Síntesis y desarrollo de un anclaje químico estable de MOF-199 y MOF UiO-66-NH2 obtenidos ex situ sobre poliéster y celulosa, con potencial aplicación como textiles antibacteriales

ilustraciones, fotografías, gráficas, tablas

Autores:
Torres Cortés, Sergio Alejandro
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/81572
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/81572
https://repositorio.unal.edu.co/
Palabra clave:
540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales
Anti-Bacterial Agents
Antibacterianos
Textile chemistry
Chemistry, organic
Química textil
Química orgánica
Red metalorgánica
Inhibición bacteriana
Anclaje químico
Estado sólido
Bacterial inhibition
Reticular chemistry
Metalorganic framework
Rights
openAccess
License
Atribución-NoComercial-CompartirIgual 4.0 Internacional
id UNACIONAL2_65ba19b5572f8f351d36435fcdbcd2d9
oai_identifier_str oai:repositorio.unal.edu.co:unal/81572
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Síntesis y desarrollo de un anclaje químico estable de MOF-199 y MOF UiO-66-NH2 obtenidos ex situ sobre poliéster y celulosa, con potencial aplicación como textiles antibacteriales
dc.title.translated.eng.fl_str_mv Synthesis and development of a stable chemical anchor of MOF-199 and MOF UiO-66-NH2 obtained ex situ on polyester and cellulose, with potential application as antibacterial textiles
title Síntesis y desarrollo de un anclaje químico estable de MOF-199 y MOF UiO-66-NH2 obtenidos ex situ sobre poliéster y celulosa, con potencial aplicación como textiles antibacteriales
spellingShingle Síntesis y desarrollo de un anclaje químico estable de MOF-199 y MOF UiO-66-NH2 obtenidos ex situ sobre poliéster y celulosa, con potencial aplicación como textiles antibacteriales
540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales
Anti-Bacterial Agents
Antibacterianos
Textile chemistry
Chemistry, organic
Química textil
Química orgánica
Red metalorgánica
Inhibición bacteriana
Anclaje químico
Estado sólido
Bacterial inhibition
Reticular chemistry
Metalorganic framework
title_short Síntesis y desarrollo de un anclaje químico estable de MOF-199 y MOF UiO-66-NH2 obtenidos ex situ sobre poliéster y celulosa, con potencial aplicación como textiles antibacteriales
title_full Síntesis y desarrollo de un anclaje químico estable de MOF-199 y MOF UiO-66-NH2 obtenidos ex situ sobre poliéster y celulosa, con potencial aplicación como textiles antibacteriales
title_fullStr Síntesis y desarrollo de un anclaje químico estable de MOF-199 y MOF UiO-66-NH2 obtenidos ex situ sobre poliéster y celulosa, con potencial aplicación como textiles antibacteriales
title_full_unstemmed Síntesis y desarrollo de un anclaje químico estable de MOF-199 y MOF UiO-66-NH2 obtenidos ex situ sobre poliéster y celulosa, con potencial aplicación como textiles antibacteriales
title_sort Síntesis y desarrollo de un anclaje químico estable de MOF-199 y MOF UiO-66-NH2 obtenidos ex situ sobre poliéster y celulosa, con potencial aplicación como textiles antibacteriales
dc.creator.fl_str_mv Torres Cortés, Sergio Alejandro
dc.contributor.advisor.spa.fl_str_mv Sierra Ávila, César Augusto
dc.contributor.author.spa.fl_str_mv Torres Cortés, Sergio Alejandro
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Investigación en Macromoléculas
dc.subject.ddc.spa.fl_str_mv 540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales
topic 540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales
Anti-Bacterial Agents
Antibacterianos
Textile chemistry
Chemistry, organic
Química textil
Química orgánica
Red metalorgánica
Inhibición bacteriana
Anclaje químico
Estado sólido
Bacterial inhibition
Reticular chemistry
Metalorganic framework
dc.subject.decs.eng.fl_str_mv Anti-Bacterial Agents
dc.subject.decs.spa.fl_str_mv Antibacterianos
dc.subject.lemb.eng.fl_str_mv Textile chemistry
Chemistry, organic
dc.subject.lemb.spa.fl_str_mv Química textil
Química orgánica
dc.subject.proposal.spa.fl_str_mv Red metalorgánica
Inhibición bacteriana
Anclaje químico
Estado sólido
dc.subject.proposal.eng.fl_str_mv Bacterial inhibition
Reticular chemistry
Metalorganic framework
description ilustraciones, fotografías, gráficas, tablas
publishDate 2021
dc.date.issued.none.fl_str_mv 2021
dc.date.accessioned.none.fl_str_mv 2022-06-13T19:26:41Z
dc.date.available.none.fl_str_mv 2022-06-13T19:26:41Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/81572
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/81572
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Gupta, A.; Mumtaz, S.; Li, C.-H.; Hussain, I.; Rotello, V. M. Combatting Antibiotic-Resistant Bacteria Using Nanomaterials. Chem. Soc. Rev. 2019, 48, 415–427. https://doi.org/10.1039/C7CS00748E.
Wyszogrodzka, G.; Marszałek, B.; Gil, B.; Dorożyński, P. Metal-Organic Frameworks: Mechanisms of Antibacterial Action and Potential Applications. Drug Discov. Today 2016, 21 (6), 1009–1018. https://doi.org/10.1016/j.drudis.2016.04.009.
Aguado, S.; Quirós, J.; Canivet, J.; Farrusseng, D.; Boltes, K. Antimicrobial Activity of Cobalt Imidazolate Metal-Organic Frameworks. Chemosphere 2014, 113, 188–192. https://doi.org/10.1016/j.chemosphere.2014.05.029.
Hinestroza, J. P.; Ochoa-puentes, C.; Sierra, C. A.; Soto, C. Y. Antibacterial Activity Against Escherichia Coli of Cu-BTC (MOF-199) Metal-Organic Framework Immobilized onto Cellulosic Fibers. J. Appl. Polym. Sci. 2014, 40815, 1–5. https://doi.org/https://doi.org/10.1002/app.40815.
Abbasi, A. R.; Akhbari, K.; Morsali, A. Dense Coating of Surface Mounted CuBTC Metal-Organic Framework Nanostructures on Silk Fibers, Prepared by Layer-by-Layer Method under Ultrasound Irradiation with Antibacterial Activity. Ultrason. Sonochem. 2012, 19 (4), 846–852.
Meilikhov, M.; Yusenko, K.; Schollmeyer, E.; Mayer, C.; Buschmann, H.-J.; Fischer, R. A. Stepwise Deposition of Metal Organic Frameworks on Flexible Synthetic Polymer Surfaces. Dalt. Trans. 2011, 40 (18), 4838. https://doi.org/10.1039/c0dt01820a.
Li, H.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O. M. Design and Synthesis of an Exceptionally Stable and Highly Porous Metal-Organic Framework. Nature 1999, 402, 276–279. https://doi.org/10.1038/46248.
Hoskins, B.; Robson, R. Infinite Polymeric Frameworks Consisting of Three Dimensionally Linked Rod-Liked Segments. J. Am. Chem. Soc. 1989, 111 (15), 5964–5965. https://doi.org/10.1021/ja00197a079.
Hoskins, B. F.; Robson, R. Design and Construction of a New Class of Scaffolding-like Materials Comprising Infinite Polymeric Frameworks of 3D-Linked Molecular Rods. A Reappraisal of the Zn(CN)2 and Cd(CN)2 Structures and Synthesis and Structure of the Diamond-Related Frameworks. J. Am. Chem. Soc. 1990, 112, 1546–1554. https://doi.org/https://doi.org/10.1021/ja00160a038.
Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The Chemistry and Applications of Metal-Organic Frameworks. Science 2013, 341, 1230444-1-1230444–12. https://doi.org/10.1126/science.1230444.
Moghadam, P. Z.; Li, A.; Wiggin, S. B.; et al. Development of a Cambridge Structural Database Subset: A Collection of Metal-Organic Frameworks for Past, Present, and Future. Chem. Mater. 2017, 29 (7), 2618–2625. https://doi.org/10.1021/acs.chemmater.7b00441.
Coudert, F. X.; Fuchs, A. H.Coudert, F. X.; Fuchs, A. H. Computational Characterization and Prediction of Metal-Organic Framework Properties. Coord. Chem. Rev. 2016, 307, 211–236. https://doi.org/10.1016/j.ccr.2015.08.001.
Ongari, D.; Talirz, L.; Smit, B. Too Many Materials and Too Many Applications: An Experimental Problem Waiting for a Computational Solution. ACS Cent. Sci. 2020, 6 (11), 1890–1900. https://doi.org/10.1021/acscentsci.0c00988.
Eddaoudi, M.; Kim, J.; Rosi, N.; et al. Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage. Science (80-. ). 2002, 469, 469–472. https://doi.org/10.1126/science.1067208.
Zhang, Q.; Yue, C.; Zhang, Y.; et al. Six Metal-Organic Frameworks Assembled from Asymmetric Triazole Carboxylate Ligands : Synthesis , Crystal Structures , Photoluminescence. Inorganica Chim. Acta 2017. https://doi.org/10.1016/j.ica.2017.12.036.
Howarth, A.; Liu, Y.; Li, P.; et al. Chemical, Thermal and Mechanical Stabilities of Metal–Organic Frameworks. Nat. Rev. Mater. 2016, 1, 15018. https://doi.org/https://doi.org/10.1038/natrevmats.2015.18.
Gangu, K. K.; Maddila, S.; Mukkamala, S. B.; Jonnalagadda, S. B. A Review on Contemporary Metal-Organic Framework Materials. Inorganica Chim. Acta 2016, 446, 61–74. https://doi.org/10.1016/j.ica.2016.02.062.
Canivet, J.; Fateeva, A.; Guo, Y.; Coasne, B.; Farrusseng, D. Water Adsorption in MOFs: Fundamentals and Applications. Chem. Soc. Rev. 2014, 43 (16), 5594–5617. https://doi.org/10.1039/c4cs00078a.
Burtch, N. C.; Jasuja, H.; Walton, K. S. Water Stability and Adsorption in Metal − Organic Frameworks. Chem. Rev. 2014, 114, 10575–10612. https://doi.org/10.1021/cr5002589.
Tanabe, K. K.; Cohen, S. M. Postsynthetic Modification of Metal-Organic Frameworks - A Progress Report. Chem. Soc. Rev. 2011, 40 (2), 498–519. https://doi.org/10.1039/c0cs00031k.
