hydrolysis treatments at 170 and 190 °C for 30 and 60 min were applied. The resulting hydrolysates were implemented in the production of furfural at 170 °C for 2 h, in a reactor of our own design with inert atmosphere, using the catalyst that presents greater selectivity, obtaining 9.26 mg of furfural per g of coffee cherry. The reaction conditions were determined taking into account those reported in multiple studies. The effect of temperature, time in the process and transition metal loading was not evaluated, since the available amount of catalyst was limited and its synthesis is a highly expensive process. It is highlighted that the catalytic activity of the iron materials is due to the presence of active centers (Lewis acids) corresponding to Fe3+ which promote the isomerization of xylose to xylulose, facilitating the dehydration of the pentose for the formation of furfural. It is concluded that the catalyst is active and selective in the process of obtaining furfural from coffee crop residues as a precursor of high value-added molecules such as furfural.MaestríaMagíster en Ciencias - QuímicaGrupo de investigación Aprovechamiento Energético de Recursos Naturales –APRENA-xxi, 115 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - QuímicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá540 - Química y ciencias afines::547 - Química orgánicaCatalizadoresCatalisisActivación químicaCatalystsCatalysisActivation (Chemistry)XilosaSol-gelCatálisis heterogéneaFurfuralBiomasaResiduos de caféXyloseSol-gelHeterogeneous catalysisFurfuralBiomassCoffee residuesObtención de furfural a partir de residuos del cultivo de café empleando materiales catalíticos de hierro soportado en óxido de silicioObtaining furfural from coffee crop residues using iron catalytic materials supported on silicon oxide.Trabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TM[1] Organización Internacional del Café, “Informe de la OIC sobre desarrollo cafetero de 2019 Sumario,” 2019.[2] D. Gerente, “87 CONGRESO NACIONAL DE CAFETEROS IG INFORME,” 2019. [Online]. Available: www.federaciondecafeteros.org.[3] H. Escalante, J. Orduz, and H. Zapata, Atlas del potencial energético de la biomasa residual en Colombia. 2011.[4] N. Echavarría, N. Atehortúa, and O. Tobón, Manual de Gestión del Recurso Hídrico Sector Cafetero. 2016.[5] M. A. Hernández, M. Rodríguez Susa, and Y. Andres, “Use of coffee mucilage as a new substrate for hydrogen production in anaerobic co-digestion with swine manure,” Bioresour. Technol., vol. 168, pp. 112–118, 2014, doi: 10.1016/j.biortech.2014.02.101.[6] A. K. Neu, D. Pleissner, K. Mehlmann, R. Schneider, G. I. Puerta-Quintero, and J. Venus, “Fermentative utilization of coffee mucilage using Bacillus coagulans and investigation of down-stream processing of fermentation broth for optically pure l(+)-lactic acid production,” Bioresour. Technol., vol. 211, pp. 398–405, 2016, doi: 10.1016/j.biortech.2016.03.122.[7] S. Ríos and G. I. Puerta, “Composición Química Del Mucílago De Café, Según El Tiempo De Fermentación Y Refrigeración,” Cenicafé, vol. 2, no. 62, pp. 23–40, 2011.[8] C. M.N. and W. K.C., COFFEE: BOTANY, BIOCHEMISTRY AND PRODUCTION OF BEANS AND BEVERAGE. 1985.[9] S. Peleteiro, S. Rivas, J. L. Alonso, V. Santos, and J. C. Parajó, “Furfural production using ionic liquids: A review,” Bioresour. Technol., vol. 202, pp. 181–191, 2016, doi: 10.1016/j.biortech.2015.12.017.[10] S. Dutta, S. De, B. Saha, and M. I. Alam, “Advances in conversion of hemicellulosic biomass to furfural and upgrading to biofuels,” Catal. Sci. Technol., vol. 2, no. 10, pp. 2025–2036, 2012, doi: 10.1039/c2cy20235b.[11] C. M. Cai, T. Zhang, R. Kumar, and C. E. Wyman, “Integrated furfural production as a renewable fuel and chemical platform from lignocellulosic biomass,” J. Chem. Technol. Biotechnol., vol. 89, no. 1, pp. 2–10, 2014, doi: 10.1002/jctb.4168.[12] R. Mariscal, P. Maireles-Torres, M. Ojeda, I. Sádaba, and M. López Granados, “Furfural: A renewable and versatile platform molecule for the synthesis of chemicals and fuels,” Energy Environ. Sci., vol. 9, no. 4, pp. 1144–1189, 2016, doi: 10.1039/c5ee02666k.[13] R. N. Ntimbani, S. Farzad, and J. F. Görgens, “Techno-economic assessment of one-stage furfural and cellulosic ethanol co-production from sugarcane bagasse and harvest residues feedstock mixture,” Ind. Crops Prod., vol. 162, no. January, 2021, doi: 10.1016/j.indcrop.2021.113272.[14] H. Li et al., “Effect of structural characteristics of corncob hemicelluloses fractionated by graded ethanol precipitation on furfural production,” Carbohydr. Polym., vol. 136, pp. 203–209, 2016, doi: 10.1016/j.carbpol.2015.09.045.[15] Y. Shao et al., “Cooperation between hydrogenation and acidic sites in Cu-based catalyst for selective conversion of furfural to γ -valerolactone,” Fuel, vol. 293, no. December 2020, p. 120457, 2021, doi: 10.1016/j.fuel.2021.120457.[16] T. Werpy and G. Petersen, “Top Value Added Chemicals from Biomass: Volume I -- Results of Screening for Potential Candidates from Sugars and Synthesis Gas. Office of Scientific and Technical Information (OSTI),” Off. Sci. Tech. Inf., p. 69, 2004, [Online]. Available: http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA436528.[17] W. Li et al., “Hf-based metal organic frameworks as bifunctional catalysts for the one-pot conversion of furfural to Γ-valerolactone,” Mol. Catal., vol. 472, no. May, pp. 17–26, 2019, doi: 10.1016/j.mcat.2019.04.010.[18] S. Richardson and K. Weaver, “Ionic Liquids and Their Interaction with Cellulose,” Chem. Rev, vol. 11, no. 4, pp. 6712–6728, 2009, doi: 10.1177/1477750916657663.[19] L. and J. M. Palmowski, “Influence of the size reduction of organic waste on their anaerobic digestion. Proceedings of the 2nd International Symposium on Anaerobic Digestion of Solid Waste,” no. July, p. Influence of the size reduction of organic waste o, 1999.[20] R. F. do N. V. de O. S. N. D. de Q. Melo, Uso de bioadsorventes lignocelulósicos na remoção de poluentes de efluentes aquosos, vol. 01, no. Coleção de Estudos da Pós-Graduação. 2014.[21] D. Fengel and G. Wegner, Wood Chemistry, Ultrastructure, Reactions. 1989.[22] J. P. Delgenes, R. Moletta, and J. M. Navarro, “Effects of lignocellulose degradation products on ethanol fermentations of glucose and xylose by Saccharomyces cerevisiae, Zymomonas mobilis, Pichia stipitis, and Candida shehatae,” Enzyme Microb. Technol., vol. 19, no. 3, pp. 220–225, 1996, doi: 10.1016/0141-0229(95)00237-5.[23] A. Brandt, J. Gräsvik, J. P. Hallett, and T. Welton, “Deconstruction of lignocellulosic biomass with ionic liquids,” Green Chem., vol. 15, no. 3, pp. 550–583, 2013, doi: 10.1039/c2gc36364j.[24] O. Bobleter, “Hydrothermal degradation of polymers derived from plants,” Prog. Polym. Sci., vol. 19, no. 5, pp. 797–841, 1994, doi: 10.1016/0079-6700(94)90033-7.[25] J. C. Parajo, G. Garrote, and H. Domı, “Mild autohydrolysis : an environmentally friendly technology for xylooligosaccharide production from wood,” J. Chem. Technol. Biotechnol., vol. 74, no. January, pp. 1101–1109, 1999.[26] BEALL FC and EICKNER HW, “Thermal Degradation of Wood Components. a Review of the Literature,” U S For. Prod Lab, Res Pap FPL 130, no. May, 1970.[27] O. Yemiş and G. Mazza, “Acid-catalyzed conversion of xylose, xylan and straw into furfural by microwave-assisted reaction,” Bioresour. Technol., vol. 102, no. 15, pp. 7371–7378, 2011, doi: 10.1016/j.biortech.2011.04.050.[28] L. Mao, L. Zhang, N. Gao, and A. Li, “Seawater based furfural production via corncob hydrolysis catalyzed by FeCl3 in acetic acid steam,” Green Chem., no. 207890, pp. 1–19, 2013.[29] P. Bhaumik and P. L. Dhepe, “Solid acid catalyzed synthesis of furans from carbohydrates,” Catal. Rev. - Sci. Eng., vol. 58, no. 1, pp. 36–112, 2016, doi: 10.1080/01614940.2015.1099894.[30] L. Zhang, H. Yu, P. Wang, and Y. Li, “Production of furfural from xylose, xylan and corncob in gamma-valerolactone using FeCl3·6H2O as catalyst,” Bioresour. Technol., vol. 151, pp. 355–360, 2014, doi: 10.1016/j.biortech.2013.10.099.[31] H. B. Sharma, S. Panigrahi, A. K. Sarmah, and B. K. Dubey, “Properties of mesoporous Al-SBA-15 from one-pot hydrothermal synthesis with different aluminium precursors and catalytic performances in xylose conversion to furfural,” Sci. Total Environ., p. 135907, 2019, doi: 10.1016/j.micromeso.2021.110999.[32] M. R. Nimlos, X. Qian, M. Davis, M. E. Himmel, and D. K. Johnson, “Energetics of xylose decomposition as determined using quantum mechanics modeling,” J. Phys. Chem. A, vol. 110, no. 42, pp. 11824–11838, 2006, doi: 10.1021/jp0626770.[33] G. Marcotullio and W. De Jong, “Furfural formation from D-xylose: The use of different halides in dilute aqueous acidic solutions allows for exceptionally high yields,” Carbohydr. Res., vol. 346, no. 11, pp. 1291–1293, 2011, doi: 10.1016/j.carres.2011.04.036.[34] K. . J. Zeitsch, The chemistry and technology of furfural and its many by-products. Elsevier B.V., 2000.[35] M. Kabbour and R. Luque, “Furfural as a platform chemical: From production to applications,” in Biomass, Biofuels, Biochemicals: Recent Advances in Development of Platform Chemicals, A. PANDEY, Ed. Elsevier B.V., 2019, pp. 283–297.[36] Q. Wang et al., “Rapid and simultaneous production of furfural and cellulose-rich residue from sugarcane bagasse using a pressurized phosphoric acid-acetone-water system,” Chem. Eng. J., vol. 334, no. October 2017, pp. 698–706, 2018, doi: 10.1016/j.cej.2017.10.089.[37] X. Li, Q. Liu, C. Luo, X. Gu, L. Lu, and X. Lu, “Kinetics of Furfural Production from Corn Cob in γ-Valerolactone Using Dilute Sulfuric Acid as Catalyst,” ACS Sustain. Chem. Eng., vol. 5, no. 10, pp. 8587–8593, 2017, doi: 10.1021/acssuschemeng.7b00950.[38] X. Zhang, Y. Bai, X. Cao, and R. Sun, “Pretreatment of Eucalyptus in biphasic system for furfural production and accelerated enzymatic hydrolysis,” Bioresour. Technol., vol. 238, pp. 1–6, 2017, doi: 10.1016/j.biortech.2017.04.011.[39] X. Lyu, “Furfural and hydrogen production from corncob via tandem chemical and electrochemical approach,” Bioresour. Technol. Reports, vol. 15, 2021, doi: 10.1016/j.biteb.2021.100790.[40] C. Sener, A. H. Motagamwala, D. M. Alonso, and J. A. Dumesic, “Enhanced Furfural Yields from Xylose Dehydration in the Γ-Valerolactone/Water Solvent System at Elevated Temperatures,” ChemSusChem, vol. 11, no. 14, pp. 2321–2331, 2018, doi: 10.1002/cssc.201800730.[41] L. Zhang, L. Tian, R. Sun, C. Liu, Q. Kou, and H. Zuo, “Transformation of corncob into furfural by a bifunctional solid acid catalyst,” Bioresour. Technol., vol. 276, no. November 2018, pp. 60–64, 2019, doi: 10.1016/j.biortech.2018.12.094.[42] X. Li et al., “Conversion of waste lignocellulose to furfural using sulfonated carbon microspheres as catalyst,” Waste Manag., vol. 108, pp. 119–126, 2020, doi: 10.1016/j.wasman.2020.04.039.[43] J. Zhang, L. Lin, and S. Liu, “Efficient production of furan derivatives from a sugar mixture by catalytic process,” Energy and Fuels, vol. 26, no. 7, pp. 4560–4567, 2012, doi: 10.1021/ef300606v.[44] Q. Zhang, C. Wang, J. Mao, S. Ramaswamy, X. Zhang, and F. Xu, “Insights on the efficiency of bifunctional solid organocatalysts in converting xylose and biomass into furfural in a GVL-water solvent,” Ind. Crops Prod., vol. 138, no. June, p. 111454, 2019, doi: 10.1016/j.indcrop.2019.06.017.[45] S. L. Hu, H. Cheng, R. Y. Xu, J. S. Huang, P. J. Zhang, and J. N. Qin, “Conversion of xylose into furfural over Cr/Mg hydrotalcite catalysts,” Mol. Catal., vol. 538, no. 10, 2023, doi: 10.1016/j.mcat.2023.113009.[46] L. Carballo, “Introducción a la catálisis heterogénea,” 2002.[47] R. Schlögl, Heterogeneous catalysis, vol. 54, no. 11. 2015.[48] C. Alberto, G. Fajardo, Y. N. Guyen, C. Courson, and A. Roger, “Catalizadores Fe/SiO2 para la oxidación selectiva de metano hasta formaldehído,” vol. 26, no. 2, pp. 37–44, 2006.[49] N. T. Tinh et al., “Optimization of synthesis conditions of furfural from sugarcane bagasse using magnetic iron oxide nanoparticles/sulfonated graphene oxide as a catalyst,” Diam. Relat. Mater., vol. 136, no. May, p. 110024, 2023, doi: 10.1016/j.diamond.2023.110024.[50] C. Wu et al., “Conversion of Xylose into Furfural Catalyzed by Bifunctional Acidic Ionic Liquid Immobilized on the Surface of Magnetic γ-Al2O3,” Catal. Letters, vol. 147, no. 4, pp. 953–963, 2017, doi: 10.1007/s10562-017-1982-z.[51] A. Rusanen, R. Kupila, K. Lappalainen, J. Kärkkäinen, T. Hu, and U. Lassi, “Conversion of xylose to furfural over lignin-based activated carbon-supported iron catalysts,” Catalysts, vol. 10, no. 8, 2020, doi: 10.3390/catal10080821.[52] M. Rojas, Diseño y síntesis de materiales “a medida” mediante el método sol-gel, Primera ed. Madrid: Librería UNED, 2012.[53] T. Zhang et al., “Efficient transformation of corn stover to furfural using p-hydroxybenzenesulfonic acid-formaldehyde resin solid acid,” Bioresour. Technol., vol. 264, no. May, pp. 261–267, 2018, doi: 10.1016/j.biortech.2018.05.081.[54] Y. Liu, C. Ma, C. Huang, Y. Fu, and J. Chang, “Efficient Conversion of Xylose into Furfural Using Sulfonic Acid-Functionalized Metal-Organic Frameworks in a Biphasic System,” Ind. Eng. Chem. Res., vol. 57, no. 49, pp. 16628–16634, 2018, doi: 10.1021/acs.iecr.8b04070.[55] T. T. V. Tran et al., “Highly productive xylose dehydration using a sulfonic acid functionalized KIT-6 catalyst,” Fuel, vol. 236, no. September 2018, pp. 1156–1163, 2019, doi: 10.1016/j.fuel.2018.09.089.[56] S. Xu et al., “Efficient production of furfural from xylose and wheat straw by bifunctional chromium phosphate catalyst in biphasic systems,” Fuel Process. Technol., vol. 175, no. March, pp. 90–96, 2018, doi: 10.1016/j.fuproc.2018.04.005.[57] H. Li et al., “A modified biphasic system for the dehydration of d-xylose into furfural using SO42-/TiO2-ZrO2/La 3+ as a solid catalyst,” Catal. Today, vol. 234, pp. 251–256, 2014, doi: 10.1016/j.cattod.2013.12.043.[58] Q. Jia et al., “Production of furfural from xylose and hemicelluloses using tin-loaded sulfonated diatomite as solid acid catalyst in biphasic system,” Bioresour. Technol. Reports, vol. 6, no. February, pp. 145–151, 2019, doi: 10.1016/j.biteb.2019.03.001.[59] K. Yan, G. Wu, T. Lafleur, and C. Jarvis, “Production, properties and catalytic hydrogenation of furfural to fuel additives and value-added chemicals,” Renew. Sustain. Energy Rev., vol. 38, pp. 663–676, 2014, doi: 10.1016/j.rser.2014.07.003.[60] R. Weingarten, J. Cho, W. C. Conner, and G. W. Huber, “Kinetics of furfural production by dehydration of xylose in a biphasic reactor with microwave heating,” Green Chem., vol. 12, no. 8, pp. 1423–1429, 2010, doi: 10.1039/c003459b.[61] E. I. Gürbüz, J. M. R. Gallo, D. M. Alonso, S. G. Wettstein, W. Y. Lim, and J. A. Dumesic, “Conversion of hemicellulose into furfural using solid acid catalysts in γ-valerolactone,” Angew. Chemie - Int. Ed., vol. 52, no. 4, pp. 1270–1274, 2013, doi: 10.1002/anie.201207334.[62] W. Wang, J. Ren, H. Li, A. Deng, and R. Sun, “Direct transformation of xylan-type hemicelluloses to furfural via SnCl4 catalysts in aqueous and biphasic systems,” Bioresour. Technol., vol. 183, pp. 188–194, 2015, doi: 10.1016/j.biortech.2015.02.068.[63] W. Daengprasert, P. Boonnoun, N. Laosiripojana, M. Goto, and A. Shotipruk, “Application of sulfonated carbon-based catalyst for solvothermal conversion of cassava waste to hydroxymethylfurfural and furfural,” Ind. Eng. Chem. Res., vol. 50, no. 13, pp. 7903–7910, 2011, doi: 10.1021/ie102487w.[64] E. I. Gürbüz, S. G. Wettstein, and J. A. Dumesic, “Conversion of hemicellulose to furfural and levulinic acid using biphasic reactors with alkylphenol solvents,” ChemSusChem, vol. 5, no. 2, pp. 383–387, 2012, doi: 10.1002/cssc.201100608.[65] E. Nikolla, Y. Román-Leshkov, M. Moliner, and M. E. Davis, “‘One-pot’ synthesis of 5-(hydroxymethyl)furfural from carbohydrates using tin-beta zeolite,” ACS Catal., vol. 1, no. 4, pp. 408–410, 2011, doi: 10.1021/cs2000544.[66] A. Deng et al., “A feasible process for furfural production from the pre-hydrolysis liquor of corncob via biochar catalysts in a new biphasic system,” Bioresour. Technol., vol. 216, pp. 754–760, 2016, doi: 10.1016/j.biortech.2016.06.002.[67] G. Marcotullio and W. De Jong, “Chloride ions enhance furfural formation from D-xylose in dilute aqueous acidic solutions,” Green Chem., vol. 12, no. 10, pp. 1739–1746, 2010, doi: 10.1039/b927424c.[68] Z. Liu, E. Shi, F. Ma, and K. Jiang, “An integrated biorefinery process for co-production of xylose and glucose using maleic acid as efficient catalyst,” Bioresour. Technol., vol. 325, no. 481, p. 124698, 2021, doi: 10.1016/j.biortech.2021.124698.[69] L. Zhang, H. Yu, P. Wang, H. Dong, and X. Peng, “Conversion of xylan, d-xylose and lignocellulosic biomass into furfural using AlCl3 as catalyst in ionic liquid,” Bioresour. Technol., vol. 130, pp. 110–116, 2013, doi: 10.1016/j.biortech.2012.12.018.[70] B. Hames, R. Ruiz, C. Scarlata, A. Sluiter, J. Sluiter, and D. Templeton, “Preparation of Samples for Compositional Analysis: Laboratory Analytical Procedure (LAP); Issue Date 08/08/2008,” no. August, 2008.[71] ASTM, “Standard Practice for Preparation of Biomass for Compositional Analysis 1,” Annu. B. ASTM Stand., vol. 01, no. Reapproved 2007, pp. 6–9, 2011, doi: 10.1520/E1757-01R07.2.[72] A. Sluiter et al., “Determination of total solids in biomass and total dissolved solids in liquid process samples,” Natl. Renew. Energy Lab., no. March, pp. 3–5, 2008, doi: NREL/TP-510-42621.[73] A. Sluiter, B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, and D. Templeton, “Determination of Ash in Biomass Laboratory Analytical Procedure ( LAP ) Issue Date : 7 / 17 / 2005 Determination of Ash in Biomass Laboratory Analytical Procedure ( LAP ),” no. January, 2008.[74] P. J. Van Soest, J. B. Robertson, and B. A. Lewis, “Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition,” J. Dairy Sci., vol. 74, no. 10, pp. 3583–3597, 1991, doi: 10.3168/jds.S0022-0302(91)78551-2.[75] G. Licitra, T. M. Hernandez, and P. J. Van Soest, “Feedbunk management evaluation techniques,” Anim. Feed Sci. Technol., vol. 57, pp. 347–358, 1996.[76] A. International, AOAC: Official Methods of Analysis (Volume 1), vol. 1, no. Volume 1. 1990.[77] Astm, “Standard Test Method for Heat of Combustion of Liquid Hydrocarbon Fuels by Bomb Calorimeter,” ASTM D 240-92 (reapproved 1997), pp. 144–151, 1997, doi: 10.1520/D0240-19.2.[78] W. Conshohocken, “Standard Test Method for Sulfate Ion in Water 1,” vol. 90, no. April 2002, pp. 1–5, 1995, doi: 10.1520/D0516-16.2.[79] W. G. Cortés Ortiz et al., “Partial oxidation of methane and methanol on FeOx-, MoOx- and FeMoOx -SiO2 catalysts prepared by sol-gel method: A comparative study,” Mol. Catal., vol. 491, no. May, p. 110982, 2020, doi: 10.1016/j.mcat.2020.110982.[80] X. Li, L. Zhang, S. Wang, and Y. Wu, “Recent Advances in Aqueous-Phase Catalytic Conversions of Biomass Platform Chemicals Over Heterogeneous Catalysts,” Front. Chem., vol. 7, no. February, pp. 1–21, 2020, doi: 10.3389/fchem.2019.00948.[81] M. J. C. Molina, M. L. Granados, A. Gervasini, and P. Carniti, “Exploitment of niobium oxide effective acidity for xylose dehydration to furfural,” Catal. Today, vol. 254, pp. 90–98, 2015, doi: 10.1016/j.cattod.2015.01.018.[82] R. K. Mishra, V. B. Kumar, A. Victor, I. N. Pulidindi, and A. Gedanken, “Selective production of furfural from the dehydration of xylose using Zn doped CuO catalyst,” Ultrason. Sonochem., vol. 56, no. July 2018, pp. 55–62, 2019, doi: 10.1016/j.ultsonch.2019.03.015.[83] T. V. dos Santos, D. O. da Silva Avelino, D. B. A. Pryston, M. R. Meneghetti, and S. M. P. Meneghetti, “Tin, molybdenum and tin-molybdenum oxides: Influence of Lewis and Bronsted acid sites on xylose conversion,” Catal. Today, vol. 394–396, no. February, pp. 125–132, 2022, doi: 10.1016/j.cattod.2021.10.018.[84] J. E. Ortiz García, D. E. González Morales, Y. Mejía Agudelo, L. S. García-Alzate, and X. Cifuentes-Wchima, “Evaluación de la biomasa residual (cereza) de café como sustrato para el cultivo del hongo comestible Pleurotus ostreatus,” Rev. ION, vol. 33, no. 1, pp. 93–102, 2020, doi: 10.18273/revion.v33n1-2020009.[85] N. Fierro-Cabrales, A. Contreras-Oliva, O. González-Ríos, E. S. Rosas-Mendoza, and V. Morales-Ramos, “CARACTERIZACIÓN QUÍMICA Y NUTRIMENTAL DE LA PULPA DE CAFÉ ( Coffea arabica L.) = CHEMICAL AND NUTRITIONAL CHARACTERIZATION OF COFFEE PULP ( Coffea arabica L.),” Agroproductividad, vol. 11, no. 4, pp. 9–13, 2018, [Online]. Available: http://revista-agroproductividad.org/index.php/agroproductividad/article/view/261.[86] R. P. Munirwan, A. Mohd Taib, M. R. Taha, N. Abd Rahman, and M. Munirwansyah, “Utilization of coffee husk ash for soil stabilization: A systematic review,” Phys. Chem. Earth, vol. 128, no. September, p. 103252, 2022, doi: 10.1016/j.pce.2022.103252.[87] S. I. Mussatto, E. M. S. Machado, S. Martins, and J. A. Teixeira, “Production, Composition, and Application of Coffee and Its Industrial Residues,” Food Bioprocess Technol., vol. 4, no. 5, pp. 661–672, 2011, doi: 10.1007/s11947-011-0565-z.[88] T. R. L. A. Veiga, J. T. Lima, A. L. de A. Dessimoni, M. F. F. Pego, J. R. Soares, and P. F. Trugilho, “Caracterização de diferentes biomassas vegetais para produção de biocarvões,” Cerne, vol. 23, no. 4, pp. 529–536, 2017, doi: 10.1590/01047760201723042373.[89] N. de la C. Tobón Arroyave, A. F. Cerón Cárdenas, and L. F. Garcés Giraldo, “Análisis y modelamiento de la granulometría en la cáscara del café (Coffea arabica L.) variedad Castillo,” Prod. + Limpia, vol. 10, no. 2, pp. 80–91, 2015, doi: 10.22507/pml.v10n2a7.[90] N. Tangmankongworakoon, “An approach to produce biochar from coffee residue for fuel and soil amendment purpose,” Int. J. Recycl. Org. Waste Agric., vol. 8, no. 0123456789, pp. 37–44, 2019, doi: 10.1007/s40093-019-0267-5.[91] W. T. Tsai, S. C. Liu, and C. H. Hsieh, “Preparation and fuel properties of biochars from the pyrolysis of exhausted coffee residue,” J. Anal. Appl. Pyrolysis, vol. 93, pp. 63–67, 2012, doi: 10.1016/j.jaap.2011.09.010.[92] R. García, C. Pizarro, A. G. Lavín, and J. L. Bueno, “Characterization of Spanish biomass wastes for energy use,” Bioresour. Technol., vol. 103, no. 1, pp. 249–258, 2012, doi: 10.1016/j.biortech.2011.10.004.[93] J. A. Suárez, C. A. Luengo, F. F. Felfli, G. Bezzon, and P. A. Beatón, “Thermochemical properties of cuban biomass,” Energy Sources, vol. 22, no. 10, pp. 851–857, 2000, doi: 10.1080/00908310051128156.[94] S. Marx, R. Venter, S. K. Karmee, J. Louw, and C. Truter, “Biofuels from spent coffee grounds: comparison of processing routes,” Biofuels, no. July, pp. 1–7, 2020, doi: 10.1080/17597269.2020.1793538.[95] A. S. Noushabadi, A. Dashti, F. Ahmadijokani, J. Hu, and A. H. Mohammadi, “Estimation of higher heating values (HHVs) of biomass fuels based on ultimate analysis using machine learning techniques and improved equation,” Renew. Energy, vol. 179, pp. 550–562, 2021, doi: 10.1016/j.renene.2021.07.003.[96] A. Dashti, A. S. Noushabadi, M. Raji, A. Razmi, S. Ceylan, and A. H. Mohammadi, “Estimation of biomass higher heating value (HHV) based on the proximate analysis: Smart modeling and correlation,” Fuel, vol. 257, no. August, p. 115931, 2019, doi: 10.1016/j.fuel.2019.115931.[97] S.-Y. Jeong and J.-W. Lee, “Hydrothermal treatment,” in Pretreatmen of biomass processes and technologies, Elsevier B.V., 2015, pp. 1–6.[98] A. T. W. M. Hendriks and G. Zeeman, “Pretreatments to enhance the digestibility of lignocellulosic biomass,” Bioresour. Technol., vol. 100, no. 1, pp. 10–18, 2009, doi: 10.1016/j.biortech.2008.05.027.[99] S. Y. Jeong and J. W. Lee, “Hydrothermal Treatment,” Pretreat. Biomass Process. Technol., pp. 61–74, 2015, doi: 10.1016/B978-0-12-800080-9.00005-0.[100] Gunjan, L. Chopra, and Manikanika, “Extraction of cellulose from agro waste – A short review,” Mater. Today Proc., no. xxxx, 2023, doi: 10.1016/j.matpr.2023.04.378.[101] B. C. Saha, “Hemicellulose bioconversion,” J. Ind. Microbiol. Biotechnol., vol. 30, no. 5, pp. 279–291, 2003, doi: 10.1007/s10295-003-0049-x.[102] J. Rao, Z. Lv, G. Chen, and F. Peng, “Hemicellulose: Structure, Chemical Modification, and Application,” Prog. Polym. Sci., vol. 140, p. 101675, 2023, doi: 10.1016/j.progpolymsci.2023.101675.[103] Z. Qi et al., “Highly Efficient Conversion of Xylose to Furfural in a Water-MIBK System Catalyzed by Magnetic Carbon-Based Solid Acid,” Ind. Eng. Chem. Res., vol. 59, no. 39, pp. 17046–17056, 2020, doi: 10.1021/acs.iecr.9b06349.[104] J. Gao et al., “Nitrogen doped carbon solid acid for improving its catalytic transformation of xylose and agricultural biomass residues to furfural,” Mol. Catal., vol. 535, no. December 2022, p. 112890, 2023, doi: 10.1016/j.mcat.2022.112890.[105] R. Ji et al., “Core-shell catalyst WO3@mSiO2-SO3H interfacial synergy catalyzed the preparation of furfural from xylose,” Mol. Catal., vol. 530, no. April, 2022, doi: 10.1016/j.mcat.2022.112592.[106] A. F. Aldana, J. A. Bustillo, J. C. Urueta, and A. J. Bula, “Computational fluid dynamics of the soybean oil hydrolysis under subcritical water conditions in a stirred-tank reactor,” Inf. Tecnol., vol. 29, no. 5, pp. 47–59, 2018, doi: 10.4067/S0718-07642018000500047.[107] J. Sun, Z. Xu, W. Li, and X. Shen, “Effect of nano-SiO2 on the early hydration of alite-sulphoaluminate cement,” Nanomaterials, vol. 7, no. 5, pp. 1–15, 2017, doi: 10.3390/nano7050102.[108] Y. Liang, J. Ouyang, H. Wang, W. Wang, P. Chui, and K. Sun, “Synthesis and characterization of core-shell structured SiO 2 @YVO 4 :Yb 3+ ,Er 3+ microspheres,” Appl. Surf. Sci., vol. 258, no. 8, pp. 3689–3694, 2012, doi: 10.1016/j.apsusc.2011.12.006.[109] A. Alayat, D. N. Mcllroy, and A. G. McDonald, “Effect of synthesis and activation methods on the catalytic properties of silica nanospring (NS)-supported iron catalyst for Fischer-Tropsch synthesis,” Fuel Process. Technol., vol. 169, no. June 2017, pp. 132–141, 2018, doi: 10.1016/j.fuproc.2017.09.011.[110] X. Zhang, Y. Niu, X. Meng, Y. Li, and J. Zhao, “Structural evolution and characteristics of the phase transformations between α-Fe2O3, Fe3O4 and γ-Fe2O3 nanoparticles under reducing and oxidizing atmospheres,” CrystEngComm, vol. 15, no. 40, pp. 8166–8172, 2013, doi: 10.1039/c3ce41269e.[111] Z. Yang, M. Luo, Q. Liu, and B. Shi, “In situ XRD and Raman Investigation of the Activation Process over K–Cu–Fe/SiO2 Catalyst for Fischer–Tropsch Synthesis Reaction,” Catal. Letters, vol. 150, no. 8, pp. 2437–2445, 2020, doi: 10.1007/s10562-020-03147-6.[112] S. Sobhanardakani, A. Jafari, R. Zandipak, and A. Meidanchi, “Removal of heavy metal (Hg(II) and Cr(VI)) ions from aqueous solutions using Fe2O3@SiO2 thin films as a novel adsorbent,” Process Saf. Environ. Prot., vol. 120, pp. 348–357, 2018, doi: 10.1016/j.psep.2018.10.002.[113] W. G. Cortes Ortiz, “Obtención de metanol a partir de la oxidación selectiva de metano empleando materiales catalíticos de hierro y molibdeno soportados en óxido de silicio,” p. 234, 2020, [Online]. Available: https://repositorio.unal.edu.co/handle/unal/77809.[114] I. Ramalla, R. K. Gupta, and K. Bansal, “Effect on superhydrophobic surfaces on electrical porcelain insulator, improved technique at polluted areas for longer life and reliability,” Int. J. Eng. Technol., vol. 4, no. 4, p. 509, 2015, doi: 10.14419/ijet.v4i4.5405.[115] A. Nikmah, A. Taufiq, and A. Hidayat, “Synthesis and Characterization of Fe3O4/SiO2 nanocomposites,” IOP Conf. Ser. Earth Environ. Sci., vol. 276, no. 1, 2019, doi: 10.1088/1755-1315/276/1/012046.[116] R. Ellerbrock, M. Stein, and J. Schaller, “Comparing amorphous silica, short-range-ordered silicates and silicic acid species by FTIR,” Sci. Rep., vol. 12, no. 1, pp. 1–8, 2022, doi: 10.1038/s41598-022-15882-4.[117] E. A. Paukshtis, M. A. Yaranova, I. S. Batueva, and B. S. Bal’zhinimaev, “A FTIR study of silanol nests over mesoporous silicate materials,” Microporous Mesoporous Mater., vol. 288, no. June, 2019, doi: 10.1016/j.micromeso.2019.109582.[118] M. D. L. Ángeles and L. Lascano, “Precipitación controlada Materiales y métodos,” Epn, no. 1, pp. 91–99, 2008, [Online]. Available: http://bibdigital.epn.edu.ec/handle/15000/5547.[119] J. Gao et al., “Chemical Speciation and Interaction Mechanism of U in ‘Shewanella putrefaciens-Mineral-U’ System,” Water. Air. Soil Pollut., vol. 232, no. 8, pp. 1–8, 2021, doi: 10.1007/s11270-021-05283-0.[120] D. Van Quy et al., “Synthesis of silica-coated magnetic nanoparticles and application in the detection of pathogenic viruses,” J. Nanomater., vol. 2013, 2013, doi: 10.1155/2013/603940.[121] N. S. F. Trotte, M. T. G. Aben-Athar, and N. M. F. Carvalho, “Yerba mate tea extract: A green approach for the synthesis of silica supported iron nanoparticles for dye degradation,” J. Braz. Chem. Soc., vol. 27, no. 11, pp. 2093–2104, 2016, doi: 10.5935/0103-5053.20160100.[122] D. Fu et al., “Probing the structure evolution of iron-based Fischer-tropsch to produce olefins by operando Raman spectroscopy,” ChemCatChem, vol. 7, no. 5, pp. 752–756, 2015, doi: 10.1002/cctc.201402980.[123] J. Hrubý et al., “Deposition of Tetracoordinate Co(II) Complex with Chalcone Ligands on Graphene,” Molecules, vol. 25, no. 21, 2020, doi: 10.3390/molecules25215021.[124] G. Xu, Z. Tu, X. Hu, M. Li, X. Zhang, and Y. Wu, “Ionic buffering biphase systems as catalysts and solvents for efficient dehydration of xylose and hemicellulose to furfural,” J. Mol. Liq., vol. 381, no. April, p. 121836, 2023, doi: 10.1016/j.molliq.2023.121836.[125] N. Zhou et al., “Conversion of xylose into furfural over MC-SnOx and NaCl catalysts in a biphasic system,” J. Clean. Prod., vol. 311, no. February, p. 127780, 2021, doi: 10.1016/j.jclepro.2021.127780.[126] V. Choudhary, S. I. Sandler, and D. G. Vlachos, “Conversion of xylose to furfural using Lewis and Brønsted acid catalysts in aqueous media,” ACS Catal., vol. 2, no. 9, pp. 2022–2028, 2012, doi: 10.1021/cs300265d.[127] T. Yang, Y. H. Zhou, S. Z. Zhu, H. Pan, and Y. B. Huang, “Insight into Aluminum Sulfate-Catalyzed Xylan Conversion into Furfural in a Γ-Valerolactone/Water Biphasic Solvent under Microwave Conditions,” ChemSusChem, vol. 10, no. 20, pp. 4066–4079, 2017, doi: 10.1002/cssc.201701290.Obtención de furfural a partir de residuos del cultivo de café empleando materiales catalíticos de hierro soportado en óxido de silicioEstudiantesInvestigadoresMaestrosPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84882/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1031127909.2023.pdf1031127909.2023.pdfTesis de Maestría en Ciencias - Químicaapplication/pdf5203274https://repositorio.unal.edu.co/bitstream/unal/84882/2/1031127909.2023.pdf0b6790b2fab82fa749711d81fcd57867MD52THUMBNAIL1031127909.2023.pdf.jpg1031127909.2023.pdf.jpgGenerated Thumbnailimage/jpeg5223https://repositorio.unal.edu.co/bitstream/unal/84882/3/1031127909.2023.pdf.jpg044c24f72c74782ba5e5c6e84653125aMD53unal/84882oai:repositorio.unal.edu.co:unal/848822024-08-19 23:10:47.479Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |