Producción y caracterización de propiedades anticorrosivas del recubrimiento TiAlSiN depositadas con el sistema de sputtering reactivo

ilustraciones, graficas, tablas

Autores:
Cañon Tafur, Luis Alejandro
Tipo de recurso:
Fecha de publicación:
2017
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/79475
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/79475
https://repositorio.unal.edu.co/
Palabra clave:
670 - Manufactura::671 - Proceso de metalurgia y productos metálicos primarios
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Recubrimiento
TiAlSiN
Sputtering
Magnetrón
Corrosión
Microdureza
Desgaste
Factorial
Fraccionado
TiAlSiN Coating
Sputtering Magnetron
Corrosion
Microhardness
Wear
Fractional Factorial Design
Corrosión
Corrosion
Rights
openAccess
License
Atribución-SinDerivadas 4.0 Internacional
id UNACIONAL2_65f54e7887529bd2e068afa8db6a466a
oai_identifier_str oai:repositorio.unal.edu.co:unal/79475
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Producción y caracterización de propiedades anticorrosivas del recubrimiento TiAlSiN depositadas con el sistema de sputtering reactivo
dc.title.translated.eng.fl_str_mv Production and characterization of anticorrosive properties of the TiAlSiN coating deposited with the reactive sputtering system
title Producción y caracterización de propiedades anticorrosivas del recubrimiento TiAlSiN depositadas con el sistema de sputtering reactivo
spellingShingle Producción y caracterización de propiedades anticorrosivas del recubrimiento TiAlSiN depositadas con el sistema de sputtering reactivo
670 - Manufactura::671 - Proceso de metalurgia y productos metálicos primarios
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Recubrimiento
TiAlSiN
Sputtering
Magnetrón
Corrosión
Microdureza
Desgaste
Factorial
Fraccionado
TiAlSiN Coating
Sputtering Magnetron
Corrosion
Microhardness
Wear
Fractional Factorial Design
Corrosión
Corrosion
title_short Producción y caracterización de propiedades anticorrosivas del recubrimiento TiAlSiN depositadas con el sistema de sputtering reactivo
title_full Producción y caracterización de propiedades anticorrosivas del recubrimiento TiAlSiN depositadas con el sistema de sputtering reactivo
title_fullStr Producción y caracterización de propiedades anticorrosivas del recubrimiento TiAlSiN depositadas con el sistema de sputtering reactivo
title_full_unstemmed Producción y caracterización de propiedades anticorrosivas del recubrimiento TiAlSiN depositadas con el sistema de sputtering reactivo
title_sort Producción y caracterización de propiedades anticorrosivas del recubrimiento TiAlSiN depositadas con el sistema de sputtering reactivo
dc.creator.fl_str_mv Cañon Tafur, Luis Alejandro
dc.contributor.advisor.none.fl_str_mv Jhon Jairo, Olaya Florez
Luis Camilo, Jimenez Borrego
dc.contributor.author.none.fl_str_mv Cañon Tafur, Luis Alejandro
dc.contributor.researchgroup.spa.fl_str_mv GRUPO DE INVESTIGACIÓN AFIS (ANÁLISIS DE FALLAS, INTEGRIDAD Y SUPERFICIES)
dc.subject.ddc.spa.fl_str_mv 670 - Manufactura::671 - Proceso de metalurgia y productos metálicos primarios
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
topic 670 - Manufactura::671 - Proceso de metalurgia y productos metálicos primarios
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Recubrimiento
TiAlSiN
Sputtering
Magnetrón
Corrosión
Microdureza
Desgaste
Factorial
Fraccionado
TiAlSiN Coating
Sputtering Magnetron
Corrosion
Microhardness
Wear
Fractional Factorial Design
Corrosión
Corrosion
dc.subject.proposal.spa.fl_str_mv Recubrimiento
TiAlSiN
Sputtering
Magnetrón
Corrosión
Microdureza
Desgaste
Factorial
Fraccionado
dc.subject.proposal.eng.fl_str_mv TiAlSiN Coating
Sputtering Magnetron
Corrosion
Microhardness
Wear
Fractional Factorial Design
dc.subject.unesco.none.fl_str_mv Corrosión
Corrosion
description ilustraciones, graficas, tablas
publishDate 2017
dc.date.issued.none.fl_str_mv 2017
dc.date.accessioned.none.fl_str_mv 2021-05-04T21:41:33Z
dc.date.available.none.fl_str_mv 2021-05-04T21:41:33Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/79475
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/79475
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv [1] V. K. Sarin, Comprehensive Hard Materials Vol I, Elsevier. Boston, MA: 2014, 2014.
[2] H. C. B. Ã, B. Deepthi, and K. S. Rajam, “Deposition and characterization of TiAlN / Si 3 N 4 superhard nanocomposite coatings prepared by reactive direct current unbalanced magnetron sputtering,” vol. 81, pp. 479–488, 2006.
[3] J. C. Oliveira, A. Manaia, and A. Cavaleiro, “Hard amorphous Ti-Al-N coatings deposited by sputtering,” Thin Solid Films, vol. 516, no. 15, pp. 5032–5038, 2008.
[4] S. po Wam, “Struture Characterization and Mechanical Properties of Industrial PVD-TiAlN Coatings,” Run Run Shaw Libr. Copyr., p. 269, 2005.
[5] L. Velasco, J. J. Olaya, and S. E. Rodil, “Effect of Si addition on the structure and corrosion behavior of NbN thin films deposited by unbalanced magnetron sputtering,” Appl. Phys. A Mater. Sci. Process., vol. 122, no. 2, pp. 1–10, 2016.
[6] A. Miletić, P. Panjan, B. Škorić, M. Čekada, G. Dražič, and J. Kovač, “Microstructure and mechanical properties of nanostructured Ti-Al-Si-N coatings deposited by magnetron sputtering,” Surf. Coatings Technol., vol. 241, pp. 105–111, 2014.
[7] Y. H. Yoo, D. P. Le, J. G. Kim, S. K. Kim, and P. Van Vinh, “Corrosion behavior of TiN, TiAlN, TiAlSiN thin films deposited on tool steel in the 3.5 wt.% NaCl solution,” Thin Solid Films, vol. 516, no. 11, pp. 3544–3548, 2008.
[8] S. Q. Wang et al., “Effect of Si addition on microstructure and mechanical properties of Ti-Al-N coating,” Int. J. Refract. Met. Hard Mater., vol. 28, no. 5, pp. 593–596, 2010.
[9] K. A. Kuptsov, P. V Kiryukhantsev-korneev, A. N. Sheveyko, and D. V Shtansky, “Surface & Coatings Technology Comparative study of electrochemical and impact wear behavior of TiCN , TiSiCN , TiCrSiCN , and TiAlSiCN coatings,” Surf. Coat. Technol., vol. 216, pp. 273–281, 2013.
[10] M. Pfeiler, J. Zechner, M. Penoy, C. Michotte, C. Mitterer, and M. Kathrein, “Improved oxidation resistance of TiAlN coatings by doping with Si or B,” Surf. Coatings Technol., vol. 203, no. 20–21, pp. 3104–3110, 2009.
[11] D. M. Devia Narvaez, H. Duque-Sanchez, and F. Mesa, “Behavior of coated forming tools with TiAlN coatings grown by Triode Magnetron Sputtering,” Dyna,
[12] J. J. Olaya, D. M. Marulanda, S. E. Rodil, and B. Bhushan, “Propiedades mecánicas de nitruros metálicos depositados con UBM: Tecnología eficiente y ambientalmente limpia,” Rev. Mex. Fis., vol. 55, no. 6, pp. 425–431, 2009.
D. Garcia, U. Piratoba, and A. Mariño, “Recubrimientos de (Ti,Al)N sobre Acero AISI 4140 por Sputtering Reactivo,” Dyna, no. 152, p. 181, 182, 183, 184 y 185, 2007.
[14] F. Correa, C. A. Rincon, and J. C. Caicedo, “Faber Correa 1 , Carlos A. Rincon 2 , Gilberto Bejarano G 3 ., J. C. Caicedo 3,” vol. 39, no. 2, pp. 597–601, 2007.
[15] Y. Lizbeth, C. Godoy, S. Elizabeth, and R. Posada, “Corrosion resistance of transition metal nitride films deposited on AISI M2 steel,” no. June 2012, 2014.
[16] F. Quesada and Á. Mariño, “Recubrimientos de TiAlN sobre acero ASTM A36 por el proceso de sputtering reactivo RF TiAlN films on ASTM A36 steel for sputtering reactive process RF,” pp. 107–114, 2006
[17] J. J. Olaya, U. Piratoba, and S. E. Rodil, “RESISTENCIA A LA CORROSIÓN DE RECUBRIMIENTOS DE CrN DEPOSITADOS POR PVD CON UBM: TECNOLOGÍA EFICIENTE Y AMBIENTALMENTE LIMPIA,” vol. 31, no. 1, pp. 44–51, 2011
[18] A. Trujillo, O; Arango, Y; Devia, “REVISTA COLOMBIANA DE FÍSICA, VOL. 39, No. 1, 2007 DEPOSICION Y CARACTERIZACION DE PELICULAS DE TiZrN MEDIANTE LA TECNICA DE ARCO PULSADO O. Trujillo, Y. C. Arango, A. Devia.,” Rev. Colomb. Fis., vol. 39, no. 1, pp. 135–139, 2007
[19] L. Hultman et al., “Transmission electron microscopy studies of microstructural evolution, defect structure, and phase transitions in polycrystalline and epitaxial Ti1−xAlxN and TiN films grown by reactive magnetron sputter deposition,” Thin Solid Films, vol. 205, no. 2, pp. 153–164, 1991
[20] T. Ikeda and S. Satoh, “Phase formation and characterization of hard coatings in the Ti-Al-N system prepared by the cathodic arc ion plating method,” Thin Solid Films, vol. 195, no. 1–2, pp. 99–110, 1991
[21] A. L. Ivanwsky and U. Branch, “INTERATOMIC INTERACTIONS AND ELECTRONIC PROPERTIES OF NaCI-TYPE TixAl1-xNy,” pp. 2–5, 1993
[22] O. Knotek, M. Atzor, A. Barimani, and F. Jungblut, “Development of low temperature ternary coatings for high wear resistance,” Surf. Coat. Technol., vol. 42, no. 1, pp. 21–28, 1990.
[23] T. Leyendecker, O. Lemmer, S. Esser, and J. Ebberink, “The development of the PVD coating TiAlN as a commercial coating for cutting tools,” Surf. Coatings Technol., vol. 48, no. 2, pp. 175–178, 1991
[24] S. Sobue et al., Metastable Phase Formation in Al alloy/TiN/Ti/Si Systems. Elsevier. B.V., 1994.
[25] F. C. Stedile, F. L. Freire Jr, W. H. Schreiner, and I. J. R. Baumvol, “Characterisation of titanium-aluminium nitride thin films by ion beam techniques and X-ray diffraction,” Vacuum, vol. 45, no. 4, pp. 441–446, 1994.
[26] B. Shew and J. Huang, “The effects of nitrogen flow on reactively sputtered Ti-A1-N films,” Surf. Coatings Technol., vol. 71, pp. 30–36, 1995.
[27] E. J. Bienk, H. Reitz, and N. J. Mikkelsen, “Wear and friction properties of hard PVD coatings,” Surf. Coatings Technol., vol. 76–77, pp. 475–480, 1995.
[28] J. Musil, “Hard nanostructured and nanocomposite thin films,” 3rd Mikkeli Int. Ind. Coatings Semin., no. i, 2006.
[29] P. Karvankova, M. G. J. Veprek-Heijman, D. Azinovic, and S. Veprek, “Properties of superhard nc-TiN/a-BN and nc-TiN/a-BN/a-TiB2 nanocomposite coatings prepared by plasma induced chemical vapor deposition,” Surf. Coatings Technol., vol. 200, no. 9, pp. 2978–2989, 2006.
[30] L. Chen, Y. Du, S. Q. Wang, A. J. Wang, and H. H. Xu, “Mechanical properties and microstructural evolution of TiN coatings alloyed with Al and Si,” Mater. Sci. Eng. A, vol. 502, no. 1–2, pp. 139–143, 2009.
[31] I. Bertóti, “Characterization of nitride coatings by XPS,” Surf. Coatings Technol., vol. 151–152, pp. 194–203, 2002
[32] S. Carvalho et al., “Microstructure, mechanical properties and cutting performance of superhard (Ti,Si,Al)N nanocomposite films grown by d.c. reactive magnetron sputtering,” Surf. Coatings Technol., vol. 177–178, pp. 459–468, 2004
[33] S. Veprek, H. D. Männling, M. Jilek, and P. Holubar, “Avoiding the high-temperature decomposition and softening of (Al1-xTix)N coatings by the formation of stable superhard nc-(Al1-xTix)N/a-Si3 N4 nanocomposite,” Mater. Sci. Eng. A, vol. 366, no. 1, pp. 202–205, 2004.
[34] I. W. Park, S. R. Choi, J. H. Suh, C. G. Park, and K. H. Kim, “Deposition and mechanical evaluation of superhard Ti-Al-Si-N nanocomposite films by a hybrid coating system,” Thin Solid Films, vol. 447–448, no. 3, pp. 443–448, 2004
[35] J. Musil and H. Hruby, “Superhard nanocomposite Ti 1 2 x Al x N ® lms prepared by magnetron sputtering,” vol. 365, pp. 104–109, 2000
[36] L. Chen, Y. Du, A. J. Wang, S. Q. Wang, and S. Z. Zhou, “Int . Journal of Refractory Metals & Hard Materials Effect of Al content on microstructure and mechanical properties of Ti – Al – Si – N nanocomposite coatings,” Int. J. Refract. Met. Hard Mater., vol. 27, no. 4, pp. 718–721, 2009
[37] N. Jiang, Y. G. Shen, H. J. Zhang, S. N. Bao, and X. Y. Hou, “Superhard nanocomposite Ti-Al-Si-N films deposited by reactive unbalanced magnetron sputtering,” Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., vol. 135, no. 1, pp
[38] H. Gleiter, “Nanocrystalline materials,” Prog. Mater. Sci., vol. 33, no. 4, pp. 223–315, 1989.
[39] K. A. Kuptsov, P. V. Kiryukhantsev-Korneev, A. N. Sheveyko, and D. V. Shtansky, “Structural transformations in TiAlSiCN coatings in the temperature range 900-1600 ??c,” Acta Mater., vol. 83, pp. 408–418, 2015.
[40] P. H. Mayrhofer et al., “Self-organized nanostructures in the Ti-Al-N system,” Appl. Phys. Lett., vol. 83, no. 10, pp. 2049–2051, 2003.
[41] H. C. Barshilia, M. Ghosh, Shashidhara, R. Ramakrishna, and K. S. Rajam, “Deposition and characterization of TiAlSiN nanocomposite coatings prepared by reactive pulsed direct current unbalanced magnetron sputtering,” Appl. Surf. Sci., vol. 256, no. 21, pp. 6420–6426, 2010.
[42] S. Veprek and M. J. G. Veprek-Heijman, “Industrial applications of superhard nanocomposite coatings,” Surf. Coatings Technol., vol. 202, no. 21, pp. 5063–5073, 2008.
[43] S. Wilson and A. T. Alpas, “Tribo-layer formation during sliding wear of TiN coatings,” vol. 245, no. November 1999, pp. 223–229, 2000.
[44] J. Takadoum and D. Mairey, “The Wear Characteristics of Silicon Nitride,” vol. 18, pp. 553–556, 1998.
[45] C. Chang, W. Chen, P. Tsai, W. Ho, and D. Wang, “Characteristics and performance of TiSiN / TiAlN multilayers coating synthesized by cathodic arc plasma evaporation,” vol. 202, pp. 987–992, 2007
[46] N. D. Nam, M. Vaka, and N. Tran Hung, “Corrosion behavior of TiN, TiAlN, TiAlSiN-coated 316L stainless steel in simulated proton exchange membrane fuel cell environment,” J. Power Sources, vol. 268, pp. 240–245, 2014.
[47] Y. C. Chan, H. W. Chen, P. S. Chao, J. G. Duh, and J. W. Lee, “Microstructure control in TiAlN/SiNx multilayers with appropriate thickness ratios for improvement of hardness and anti-corrosion characteristics,” Vacuum, vol. 87, pp. 195–199, 2013.
[48] D. Turcio-Ortega, S. E. Rodil, and S. Muhl, “Corrosion behavior of amorphous carbon deposit in 0.89% NaCl by electrochemical impedance spectroscopy,” Diam. Relat. Mater., vol. 18, no. 11, pp. 1360–1368, 2009.
[49] M. Flores, S. Muhl, and E. Andrade, “The relation between the plasma characteristic and the corrosion properties of TiN/Ti multilayers deposited by unbalanced magnetron sputtering,” Thin Solid Films, vol. 433, no. 1–2 SPEC., pp. 217–223, 2003.
[50] J. M. Albella, Laminas Delgadas Y Recubrimientos Preparacion, propiedades y aplicaciones. Madrid 2003: CSIC, 2003.
[51] K. Holmberg and A. Mathews, “Coatings tribology: a concept, critical aspects and future directions,” Thin Solid Films, vol. 253, no. 1–2, pp. 173–178, 1994.
[52] C. Brechinac, Nanomaterials and Nanochemistry, Springer. Paris: Springer.
[53] H. Holleck, “Basic principles of specific applications of ceramic materials as protective layers,” Surf. Coatings Technol., vol. 43–44, no. PART 1, pp. 245–258, 1990.
[54] H. Holleck, “Material selection for hard coatings,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., vol. 4, no. 6, p. 2661, 1986.
[55] B. R. Riedel and R. Riedel, “Materials harder than diamond?,” Adv. Mater., vol. 4, no. 11, pp. 759–761, 1992.
[56] J. Patscheider, “Nanocomposite Hard Coatings for Wear Protection,” MRS Bull., vol. 28, no. 3, pp. 180–183, 2003.
[57] A. Bogaerts, E. Neyts, R. Gijbels, and J. Van der Mullen, “Gas discharge plasmas and their applications,” Spectrochimica Acta - Part B Atomic Spectroscopy, vol. 57, no. 4. pp. 609–658, 2002.
[58] E. Bultinck and P. D. A. Bogaerts, “Numerical simulation of a magnetron discharge utilized for the reactive sputter deposition of titanium nitride and oxide layers,” Dep. Chemie, vol. PhD, pp. 1–203, 2009.
[59] P. Kofstad and R. Bredesen, “High temperature corrosion in SOFC environments,” Solid State Ionics, vol. 52, no. 1–3, pp. 69–75, 1992.
[60] E. Barsoukov and J. R. Macdonald, Impedance Spectroscopy. 2005.
[61] R. O. Kuehl, Diseños con superficie de respuesta. 2001.
[62] P. Marcus, Corrosion Mechanisms in Theory and Practice. 2011.
[63] M. Fontana, Corrsion engineering, Tercera., vol. 1. Ohio, 1978.
[64] J. J. D. G. fonso José Vázquez Vaamonde, J. J. de Damborenea, Ciencia e ingeniería de la superficie de los materiales metálicos, CSIC. Madrid: RAYCAR impresores, 2001.
[65] Q. P. Nayuri and R. Peláez, ““ EVALUACIÓN ELECTROQUÍMICA DE RECUBRIMIENTOS BIOCOMPATIBLES “,” 2015.
[66] A. Lasia, Electrochemical Impedance Spectroscopy and its Applications. 2002.
[67] J. Vasquez, “EMPLEO DE LA TÉCNICA DE ESPECTROSCOPÍA DE IMPEDANCIAS ELECTROQUÍMICAS PARA LA CARACTERIZACIÓN DE BIOMATERIALES. APLICACIÓN A UNA ALEACIÓN BIOMÉDICA DE Co-Cr-Mo.” Universidad Politecnica de Valencia, Valencia, 2007.
[68] N. Sekar and R. P. Ramasamy, “Electrochemical Impedance Spectroscopy for Microbial Fuel Cell Characterization,” J. Microb. Biochem. Technol., vol. S6, no. July 2013, pp. 1–14, 2013.
[69] K. Jüttner, “Electrochemical impedance spectroscopy (EIS) of corrosion processes on inhomogeneous surfaces,” Electrochim. Acta, vol. 35, no. 10, pp. 1501–1508, 1990.
[70] C. D. E. P. Em and C. E. Engenharia, “Estudos Eletroquímicos do aço AISI 403 em meios salinos simulando a Corrosão em Palhetas de Turbinas a Vapor DENISE SANTANA PACHECO,” 2008.
[71] A. John R. Scully, David C. Silverman and M. W. Kendig, Electrochemical Impedance: Analysis and Interpretation, no. January 1993. 1993.
[72] J. J. Olaya, Y. Chipatecua, and S. Rodil, “Resistencia a la Corrosión de Recubrimientos de Nitruros Metálicos Depositados sobre Acero AISI M2,” Ing. y Desarro., vol. 30, no. 1, p. 63 y 64, 2012.
[73] A. Rizzo et al., Corrosion Mechanisms in Theory and Practice, Springer., vol. 18, no. November. Ohio: Springer, 2011.
[75] J. V. Koleske, “Mechanical Properties of Solid Coatings,” Encycl. Anal. Chem., pp. 1–15, 2001.
[76] R. F. Bunshah, HANDBOOK OF HARD COATINGS Deposition Technologies , Properties and. 2001.
[77] S. H. Materials, Comprenhensive Hard Materials Vol III, Elsevier. Boston, MA, 2014.
[78] a O. Sergici and X. N. Randall, “Scratch Testing of Coatings.(TECH SPOTLIGHT),” Adv. Mater. Process., no. April, pp. 41–43, 2006.
[79] J.Schmit, “An introduction to non-contact surface metrology,” 2013.
[80] “bragg @ hyperphysics.phy-astr.gsu.edu.”
[81] J. Jimenez, “Diseños experimentales,” Model. Exp., p. 4, 2012.
[82] D. C. Montgomery, “Diseño Y Analisis de Experimentos.” Editorial Limusa, Arizona, p. 692, 2004.
[83] O. Castejón, Diseño y análisis de experimentos con statistix. 2011.
[84] R. Zas, “Autocorrelación espacial y el diseño y análisis de experimentos,” Introd. al Análisis Espac. Datos en Ecol. y Ciencias Ambient. Métodos y Apl., pp. 541–590, 2008.
[85] A. . Fallis, Elementos de diseño de experimentos, vol. 53, no. 9. 2013.
[86] R. Zas, “Consecuencias de la estructura espacial de los datos en el diseño y análisis de experimentos en campo,” Ecosistemas, vol. 3, no. 3, pp. 1–8, 2006.
[87] D. Monzón and D. Monzón Paiva, “Introducción al diseño de experimentos,” Rev. la Fac. Agron. la Univ. Cent. Venez., no. Alcance 34, p. 167 p., 1992.
[88] “e2ccf15e9c64f8a044f3f4f10e3d82e2a6ff8be5 @ support.minitab.com.”
[89] J. Melorose et al., “Los Cuadros Más Importantes Y Significativos,” Statew. Agric. L. Use Baseline 2015, vol. 1, p. 1–20;Creación:2010;Recuperado:10 mayo 2015, 2015.
[90] “cap4-7 @ www.ub.edu.” .
[91] D. Sodio, D. Sodio, and M. Base, “Aleación 316-317,” vol. 56, no. 2.
[92] “monocristalino @ autosolar.es.” .
[93] K. J. Lesker Company, “Practical Process Tips - Sputtering,” Lesker Tech, vol. 7, pp. 1–4, 2010.
[94] B.-Y. Shew, J.-L. Huang, and D.-F. Lii, “Effects of r.f. bias and nitrogen flow rates on the reactive sputtering of TiA1N films,” Thin Solid Films, vol. 293, no. 1–2, pp. 212–219, 1997.
[95] J. T. Chen et al., “Characterization and temperature controlling property of TiAlN coatings deposited by reactive magnetron co-sputtering,” vol. 472, pp. 91–96, 2009.
[96] L. Marques, S. Carvalho, F. Vaz, M. M. D. Ramos, and L. Rebouta, “ab-initio Study of the properties of Ti 1 À x À y Si x Al y N solid solution,” Vaccum, vol. 83, no. 10, pp. 1240–1243, 2009.
[97] S. Carvalho, L. Rebouta, a Cavaleiro, L. a Rocha, J. Gomes, and E. Alves, “Microstructure and mechanical properties of nanocomposite ( Ti , Si , Al ) N coatings,” Thin Solid Films, vol. 399, pp. 391–396, 2001.
[98] A. M. Baró et al., “Characterization of surface roughness in titanium dental implants measured with scanning tunnelling microscopy at atmospheric pressure,” Biomaterials, vol. 7, no. 6, pp. 463–466, 1986.
[99] O. Instructions, “Nanosurf Easyscan 2 AFM.”
[100] S. R. Bradbury et al., “Response surface application for estimating failure time and other creep properties using the Small Punch Creep Test,” Eng. Fail. Anal., vol. 45, no. 1–2, pp. 49–58, 2014.
[101] R. Wuhrer, W. Y. Yeung, M. R. Phillips, and G. McCredie, “Study on d.c. magnetron sputter deposition of titanium aluminium nitride thin films: effect of aluminium content on coating,” Thin Solid Films, vol. 290–291, no. 1996, pp. 339–342, 1996.
[102] L. A. A. Rodríguez, J. J. O. Flórez, and J. M. A. Osorio, “Resistencia a la corrosión de recubrimientos de NbC sobre acero AISI 316L depositados por UMB/Corrosion resistance of NbC coatings on AISI 316L steel deposited with UBM,” Ingeniare Rev. Chil. Ing., vol. 22, no. 3, pp. 445–454, 2014.
[103] Y. Zhong et al., “Additive manufacturing of 316L stainless steel by electron beam melting for nuclear fusion applications,” J. Nucl. Mater., vol. 486, no. January, pp. 234–245, 2017.
[104] A. Dudek, A. Wronska, and L. Adamczyk, “Surface remelting of 316 L + 434 L sintered steel: microstructure and corrosion resistance,” J. Solid State Electrochem., vol. 18, no. May, pp. 2973–2981, 2014.
[105] E. K. Tentardini, C. Kwietniewski, F. Perini, E. Blando, R. Hübler, and I. J. R. Baumvol, “Surface & Coatings Technology Deposition and characterization of non-isostructural,” Surf. Coat. Technol., vol. 203, no. 9, pp. 1176–1181, 2009.
[106] C. Fernandes et al., “Effect of the microstructure on the cutting performance of superhard (Ti,Si,Al)N nanocomposite films,” Vacuum, vol. 82, no. 12, pp. 1470–1474, 2008.
[107] R. Manaila et al., “Ti nitride phases in thin films deposited by DC magnetron sputtering,” Appl. Surf. Sci., vol. 91, no. 1–4, pp. 295–302, 1995.
[108] N. Coatings and D. Version, “University of Groningen Galileo Comes to the Surface! de Hosson, J.T.M.; Cavaleiro, Albano,” 2006.
[109] G. C. Psarras, “Composite coatings and their performance in corrosive environment,” vol. 34, no. 4, pp. 267–272, 1999.
[110] J. Gallardo, A. Durán, and J. J. de Damborenea, “Electrochemical and in vitro behaviour of sol-gel coated 316L stainless steel,” Corros. Sci., vol. 46, no. 4, pp. 795–806, 2004.
[111] V. Upadhyay and D. Battocchi, “Progress in Organic Coatings Localized electrochemical characterization of organic coatings : A brief review,” Prog. Org. Coatings, vol. 99, pp. 365–377, 2016.
[112] S. B. Lyon, R. Bingham, and D. J. Mills, “Progress in Organic Coatings Advances in corrosion protection by organic coatings : What we know and what we would like to know,” Prog. Org. Coatings, vol. 102, pp. 2–7, 2017.
[113] J. M. Sykes, E. P. Whyte, X. Yu, and Z. S. Sahir, “Progress in Organic Coatings Does ‘ coating resistance ’ control corrosion ?,” vol. 102, pp. 82–87, 2017.
[114] R. V Lakshmi, S. T. Aruna, C. Anandan, P. Bera, and S. Sampath, “Surface & Coatings Technology EIS and XPS studies on the self-healing properties of Ce-modi fi ed silica-alumina hybrid coatings : Evidence for Ce ( III ) migration,” SCT, vol. 309, pp. 363–370, 2017.
[115] M. F. Montemor, “Surface & Coatings Technology Functional and smart coatings for corrosion protection : A review of recent advances,” Surf. Coat. Technol., vol. 258, pp. 17–37, 2014.
[116] E. Of, B. Biofilm, S. S. Corrosionnatural, and S. By, “Effect of bacterial biofilm on 205 ss corrosion in natural seawater by eis.”
[117] C. Liu, “An electrochemical impedance spectroscopy study of the corrosion behaviour of PVD coated steels in 0 . 5 N NaCl aqueous solution : Part II . EIS interpretation of corrosion behaviour,” vol. 45, pp. 1257–1273, 2003.
[118] C. Liu, “An electrochemical impedance spectroscopy study of the corrosion behaviour of PVD coated steels in 0 . 5 N NaCl aqueous solution : Part I . Establishment of equivalent circuits for EIS data modelling,” vol. 45, pp. 1243–1256, 2003.
[119] G. Itings, S. F. Hhfc, C. Liu, A. Leyland, S. Lyon, and A. Matthews, “Electrochemical impedance spectroscopy of PVD-TiN coatings on mild steel and AISI316 substrates,” vol. 77, pp. 615–622, 1995.
[120] A. D. U. R. An, “Bioactive and Protective Sol-Gel Coatings on Metals for Orthopaedic Prostheses,” pp. 65–74, 2001.
[121] I. Epelboin, M. Keddam, and J. C. Lestrade, “Faradaic Impedances and Intermediates in Electrochemical,” pp. 264–275, 1973.
[122] L. Velasco Estrada, “Producción, Caracterizacion Microestructural y Estudio de la Resistencia a la Corrosión de Recubrimientos Nanoestructurados de NbxSiyNz Depositados con el Sistema de UBM.,” p. 198, 2011.
[123] A. U. Paladines, W. Aperador, and F. Sequeda, “Evaluación de las propiedades tribológicas y corrosión del Sistema CrN/Cr depositado sobre acero AISI 304, 4140, 1075 por la técnica Magnetron Sputtering Reactivo DC,” vol. 13, no. 2010, pp. 61–70, 2011.
[124] P. Limitations, R. Documents, and O. Standards, “Standard Test Method for Adhesion Strength and Mechanical Failure Modes of,” vol. 5, no. June 2005, pp. 1–29, 2009.
[125] W. Tillmann and M. Dildrop, “Influence of Si content on mechanical and tribological properties of TiAlSiN PVD coatings at elevated temperatures,” Surf. Coatings Technol., vol. 321, pp. 448–454, 2017.
[126] K. Zhang et al., “Structure and mechanical properties of TiAlSiN/Si3N4 multilayer coatings,” Surf. Coatings Technol., vol. 205, no. 12, pp. 3588–3595, 2011.
[127] M. Diserens, J. Patscheider, and F. Lévy, “Improving the properties of titanium nitride by incorporation of silicon,” Surf. Coatings Technol., vol. 108–109, pp. 241–246, 1998.
[128] L. Chen et al., “Machining performance of Ti-Al-Si-N coated inserts,” Surf. Coatings Technol., vol. 205, no. 2, pp. 582–586, 2010.
[129] D. Philippon, V. Godinho, P. M. Nagy, M. P. Delplancke-Ogletree, and A. Fern??ndez, “Endurance of TiAlSiN coatings: Effect of Si and bias on wear and adhesion,” Wear, vol. 270, no. 7–8, pp. 541–549, 2011.
[130] C. Feng et al., “Effects of Si content on microstructure and mechanical properties of TiAlN/Si3N4-Cu nanocomposite coatings,” Appl. Surf. Sci., vol. 320, pp. 689–698, 2014.
[131] L. Chen, K. K. Chang, Y. Du, J. R. Li, and M. J. Wu, “A comparative research on magnetron sputtering and arc evaporation deposition of Ti – Al – N coatings,” Thin Solid Films, vol. 519, no. 11, pp. 3762–3767, 2011.
[132] G99-05, “Standard Test Method for Wear Testing with a Pin-on- Disk Apparatus,” vol. 5, no. 2016, pp. 1–6, 2010.
[133] N. Axén, S. Hogmark, and S. Jacobson, “Friction and Wear Measurement Techniques,” Mod. Tribol. Handb., vol. 1, no. 1987, pp. 493–510, 2000.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nd/4.0/
dc.rights.spa.spa.fl_str_mv Acceso abierto
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nd/4.0/
Acceso abierto
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 1 recurso en linea (208 paginas)
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Ingeniería - Materiales y Procesos
Bogotá - Ingeniería - Maestría en Ingeniería - Materiales y Procesos
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/79475/4/1032399108.2018.pdf
https://repositorio.unal.edu.co/bitstream/unal/79475/2/license.txt
https://repositorio.unal.edu.co/bitstream/unal/79475/3/license_rdf
https://repositorio.unal.edu.co/bitstream/unal/79475/5/1032399108.2018.pdf.jpg
bitstream.checksum.fl_str_mv 0dd4eda9e246aabd0174f84b6dce66b1
cccfe52f796b7c63423298c2d3365fc6
0175ea4a2d4caec4bbcc37e300941108
580ec84b8ea37bd4e80a04cdfaeefa47
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1806886375706853376
spelling Atribución-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nd/4.0/Acceso abiertoinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Jhon Jairo, Olaya Florez84912df202553b9a5e7ef52e04211d3bLuis Camilo, Jimenez Borregof46e9dce295463521b1c833476660778Cañon Tafur, Luis Alejandro8f9c0c1f8f62107443ee1945dab82aebGRUPO DE INVESTIGACIÓN AFIS (ANÁLISIS DE FALLAS, INTEGRIDAD Y SUPERFICIES)2021-05-04T21:41:33Z2021-05-04T21:41:33Z2017https://repositorio.unal.edu.co/handle/unal/79475Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, graficas, tablasEn este trabajo se elaboraron recubrimientos nano-estructuradas de TiAlSiN sobre sustratos de acero 316l, mediante la técnica sputtering magnetrón reactivo, se evaluó su Microdureza, rugosidad, adherencia, resistencia a la corrosión y al desgaste. La micro estructura de los recubrimientos se analizó por medio de Difracción de rayos x por medio de la técnica Bragg- Bretano, Microscopio electrónica de barrido, Microscopia de fuerza atómica, y interferómetro. Los recubrimientos obtenidos poseen una superficie de muy baja rugosidad, esta magnitud disminuye con un aumento de la cantidad de silicio sobre el recubrimiento y además factores como la cantidad de nitrógeno y potencia tienen un mayor efecto sobre la morfología de la superficie, esta relación se establece de acuerdo al diseño de experimentos factorial fraccionado establecido para este trabajo. Los recubrimientos se realizaron en una atmosfera reactiva 40%N y 60%Ar, con una potencia de 150 W durante 30 minutos sobre sustratos de acero 316l y silicio con orientación preferencial (100). De la caracterización electroquímica, los recubrimientos disminuyeron la velocidad de corrosión del sustrato cerca a los 2 órdenes de magnitud, a la pruebas de impedancia electroquímica se en diferentes intervalos de tiempo (0h, 24h, 48h, 72h, y 168h)muestran una variación de tipo farádico, controlado por elementos capacitores y fue representado por un circuito equivalente que se ajusta a los resultados de la respuesta según el diagrama de bode y al ajuste Kramers Kroning, la resistencia a la corrosión para los recubrimientos obtenidos no depende de la cantidad de silicio de los recubrimientos, pero se relaciona con el espesor. Los recubrimientos obtenidos muestran que la resistencia al desgaste depende de la dureza del recubrimiento y la rugosidad, en nuestro sistema estos parámetros se controlaron con la cantidad de silicio que fueron agregados al blanco durante la deposición.In this work, nano-structured TiAlSiN coatings on 316l steel substrates were prepared using the reactive magnetron sputtering technique. Their microhardness, roughness, adhesion, corrosion resistance and wear were evaluated. The microstructure of the coatings was analyzed by X-ray diffraction using the Bragg-Bretano technique, scanning electron microscope, atomic force microscopy, and interferometer. The obtained coatings have a surface of very low roughness, this quantity decreases with an increase of the amount of silicon on the coating and also factors like the quantity of nitrogen and power have a greater effect on the surface morphology, this relation is established According to the design of fractional factorial experiments established for this work. The coatings were made in a 40% N and 60% Ar reactive atmosphere, with a power of 150 W for 30 minutes on substrates of 316l steel and silicon with preferential orientation (100). From the electrochemical characterization, the coatings decreased the corrosion rate of the substrate near 2 orders of magnitude, the tests of electrochemical impedance at different time intervals (0h, 24h, 48h, 72h, and 168h) show a variation of Faronic type, controlled by capacitors and was represented by an equivalent circuit that conforms to the results of the response according to the bode diagram and the Kramers Kroning setting, the corrosion resistance for the coatings obtained does not depend on the amount of silicon Of the coatings, but is related to the thickness. The obtained coatings show that the resistance to the wear depends on the hardness of the coating and the roughness, in our system these parameters were controlled with the amount of silicon that were added to the target during the deposition.MaestríaIngeniería de Superficies Corrosión1 recurso en linea (208 paginas)application/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Materiales y ProcesosBogotá - Ingeniería - Maestría en Ingeniería - Materiales y ProcesosFacultad de IngenieríaBogotáUniversidad Nacional de Colombia - Sede Bogotá670 - Manufactura::671 - Proceso de metalurgia y productos metálicos primarios620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaRecubrimientoTiAlSiNSputteringMagnetrónCorrosiónMicrodurezaDesgasteFactorialFraccionadoTiAlSiN CoatingSputtering MagnetronCorrosionMicrohardnessWearFractional Factorial DesignCorrosiónCorrosionProducción y caracterización de propiedades anticorrosivas del recubrimiento TiAlSiN depositadas con el sistema de sputtering reactivoProduction and characterization of anticorrosive properties of the TiAlSiN coating deposited with the reactive sputtering systemTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TM[1] V. K. Sarin, Comprehensive Hard Materials Vol I, Elsevier. Boston, MA: 2014, 2014.[2] H. C. B. Ã, B. Deepthi, and K. S. Rajam, “Deposition and characterization of TiAlN / Si 3 N 4 superhard nanocomposite coatings prepared by reactive direct current unbalanced magnetron sputtering,” vol. 81, pp. 479–488, 2006.[3] J. C. Oliveira, A. Manaia, and A. Cavaleiro, “Hard amorphous Ti-Al-N coatings deposited by sputtering,” Thin Solid Films, vol. 516, no. 15, pp. 5032–5038, 2008.[4] S. po Wam, “Struture Characterization and Mechanical Properties of Industrial PVD-TiAlN Coatings,” Run Run Shaw Libr. Copyr., p. 269, 2005.[5] L. Velasco, J. J. Olaya, and S. E. Rodil, “Effect of Si addition on the structure and corrosion behavior of NbN thin films deposited by unbalanced magnetron sputtering,” Appl. Phys. A Mater. Sci. Process., vol. 122, no. 2, pp. 1–10, 2016.[6] A. Miletić, P. Panjan, B. Škorić, M. Čekada, G. Dražič, and J. Kovač, “Microstructure and mechanical properties of nanostructured Ti-Al-Si-N coatings deposited by magnetron sputtering,” Surf. Coatings Technol., vol. 241, pp. 105–111, 2014.[7] Y. H. Yoo, D. P. Le, J. G. Kim, S. K. Kim, and P. Van Vinh, “Corrosion behavior of TiN, TiAlN, TiAlSiN thin films deposited on tool steel in the 3.5 wt.% NaCl solution,” Thin Solid Films, vol. 516, no. 11, pp. 3544–3548, 2008.[8] S. Q. Wang et al., “Effect of Si addition on microstructure and mechanical properties of Ti-Al-N coating,” Int. J. Refract. Met. Hard Mater., vol. 28, no. 5, pp. 593–596, 2010.[9] K. A. Kuptsov, P. V Kiryukhantsev-korneev, A. N. Sheveyko, and D. V Shtansky, “Surface & Coatings Technology Comparative study of electrochemical and impact wear behavior of TiCN , TiSiCN , TiCrSiCN , and TiAlSiCN coatings,” Surf. Coat. Technol., vol. 216, pp. 273–281, 2013.[10] M. Pfeiler, J. Zechner, M. Penoy, C. Michotte, C. Mitterer, and M. Kathrein, “Improved oxidation resistance of TiAlN coatings by doping with Si or B,” Surf. Coatings Technol., vol. 203, no. 20–21, pp. 3104–3110, 2009.[11] D. M. Devia Narvaez, H. Duque-Sanchez, and F. Mesa, “Behavior of coated forming tools with TiAlN coatings grown by Triode Magnetron Sputtering,” Dyna,[12] J. J. Olaya, D. M. Marulanda, S. E. Rodil, and B. Bhushan, “Propiedades mecánicas de nitruros metálicos depositados con UBM: Tecnología eficiente y ambientalmente limpia,” Rev. Mex. Fis., vol. 55, no. 6, pp. 425–431, 2009.D. Garcia, U. Piratoba, and A. Mariño, “Recubrimientos de (Ti,Al)N sobre Acero AISI 4140 por Sputtering Reactivo,” Dyna, no. 152, p. 181, 182, 183, 184 y 185, 2007.[14] F. Correa, C. A. Rincon, and J. C. Caicedo, “Faber Correa 1 , Carlos A. Rincon 2 , Gilberto Bejarano G 3 ., J. C. Caicedo 3,” vol. 39, no. 2, pp. 597–601, 2007.[15] Y. Lizbeth, C. Godoy, S. Elizabeth, and R. Posada, “Corrosion resistance of transition metal nitride films deposited on AISI M2 steel,” no. June 2012, 2014.[16] F. Quesada and Á. Mariño, “Recubrimientos de TiAlN sobre acero ASTM A36 por el proceso de sputtering reactivo RF TiAlN films on ASTM A36 steel for sputtering reactive process RF,” pp. 107–114, 2006[17] J. J. Olaya, U. Piratoba, and S. E. Rodil, “RESISTENCIA A LA CORROSIÓN DE RECUBRIMIENTOS DE CrN DEPOSITADOS POR PVD CON UBM: TECNOLOGÍA EFICIENTE Y AMBIENTALMENTE LIMPIA,” vol. 31, no. 1, pp. 44–51, 2011[18] A. Trujillo, O; Arango, Y; Devia, “REVISTA COLOMBIANA DE FÍSICA, VOL. 39, No. 1, 2007 DEPOSICION Y CARACTERIZACION DE PELICULAS DE TiZrN MEDIANTE LA TECNICA DE ARCO PULSADO O. Trujillo, Y. C. Arango, A. Devia.,” Rev. Colomb. Fis., vol. 39, no. 1, pp. 135–139, 2007[19] L. Hultman et al., “Transmission electron microscopy studies of microstructural evolution, defect structure, and phase transitions in polycrystalline and epitaxial Ti1−xAlxN and TiN films grown by reactive magnetron sputter deposition,” Thin Solid Films, vol. 205, no. 2, pp. 153–164, 1991[20] T. Ikeda and S. Satoh, “Phase formation and characterization of hard coatings in the Ti-Al-N system prepared by the cathodic arc ion plating method,” Thin Solid Films, vol. 195, no. 1–2, pp. 99–110, 1991[21] A. L. Ivanwsky and U. Branch, “INTERATOMIC INTERACTIONS AND ELECTRONIC PROPERTIES OF NaCI-TYPE TixAl1-xNy,” pp. 2–5, 1993[22] O. Knotek, M. Atzor, A. Barimani, and F. Jungblut, “Development of low temperature ternary coatings for high wear resistance,” Surf. Coat. Technol., vol. 42, no. 1, pp. 21–28, 1990.[23] T. Leyendecker, O. Lemmer, S. Esser, and J. Ebberink, “The development of the PVD coating TiAlN as a commercial coating for cutting tools,” Surf. Coatings Technol., vol. 48, no. 2, pp. 175–178, 1991[24] S. Sobue et al., Metastable Phase Formation in Al alloy/TiN/Ti/Si Systems. Elsevier. B.V., 1994.[25] F. C. Stedile, F. L. Freire Jr, W. H. Schreiner, and I. J. R. Baumvol, “Characterisation of titanium-aluminium nitride thin films by ion beam techniques and X-ray diffraction,” Vacuum, vol. 45, no. 4, pp. 441–446, 1994.[26] B. Shew and J. Huang, “The effects of nitrogen flow on reactively sputtered Ti-A1-N films,” Surf. Coatings Technol., vol. 71, pp. 30–36, 1995.[27] E. J. Bienk, H. Reitz, and N. J. Mikkelsen, “Wear and friction properties of hard PVD coatings,” Surf. Coatings Technol., vol. 76–77, pp. 475–480, 1995.[28] J. Musil, “Hard nanostructured and nanocomposite thin films,” 3rd Mikkeli Int. Ind. Coatings Semin., no. i, 2006.[29] P. Karvankova, M. G. J. Veprek-Heijman, D. Azinovic, and S. Veprek, “Properties of superhard nc-TiN/a-BN and nc-TiN/a-BN/a-TiB2 nanocomposite coatings prepared by plasma induced chemical vapor deposition,” Surf. Coatings Technol., vol. 200, no. 9, pp. 2978–2989, 2006.[30] L. Chen, Y. Du, S. Q. Wang, A. J. Wang, and H. H. Xu, “Mechanical properties and microstructural evolution of TiN coatings alloyed with Al and Si,” Mater. Sci. Eng. A, vol. 502, no. 1–2, pp. 139–143, 2009.[31] I. Bertóti, “Characterization of nitride coatings by XPS,” Surf. Coatings Technol., vol. 151–152, pp. 194–203, 2002[32] S. Carvalho et al., “Microstructure, mechanical properties and cutting performance of superhard (Ti,Si,Al)N nanocomposite films grown by d.c. reactive magnetron sputtering,” Surf. Coatings Technol., vol. 177–178, pp. 459–468, 2004[33] S. Veprek, H. D. Männling, M. Jilek, and P. Holubar, “Avoiding the high-temperature decomposition and softening of (Al1-xTix)N coatings by the formation of stable superhard nc-(Al1-xTix)N/a-Si3 N4 nanocomposite,” Mater. Sci. Eng. A, vol. 366, no. 1, pp. 202–205, 2004.[34] I. W. Park, S. R. Choi, J. H. Suh, C. G. Park, and K. H. Kim, “Deposition and mechanical evaluation of superhard Ti-Al-Si-N nanocomposite films by a hybrid coating system,” Thin Solid Films, vol. 447–448, no. 3, pp. 443–448, 2004[35] J. Musil and H. Hruby, “Superhard nanocomposite Ti 1 2 x Al x N ® lms prepared by magnetron sputtering,” vol. 365, pp. 104–109, 2000[36] L. Chen, Y. Du, A. J. Wang, S. Q. Wang, and S. Z. Zhou, “Int . Journal of Refractory Metals & Hard Materials Effect of Al content on microstructure and mechanical properties of Ti – Al – Si – N nanocomposite coatings,” Int. J. Refract. Met. Hard Mater., vol. 27, no. 4, pp. 718–721, 2009[37] N. Jiang, Y. G. Shen, H. J. Zhang, S. N. Bao, and X. Y. Hou, “Superhard nanocomposite Ti-Al-Si-N films deposited by reactive unbalanced magnetron sputtering,” Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., vol. 135, no. 1, pp[38] H. Gleiter, “Nanocrystalline materials,” Prog. Mater. Sci., vol. 33, no. 4, pp. 223–315, 1989.[39] K. A. Kuptsov, P. V. Kiryukhantsev-Korneev, A. N. Sheveyko, and D. V. Shtansky, “Structural transformations in TiAlSiCN coatings in the temperature range 900-1600 ??c,” Acta Mater., vol. 83, pp. 408–418, 2015.[40] P. H. Mayrhofer et al., “Self-organized nanostructures in the Ti-Al-N system,” Appl. Phys. Lett., vol. 83, no. 10, pp. 2049–2051, 2003.[41] H. C. Barshilia, M. Ghosh, Shashidhara, R. Ramakrishna, and K. S. Rajam, “Deposition and characterization of TiAlSiN nanocomposite coatings prepared by reactive pulsed direct current unbalanced magnetron sputtering,” Appl. Surf. Sci., vol. 256, no. 21, pp. 6420–6426, 2010.[42] S. Veprek and M. J. G. Veprek-Heijman, “Industrial applications of superhard nanocomposite coatings,” Surf. Coatings Technol., vol. 202, no. 21, pp. 5063–5073, 2008.[43] S. Wilson and A. T. Alpas, “Tribo-layer formation during sliding wear of TiN coatings,” vol. 245, no. November 1999, pp. 223–229, 2000.[44] J. Takadoum and D. Mairey, “The Wear Characteristics of Silicon Nitride,” vol. 18, pp. 553–556, 1998.[45] C. Chang, W. Chen, P. Tsai, W. Ho, and D. Wang, “Characteristics and performance of TiSiN / TiAlN multilayers coating synthesized by cathodic arc plasma evaporation,” vol. 202, pp. 987–992, 2007[46] N. D. Nam, M. Vaka, and N. Tran Hung, “Corrosion behavior of TiN, TiAlN, TiAlSiN-coated 316L stainless steel in simulated proton exchange membrane fuel cell environment,” J. Power Sources, vol. 268, pp. 240–245, 2014.[47] Y. C. Chan, H. W. Chen, P. S. Chao, J. G. Duh, and J. W. Lee, “Microstructure control in TiAlN/SiNx multilayers with appropriate thickness ratios for improvement of hardness and anti-corrosion characteristics,” Vacuum, vol. 87, pp. 195–199, 2013.[48] D. Turcio-Ortega, S. E. Rodil, and S. Muhl, “Corrosion behavior of amorphous carbon deposit in 0.89% NaCl by electrochemical impedance spectroscopy,” Diam. Relat. Mater., vol. 18, no. 11, pp. 1360–1368, 2009.[49] M. Flores, S. Muhl, and E. Andrade, “The relation between the plasma characteristic and the corrosion properties of TiN/Ti multilayers deposited by unbalanced magnetron sputtering,” Thin Solid Films, vol. 433, no. 1–2 SPEC., pp. 217–223, 2003.[50] J. M. Albella, Laminas Delgadas Y Recubrimientos Preparacion, propiedades y aplicaciones. Madrid 2003: CSIC, 2003.[51] K. Holmberg and A. Mathews, “Coatings tribology: a concept, critical aspects and future directions,” Thin Solid Films, vol. 253, no. 1–2, pp. 173–178, 1994.[52] C. Brechinac, Nanomaterials and Nanochemistry, Springer. Paris: Springer.[53] H. Holleck, “Basic principles of specific applications of ceramic materials as protective layers,” Surf. Coatings Technol., vol. 43–44, no. PART 1, pp. 245–258, 1990.[54] H. Holleck, “Material selection for hard coatings,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., vol. 4, no. 6, p. 2661, 1986.[55] B. R. Riedel and R. Riedel, “Materials harder than diamond?,” Adv. Mater., vol. 4, no. 11, pp. 759–761, 1992.[56] J. Patscheider, “Nanocomposite Hard Coatings for Wear Protection,” MRS Bull., vol. 28, no. 3, pp. 180–183, 2003.[57] A. Bogaerts, E. Neyts, R. Gijbels, and J. Van der Mullen, “Gas discharge plasmas and their applications,” Spectrochimica Acta - Part B Atomic Spectroscopy, vol. 57, no. 4. pp. 609–658, 2002.[58] E. Bultinck and P. D. A. Bogaerts, “Numerical simulation of a magnetron discharge utilized for the reactive sputter deposition of titanium nitride and oxide layers,” Dep. Chemie, vol. PhD, pp. 1–203, 2009.[59] P. Kofstad and R. Bredesen, “High temperature corrosion in SOFC environments,” Solid State Ionics, vol. 52, no. 1–3, pp. 69–75, 1992.[60] E. Barsoukov and J. R. Macdonald, Impedance Spectroscopy. 2005.[61] R. O. Kuehl, Diseños con superficie de respuesta. 2001.[62] P. Marcus, Corrosion Mechanisms in Theory and Practice. 2011.[63] M. Fontana, Corrsion engineering, Tercera., vol. 1. Ohio, 1978.[64] J. J. D. G. fonso José Vázquez Vaamonde, J. J. de Damborenea, Ciencia e ingeniería de la superficie de los materiales metálicos, CSIC. Madrid: RAYCAR impresores, 2001.[65] Q. P. Nayuri and R. Peláez, ““ EVALUACIÓN ELECTROQUÍMICA DE RECUBRIMIENTOS BIOCOMPATIBLES “,” 2015.[66] A. Lasia, Electrochemical Impedance Spectroscopy and its Applications. 2002.[67] J. Vasquez, “EMPLEO DE LA TÉCNICA DE ESPECTROSCOPÍA DE IMPEDANCIAS ELECTROQUÍMICAS PARA LA CARACTERIZACIÓN DE BIOMATERIALES. APLICACIÓN A UNA ALEACIÓN BIOMÉDICA DE Co-Cr-Mo.” Universidad Politecnica de Valencia, Valencia, 2007.[68] N. Sekar and R. P. Ramasamy, “Electrochemical Impedance Spectroscopy for Microbial Fuel Cell Characterization,” J. Microb. Biochem. Technol., vol. S6, no. July 2013, pp. 1–14, 2013.[69] K. Jüttner, “Electrochemical impedance spectroscopy (EIS) of corrosion processes on inhomogeneous surfaces,” Electrochim. Acta, vol. 35, no. 10, pp. 1501–1508, 1990.[70] C. D. E. P. Em and C. E. Engenharia, “Estudos Eletroquímicos do aço AISI 403 em meios salinos simulando a Corrosão em Palhetas de Turbinas a Vapor DENISE SANTANA PACHECO,” 2008.[71] A. John R. Scully, David C. Silverman and M. W. Kendig, Electrochemical Impedance: Analysis and Interpretation, no. January 1993. 1993.[72] J. J. Olaya, Y. Chipatecua, and S. Rodil, “Resistencia a la Corrosión de Recubrimientos de Nitruros Metálicos Depositados sobre Acero AISI M2,” Ing. y Desarro., vol. 30, no. 1, p. 63 y 64, 2012.[73] A. Rizzo et al., Corrosion Mechanisms in Theory and Practice, Springer., vol. 18, no. November. Ohio: Springer, 2011.[75] J. V. Koleske, “Mechanical Properties of Solid Coatings,” Encycl. Anal. Chem., pp. 1–15, 2001.[76] R. F. Bunshah, HANDBOOK OF HARD COATINGS Deposition Technologies , Properties and. 2001.[77] S. H. Materials, Comprenhensive Hard Materials Vol III, Elsevier. Boston, MA, 2014.[78] a O. Sergici and X. N. Randall, “Scratch Testing of Coatings.(TECH SPOTLIGHT),” Adv. Mater. Process., no. April, pp. 41–43, 2006.[79] J.Schmit, “An introduction to non-contact surface metrology,” 2013.[80] “bragg @ hyperphysics.phy-astr.gsu.edu.”[81] J. Jimenez, “Diseños experimentales,” Model. Exp., p. 4, 2012.[82] D. C. Montgomery, “Diseño Y Analisis de Experimentos.” Editorial Limusa, Arizona, p. 692, 2004.[83] O. Castejón, Diseño y análisis de experimentos con statistix. 2011.[84] R. Zas, “Autocorrelación espacial y el diseño y análisis de experimentos,” Introd. al Análisis Espac. Datos en Ecol. y Ciencias Ambient. Métodos y Apl., pp. 541–590, 2008.[85] A. . Fallis, Elementos de diseño de experimentos, vol. 53, no. 9. 2013.[86] R. Zas, “Consecuencias de la estructura espacial de los datos en el diseño y análisis de experimentos en campo,” Ecosistemas, vol. 3, no. 3, pp. 1–8, 2006.[87] D. Monzón and D. Monzón Paiva, “Introducción al diseño de experimentos,” Rev. la Fac. Agron. la Univ. Cent. Venez., no. Alcance 34, p. 167 p., 1992.[88] “e2ccf15e9c64f8a044f3f4f10e3d82e2a6ff8be5 @ support.minitab.com.”[89] J. Melorose et al., “Los Cuadros Más Importantes Y Significativos,” Statew. Agric. L. Use Baseline 2015, vol. 1, p. 1–20;Creación:2010;Recuperado:10 mayo 2015, 2015.[90] “cap4-7 @ www.ub.edu.” .[91] D. Sodio, D. Sodio, and M. Base, “Aleación 316-317,” vol. 56, no. 2.[92] “monocristalino @ autosolar.es.” .[93] K. J. Lesker Company, “Practical Process Tips - Sputtering,” Lesker Tech, vol. 7, pp. 1–4, 2010.[94] B.-Y. Shew, J.-L. Huang, and D.-F. Lii, “Effects of r.f. bias and nitrogen flow rates on the reactive sputtering of TiA1N films,” Thin Solid Films, vol. 293, no. 1–2, pp. 212–219, 1997.[95] J. T. Chen et al., “Characterization and temperature controlling property of TiAlN coatings deposited by reactive magnetron co-sputtering,” vol. 472, pp. 91–96, 2009.[96] L. Marques, S. Carvalho, F. Vaz, M. M. D. Ramos, and L. Rebouta, “ab-initio Study of the properties of Ti 1 À x À y Si x Al y N solid solution,” Vaccum, vol. 83, no. 10, pp. 1240–1243, 2009.[97] S. Carvalho, L. Rebouta, a Cavaleiro, L. a Rocha, J. Gomes, and E. Alves, “Microstructure and mechanical properties of nanocomposite ( Ti , Si , Al ) N coatings,” Thin Solid Films, vol. 399, pp. 391–396, 2001.[98] A. M. Baró et al., “Characterization of surface roughness in titanium dental implants measured with scanning tunnelling microscopy at atmospheric pressure,” Biomaterials, vol. 7, no. 6, pp. 463–466, 1986.[99] O. Instructions, “Nanosurf Easyscan 2 AFM.”[100] S. R. Bradbury et al., “Response surface application for estimating failure time and other creep properties using the Small Punch Creep Test,” Eng. Fail. Anal., vol. 45, no. 1–2, pp. 49–58, 2014.[101] R. Wuhrer, W. Y. Yeung, M. R. Phillips, and G. McCredie, “Study on d.c. magnetron sputter deposition of titanium aluminium nitride thin films: effect of aluminium content on coating,” Thin Solid Films, vol. 290–291, no. 1996, pp. 339–342, 1996.[102] L. A. A. Rodríguez, J. J. O. Flórez, and J. M. A. Osorio, “Resistencia a la corrosión de recubrimientos de NbC sobre acero AISI 316L depositados por UMB/Corrosion resistance of NbC coatings on AISI 316L steel deposited with UBM,” Ingeniare Rev. Chil. Ing., vol. 22, no. 3, pp. 445–454, 2014.[103] Y. Zhong et al., “Additive manufacturing of 316L stainless steel by electron beam melting for nuclear fusion applications,” J. Nucl. Mater., vol. 486, no. January, pp. 234–245, 2017.[104] A. Dudek, A. Wronska, and L. Adamczyk, “Surface remelting of 316 L + 434 L sintered steel: microstructure and corrosion resistance,” J. Solid State Electrochem., vol. 18, no. May, pp. 2973–2981, 2014.[105] E. K. Tentardini, C. Kwietniewski, F. Perini, E. Blando, R. Hübler, and I. J. R. Baumvol, “Surface & Coatings Technology Deposition and characterization of non-isostructural,” Surf. Coat. Technol., vol. 203, no. 9, pp. 1176–1181, 2009.[106] C. Fernandes et al., “Effect of the microstructure on the cutting performance of superhard (Ti,Si,Al)N nanocomposite films,” Vacuum, vol. 82, no. 12, pp. 1470–1474, 2008.[107] R. Manaila et al., “Ti nitride phases in thin films deposited by DC magnetron sputtering,” Appl. Surf. Sci., vol. 91, no. 1–4, pp. 295–302, 1995.[108] N. Coatings and D. Version, “University of Groningen Galileo Comes to the Surface! de Hosson, J.T.M.; Cavaleiro, Albano,” 2006.[109] G. C. Psarras, “Composite coatings and their performance in corrosive environment,” vol. 34, no. 4, pp. 267–272, 1999.[110] J. Gallardo, A. Durán, and J. J. de Damborenea, “Electrochemical and in vitro behaviour of sol-gel coated 316L stainless steel,” Corros. Sci., vol. 46, no. 4, pp. 795–806, 2004.[111] V. Upadhyay and D. Battocchi, “Progress in Organic Coatings Localized electrochemical characterization of organic coatings : A brief review,” Prog. Org. Coatings, vol. 99, pp. 365–377, 2016.[112] S. B. Lyon, R. Bingham, and D. J. Mills, “Progress in Organic Coatings Advances in corrosion protection by organic coatings : What we know and what we would like to know,” Prog. Org. Coatings, vol. 102, pp. 2–7, 2017.[113] J. M. Sykes, E. P. Whyte, X. Yu, and Z. S. Sahir, “Progress in Organic Coatings Does ‘ coating resistance ’ control corrosion ?,” vol. 102, pp. 82–87, 2017.[114] R. V Lakshmi, S. T. Aruna, C. Anandan, P. Bera, and S. Sampath, “Surface & Coatings Technology EIS and XPS studies on the self-healing properties of Ce-modi fi ed silica-alumina hybrid coatings : Evidence for Ce ( III ) migration,” SCT, vol. 309, pp. 363–370, 2017.[115] M. F. Montemor, “Surface & Coatings Technology Functional and smart coatings for corrosion protection : A review of recent advances,” Surf. Coat. Technol., vol. 258, pp. 17–37, 2014.[116] E. Of, B. Biofilm, S. S. Corrosionnatural, and S. By, “Effect of bacterial biofilm on 205 ss corrosion in natural seawater by eis.”[117] C. Liu, “An electrochemical impedance spectroscopy study of the corrosion behaviour of PVD coated steels in 0 . 5 N NaCl aqueous solution : Part II . EIS interpretation of corrosion behaviour,” vol. 45, pp. 1257–1273, 2003.[118] C. Liu, “An electrochemical impedance spectroscopy study of the corrosion behaviour of PVD coated steels in 0 . 5 N NaCl aqueous solution : Part I . Establishment of equivalent circuits for EIS data modelling,” vol. 45, pp. 1243–1256, 2003.[119] G. Itings, S. F. Hhfc, C. Liu, A. Leyland, S. Lyon, and A. Matthews, “Electrochemical impedance spectroscopy of PVD-TiN coatings on mild steel and AISI316 substrates,” vol. 77, pp. 615–622, 1995.[120] A. D. U. R. An, “Bioactive and Protective Sol-Gel Coatings on Metals for Orthopaedic Prostheses,” pp. 65–74, 2001.[121] I. Epelboin, M. Keddam, and J. C. Lestrade, “Faradaic Impedances and Intermediates in Electrochemical,” pp. 264–275, 1973.[122] L. Velasco Estrada, “Producción, Caracterizacion Microestructural y Estudio de la Resistencia a la Corrosión de Recubrimientos Nanoestructurados de NbxSiyNz Depositados con el Sistema de UBM.,” p. 198, 2011.[123] A. U. Paladines, W. Aperador, and F. Sequeda, “Evaluación de las propiedades tribológicas y corrosión del Sistema CrN/Cr depositado sobre acero AISI 304, 4140, 1075 por la técnica Magnetron Sputtering Reactivo DC,” vol. 13, no. 2010, pp. 61–70, 2011.[124] P. Limitations, R. Documents, and O. Standards, “Standard Test Method for Adhesion Strength and Mechanical Failure Modes of,” vol. 5, no. June 2005, pp. 1–29, 2009.[125] W. Tillmann and M. Dildrop, “Influence of Si content on mechanical and tribological properties of TiAlSiN PVD coatings at elevated temperatures,” Surf. Coatings Technol., vol. 321, pp. 448–454, 2017.[126] K. Zhang et al., “Structure and mechanical properties of TiAlSiN/Si3N4 multilayer coatings,” Surf. Coatings Technol., vol. 205, no. 12, pp. 3588–3595, 2011.[127] M. Diserens, J. Patscheider, and F. Lévy, “Improving the properties of titanium nitride by incorporation of silicon,” Surf. Coatings Technol., vol. 108–109, pp. 241–246, 1998.[128] L. Chen et al., “Machining performance of Ti-Al-Si-N coated inserts,” Surf. Coatings Technol., vol. 205, no. 2, pp. 582–586, 2010.[129] D. Philippon, V. Godinho, P. M. Nagy, M. P. Delplancke-Ogletree, and A. Fern??ndez, “Endurance of TiAlSiN coatings: Effect of Si and bias on wear and adhesion,” Wear, vol. 270, no. 7–8, pp. 541–549, 2011.[130] C. Feng et al., “Effects of Si content on microstructure and mechanical properties of TiAlN/Si3N4-Cu nanocomposite coatings,” Appl. Surf. Sci., vol. 320, pp. 689–698, 2014.[131] L. Chen, K. K. Chang, Y. Du, J. R. Li, and M. J. Wu, “A comparative research on magnetron sputtering and arc evaporation deposition of Ti – Al – N coatings,” Thin Solid Films, vol. 519, no. 11, pp. 3762–3767, 2011.[132] G99-05, “Standard Test Method for Wear Testing with a Pin-on- Disk Apparatus,” vol. 5, no. 2016, pp. 1–6, 2010.[133] N. Axén, S. Hogmark, and S. Jacobson, “Friction and Wear Measurement Techniques,” Mod. Tribol. Handb., vol. 1, no. 1987, pp. 493–510, 2000.ORIGINAL1032399108.2018.pdf1032399108.2018.pdfTesis de Maestría en Ingeniería - Materiales y Procesosapplication/pdf5512871https://repositorio.unal.edu.co/bitstream/unal/79475/4/1032399108.2018.pdf0dd4eda9e246aabd0174f84b6dce66b1MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79475/2/license.txtcccfe52f796b7c63423298c2d3365fc6MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8908https://repositorio.unal.edu.co/bitstream/unal/79475/3/license_rdf0175ea4a2d4caec4bbcc37e300941108MD53THUMBNAIL1032399108.2018.pdf.jpg1032399108.2018.pdf.jpgGenerated Thumbnailimage/jpeg4837https://repositorio.unal.edu.co/bitstream/unal/79475/5/1032399108.2018.pdf.jpg580ec84b8ea37bd4e80a04cdfaeefa47MD55unal/79475oai:repositorio.unal.edu.co:unal/794752023-07-21 23:03:42.463Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==