Cohen, S. M. Postsynthetic Methods for the Functionalization of Metal–Organic Frameworks. Chem. Rev. 2012, 112 (2), 970–1000. https://doi.org/10.1021/cr200179u.
Islamoglu, T.; Goswami, S.; Li, Z.; Howarth, A. J.; Farha, O. K.; Hupp, J. T. Postsynthetic Tuning of Metal − Organic Frameworks for Targeted Applications. Acc. Chem. Res. 2017, 50, 805–813. https://doi.org/10.1021/acs.accounts.6b00577.
Tranchemontagne, D. J.; Mendoza-Cortés, J. L.; O’Keeffe, M.; Yaghi, O. M. Secondary Building Units, Nets and Bonding in the Chemistry of Metal-Organic Frameworks. Chem. Soc. Rev. 2009, 38 (5), 1257–1283. https://doi.org/10.1039/b817735j.
Yaghi, O. M.; Li, Q. Reticular Chemistry Frameworks for Clean Energy. MRS Bull. 2009, 34 (September), 682–690. https://doi.org/10.1557/mrs2009.180.
Stock, N.; Biswas, S. Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chem. Rev. 2012, 112 (2), 933–969. https://doi.org/10.1021/cr200304e.
Jhung, S. H.; Lee, J. H.; Forster, P. M.; Férey, G.; Cheetham, A. K.; Chang, J. S. Microwave Synthesis of Hybrid Inorganic - Organic Porous Materials: Phase-Selective and Rapid Crystallization. Chem. - A Eur. J. 2006, 12 (30), 7899–7905. https://doi.org/10.1002/chem.200600270.
Son, W. J.; Kim, J.; Kim, J.; Ahn, W. S. Sonochemical Synthesis of MOF-5. Chem. Commun. 2008, No. 47, 6336–6338. https://doi.org/10.1039/b814740j.
Mueller, U.; Schubert, M.; Teich, F.; Puetter, H.; Schierle-Arndt, K.; Pastré, J. Metal-Organic Frameworks - Prospective Industrial Applications. J. Mater. Chem. 2006, 16 (7), 626–636. https://doi.org/10.1039/b511962f.
Todaro, M.; Alessi, A.; Sciortino, L.; et al. Investigation by Raman Spectroscopy of the Decomposition Process of HKUST-1 upon Exposure to Air. J. Spectrosc. 2016, 2016. https://doi.org/10.1155/2016/8074297.
Chui, S.; Lo, S.; Charmant, J.; Orpen, A.; Williams, I. Chemically Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)3]N. Science (80-. ). 1999, 283, 1148–1150. https://doi.org/10.1126/science.283.5405.1148.
Murray, L.; Dinca, M.; Long, J. Hydrogen Storage in Metal-Organic Frameworks. Chem. Soc. Rev. 2009, 38 (5), 1294–1314. https://doi.org/10.1039/b802256a.
Czaja, A. U.; Trukhan, N.; Müller, U. Industrial Applications of Metal–Organic Frameworks. Chem. Soc. Rev. 2009, 38 (5), 1284. https://doi.org/10.1039/b804680h.
Cavka, J. H.; Jakobsen, S.; Olsbye, U.; et al. A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. J. Am. Chem. Soc. 2008, 130 (42), 13850–13851. https://doi.org/10.1021/ja8057953.
Marshall, R. J.; Forgan, R. S. Postsynthetic Modification of Zirconium Metal-Organic Frameworks. European Journal of Inorganic Chemistry. Wiley-VCH Verlag 2016, pp 4310–4331. https://doi.org/10.1002/ejic.201600394.
Chen, Q.; He, Q.; Lv, M.; et al. Selective Adsorption of Cationic Dyes by UiO-66-NH2. Appl. Surf. Sci. 2015, 327, 77–85. https://doi.org/10.1016/j.apsusc.2014.11.103.
Rosenthal, V. D.; Maki, D. G.; Mehta, Y.; et al. International Nosocomial Infection Control Consortiu (INICC) Report, Data Summary of 43 Countries for 2007-2012. Device-Associated Module. Am. J. Infect. Control 2014, 42 (9), 942–956. https://doi.org/10.1016/j.ajic.2014.05.029.
Karimi Alavijeh, R.; Beheshti, S.; Akhbari, K.; Morsali, A. Investigation of Reasons for Metal–Organic Framework’s Antibacterial Activities. Polyhedron 2018, 156, 257–278. https://doi.org/10.1016/j.poly.2018.09.028.
Tikhomirov, E. WHO Programme for the Control of Hospital Infections. Chemioter. Int. J. Mediterr. Soc. Chemother. 1987, 6 (3), 148—151.
Rosenthal, V. D.; Al-Abdely, H.; El-Kholy, A. A.; et al. International Nosocomial Infection Control Consortium Report, Data Summary of 50 Countries for 2010-2015: Device-Associated Module. Am. J. Infect. Control 2016, 44 (12), 1495–1504. https://doi.org/10.1016/j.ajic.2016.08.007.
Ávila Reyes, C. Infecciones Intrahospitalarias Cuestan 727 Mil Millones Al Año. Unimedios-UN periódico. 2011.
Rojas, E. M.; Sánchez-Pardo, S.; Ochoa-Díaz, A.; Rodríguez, R. Bacteriemias En Pacientes Con VIH En Un Hospital de Tercer Nivel En Colombia, 2014-2016. Med. Int. Méx. 2018, 34 (3), 366–372. https://doi.org/https://doi.org/10.24245/mim.v34i3.1912.
Cano Benítez, C. A. Síntesis y Caracterización de MOFs Anclados Sobre Telas de Algodón Con Posibles Aplicaciones Antibacteriales, Universidad Nacional de Colombia - Sede Bogotá, 2016.
Borkow, G. Copper, An Ancient Remedy Returning to Fight Microbial, Fungal and Viral Infections. Curr. Chem. Biol. 2009, 3, 272–278.
Luebbert, P. P. Soft Surface Bacterial Contamination: Considerations for a Complete Infection Prevention Program.
Shi, X.; Irwin, P. L.; Jin, T.; He, Y.; Xie, Y. Antibacterial Activity and Mechanism of Action of Zinc Oxide Nanoparticles against Campylobacter Jejuni . Appl. Environ. Microbiol. 2011, 77 (7), 2325–2331. https://doi.org/10.1128/aem.02149-10.
Morris, R. Antimicrobial Metal Organic Frameworks. US 2013/0171228, 2013. https://doi.org/10.1016/j.(73).
Horcajada, P.; Gref, R.; Baati, T.; et al. Metal-Organic Frameworks in Biomedicine. Chem. Rev. 2012, 112 (2), 1232–1268. https://doi.org/10.1021/cr200256v.
Lu, X.; Ye, J.; Zhang, D.; et al. Silver Carboxylate Metal – Organic Frameworks with Highly Antibacterial Activity and Biocompatibility. J. Inorg. Biochem. 2014, 138, 114–121. https://doi.org/https://doi.org/10.1016/j.jinorgbio.2014.05.005.
Tamames-Tabar, C.; Imbuluzqueta, E.; Guillou, N.; et al. A Zn Azelate MOF: Combining Antibacterial Effect. Cryst. Eng. Comm. 2015, 17 (2), 456–462. https://doi.org/10.1039/c4ce00885e.
Restrepo, J.; Serroukh, Z.; Santiago, J.; et al. Antibacterial Zn-MOF with Hydrazinebenzoate Linkers. Eur. J. Inorg. Chem. 2017, 2017 (3), 574–580. https://doi.org/10.1002/cnm.2901.
Neufeld, B. H.; Neufeld, M. J.; Lutzke, A.; Schweickart, S. M.; Reynolds, M. M. Metal–Organic Framework Material Inhibits Biofilm Formation of Pseudomonas Aeruginosa. Adv. Funct. Mater. 2017, 27 (34). https://doi.org/10.1002/adfm.201702255.
Wyszogrodzka, G.; Marszałek, B.; Gil, B.; Dorozyński, P. Metal-Organic Frameworks: Mechanisms of Antibacterial Action and Potential Applications. Drug Discov. Today 2016, 21 (6), 1009–1018. https://doi.org/10.1016/j.drudis.2016.04.009.
Katsnelson, A. Building a Healthy Herd without Antibiotics. Chem. Eng. News 2020, 98 (8), 20–23. https://doi.org/10.1001/jama.2020.13442.
Aguado, S.; Quirós, J.; Canivet, J.; Farrusseng, D.; Boltes, K.; Rosal, R. Antimicrobial Activity of Cobalt Imidazolate Metal – Organic Frameworks. Chemosphere 2014, 113, 188–192. https://doi.org/10.1016/j.chemosphere.2014.05.029.
Tamames-Tabar, C.; Cunha, D.; Imbuluzqueta, E.; et al. Cytotoxicity of Nanoscaled Metal–Organic Frameworks. J. Mater. Chem. B 2014, 2 (3), 262–271. https://doi.org/10.1039/C3TB20832J.
Abdelhameed, R. M.; Abdel-Gawad, H.; Elshahat, M.; Emam, H. E. Cu-BTC@ Cotton Composite: Design and Removal of Ethion Insecticide from Water. RSC Adv. 2016, 6 (48), 42324–42333. https://doi.org/10.1039/C6RA04719J.
Duan, C.; Meng, J.; Wang, X.; et al. Synthesis of Novel Cellulose- Based Antibacterial Composites of Ag Nanoparticles@ Metal-Organic Frameworks@ Carboxymethylated Fibers. Carbohydr. Polym. 2018, 193, 82–88. https://doi.org/10.1016/j.carbpol.2018.03.089.
da Silva Pinto, M.; Sierra-Avila, C. A.; Hinestroza, J. P. In Situ Synthesis of a Cu-BTC Metal-Organic Framework (MOF 199) onto Cellulosic Fibrous Substrates: Cotton. Cellulose 2012, 19 (5), 1771–1779. https://doi.org/10.1007/s10570-012-9752-y.
Bastidas Gómez, K. G. Wastewater Treatment Using an Iron Nanocatalyst Supported on Fique Fibers, Universidad Nacional de Colombia - Sede Bogotá, 2016.
Barrios, Y. V. Síntesis de MOFs Sobre Tela de Algodón y Su Evaluación Antibacterial Para Prendas de Uso Hospitalario, Universidad Nacional de Colombia - Sede Bogotá, 2019.
Emam, H.; Abdelhameed, R. M.; Darwesh, O. M. Protective Cotton Textiles via Amalgamation of Cross-Linked Zeolitic Imidazole Framework . Mater. Interfaces 2020. https://doi.org/10.1021/acs.iecr.0c01384.
Zhou, S.; Gao, J.; Zhu, J.; Peng, D.; Zhang, Y.; Zhang, Y. Self-Cleaning, Antibacterial Mixed Matrix Membranes Enabled by Photocatalyst Ti-MOFs for Efficient Dye Removal. J. Memb. Sci. 2020, 610 (January), 118219. https://doi.org/10.1016/j.memsci.2020.118219.
Yang, Y.; Zhang, S.; Huang, W.; Guo, Z.; Huang, J. Multi-Functional Cotton Textiles Design Using in Situ Generating Zeolitic Imidazolate Framework-67 (ZIF-67) for Effective UV Resistance , Antibacterial Activity , and Self- Cleaning. Cellulose 2021, 28 (9), 5923–5935. https://doi.org/10.1007/s10570-021-03840-8.
Li, H.; Luo, Y.; Yu, F.; Zhang, H. In-Situ Construction of MOFs-Based Superhydrophobic/ Superoleophilic Coating on Filter Paper with Self-Cleaning and Antibacterial Activity for Efficient Oil/Water Separation. Colloids Surfaces A Physicochem. Eng. Asp. 2021, 625 (June), 126976. https://doi.org/10.1016/j.colsurfa.2021.126976.
de Nooy, A. E. J.; Besemer, A. C.; van Bekkum, H. Highly Selective Nitroxyl Radical-Mediated Oxidation of Primary Alcohol Groups in Water-Soluble Glucans. Carbohydr. Res. 1995, 269 (1), 89–98. https://doi.org/10.1016/0008-6215(94)00343-E.
Kato, Y.; Isogai, A. Preparation of Polyuronic Acid from Cellulose by TEMPO-Mediated Oxidation. Cellulose 1998, 5, 153–164. https://doi.org/10.1007/s10570-008-9245-1.
Tahiri, C.; Vignon, M. TEMPO-Oxidation of Cellulose: Synthesis and Characterisation of Polyglucuronans. Cellulose 2000, 7, 177. https://doi.org/https://doi.org/10.1023/A:1009276009711.
Saito, T.; Isogai, A. TEMPO-Mediated Oxidation of Native Cellulose. The Effect of Oxidation Conditions on Chemical and Crystal Structures of the Water-Insoluble Fractions. Biomacromolecules 2004, 5 (5), 1983–1989. https://doi.org/10.1021/bm0497769.
Calderón-Vergara, L. A.; Ovalle-Serrano, S. A.; Blanco-Tirado, C.; Combariza, M. Y. Influence of Post-Oxidation Reactions on the Physicochemical Properties of TEMPO-Oxidized Cellulose Nanofibers before and after Amidation. Cellulose 2020, 27 (3), 1273–1288. https://doi.org/10.1007/s10570-019-02849-4.
Ovalle-Serrano, S. A.; Díaz-Serrano, L. A.; Hong, C.; Hinestroza, J. P.; Blanco-Tirado, C.; Combariza, M. Y. Synthesis of Cellulose Nanofiber Hydrogels from Fique Tow and Ag Nanoparticles. Cellulose 2020, 27 (9947), 9961. https://doi.org/10.1007/s10570-020-03527-6.
Isogai, T.; Saito, T.; Isogai, A. TEMPO Electromediated Oxidation of Some Polysaccharides Including Regenerated Cellulose Fiber. Biomacromolecules 2010, 11 (6), 1593–1599. https://doi.org/10.1021/bm1002575.
Isogai, A.; Saito, T.; Fukuzumi, H. TEMPO-Oxidized Cellulose Nanofibers. Nanoscale 2011, 3, 71–85. https://doi.org/10.1039/c0nr00583e.
Dwyer, D. B.; Liu, J.; Gomez, J. C.; et al. Metal Hydroxide/Polymer Textiles for Decontamination of Toxic Organophosphates: An Extensive Study of Wettability, Catalytic Activity, and the Effects of Aggregation. ACS Appl. Mater. Interfaces 2019, 11 (34), 31378–31385. https://doi.org/10.1021/acsami.9b10440.
Emam, H. E.; Darwesh, O. M.; Abdelhameed, R. M. In-Growth Metal Organic Framework/Synthetic Hybrids as Antimicrobial Fabrics and Its Toxicity. Colloids Surfaces B Biointerfaces 2018, 165, 219–228. https://doi.org/https://doi.org/10.1016/j.colsurfb.2018.02.028.
Fu, H.; Ou, P.; Zhu, J.; Song, P.; Yang, J.; Wu, Y. Enhanced Protein Adsorption in Fibrous Substrates Treated with Zeolitic Imidazolate Framework-8 (ZIF-8) Nanoparticles. ACS Appl. Nano Mater. 2019, 2 (12), 7626–7636. https://doi.org/10.1021/acsanm.9b01717.
Koltzenburg, S.; Maskos, M.; Nuyken, O. Polymer Chemistry; Springer Berlin Heidelberg: Berlín, 2017. https://doi.org/10.007/9783662492796.
Ravve, A. Principles of Polymer Chemistry, Third.; Springer US, 2012. https://doi.org/10.1021/ja01639a091.
Bittrich, E.; Eichhorn, K.; Cometa, S.; Keller, B.; De Giglio, S. Polymer Surface Characterization; Sabbatini, L., Ed.; Walter de Gruyter GmbH: Göttingen, 2014. https://doi.org/10.1515/9783110490633-012.
Socrates, G. Infrared and Raman Characteristic Group Frequencies. Tables and Charts, Third.; John Wiley & Sons, Ltd, 2001. https://doi.org/10.1002/jrs.1238.
Lin-Vien, D.; Colthup, N.; Fateley, W.; Grasselli, J. The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules; Academic Press Limited: San Diego, CA., 1991; Vol. 42. https://doi.org/10.1021/ac60283a713.
Bunge, M. A.; Davis, A. B.; West, K. N.; West, C. W.; Glover, T. G. Synthesis and Characterization of UiO-66-NH2 Metal-Organic Framework Cotton Composite Textiles. Ind. Eng. Chem. Res. 2018, 57 (28), 9151–9161. https://doi.org/10.1021/acs.iecr.8b01010.
Katz, M. J.; Brown, Z. J.; Colón, Y. J.; et al. A Facile Synthesis of UiO-66, UiO-67 and Their Derivatives. Chem. Commun. 2013, 49 (82), 9449–9451. https://doi.org/10.1039/C3CC46105J.
Tranchemontagne, D. J.; Hunt, J. R.; Yaghi, O. M. Room Temperature Synthesis of Metal-Organic Frameworks: MOF-5, MOF-74, MOF-199, and IRMOF-0. Tetrahedron 2008, 64, 8553–8557. https://doi.org/10.1016/j.tet.2008.06.036.
Rico, E. Síntesis, Caracterización y Evaluación de Redes Metal Orgánicas Como Sensores Para La Detección de Amoniaco En Volátiles de Explosivos Tipo ANFO, Universidad Nacional de Colombia - Sede Bogotá, 2019.
Kwak, Y.; Magenau, A. J. D.; Matyjaszewski, K. ARGET ATRP of Methyl Acrylate with Inexpensive Ligands and Ppm Concentrations of Catalyst. Macromolecules 2011, 44 (4), 811–819. https://doi.org/10.1021/ma102665c.
Porras, J. D.; Arteta, S. M.; Pérez, L. D. Development of an Adsorbent for Bisphenol A Based on a Polymer Grafted from Microcrystalline Cellulose. Water. Air. Soil Pollut. 2020, 231 (10). https://doi.org/10.1007/s11270-020-04861-y.
Nanda, A. K.; Matyjaszewski, K. Effect of [PMDETA]/[Cu(I)] Ratio, Monomer, Solvent, Counterion, Ligand, and Alkyl Bromide on the Activation Rate Constants in Atom Transfer Radical Polymerization. Macromolecules 2003, 36, 1487–1493. https://doi.org/10.1021/ma0340107.
Hansson, S.; Carlmark, A.; Malmström, E.; Fogelström, L. Toward Industrial Grafting of Cellulosic Substrates via ARGET ATRP. J. Appl. Polym. Sci. 2015, 132 (6), 1–10. https://doi.org/10.1002/app.41434.
Ovalle-Serrano, S. A.; Blanco-Tirado, C.; Combariza, M. Y. Exploring the Composition of Raw and Delignified Colombian Fique Fibers, Tow and Pulp. Cellulose 2018, 25 (1), 151–165. https://doi.org/10.1007/s10570-017-1599-9.
Ovalle-Serrano, S. A.; Gómez, F. N.; Blanco-Tirado, C.; Combariza, M. Y. Isolation and Characterization of Cellulose Nanofibrils from Colombian Fique Decortication By-Products. Carbohydr. Polym. 2018, 189, 169–177. https://doi.org/10.1016/j.carbpol.2018.02.031.
Varshney, V. K. Cellulose Fibers. In Bio- and Nano-Polymer Composites; Springer Berlin Heidelberg: Berlín, 2011; pp 43–60.
Marković, D.; Korica, M.; Kostić, M.; et al. In Situ Synthesis of Cu/Cu2O Nanoparticles on the TEMPO Oxidized Cotton Fabrics. Cellulose 2018, 25 (1), 829–841. https://doi.org/10.1007/s10570-017-1566-5.
Errokh, A.; Ferraria, A. M.; Conceição, D. S.; et al. Controlled Growth of Cu2O Nanoparticles Bound to Cotton Fibres. Carbohydr. Polym. 2016, 141, 229–237. https://doi.org/10.1016/j.carbpol.2016.01.019.
Giannakoudakis, D. A.; Hu, Y.; Florent, M.; Bandosz, T. J. Smart Textiles of MOF/g-C3N4 Nanospheres for the Rapid Detection/Detoxification of Chemical Warfare Agents. Nanoscale Horizons 2017, 2 (6), 356–364. https://doi.org/10.1039/c7nh00081b.
Emam, H. E.; Darwesh, O. M.; Abdelhameed, R. M. In-Growth Metal Organic Framework/Synthetic Hybrids as Antimicrobial Fabrics and Its Toxicity. Colloids Surfaces B Biointerfaces 2018, 165, 219–228. https://doi.org/10.1016/j.colsurfb.2018.02.028.
Jin, Y.; Edler, K. J.; Marken, F.; Scott, J. L. Voltammetric Optimisation of TEMPO-Mediated Oxidations at Cellulose Fabric. Green Chem. 2014, 16 (6), 3322–3327. https://doi.org/10.1039/C4GC00306C.
Courtenay, J. C.; Johns, M. A.; Galembeck, F.; et al. Surface Modified Cellulose Scaffolds for Tissue Engineering. Cellulose 2017, 24 (1), 253–267. https://doi.org/10.1007/s10570-016-1111-y.
Hirota, M.; Tamura, N.; Saito, T.; Isogai, A. Surface Carboxylation of Porous Regenerated Cellulose Beads by 4-Acetamide-TEMPO/NaClO/NaClO2 System. Cellulose 2009, 16 (5), 841–851. https://doi.org/10.1007/s10570-009-9296-y.
Saito, T.; Okita, Y.; Nge, T. T.; Sugiyama, J.; Isogai, A. TEMPO-Mediated Oxidation of Native Cellulose: Microscopic Analysis of Fibrous Fractions in the Oxidized Products. Carbohydr. Polym. 2006, 65 (4), 435–440. https://doi.org/10.1016/j.carbpol.2006.01.034.
Dalynn Biologicals. McFarland Standard. McFarland Standards for in Vitro Use Only. 2014, p 2.
Mahmoodi, N. M.; Abdi, J. Nanoporous Metal-Organic Framework (MOF-199): Synthesis, Characterization and Photocatalytic Degradation of Basic Blue 41. Microchem. J. 2019. https://doi.org/10.1016/j.microc.2018.09.033.
Rowsell, J. L. C.; Yaghi, O. M. Effects of Functionalization, Catenation, and Variation of the Metal Oxide and Organic Linking Units on the Low-Pressure Hydrogen Adsorption Properties of Metal-Organic Frameworks. J. Am. Chem. Soc. 2006, 128 (4), 1304–1315. https://doi.org/10.1021/ja056639q.
Neufeld, M. J.; Harding, J. L.; Reynolds, M. M. Immobilization of Metal-Organic Framework Copper(II) Benzene-1,3,5-Tricarboxylate (CuBTC) onto Cotton Fabric as a Nitric Oxide Release Catalyst. ACS Appl. Mater. Interfaces 2015, 7 (48), 26742–26750. https://doi.org/10.1021/acsami.5b08773.
Du, X. D.; Yi, X. H.; Wang, P.; Zheng, W.; Deng, J.; Wang, C. C. Robust Photocatalytic Reduction of Cr(VI) on UiO-66-NH2(Zr/Hf) Metal-Organic Framework Membrane under Sunlight Irradiation. Chem. Eng. J. 2019, 356 (September 2018), 393–399. https://doi.org/10.1016/j.cej.2018.09.084.
Decoste, J. B.; Peterson, G. W.; Jasuja, H.; Glover, T. G.; Huang, Y. G.; Walton, K. S. Stability and Degradation Mechanisms of Metal-Organic Frameworks Containing the Zr6O4(OH)4 Secondary Building Unit. J. Mater. Chem. A 2013, 1 (18), 5642–5650. https://doi.org/10.1039/c3ta10662d.
Xi, F. G.; Liu, H.; Yang, N. N.; Gao, E. Q. Aldehyde-Tagged Zirconium Metal-Organic Frameworks: A Versatile Platform for Postsynthetic Modification. Inorg. Chem. 2016, 55 (10), 4701–4703. https://doi.org/10.1021/acs.inorgchem.6b00598.
Jung, H.; Kim, M. K.; Lee, J.; Kwon, J. H.; Lee, J. Characterization of the Zirconium Metal-Organic Framework (MOF) UiO-66-NH2 for the Decomposition of Nerve Agents in Solid-State Conditions Using Phosphorus-31 Solid State-Magic Angle Spinning Nuclear Magnetic Resonance (31P SS-MAS NMR) and Gas Chromatogra. Anal. Lett. 2021, 54 (3), 468–480. https://doi.org/10.1080/00032719.2020.1768399.
Tian, P.; He, X.; Li, W.; et al. Zr-MOFs Based on Keggin-Type Polyoxometalates for Photocatalytic Hydrogen Production. J. Mater. Sci. 2018, 53 (17), 12016–12029. https://doi.org/10.1007/s10853-018-2476-0.
Zhang, X. F.; Feng, Y.; Wang, Z.; Jia, M.; Yao, J. Fabrication of Cellulose Nanofibrils/UiO-66-NH2 Composite Membrane for CO2/N2 Separation. J. Memb. Sci. 2018, 568, 10–16. https://doi.org/10.1016/j.memsci.2018.09.055.
Habibi, Y.; Chanzy, H.; Vignon, M. R. TEMPO-Mediated Surface Oxidation of Cellulose Whiskers. Cellulose 2006, 13 (6), 679–687. https://doi.org/10.1007/s10570-006-9075-y.
Segal, L.; Creely, J. J.; Martin, A. E.; Conrad, C. M. An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer. Text. Res. J. 1959, 29 (10), 786–794. https://doi.org/10.1177/004051755902901003.
Ágreda, J. Coulombimetria. In Notas de clase - Análisis Químico Instrumental; Bogotá, 2014; pp 1–9.
Young, R.; Lovell, P. Introduction to Polymers, Segunda ed.; Springer Science Business Media: Hong Kong, 1991.
Isogai, A.; Hänninen, T.; Fujisawa, S.; Saito, T. Review: Catalytic Oxidation of Cellulose with Nitroxyl Radicals under Aqueous Conditions. Prog. Polym. Sci. 2018, 86, 122–148. https://doi.org/10.1016/j.progpolymsci.2018.07.007.
Saito, T.; Hirota, M.; Tamura, N.; et al. Individualization of Nano-Sized Plant Cellulose Fibrils by Direct Surface Carboxylation Using TEMPO Catalyst under Neutral Conditions. Biomacromolecules 2009, 10 (7), 1992–1996. https://doi.org/10.1021/bm900414t.
Zeronian, S. H.; Collins, M. J. Surface Modification of Polyesters by Alkaline Treatments. Text. Prog. 1989, 20 (2), 1–26. https://doi.org/10.1080/00405168908688948.
Ali, M. K. M.; Ibrahim, K.; Hamad, O. S.; Eisa, M. H.; Faraj, M. G.; Azhari, F. Deposited Indium Tin Oxide (ITO) Thin Films by Dc- Magnetron Sputtering on Polyethylene Terephthalate Substrate (PET). Rom. Reports Phys. 2011, 56 (5–6), 730–741.
Prasad, S. G.; De, A.; De, U. Structural and Optical Investigations of Radiation Damage in Transparent PET Polymer Films. Int. J. Spectrosc. 2011, 2011, 1–7. https://doi.org/10.1155/2011/810936.
Rubin, H. N.; Neufeld, B. H.; Reynolds, M. M. Surface-Anchored Metal − Organic Framework − Cotton Material for Tunable Antibacterial Copper Delivery. Appl. Mater. Interfaces 2018, 10, 15189–15199. https://doi.org/10.1021/acsami.7b19455.
Moulder, F.; Wagner, C.; Riggs, W.; Davis, L. Handbook of X-Ray Photoelectron Spectroscopy; Muilenberg, G., Ed.; Perkin-Elmer Corporation, 1979.
Schelling, M.; Kim, M.; Otal, E.; Hinestroza, J. Decoration of Cotton Fibers with a Water-Stable Metal–Organic Framework (UiO-66) for the Decomposition and Enhanced Adsorption of Micropollutants in Water. Bioengineering 2018, 5 (1), 14. https://doi.org/10.3390/bioengineering5010014.
Ardila-Suárez, C.; Rodríguez-Pereira, J.; Baldovino-Medrano, V. G.; Ramírez-Caballero, G. E. An Analysis of the Effect of Zirconium Precursors of MOF-808 on Its Thermal Stability, and Structural and Surface Properties. ChemRxiv 2019, 21 (9), 1407–1415. https://doi.org/10.1039/c8ce01722k.
Mortada, B.; Matar, T. A.; Sakaya, A.; et al. Postmetalated Zirconium Metal Organic Frameworks as a Highly Potent Bactericide. Inorg. Chem. 2017, 56 (8), 4739–4744. https://doi.org/10.1021/acs.inorgchem.7b00429.
Mao, K.; Zhu, Y.; Rong, J.; et al. Rugby-Ball like Ag Modified Zirconium Porphyrin Metal–Organic Frameworks Nanohybrid for Antimicrobial Activity: Synergistic Effect for Significantly Enhancing Photoactivation Capacity. Colloids Surfaces A Physicochem. Eng. Asp. 2021, 611, 125888. https://doi.org/10.1016/j.colsurfa.2020.125888.
Kaur, N.; Tiwari, P.; Kapoor, K. S.; Saini, A. K.; Sharma, V.; Mobin, S. M. Metal-Organic Framework Based Antibiotic Release and Antimicrobial Response: An Overview. CrystEngComm 2020, 22 (44), 7513–7527. https://doi.org/10.1039/d0ce01215g.
Madigan, M.; Martinko, J.; Bender, K.; Buckley, D.; Stahl, D. Brock - Biología de Los Microorganismos, 14th ed.; Education, P., Ed.; Pearson: Madrid, 2015.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xviii, 152 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Química
dc.publisher.department.spa.fl_str_mv Departamento de Química
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/81572/3/1016049086.2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/81572/4/license.txt
https://repositorio.unal.edu.co/bitstream/unal/81572/5/1016049086.2021.pdf.jpg
bitstream.checksum.fl_str_mv 35539d315d8c77872fe805cf9f63abab
8153f7789df02f0a4c9e079953658ab2
d59ce0f982c81ebfe37a2cf46cb8cf99
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089314073575424
spelling Atribución-NoComercial-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Sierra Ávila, César Augusto394dd93f7303a80405d9212168b6c837Torres Cortés, Sergio Alejandro95c5981ea3a2ffcf45ea3846227d8bf8600Grupo de Investigación en Macromoléculas2022-06-13T19:26:41Z2022-06-13T19:26:41Z2021https://repositorio.unal.edu.co/handle/unal/81572Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, fotografías, gráficas, tablasEn este trabajo, se realizó la síntesis y caracterización de dos Redes Metalorgánicas (MOFs): MOF-199 (HKUST-1) y MOF UiO-66-NH2. Asimismo, se realizó la funcionalización y grafting de sustratos textiles de poliéster (PET), PET/algodón 50:50 y celulosa (algodón) a través de reacciones de polimerización ATRPARGET-SI y oxidación selectiva con el sistema TEMPO/NaClO/NaBr/NaClO2, con el fin de incrementar la concentración de grupos carboxilato (-COO-) en la superficie del textil, y así, convertirlos en puntos de anclaje químico por enlaces de coordinación con los MOFs previamente obtenidos. Acorde con los resultados de este proceso, se obtuvieron concentraciones promedio de grupos carboxilato de 0,019 mmol/g para el algodón y 0,022 mmol/g para el PET/algodón, respecto a blanco de algodón. Respecto al anclaje de MOF-199 y MOF UiO-66-NH2 producidos ex situ sobre las telas funcionalizadas, se obtuvo una concentración de Cu(II) de 4.73% atómico en algodón y 4.47% para el PET/algodón, de acuerdo a la cuantificación realizada en superficie por espectroscopia fotoelectrónica de rayos X (XPS), así como una concentración promedio de Zr(IV) de 10,04% para el algodón y 12,06% para el PET/algodón (por espectroscopía XPS). Estos materiales, fueron caracterizados mediante difracción de rayos X (DRXP), espectroscopía de infrarrojo por reflectancia total atenuada (FTIR-ATR), microscopia electrónica de barrido (SEM), espectroscopía fotoelectrónica de Rayos X (XPS), espectroscopía de electrones dispersados (EDS) y coulombimetría. Finalmente, se llevaron a cabo ensayos de inhibición bacteriana de los MOFs anclados a las fibras textiles, usando sepas de referencia de S. aureus (G+) y E. coli (G-), utilizando las metodologías de halos de inhibición y de estándares de McFarland, encontrándose un considerable efecto inhibidor principalmente en S. aureus posiblemente debida a la acción de los compositos obtenidos. (Texto tomado de la fuente).In this work, the synthesis and characterization of two Metalorganic Networks (MOFs): MOF-199 (HKUST-1) and MOF UiO-66-NH2, was carried out. Likewise, the functionalization and grafting of textile substrates of polyester (PET), cellulose (cotton), and PET/cotton 50:50 were carried out through ATRP-ARGET-SI polymerization reactions and selective carboxylation with the TEMPO/NaClO/NaBr/NaClO2 system, to increase the concentration of carboxylate groups (-COO-) and turn them into suitable surfaces for the subsequent chemical anchoring by coordination bonds of the previously obtained MOFs. Average concentrations of carboxylate groups of 0,019 mmol/g for cotton and 0,020 mmol/g for PET/cotton were obtained, with respect to a cotton blank. Similarly, the anchoring of MOF-199 and MOF UiO-66-NH2 produced ex-situ was carried out. An average concentration of Cu(II) of 4,73% was obtained for cotton and 4,47% for PET/cotton, as well as an average concentration of Zr4+ of 10,04% for cotton and 12,06% for PET/cotton. These materials, rarely obtained from solid-state MOFs, were characterized by X-Ray Diffraction (XRD), Furier-transformed Infrared Spectroscopy by Attenuated Total Reflectance (FTIR-ATR), Scanning Electron Microscopy (SEM), X-ray Photoelectron Spectroscopy (XPS), Scattered Electron Spectroscopy (EDS), and coulometry. Finally, bacterial inhibition assays of the MOFs anchored to the substrates were carried out using reference strains of S. aureus (G+) and E. coli (G-), using the methodologies of inhibition zones and reduction of the units. Colony-forming (CFU), finding a considerable antibacterial activity, possibly accomplished by the action of the obtained materials.Incluye anexosMaestríaMagíster en Ciencias - QuímicaQuímica de compuestos de coordinación y metalorgánicaQuímica de polímerosxviii, 152 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - QuímicaDepartamento de QuímicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materialesAnti-Bacterial AgentsAntibacterianosTextile chemistryChemistry, organicQuímica textilQuímica orgánicaRed metalorgánicaInhibición bacterianaAnclaje químicoEstado sólidoBacterial inhibitionReticular chemistryMetalorganic frameworkSíntesis y desarrollo de un anclaje químico estable de MOF-199 y MOF UiO-66-NH2 obtenidos ex situ sobre poliéster y celulosa, con potencial aplicación como textiles antibacterialesSynthesis and development of a stable chemical anchor of MOF-199 and MOF UiO-66-NH2 obtained ex situ on polyester and cellulose, with potential application as antibacterial textilesTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMGupta, A.; Mumtaz, S.; Li, C.-H.; Hussain, I.; Rotello, V. M. Combatting Antibiotic-Resistant Bacteria Using Nanomaterials. Chem. Soc. Rev. 2019, 48, 415–427. https://doi.org/10.1039/C7CS00748E.Wyszogrodzka, G.; Marszałek, B.; Gil, B.; Dorożyński, P. Metal-Organic Frameworks: Mechanisms of Antibacterial Action and Potential Applications. Drug Discov. Today 2016, 21 (6), 1009–1018. https://doi.org/10.1016/j.drudis.2016.04.009.Aguado, S.; Quirós, J.; Canivet, J.; Farrusseng, D.; Boltes, K. Antimicrobial Activity of Cobalt Imidazolate Metal-Organic Frameworks. Chemosphere 2014, 113, 188–192. https://doi.org/10.1016/j.chemosphere.2014.05.029.Hinestroza, J. P.; Ochoa-puentes, C.; Sierra, C. A.; Soto, C. Y. Antibacterial Activity Against Escherichia Coli of Cu-BTC (MOF-199) Metal-Organic Framework Immobilized onto Cellulosic Fibers. J. Appl. Polym. Sci. 2014, 40815, 1–5. https://doi.org/https://doi.org/10.1002/app.40815.Abbasi, A. R.; Akhbari, K.; Morsali, A. Dense Coating of Surface Mounted CuBTC Metal-Organic Framework Nanostructures on Silk Fibers, Prepared by Layer-by-Layer Method under Ultrasound Irradiation with Antibacterial Activity. Ultrason. Sonochem. 2012, 19 (4), 846–852.Meilikhov, M.; Yusenko, K.; Schollmeyer, E.; Mayer, C.; Buschmann, H.-J.; Fischer, R. A. Stepwise Deposition of Metal Organic Frameworks on Flexible Synthetic Polymer Surfaces. Dalt. Trans. 2011, 40 (18), 4838. https://doi.org/10.1039/c0dt01820a.Li, H.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O. M. Design and Synthesis of an Exceptionally Stable and Highly Porous Metal-Organic Framework. Nature 1999, 402, 276–279. https://doi.org/10.1038/46248.Hoskins, B.; Robson, R. Infinite Polymeric Frameworks Consisting of Three Dimensionally Linked Rod-Liked Segments. J. Am. Chem. Soc. 1989, 111 (15), 5964–5965. https://doi.org/10.1021/ja00197a079.Hoskins, B. F.; Robson, R. Design and Construction of a New Class of Scaffolding-like Materials Comprising Infinite Polymeric Frameworks of 3D-Linked Molecular Rods. A Reappraisal of the Zn(CN)2 and Cd(CN)2 Structures and Synthesis and Structure of the Diamond-Related Frameworks. J. Am. Chem. Soc. 1990, 112, 1546–1554. https://doi.org/https://doi.org/10.1021/ja00160a038.Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The Chemistry and Applications of Metal-Organic Frameworks. Science 2013, 341, 1230444-1-1230444–12. https://doi.org/10.1126/science.1230444.Moghadam, P. Z.; Li, A.; Wiggin, S. B.; et al. Development of a Cambridge Structural Database Subset: A Collection of Metal-Organic Frameworks for Past, Present, and Future. Chem. Mater. 2017, 29 (7), 2618–2625. https://doi.org/10.1021/acs.chemmater.7b00441.Coudert, F. X.; Fuchs, A. H.Coudert, F. X.; Fuchs, A. H. Computational Characterization and Prediction of Metal-Organic Framework Properties. Coord. Chem. Rev. 2016, 307, 211–236. https://doi.org/10.1016/j.ccr.2015.08.001.Ongari, D.; Talirz, L.; Smit, B. Too Many Materials and Too Many Applications: An Experimental Problem Waiting for a Computational Solution. ACS Cent. Sci. 2020, 6 (11), 1890–1900. https://doi.org/10.1021/acscentsci.0c00988.Eddaoudi, M.; Kim, J.; Rosi, N.; et al. Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage. Science (80-. ). 2002, 469, 469–472. https://doi.org/10.1126/science.1067208.Zhang, Q.; Yue, C.; Zhang, Y.; et al. Six Metal-Organic Frameworks Assembled from Asymmetric Triazole Carboxylate Ligands : Synthesis , Crystal Structures , Photoluminescence. Inorganica Chim. Acta 2017. https://doi.org/10.1016/j.ica.2017.12.036.Howarth, A.; Liu, Y.; Li, P.; et al. Chemical, Thermal and Mechanical Stabilities of Metal–Organic Frameworks. Nat. Rev. Mater. 2016, 1, 15018. https://doi.org/https://doi.org/10.1038/natrevmats.2015.18.Gangu, K. K.; Maddila, S.; Mukkamala, S. B.; Jonnalagadda, S. B. A Review on Contemporary Metal-Organic Framework Materials. Inorganica Chim. Acta 2016, 446, 61–74. https://doi.org/10.1016/j.ica.2016.02.062.Canivet, J.; Fateeva, A.; Guo, Y.; Coasne, B.; Farrusseng, D. Water Adsorption in MOFs: Fundamentals and Applications. Chem. Soc. Rev. 2014, 43 (16), 5594–5617. https://doi.org/10.1039/c4cs00078a.Burtch, N. C.; Jasuja, H.; Walton, K. S. Water Stability and Adsorption in Metal − Organic Frameworks. Chem. Rev. 2014, 114, 10575–10612. https://doi.org/10.1021/cr5002589.Tanabe, K. K.; Cohen, S. M. Postsynthetic Modification of Metal-Organic Frameworks - A Progress Report. Chem. Soc. Rev. 2011, 40 (2), 498–519. https://doi.org/10.1039/c0cs00031k.Cohen, S. M. Postsynthetic Methods for the Functionalization of Metal–Organic Frameworks. Chem. Rev. 2012, 112 (2), 970–1000. https://doi.org/10.1021/cr200179u.Islamoglu, T.; Goswami, S.; Li, Z.; Howarth, A. J.; Farha, O. K.; Hupp, J. T. Postsynthetic Tuning of Metal − Organic Frameworks for Targeted Applications. Acc. Chem. Res. 2017, 50, 805–813. https://doi.org/10.1021/acs.accounts.6b00577.Tranchemontagne, D. J.; Mendoza-Cortés, J. L.; O’Keeffe, M.; Yaghi, O. M. Secondary Building Units, Nets and Bonding in the Chemistry of Metal-Organic Frameworks. Chem. Soc. Rev. 2009, 38 (5), 1257–1283. https://doi.org/10.1039/b817735j.Yaghi, O. M.; Li, Q. Reticular Chemistry Frameworks for Clean Energy. MRS Bull. 2009, 34 (September), 682–690. https://doi.org/10.1557/mrs2009.180.Stock, N.; Biswas, S. Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chem. Rev. 2012, 112 (2), 933–969. https://doi.org/10.1021/cr200304e.Jhung, S. H.; Lee, J. H.; Forster, P. M.; Férey, G.; Cheetham, A. K.; Chang, J. S. Microwave Synthesis of Hybrid Inorganic - Organic Porous Materials: Phase-Selective and Rapid Crystallization. Chem. - A Eur. J. 2006, 12 (30), 7899–7905. https://doi.org/10.1002/chem.200600270.Son, W. J.; Kim, J.; Kim, J.; Ahn, W. S. Sonochemical Synthesis of MOF-5. Chem. Commun. 2008, No. 47, 6336–6338. https://doi.org/10.1039/b814740j.Mueller, U.; Schubert, M.; Teich, F.; Puetter, H.; Schierle-Arndt, K.; Pastré, J. Metal-Organic Frameworks - Prospective Industrial Applications. J. Mater. Chem. 2006, 16 (7), 626–636. https://doi.org/10.1039/b511962f.Todaro, M.; Alessi, A.; Sciortino, L.; et al. Investigation by Raman Spectroscopy of the Decomposition Process of HKUST-1 upon Exposure to Air. J. Spectrosc. 2016, 2016. https://doi.org/10.1155/2016/8074297.Chui, S.; Lo, S.; Charmant, J.; Orpen, A.; Williams, I. Chemically Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)3]N. Science (80-. ). 1999, 283, 1148–1150. https://doi.org/10.1126/science.283.5405.1148.Murray, L.; Dinca, M.; Long, J. Hydrogen Storage in Metal-Organic Frameworks. Chem. Soc. Rev. 2009, 38 (5), 1294–1314. https://doi.org/10.1039/b802256a.Czaja, A. U.; Trukhan, N.; Müller, U. Industrial Applications of Metal–Organic Frameworks. Chem. Soc. Rev. 2009, 38 (5), 1284. https://doi.org/10.1039/b804680h.Cavka, J. H.; Jakobsen, S.; Olsbye, U.; et al. A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. J. Am. Chem. Soc. 2008, 130 (42), 13850–13851. https://doi.org/10.1021/ja8057953.Marshall, R. J.; Forgan, R. S. Postsynthetic Modification of Zirconium Metal-Organic Frameworks. European Journal of Inorganic Chemistry. Wiley-VCH Verlag 2016, pp 4310–4331. https://doi.org/10.1002/ejic.201600394.Chen, Q.; He, Q.; Lv, M.; et al. Selective Adsorption of Cationic Dyes by UiO-66-NH2. Appl. Surf. Sci. 2015, 327, 77–85. https://doi.org/10.1016/j.apsusc.2014.11.103.Rosenthal, V. D.; Maki, D. G.; Mehta, Y.; et al. International Nosocomial Infection Control Consortiu (INICC) Report, Data Summary of 43 Countries for 2007-2012. Device-Associated Module. Am. J. Infect. Control 2014, 42 (9), 942–956. https://doi.org/10.1016/j.ajic.2014.05.029.Karimi Alavijeh, R.; Beheshti, S.; Akhbari, K.; Morsali, A. Investigation of Reasons for Metal–Organic Framework’s Antibacterial Activities. Polyhedron 2018, 156, 257–278. https://doi.org/10.1016/j.poly.2018.09.028.Tikhomirov, E. WHO Programme for the Control of Hospital Infections. Chemioter. Int. J. Mediterr. Soc. Chemother. 1987, 6 (3), 148—151.Rosenthal, V. D.; Al-Abdely, H.; El-Kholy, A. A.; et al. International Nosocomial Infection Control Consortium Report, Data Summary of 50 Countries for 2010-2015: Device-Associated Module. Am. J. Infect. Control 2016, 44 (12), 1495–1504. https://doi.org/10.1016/j.ajic.2016.08.007.Ávila Reyes, C. Infecciones Intrahospitalarias Cuestan 727 Mil Millones Al Año. Unimedios-UN periódico. 2011.Rojas, E. M.; Sánchez-Pardo, S.; Ochoa-Díaz, A.; Rodríguez, R. Bacteriemias En Pacientes Con VIH En Un Hospital de Tercer Nivel En Colombia, 2014-2016. Med. Int. Méx. 2018, 34 (3), 366–372. https://doi.org/https://doi.org/10.24245/mim.v34i3.1912.Cano Benítez, C. A. Síntesis y Caracterización de MOFs Anclados Sobre Telas de Algodón Con Posibles Aplicaciones Antibacteriales, Universidad Nacional de Colombia - Sede Bogotá, 2016.Borkow, G. Copper, An Ancient Remedy Returning to Fight Microbial, Fungal and Viral Infections. Curr. Chem. Biol. 2009, 3, 272–278.Luebbert, P. P. Soft Surface Bacterial Contamination: Considerations for a Complete Infection Prevention Program.Shi, X.; Irwin, P. L.; Jin, T.; He, Y.; Xie, Y. Antibacterial Activity and Mechanism of Action of Zinc Oxide Nanoparticles against Campylobacter Jejuni . Appl. Environ. Microbiol. 2011, 77 (7), 2325–2331. https://doi.org/10.1128/aem.02149-10.Morris, R. Antimicrobial Metal Organic Frameworks. US 2013/0171228, 2013. https://doi.org/10.1016/j.(73).Horcajada, P.; Gref, R.; Baati, T.; et al. Metal-Organic Frameworks in Biomedicine. Chem. Rev. 2012, 112 (2), 1232–1268. https://doi.org/10.1021/cr200256v.Lu, X.; Ye, J.; Zhang, D.; et al. Silver Carboxylate Metal – Organic Frameworks with Highly Antibacterial Activity and Biocompatibility. J. Inorg. Biochem. 2014, 138, 114–121. https://doi.org/https://doi.org/10.1016/j.jinorgbio.2014.05.005.Tamames-Tabar, C.; Imbuluzqueta, E.; Guillou, N.; et al. A Zn Azelate MOF: Combining Antibacterial Effect. Cryst. Eng. Comm. 2015, 17 (2), 456–462. https://doi.org/10.1039/c4ce00885e.Restrepo, J.; Serroukh, Z.; Santiago, J.; et al. Antibacterial Zn-MOF with Hydrazinebenzoate Linkers. Eur. J. Inorg. Chem. 2017, 2017 (3), 574–580. https://doi.org/10.1002/cnm.2901.Neufeld, B. H.; Neufeld, M. J.; Lutzke, A.; Schweickart, S. M.; Reynolds, M. M. Metal–Organic Framework Material Inhibits Biofilm Formation of Pseudomonas Aeruginosa. Adv. Funct. Mater. 2017, 27 (34). https://doi.org/10.1002/adfm.201702255.Wyszogrodzka, G.; Marszałek, B.; Gil, B.; Dorozyński, P. Metal-Organic Frameworks: Mechanisms of Antibacterial Action and Potential Applications. Drug Discov. Today 2016, 21 (6), 1009–1018. https://doi.org/10.1016/j.drudis.2016.04.009.Katsnelson, A. Building a Healthy Herd without Antibiotics. Chem. Eng. News 2020, 98 (8), 20–23. https://doi.org/10.1001/jama.2020.13442.Aguado, S.; Quirós, J.; Canivet, J.; Farrusseng, D.; Boltes, K.; Rosal, R. Antimicrobial Activity of Cobalt Imidazolate Metal – Organic Frameworks. Chemosphere 2014, 113, 188–192. https://doi.org/10.1016/j.chemosphere.2014.05.029.Tamames-Tabar, C.; Cunha, D.; Imbuluzqueta, E.; et al. Cytotoxicity of Nanoscaled Metal–Organic Frameworks. J. Mater. Chem. B 2014, 2 (3), 262–271. https://doi.org/10.1039/C3TB20832J.Abdelhameed, R. M.; Abdel-Gawad, H.; Elshahat, M.; Emam, H. E. Cu-BTC@ Cotton Composite: Design and Removal of Ethion Insecticide from Water. RSC Adv. 2016, 6 (48), 42324–42333. https://doi.org/10.1039/C6RA04719J.Duan, C.; Meng, J.; Wang, X.; et al. Synthesis of Novel Cellulose- Based Antibacterial Composites of Ag Nanoparticles@ Metal-Organic Frameworks@ Carboxymethylated Fibers. Carbohydr. Polym. 2018, 193, 82–88. https://doi.org/10.1016/j.carbpol.2018.03.089.da Silva Pinto, M.; Sierra-Avila, C. A.; Hinestroza, J. P. In Situ Synthesis of a Cu-BTC Metal-Organic Framework (MOF 199) onto Cellulosic Fibrous Substrates: Cotton. Cellulose 2012, 19 (5), 1771–1779. https://doi.org/10.1007/s10570-012-9752-y.Bastidas Gómez, K. G. Wastewater Treatment Using an Iron Nanocatalyst Supported on Fique Fibers, Universidad Nacional de Colombia - Sede Bogotá, 2016.Barrios, Y. V. Síntesis de MOFs Sobre Tela de Algodón y Su Evaluación Antibacterial Para Prendas de Uso Hospitalario, Universidad Nacional de Colombia - Sede Bogotá, 2019.Emam, H.; Abdelhameed, R. M.; Darwesh, O. M. Protective Cotton Textiles via Amalgamation of Cross-Linked Zeolitic Imidazole Framework . Mater. Interfaces 2020. https://doi.org/10.1021/acs.iecr.0c01384.Zhou, S.; Gao, J.; Zhu, J.; Peng, D.; Zhang, Y.; Zhang, Y. Self-Cleaning, Antibacterial Mixed Matrix Membranes Enabled by Photocatalyst Ti-MOFs for Efficient Dye Removal. J. Memb. Sci. 2020, 610 (January), 118219. https://doi.org/10.1016/j.memsci.2020.118219.Yang, Y.; Zhang, S.; Huang, W.; Guo, Z.; Huang, J. Multi-Functional Cotton Textiles Design Using in Situ Generating Zeolitic Imidazolate Framework-67 (ZIF-67) for Effective UV Resistance , Antibacterial Activity , and Self- Cleaning. Cellulose 2021, 28 (9), 5923–5935. https://doi.org/10.1007/s10570-021-03840-8.Li, H.; Luo, Y.; Yu, F.; Zhang, H. In-Situ Construction of MOFs-Based Superhydrophobic/ Superoleophilic Coating on Filter Paper with Self-Cleaning and Antibacterial Activity for Efficient Oil/Water Separation. Colloids Surfaces A Physicochem. Eng. Asp. 2021, 625 (June), 126976. https://doi.org/10.1016/j.colsurfa.2021.126976.de Nooy, A. E. J.; Besemer, A. C.; van Bekkum, H. Highly Selective Nitroxyl Radical-Mediated Oxidation of Primary Alcohol Groups in Water-Soluble Glucans. Carbohydr. Res. 1995, 269 (1), 89–98. https://doi.org/10.1016/0008-6215(94)00343-E.Kato, Y.; Isogai, A. Preparation of Polyuronic Acid from Cellulose by TEMPO-Mediated Oxidation. Cellulose 1998, 5, 153–164. https://doi.org/10.1007/s10570-008-9245-1.Tahiri, C.; Vignon, M. TEMPO-Oxidation of Cellulose: Synthesis and Characterisation of Polyglucuronans. Cellulose 2000, 7, 177. https://doi.org/https://doi.org/10.1023/A:1009276009711.Saito, T.; Isogai, A. TEMPO-Mediated Oxidation of Native Cellulose. The Effect of Oxidation Conditions on Chemical and Crystal Structures of the Water-Insoluble Fractions. Biomacromolecules 2004, 5 (5), 1983–1989. https://doi.org/10.1021/bm0497769.Calderón-Vergara, L. A.; Ovalle-Serrano, S. A.; Blanco-Tirado, C.; Combariza, M. Y. Influence of Post-Oxidation Reactions on the Physicochemical Properties of TEMPO-Oxidized Cellulose Nanofibers before and after Amidation. Cellulose 2020, 27 (3), 1273–1288. https://doi.org/10.1007/s10570-019-02849-4.Ovalle-Serrano, S. A.; Díaz-Serrano, L. A.; Hong, C.; Hinestroza, J. P.; Blanco-Tirado, C.; Combariza, M. Y. Synthesis of Cellulose Nanofiber Hydrogels from Fique Tow and Ag Nanoparticles. Cellulose 2020, 27 (9947), 9961. https://doi.org/10.1007/s10570-020-03527-6.Isogai, T.; Saito, T.; Isogai, A. TEMPO Electromediated Oxidation of Some Polysaccharides Including Regenerated Cellulose Fiber. Biomacromolecules 2010, 11 (6), 1593–1599. https://doi.org/10.1021/bm1002575.Isogai, A.; Saito, T.; Fukuzumi, H. TEMPO-Oxidized Cellulose Nanofibers. Nanoscale 2011, 3, 71–85. https://doi.org/10.1039/c0nr00583e.Dwyer, D. B.; Liu, J.; Gomez, J. C.; et al. Metal Hydroxide/Polymer Textiles for Decontamination of Toxic Organophosphates: An Extensive Study of Wettability, Catalytic Activity, and the Effects of Aggregation. ACS Appl. Mater. Interfaces 2019, 11 (34), 31378–31385. https://doi.org/10.1021/acsami.9b10440.Emam, H. E.; Darwesh, O. M.; Abdelhameed, R. M. In-Growth Metal Organic Framework/Synthetic Hybrids as Antimicrobial Fabrics and Its Toxicity. Colloids Surfaces B Biointerfaces 2018, 165, 219–228. https://doi.org/https://doi.org/10.1016/j.colsurfb.2018.02.028.Fu, H.; Ou, P.; Zhu, J.; Song, P.; Yang, J.; Wu, Y. Enhanced Protein Adsorption in Fibrous Substrates Treated with Zeolitic Imidazolate Framework-8 (ZIF-8) Nanoparticles. ACS Appl. Nano Mater. 2019, 2 (12), 7626–7636. https://doi.org/10.1021/acsanm.9b01717.Koltzenburg, S.; Maskos, M.; Nuyken, O. Polymer Chemistry; Springer Berlin Heidelberg: Berlín, 2017. https://doi.org/10.007/9783662492796.Ravve, A. Principles of Polymer Chemistry, Third.; Springer US, 2012. https://doi.org/10.1021/ja01639a091.Bittrich, E.; Eichhorn, K.; Cometa, S.; Keller, B.; De Giglio, S. Polymer Surface Characterization; Sabbatini, L., Ed.; Walter de Gruyter GmbH: Göttingen, 2014. https://doi.org/10.1515/9783110490633-012.Socrates, G. Infrared and Raman Characteristic Group Frequencies. Tables and Charts, Third.; John Wiley & Sons, Ltd, 2001. https://doi.org/10.1002/jrs.1238.Lin-Vien, D.; Colthup, N.; Fateley, W.; Grasselli, J. The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules; Academic Press Limited: San Diego, CA., 1991; Vol. 42. https://doi.org/10.1021/ac60283a713.Bunge, M. A.; Davis, A. B.; West, K. N.; West, C. W.; Glover, T. G. Synthesis and Characterization of UiO-66-NH2 Metal-Organic Framework Cotton Composite Textiles. Ind. Eng. Chem. Res. 2018, 57 (28), 9151–9161. https://doi.org/10.1021/acs.iecr.8b01010.Katz, M. J.; Brown, Z. J.; Colón, Y. J.; et al. A Facile Synthesis of UiO-66, UiO-67 and Their Derivatives. Chem. Commun. 2013, 49 (82), 9449–9451. https://doi.org/10.1039/C3CC46105J.Tranchemontagne, D. J.; Hunt, J. R.; Yaghi, O. M. Room Temperature Synthesis of Metal-Organic Frameworks: MOF-5, MOF-74, MOF-199, and IRMOF-0. Tetrahedron 2008, 64, 8553–8557. https://doi.org/10.1016/j.tet.2008.06.036.Rico, E. Síntesis, Caracterización y Evaluación de Redes Metal Orgánicas Como Sensores Para La Detección de Amoniaco En Volátiles de Explosivos Tipo ANFO, Universidad Nacional de Colombia - Sede Bogotá, 2019.Kwak, Y.; Magenau, A. J. D.; Matyjaszewski, K. ARGET ATRP of Methyl Acrylate with Inexpensive Ligands and Ppm Concentrations of Catalyst. Macromolecules 2011, 44 (4), 811–819. https://doi.org/10.1021/ma102665c.Porras, J. D.; Arteta, S. M.; Pérez, L. D. Development of an Adsorbent for Bisphenol A Based on a Polymer Grafted from Microcrystalline Cellulose. Water. Air. Soil Pollut. 2020, 231 (10). https://doi.org/10.1007/s11270-020-04861-y.Nanda, A. K.; Matyjaszewski, K. Effect of [PMDETA]/[Cu(I)] Ratio, Monomer, Solvent, Counterion, Ligand, and Alkyl Bromide on the Activation Rate Constants in Atom Transfer Radical Polymerization. Macromolecules 2003, 36, 1487–1493. https://doi.org/10.1021/ma0340107.Hansson, S.; Carlmark, A.; Malmström, E.; Fogelström, L. Toward Industrial Grafting of Cellulosic Substrates via ARGET ATRP. J. Appl. Polym. Sci. 2015, 132 (6), 1–10. https://doi.org/10.1002/app.41434.Ovalle-Serrano, S. A.; Blanco-Tirado, C.; Combariza, M. Y. Exploring the Composition of Raw and Delignified Colombian Fique Fibers, Tow and Pulp. Cellulose 2018, 25 (1), 151–165. https://doi.org/10.1007/s10570-017-1599-9.Ovalle-Serrano, S. A.; Gómez, F. N.; Blanco-Tirado, C.; Combariza, M. Y. Isolation and Characterization of Cellulose Nanofibrils from Colombian Fique Decortication By-Products. Carbohydr. Polym. 2018, 189, 169–177. https://doi.org/10.1016/j.carbpol.2018.02.031.Varshney, V. K. Cellulose Fibers. In Bio- and Nano-Polymer Composites; Springer Berlin Heidelberg: Berlín, 2011; pp 43–60.Marković, D.; Korica, M.; Kostić, M.; et al. In Situ Synthesis of Cu/Cu2O Nanoparticles on the TEMPO Oxidized Cotton Fabrics. Cellulose 2018, 25 (1), 829–841. https://doi.org/10.1007/s10570-017-1566-5.Errokh, A.; Ferraria, A. M.; Conceição, D. S.; et al. Controlled Growth of Cu2O Nanoparticles Bound to Cotton Fibres. Carbohydr. Polym. 2016, 141, 229–237. https://doi.org/10.1016/j.carbpol.2016.01.019.Giannakoudakis, D. A.; Hu, Y.; Florent, M.; Bandosz, T. J. Smart Textiles of MOF/g-C3N4 Nanospheres for the Rapid Detection/Detoxification of Chemical Warfare Agents. Nanoscale Horizons 2017, 2 (6), 356–364. https://doi.org/10.1039/c7nh00081b.Emam, H. E.; Darwesh, O. M.; Abdelhameed, R. M. In-Growth Metal Organic Framework/Synthetic Hybrids as Antimicrobial Fabrics and Its Toxicity. Colloids Surfaces B Biointerfaces 2018, 165, 219–228. https://doi.org/10.1016/j.colsurfb.2018.02.028.Jin, Y.; Edler, K. J.; Marken, F.; Scott, J. L. Voltammetric Optimisation of TEMPO-Mediated Oxidations at Cellulose Fabric. Green Chem. 2014, 16 (6), 3322–3327. https://doi.org/10.1039/C4GC00306C.Courtenay, J. C.; Johns, M. A.; Galembeck, F.; et al. Surface Modified Cellulose Scaffolds for Tissue Engineering. Cellulose 2017, 24 (1), 253–267. https://doi.org/10.1007/s10570-016-1111-y.Hirota, M.; Tamura, N.; Saito, T.; Isogai, A. Surface Carboxylation of Porous Regenerated Cellulose Beads by 4-Acetamide-TEMPO/NaClO/NaClO2 System. Cellulose 2009, 16 (5), 841–851. https://doi.org/10.1007/s10570-009-9296-y.Saito, T.; Okita, Y.; Nge, T. T.; Sugiyama, J.; Isogai, A. TEMPO-Mediated Oxidation of Native Cellulose: Microscopic Analysis of Fibrous Fractions in the Oxidized Products. Carbohydr. Polym. 2006, 65 (4), 435–440. https://doi.org/10.1016/j.carbpol.2006.01.034.Dalynn Biologicals. McFarland Standard. McFarland Standards for in Vitro Use Only. 2014, p 2.Mahmoodi, N. M.; Abdi, J. Nanoporous Metal-Organic Framework (MOF-199): Synthesis, Characterization and Photocatalytic Degradation of Basic Blue 41. Microchem. J. 2019. https://doi.org/10.1016/j.microc.2018.09.033.Rowsell, J. L. C.; Yaghi, O. M. Effects of Functionalization, Catenation, and Variation of the Metal Oxide and Organic Linking Units on the Low-Pressure Hydrogen Adsorption Properties of Metal-Organic Frameworks. J. Am. Chem. Soc. 2006, 128 (4), 1304–1315. https://doi.org/10.1021/ja056639q.Neufeld, M. J.; Harding, J. L.; Reynolds, M. M. Immobilization of Metal-Organic Framework Copper(II) Benzene-1,3,5-Tricarboxylate (CuBTC) onto Cotton Fabric as a Nitric Oxide Release Catalyst. ACS Appl. Mater. Interfaces 2015, 7 (48), 26742–26750. https://doi.org/10.1021/acsami.5b08773.Du, X. D.; Yi, X. H.; Wang, P.; Zheng, W.; Deng, J.; Wang, C. C. Robust Photocatalytic Reduction of Cr(VI) on UiO-66-NH2(Zr/Hf) Metal-Organic Framework Membrane under Sunlight Irradiation. Chem. Eng. J. 2019, 356 (September 2018), 393–399. https://doi.org/10.1016/j.cej.2018.09.084.Decoste, J. B.; Peterson, G. W.; Jasuja, H.; Glover, T. G.; Huang, Y. G.; Walton, K. S. Stability and Degradation Mechanisms of Metal-Organic Frameworks Containing the Zr6O4(OH)4 Secondary Building Unit. J. Mater. Chem. A 2013, 1 (18), 5642–5650. https://doi.org/10.1039/c3ta10662d.Xi, F. G.; Liu, H.; Yang, N. N.; Gao, E. Q. Aldehyde-Tagged Zirconium Metal-Organic Frameworks: A Versatile Platform for Postsynthetic Modification. Inorg. Chem. 2016, 55 (10), 4701–4703. https://doi.org/10.1021/acs.inorgchem.6b00598.Jung, H.; Kim, M. K.; Lee, J.; Kwon, J. H.; Lee, J. Characterization of the Zirconium Metal-Organic Framework (MOF) UiO-66-NH2 for the Decomposition of Nerve Agents in Solid-State Conditions Using Phosphorus-31 Solid State-Magic Angle Spinning Nuclear Magnetic Resonance (31P SS-MAS NMR) and Gas Chromatogra. Anal. Lett. 2021, 54 (3), 468–480. https://doi.org/10.1080/00032719.2020.1768399.Tian, P.; He, X.; Li, W.; et al. Zr-MOFs Based on Keggin-Type Polyoxometalates for Photocatalytic Hydrogen Production. J. Mater. Sci. 2018, 53 (17), 12016–12029. https://doi.org/10.1007/s10853-018-2476-0.Zhang, X. F.; Feng, Y.; Wang, Z.; Jia, M.; Yao, J. Fabrication of Cellulose Nanofibrils/UiO-66-NH2 Composite Membrane for CO2/N2 Separation. J. Memb. Sci. 2018, 568, 10–16. https://doi.org/10.1016/j.memsci.2018.09.055.Habibi, Y.; Chanzy, H.; Vignon, M. R. TEMPO-Mediated Surface Oxidation of Cellulose Whiskers. Cellulose 2006, 13 (6), 679–687. https://doi.org/10.1007/s10570-006-9075-y.Segal, L.; Creely, J. J.; Martin, A. E.; Conrad, C. M. An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer. Text. Res. J. 1959, 29 (10), 786–794. https://doi.org/10.1177/004051755902901003.Ágreda, J. Coulombimetria. In Notas de clase - Análisis Químico Instrumental; Bogotá, 2014; pp 1–9.Young, R.; Lovell, P. Introduction to Polymers, Segunda ed.; Springer Science Business Media: Hong Kong, 1991.Isogai, A.; Hänninen, T.; Fujisawa, S.; Saito, T. Review: Catalytic Oxidation of Cellulose with Nitroxyl Radicals under Aqueous Conditions. Prog. Polym. Sci. 2018, 86, 122–148. https://doi.org/10.1016/j.progpolymsci.2018.07.007.Saito, T.; Hirota, M.; Tamura, N.; et al. Individualization of Nano-Sized Plant Cellulose Fibrils by Direct Surface Carboxylation Using TEMPO Catalyst under Neutral Conditions. Biomacromolecules 2009, 10 (7), 1992–1996. https://doi.org/10.1021/bm900414t.Zeronian, S. H.; Collins, M. J. Surface Modification of Polyesters by Alkaline Treatments. Text. Prog. 1989, 20 (2), 1–26. https://doi.org/10.1080/00405168908688948.Ali, M. K. M.; Ibrahim, K.; Hamad, O. S.; Eisa, M. H.; Faraj, M. G.; Azhari, F. Deposited Indium Tin Oxide (ITO) Thin Films by Dc- Magnetron Sputtering on Polyethylene Terephthalate Substrate (PET). Rom. Reports Phys. 2011, 56 (5–6), 730–741.Prasad, S. G.; De, A.; De, U. Structural and Optical Investigations of Radiation Damage in Transparent PET Polymer Films. Int. J. Spectrosc. 2011, 2011, 1–7. https://doi.org/10.1155/2011/810936.Rubin, H. N.; Neufeld, B. H.; Reynolds, M. M. Surface-Anchored Metal − Organic Framework − Cotton Material for Tunable Antibacterial Copper Delivery. Appl. Mater. Interfaces 2018, 10, 15189–15199. https://doi.org/10.1021/acsami.7b19455.Moulder, F.; Wagner, C.; Riggs, W.; Davis, L. Handbook of X-Ray Photoelectron Spectroscopy; Muilenberg, G., Ed.; Perkin-Elmer Corporation, 1979.Schelling, M.; Kim, M.; Otal, E.; Hinestroza, J. Decoration of Cotton Fibers with a Water-Stable Metal–Organic Framework (UiO-66) for the Decomposition and Enhanced Adsorption of Micropollutants in Water. Bioengineering 2018, 5 (1), 14. https://doi.org/10.3390/bioengineering5010014.Ardila-Suárez, C.; Rodríguez-Pereira, J.; Baldovino-Medrano, V. G.; Ramírez-Caballero, G. E. An Analysis of the Effect of Zirconium Precursors of MOF-808 on Its Thermal Stability, and Structural and Surface Properties. ChemRxiv 2019, 21 (9), 1407–1415. https://doi.org/10.1039/c8ce01722k.Mortada, B.; Matar, T. A.; Sakaya, A.; et al. Postmetalated Zirconium Metal Organic Frameworks as a Highly Potent Bactericide. Inorg. Chem. 2017, 56 (8), 4739–4744. https://doi.org/10.1021/acs.inorgchem.7b00429.Mao, K.; Zhu, Y.; Rong, J.; et al. Rugby-Ball like Ag Modified Zirconium Porphyrin Metal–Organic Frameworks Nanohybrid for Antimicrobial Activity: Synergistic Effect for Significantly Enhancing Photoactivation Capacity. Colloids Surfaces A Physicochem. Eng. Asp. 2021, 611, 125888. https://doi.org/10.1016/j.colsurfa.2020.125888.Kaur, N.; Tiwari, P.; Kapoor, K. S.; Saini, A. K.; Sharma, V.; Mobin, S. M. Metal-Organic Framework Based Antibiotic Release and Antimicrobial Response: An Overview. CrystEngComm 2020, 22 (44), 7513–7527. https://doi.org/10.1039/d0ce01215g.Madigan, M.; Martinko, J.; Bender, K.; Buckley, D.; Stahl, D. Brock - Biología de Los Microorganismos, 14th ed.; Education, P., Ed.; Pearson: Madrid, 2015.Proyecto ''Anclaje de MOFs a fibras sintéticas y su evaluación como textiles antibacteriales''. Convocatoria 812 de 2018 de Jóvenes InvestigadoresMinisterio de Ciencia, Tecnología e Innovación (MinCiencias)EstudiantesInvestigadoresMaestrosORIGINAL1016049086.2021.pdf1016049086.2021.pdfTesis de Maestría en Ciencias - Químicaapplication/pdf5147792https://repositorio.unal.edu.co/bitstream/unal/81572/3/1016049086.2021.pdf35539d315d8c77872fe805cf9f63ababMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81572/4/license.txt8153f7789df02f0a4c9e079953658ab2MD54THUMBNAIL1016049086.2021.pdf.jpg1016049086.2021.pdf.jpgGenerated Thumbnailimage/jpeg5296https://repositorio.unal.edu.co/bitstream/unal/81572/5/1016049086.2021.pdf.jpgd59ce0f982c81ebfe37a2cf46cb8cf99MD55unal/81572oai:repositorio.unal.edu.co:unal/815722023-08-04 23:04:42.286Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK