Analysis of a depropanizer column with internal energy integration of concentric configuration

ilustraciones, diagramas

Autores:
Mancera Apolinar, Javier Alexander
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/84597
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/84597
https://repositorio.unal.edu.co/
Palabra clave:
Distillation
Destilación
Hydraulic control
Control hidraúlico
HIDiC
Exergy
CFD
Distillation sieve tray
Clear liquid height
Tray efficiency
HIDiC
Exergía
DFC
Destilación platos perforados
Altura de líquido claro
Eficiencia de plato
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_646eae2ebf7892184a1d93cb2e1b2cf4
oai_identifier_str oai:repositorio.unal.edu.co:unal/84597
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Analysis of a depropanizer column with internal energy integration of concentric configuration
dc.title.translated.spa.fl_str_mv Análisis de una columna depropanizadora con integración energética interna de configuración concéntrica
title Analysis of a depropanizer column with internal energy integration of concentric configuration
spellingShingle Analysis of a depropanizer column with internal energy integration of concentric configuration
Distillation
Destilación
Hydraulic control
Control hidraúlico
HIDiC
Exergy
CFD
Distillation sieve tray
Clear liquid height
Tray efficiency
HIDiC
Exergía
DFC
Destilación platos perforados
Altura de líquido claro
Eficiencia de plato
title_short Analysis of a depropanizer column with internal energy integration of concentric configuration
title_full Analysis of a depropanizer column with internal energy integration of concentric configuration
title_fullStr Analysis of a depropanizer column with internal energy integration of concentric configuration
title_full_unstemmed Analysis of a depropanizer column with internal energy integration of concentric configuration
title_sort Analysis of a depropanizer column with internal energy integration of concentric configuration
dc.creator.fl_str_mv Mancera Apolinar, Javier Alexander
dc.contributor.advisor.none.fl_str_mv Martínez Riascos, Carlos Arturo
Mendoza Muñoz, Diego Fernando
dc.contributor.author.none.fl_str_mv Mancera Apolinar, Javier Alexander
dc.contributor.orcid.spa.fl_str_mv 0000-0003-4793-7442
dc.contributor.cvlac.spa.fl_str_mv Javier Alexander Mancera (https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001349782)
dc.subject.armarc.spa.fl_str_mv Distillation
topic Distillation
Destilación
Hydraulic control
Control hidraúlico
HIDiC
Exergy
CFD
Distillation sieve tray
Clear liquid height
Tray efficiency
HIDiC
Exergía
DFC
Destilación platos perforados
Altura de líquido claro
Eficiencia de plato
dc.subject.lemb.eng.fl_str_mv Destilación
Hydraulic control
dc.subject.lemb.spa.fl_str_mv Control hidraúlico
dc.subject.proposal.eng.fl_str_mv HIDiC
Exergy
CFD
Distillation sieve tray
Clear liquid height
Tray efficiency
dc.subject.proposal.spa.fl_str_mv HIDiC
Exergía
DFC
Destilación platos perforados
Altura de líquido claro
Eficiencia de plato
description ilustraciones, diagramas
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-11
dc.date.accessioned.none.fl_str_mv 2023-08-24T16:35:29Z
dc.date.available.none.fl_str_mv 2023-08-24T16:35:29Z
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/84597
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/84597
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Bejan, A. (2013). Entropy generation minimization: the method of thermodynamic optimization of finite-size systems and finite-time processes. CRC press.
Hanley, N., McGregor, P., Swales, J., & Tuner, K. (2009). Do increases in resource productivity improve environmental quality and sustainability? Ecological Economics, 68(3), 692–709. https://dspace.stir.ac.uk/bitstream/1893/7707/1/Hanley et al Ecological Economics 2009_turner last.pdf
Hepbasli, A. (2008). A key review on exergetic analysis and assessment of renewable energy resources for a sustainable future. Renewable and Sustainable Energy Reviews, 12(3), 593–661. https://doi.org/10.1016/j.rser.2006.10.001
Kemp, I. C. (2007). Pinch Analysis and Process Integration: A User Guide on Process Integration for the Efficient Use of Energy (I. C. B. T.-P. A. and P. I. (Second E. Kemp (ed.); Second). Butterworth-Heinemann. https://doi.org/https://doi.org/10.1016/B978-075068260-2.50006-7
Kotas, T. J. (1995). The exergy method of thermal plant analysis. Krieger Pub.
Krishna, R., & Van Baten, J. M. (2003). Modelling sieve tray hydraulics using computational fluid dynamics. Chemical Engineering Research and Design, 81(1), 27–38. https://doi.org/10.1205/026387603321158168
Morar, M., & Agachi, P. S. (2010). Review: Important contributions in development and improvement of the heat integration techniques. Computers and Chemical Engineering, 34(8), 1171–1179. https://doi.org/10.1016/j.compchemeng.2010.02.038
Nakaiwa, M., Huang, K., Endo, A., Ohmori, T., Akiya, T., & Takamatsu, T. (2003). Internally heat-integrated distillation columns: A review. Chemical Engineering Research and Design, 81(1), 162–177. https://doi.org/10.1205/026387603321158320
Sun, A. (2010). Internal heat exchange in a concentric tray heat integrated distillation column (HIDiC). DELF UNIVERSITY OF TECHNOLOGY.
Tu, J., Yeoh, G. H., & Liu, C. (2018). Computational fluid dynamics: a practical approach (Third). Butterworth-Heinemann.
González Plaza, M., Ferreira, A., Santos, J., Ribeiro, A., Müller, U., Trukhan, N., Loureiro, J., & Rodrigues, A. (2011). Propane/propylene separation by adsorption using shaped copper trimesate MOF. Microporous and Mesoporous Materials - MICROPOROUS MESOPOROUS MAT, 157. https://doi.org/10.1016/j.micromeso.2011.06.024
Kiss, A. A., & Olujić, Ž. (2014). A review on process intensification in internally heat-integrated distillation columns. Chemical Engineering and Processing: Process Intensification, 86, 125–144. https://doi.org/10.1016/j.cep.2014.10.017
Liu, X. G., & Qian, J. X. (2000). Modeling, Control, and Optimization of Ideal Internal Thermally Coupled Distillation Columns. Chemical Engineering and Technology, 23(3), 235–241. https://doi.org/10.1201/b11330-2
Matsuda, K., Iwakabe, K., Ohmori, T., & Nakaiwa, M. (2010). Dynamic behavior of an internally heat-integrated distillation column (HIDiC). Chemical Engineering Transactions, 21, 127–132. https://doi.org/10.3303/CET1021022
Mendoza, D. F., Palacio, L. M., Graciano, J. E. A., Riascos, C. A. M., Vianna, A. S., & Roux, G. A. C. Le. (2013). Real-Time Optimization of an Industrial-Scale Vapor Recompression Distillation Process . Model Validation and Analysis. Industrial and Engineering Chemistry Research, 52, 5735–5746.
Mendoza, D. F., & Riascos, C. A. M. (2011). Entropy minimization in design of extractive distillation system with internal heat exchangers. Chemical Engineering Transactions, 25, 405–410. https://doi.org/10.3303/CET1125068
Nakaiwa, M., Huang, K., Naito, K., Endo, A., Akiya, T., Nakane, T., & Takamatsu, T. (2001). Parameter analysis and optimization of ideal heat integrated distillation columns. Computers and Chemical Engineering, 25(4–6), 737–744. https://doi.org/10.1016/S0098-1354(01)00649-4
Nakaiwa, M., Huang, K., Owa, M., Akiya, T., Nakane, T., Sato, M., & Takamatsu, T. (1997). Energy savings in heat-integrated columns. Energy, 22(6), 621–625.
Olujić, Ž., Sun, L., de Rijke, A., & Jansens, P. J. (2006). Conceptual design of an internally heat integrated propylene-propane splitter. Energy, 31(15), 3083–3096. https://doi.org/10.1016/j.energy.2006.03.030
Pulido, J. L. (2008). Study of a New Concept of Distillation Column: Heat-Integrated Distillation Column (HIDiC). In Bachelor Thesis in Chemical Engineering. Industrial University of Santander
Suphanit, B. (2010). Design of internally heat-integrated distillation column (HIDiC): Uniform heat transfer area versus uniform heat distribution. Energy, 35(3), 1505–1514. https://doi.org/10.1016/j.energy.2009.12.008
ANSYS Release 19. (2018). ANSYS Fluent Theory Guide.
Bennett, D. L., Agrawal, R., & Cook, P. J. (1983). New pressure drop correlation for sieve tray distillation columns. AIChE Journal, 29(3), 434–442. https://doi.org/10.1002/aic.690290313
Bhole, M. R., Joshi, J. B., & Ramkrishna, D. (2008). CFD simulation of bubble columns incorporating population balance modeling. Chemical Engineering Science, 63(8), 2267–2282. https://doi.org/10.1016/j.ces.2008.01.013
Chen, G., Xiong, Q., Morris, P. J., Paterson, E. G., Sergeev, A., & Wang, Y.-C. (2014). OpenFOAM for Computational Fluid Dynamics. Notices of the American Mathematical Society, 61(4), 354. https://doi.org/10.1090/noti1095
Gesit, G., Nandakumar, K., & Chuang, K. T. (2003). CFD modeling of flow patterns and hydraulics of commercial-scale sieve trays. AIChE Journal, 49(4), 910–924. https://doi.org/10.1002/aic.690490410
Grace, J. R., Wairegi, T., & Brophy, J. (1978). Break‐up of drops and bubbles in stagnant media. The Canadian Journal of Chemical Engineering, 56(1). https://doi.org/10.1002/cjce.5450560101
Gupta, A., & Roy, S. (2013). Euler-Euler simulation of bubbly flow in a rectangular bubble column: Experimental validation with Radioactive Particle Tracking. Chemical Engineering Journal, 225. https://doi.org/10.1016/j.cej.2012.11.012
Hofer, H. (1983). Influence of gas-phase dispersion on plate column efficiency. German Chemical Engineering, 6(2).
Ishii, M., & Zuber, N. (1979). Drag coefficient and relative velocity in bubbly, droplet or particulate flows. AIChE Journal, 25(5), 843–855. https://doi.org/10.1002/aic.690250513
Kaltenbacher, E. (1984). On the Effect of the Bubble Size Distribution and the Gas-Phase Diffusion on the Selectivity of Sieve Trays. Chemical Engineering Fundamentals, 1(47).
Kataoka, I., & Serizawa, A. (1989). Basic equations of turbulence in gas-liquid two-phase flow. International Journal of Multiphase Flow, 15(5). https://doi.org/10.1016/0301-9322(89)90045-1
Krishna, R., Urseanu, M. I., Van Baten, J. M., & Ellenberger, J. (1999). Rise velocity of a swarm of large gas bubbles in liquids. Chemical Engineering Science, 54(2), 171–183. https://doi.org/10.1016/S0009-2509(98)00245-0
Krishna, R., Van Baten, J. M., Ellenberger, J., Higler, A. P., & Taylor, R. (1999). CFD simulations of sieve tray hydrodynamics. Chemical Engineering Research and Design, 77(7), 639–646. https://doi.org/10.1205/026387699526575
Laborde-Boutet, C., Larachi, F., Dromard, N., Delsart, O., & Schweich, D. (2009). CFD simulation of bubble column flows: Investigations on turbulence models in RANS approach. Chemical Engineering Science, 64(21). https://doi.org/10.1016/j.ces.2009.07.009
Li, X., Yang, N., Sun, Y., Zhang, L., Li, X., & Jiang, B. (2014). Computational fluid dynamics modeling of hydrodynamics of a new type of fixed valve tray. Industrial and Engineering Chemistry Research, 53(1), 379–389. https://doi.org/10.1021/ie400408u
Liang, X. F., Pan, H., Su, Y. H., & Luo, Z. H. (2016). CFD-PBM approach with modified drag model for the gas–liquid flow in a bubble column. Chemical Engineering Research and Design, 112, 88–102. https://doi.org/10.1016/j.cherd.2016.06.014
Lockett, M. J. (1986). Distillation tray fundamentals. Cambridge University Press.
Lockett, M. J., Kirkpatrick, R. D., & Uddin, M. S. (1979). Froth regime point efficiency for gas-film controlled mass transfer on a two-dimensional sieve tray. Trans Inst Chem Eng, 57(1).
Lopez de Bertodano M, Lahey RT, J. O. (1994). Development of a k-e model for bubbly two-phase flow. Journal of Fluids Engineering, 116. https://doi.org/https://doi.org/10.1115/1.2910220
Lote, D. A., Vinod, V., & Patwardhan, A. W. (2018). Comparison of models for drag and non-drag forces for gas-liquid two-phase bubbly flow. Multiphase Science and Technology, 30(1), 31–76. https://doi.org/10.1615/MultScienTechn.2018025983
Magolan, B., Lubchenko, N., & Baglietto, E. (2019). A quantitative and generalized assessment of bubble-induced turbulence models for gas-liquid systems. Chemical Engineering Science: X, 2, 100009. https://doi.org/10.1016/j.cesx.2019.100009
Rahimi, R., Mazarei Sotoodeh, M., & Bahramifar, E. (2012). The effect of tray geometry on the sieve tray efficiency. Chemical Engineering Science, 76, 90–98. https://doi.org/10.1016/j.ces.2012.01.006
Roshdi, S., Kasiri, N., Hashemabadi, S. H., & Ivakpour, J. (2013). Computational fluid dynamics simulation of multiphase flow in packed sieve tray of distillation column. Korean Journal of Chemical Engineering, 30(3), 563–573. https://doi.org/10.1007/s11814-012-0166-1
Rzehak, R., & Krepper, E. (2013a). Bubble-induced turbulence: Comparison of CFD models. Nuclear Engineering and Design, 258, 57–65. https://doi.org/10.1016/j.nucengdes.2013.02.008
Rzehak, R., & Krepper, E. (2013b). CFD modeling of bubble-induced turbulence. International Journal of Multiphase Flow, 55, 138–155. https://doi.org/10.1016/j.ijmultiphaseflow.2013.04.007
Sadripour, M., Rahimi, A., & Hatamipour, M. S. (2012). Experimental Study and CFD Modeling of Wall Deposition in a Spray Dryer. Drying Technology, 30(6), 574–582. https://doi.org/10.1080/07373937.2011.653613
Sato, Y., Sadatomi, M., & Sekoguchi, K. (1981). Momentum and heat transfer in two-phase bubble flow-I. Theory. International Journal of Multiphase Flow, 7(2). https://doi.org/10.1016/0301-9322(81)90003-3
Schiller, L., & Naumann, Z. (1935). A drag coefficient correlation. In Z.Ver.Deutsch.Ing (Vol. 77, Issues 13–14). https://doi.org/10.1016/j.ijheatmasstransfer.2009.02.006
Simonin, O., & Viollet, P. L. (1990). Prediction of an oxygen droplet pulverization in a compressible subsonic coflowing hydrogen flow. American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FED, 91.
Sun, Z. M., Liu, B., Yuan, X. G., Liu, C. J., & Yu, K. T. (2005). New turbulent model for computational mass transfer and its application to a commercial-scale distillation column. Industrial and Engineering Chemistry Research, 44(12), 4427–4434. https://doi.org/10.1021/ie049382y
Tomiyama, A. (1998). Struggle with computational bubble dynamics. Multiphase Sci Technol. Multiphase Science Technology, 10.
Treybal, R. E. (1981). Mass Transfer Operations 3th edition. In McGraw-Hill.
Troshko, A. A., & Hassan, Y. A. (2001). A two-equation turbulence model of turbulent bubbly flows. International Journal of Multiphase Flow, 27(11). https://doi.org/10.1016/S0301-9322(01)00043-X
Van Baten, J. M., Ellenberger, J., & Krishna, R. (2001). Hydrodynamics of reactive distillation tray column with catalyst containing envelopes: Experiments vs. CFD simulations. Catalysis Today, 66(2–4), 233–240. https://doi.org/10.1016/S0920-5861(00)00625-8
Wang, T., & Wang, J. (2007). Numerical simulations of gas-liquid mass transfer in bubble columns with a CFD-PBM coupled model. Chemical Engineering Science, 62(24), 7107–7118. https://doi.org/10.1016/j.ces.2007.08.033
Wang, T., Wang, J., & Jin, Y. (2005). Population balance model for gas - Liquid flows: Influence of bubble coalescence and breakup models. Industrial and Engineering Chemistry Research, 44(19), 7540–7549. https://doi.org/10.1021/ie0489002
Wang, T., Wang, J., & Jin, Y. (2006). A CFD-PBM coupled model for gas-liquid flows. AIChE Journal, 52(1), 125–140. https://doi.org/10.1002/aic.10611
Xing, C., Wang, T., & Wang, J. (2013). Experimental study and numerical simulation with a coupled CFD-PBM model of the effect of liquid viscosity in a bubble column. Chemical Engineering Science, 95, 313–322. https://doi.org/10.1016/j.ces.2013.03.022
Yang, G., Guo, K., & Wang, T. (2017). Numerical simulation of the bubble column at elevated pressure with a CFD-PBM coupled model. Chemical Engineering Science, 170, 251–262. https://doi.org/10.1016/j.ces.2017.01.013
Zhao, H., Li, Q., Yu, G., Dai, C., & Lei, Z. (2019). Performance analysis and quantitative design of a flow-guiding sieve tray by computational fluid dynamics. AIChE Journal, 65(5), 1–13. https://doi.org/10.1002/aic.16563
Abbasnia, S., Nasri, Z., & Najafi, M. (2019). Comparison of the mass transfer and efficiency of Nye tray and sieve tray by computational fluid dynamics. Separation and Purification Technology, 215. https://doi.org/10.1016/j.seppur.2019.01.010
Biddulph, M. W., & Dribika, M. M. (1986). Distillation efficiencies on a large sieve plate with small‐diameter holes. AIChE Journal, 32(8), 1383–1388. https://doi.org/10.1002/aic.690320817
Bird, R., Stewart, W., & Lightfoot, E. (1958). Transport Phenomena (2nd ed.).
Morel, C. (1995). An order of magnitude analysis of the two-phase k–e model. International Fluid Mechanics. https://doi.org/10.1615/InterJFluidMechRes.v22.i3-4.30
Dejanović, I., Matijašević, L., & Olujić, Ž. (2010). Dividing wall column-A breakthrough towards sustainable distilling. Chemical Engineering and Processing: Process Intensification, 49(6), 559–580. https://doi.org/10.1016/j.cep.2010.04.001
Dribika, M. M., & Biddulph, M. W. (1986). Scaling‐up distillation efficiencies. AIChE Journal, 32(11), 1864–1875. https://doi.org/10.1002/aic.690321112
Guevara, M. A., Guevara, F. A., & Belalcazar, L. C. (2018). Experimental Data and New Binary Interaction Parameters for Ethanol- Water VLE at Low Pressures Using NRTL and UNIQUAC. TECCIENCIA, 8(24), 17–26. https://doi.org/http://dx.doi.org/10.18180/tecciencia.2018.24.3
Guevara, M., & Belalcazar, L. (2017). NGL supersonic separator: modeling, improvement, and validation and adjustment of k-epsilon RNG modified for swirl flow turbulence model. Revista Facultad de Ingeniería, 82, 82–93. https://doi.org/10.17533/udea.redin.n82a11
Higbie, R. (1935). The rate of absorption of a pure gas into a still liquid during short periods of exposure. Transactions of the American Institute of Chemical Engineers, 35, 365–389.
Kockmann, N. (2014). 200 Years in Innovation of Continuous Distillation. ChemBioEng Reviews, 1(1), 40–49. https://doi.org/10.1002/cben.201300003
Lamont, J. C., & Scott, D. S. (1970). An eddy cell model of mass transfer into the surface of a turbulent liquid. AIChE Journal, 16(4). https://doi.org/10.1002/aic.690160403
Yanagi, T., & Sakata, M. (1982). Performence of a comercial scale 14% hole area sieve tray. Industrial & Engineering Chemistry Process Design and Development, 21(4), 712–717. https://doi.org/https://doi.org/10.1021/i200019a029
Malvin, A., Chan, A., & Lau, P. L. (2014). CFD study of distillation sieve tray flow regimes using the droplet size distribution technique. Journal of the Taiwan Institute of Chemical Engineers, 45(4), 1354–1368. https://doi.org/10.1016/j.jtice.2014.01.002
Noriler, D., Barros, A. A. C., Wolf Maciel, M. R., & Meier, H. F. (2010). Simultaneous momentum, mass, and energy transfer analysis of a distillation sieve tray using CFD techniques: Prediction of efficiencies. Industrial and Engineering Chemistry Research, 49(14), 6599–6611. https://doi.org/10.1021/ie9013925
Noriler, D., Meier, H. F., Barros, A. A. C., & Wolf Macel, M. R. (2009). Prediction of efficiencies through simultaneous momentum, mass and energy transfer analyses in a distillation sieve tray by CFD techniques. In Computer Aided Chemical Engineering (Vol. 27, Issue C). Elsevier Inc. https://doi.org/10.1016/S1570-7946(09)70415-8
Olujić, Ž., Jödecke, M., Shilkin, A., Schuch, G., & Kaibel, B. (2009). Equipment improvement trends in distillation. Chemical Engineering and Processing: Process Intensification, 48(6), 1089–1104. https://doi.org/10.1016/j.cep.2009.03.004
Rahimi, M. R., Rahimi, R., Shahraki, F., & Zivdar, M. (2006). Prediction of temperature and concentration distributions of distillation sieve trays by CFD. Tamkang Journal of Science and Engineering, 9(3), 265–278.
Ranz, W. E., & Marshall, W. R. (1952). Evaporation from drops. Parts I & II. Chem. Eng. Progr, 48(22).
Sun, Z. M., Yu, K. T., Yuan, X. G., & Liu, C. J. (2007). A modified model of computational mass transfer for distillation column. Chemical Engineering Science, 62(7), 1839–1850. https://doi.org/10.1016/j.ces.2006.12.021
Van Baten, J. M., & Krishna, R. (2000). Modelling sieve tray hydraulics using computational fluid dynamics. Chemical Engineering Journal, 77(3), 143–151. https://doi.org/10.1016/S1385-8947(99)00164-3
Versteeg, H. K., & Malalasekera, W. (1995). An Introduction to Computational Fluid Dynamics The Finite Volume Method. In Fluid flow handbook. McGraw-Hill …. Longman Scitific & Technical. https://doi.org/10.2514/1.22547
Wang, T., Wang, J., & Jin, J. (2004). An efficient numerical algorithm for “A novel theoretical breakup kernel function of bubble/droplet in a turbulent flow.” Chemical Engineering Science, 59(12), 2593–2595. https://doi.org/10.1016/j.ces.2004.03.011
Ashrafizadeh, S. A., Amidpour, M., & Abolmashadi, M. (2013). Exergy analysis of distillation column using concept of driving forces. Journal of Chemical Engineering of Japan, 46(7), 434–443. https://doi.org/10.1252/jcej.11we038
Bernal, D., Castellanos, O., Bejarano, P., & Rodriguez, G. (2011). Analisis y diseño de platos y columnas de platos. Universidad Nacional de Colombia.
Claumann, C. A., Peruzzo, T., Felice, V. De, Marangoni, C., & Machado, R. A. F. (2015). Modeling and process optimization: an approach using aspen plus and matlab in the energy integration study of distillation columns. VIII Congreso Argentino de Ingeniería Química y 3 JASP, 1.
Gadalla, M., Olujić, Ž., de Rijke, A., & Jansens, P. J. (2006). Reducing CO2 emissions of internally heat-integrated distillation columns for separation of close boiling mixtures. Energy, 31(13), 2409–2417. https://doi.org/10.1016/j.energy.2005.10.029
Gadalla, M. A. (2009). Internal heat integrated distillation columns (iHIDiCs)-New systematic design methodology. Chemical Engineering Research and Design, 87(12), 1658–1666. https://doi.org/10.1016/j.cherd.2009.06.005
Harvindran, V., & Foo, D. C. Y. (2021). Design of Internally Heat‐Integrated Distillation Column ( HIDiC ). Process Intensification and Integration for Sustainable Design, 117–129. https://doi.org/10.1002/9783527818730.ch6
Heng Yeoh, G., & Tu, J. (2010). Computational Techniques for Multi-Phase Flows. ELSEVIER.
Khosravi Nikou, M. R., & Ehsani, M. R. (2008). Turbulence models application on CFD simulation of hydrodynamics, heat and mass transfer in a structured packing. International Communications in Heat and Mass Transfer, 35(9), 1211–1219. https://doi.org/10.1016/j.icheatmasstransfer.2008.05.017
Kister, H. Z. (1992). Tray Design and Operation. McGraw-Hill Professional, 1, 9–11.
Mancera, J. A., Mendoza, D. F., & Riascos, C. A. M. (2018). HIDiC configuration selection based on exergetic analysis. Chemical Engineering Transactions, 69. https://doi.org/10.3303/CET1869151
Olujic, Z., Fakhri, F., De Rijke, A., De Graauw, J., & Jansens, P. J. (2003). Internal heat integration - The key to an energy-conserving distillation column. Journal of Chemical Technology and Biotechnology, 78(2–3), 241–248. https://doi.org/10.1002/jctb.761
Pulido, Jeffrey León, Martínez, E. L., Wolf, M. R., & Filho, R. M. I. (2011). Heat transfer study of heat-integrated distillation column (HIDiC) using simulation techniques. AIP Conference Proceedings, 1373, 242–254. https://doi.org/10.1063/1.3627209
Rahimi, R., Rahimi, M. R., Shahraki, F., & Zivdar, M. (2006). Efficiencies of sieve tray distillation columns by CFD simulation. Chemical Engineering and Technology, 29(3), 326–335. https://doi.org/10.1002/ceat.200500285
Riaño, S., Guevara, M. A., & Belalcázar, L. C. (2017). CFD Modeling and Evaluation of a Bi-Stable Micro-Diverter Valve. Ciencia, Tecnologia y Futuro, 8(1), 77–84. https://doi.org/10.29047/01225383.94
Shenvi, A. A., Herron, D. M., & Agrawal, R. (2011). Energy efficiency limitations of the conventional heat integrated distillation column (HIDiC) configuration for binary distillation. Industrial and Engineering Chemistry Research, 50(1), 119–130. https://doi.org/10.1021/ie101698f
Winkle, M. V. (1967). Distillation. McGraw-Hill.
Boles, M. A., & Cengel, Yunus A. (2014). Thermodynamics: An Engineering Approach. McGraw-Hill Education. https://books.google.com.co/books?id=Ao95ngEACAAJ
de Koeijer, G., & Rivero, R. (2003). Entropy production and exergy loss in experimental distillation columns. Chemical Engineering Science, 58(8), 1587–1597. https://doi.org/10.1016/S0009-2509(02)00627-9
Delmar, T. (2019). An introduction to exergy and its evaluation using Aspen Plus. University of Utah.
Gorak, A., & Sorensen, E. (2014). Distillation: Fundamentals and Principles. Academic Press.
Grassmann, P. (1959). The exergy and the flow diagram of the technically available power. Allg Warmetech, 9, 79–86.
Jogwar, Sujit S. & Daoutidis, Prodromos (2009). Vapor Recompression Distillation: Multi-Scale Dynamics and Control. Proceedings of Amer. Control Conference, 647-652
Oliveira, S. (2013). Exergy: Production, Cost and Renewability. In Green Energy and Technology. Springer. https://doi.org/10.2174/97816080528511060101
Gadalla, M., Jiménez, L., Olujic, Z., & Jansens, P. J. (2007). A thermo-hydraulic approach to conceptual design of an internally heat-integrated distillation column (i-HIDiC). Computers and Chemical Engineering, 31(10), 1346–1354. https://doi.org/10.1016/j.compchemeng.2006.11.006
Gadalla, M., Olujic, Z., Sun, L., de Rijke, A., & Jansens, P. J. (2005). Pinch analysis-based approach to conceptual design of internally heat-integrated distillation columns. Chemical Engineering Research and Design, 83(8 A), 987–993. https://doi.org/10.1205/cherd.04301
Horiuchi, K., Nakaiwa, M., Iwakabe, K., Matsuda, K., & Toda, M. (2008). Intensification of the process flow in the pilot plant of an internally heat-integrated distillation column (HIDiC). Kagaku Kogaku Ronbunshu, 34(1), 70–75. https://doi.org/10.1252/kakoronbunshu.34.70
Mah, R. S. H., Nicholas, J. J., & Wodnik, R. B. (1977). Distillation with secondary reflux and vaporization: A comparative evaluation. AIChE Journal, 23(5), 651–658. https://doi.org/10.1002/aic.690230505
Marin, M. D., Meyer, M., Mizzi, B., & Rouzineau, D. (2018). New conceptual design methodology for a concentric heat integrated distillation column (HIDiC). Chemical Engineering Transactions, 69, 883–888. https://doi.org/10.3303/CET1869148
Naito, K., Nakaiwa, M., Huang, K., Endo, A., Aso, K., Nakanishi, T., Nakamura, T., Noda, H., & Takamatsu, T. (2000). Operation of a bench-scale ideal heat integrated distillation column (HIDiC): An experimental study. Computers and Chemical Engineering, 24(2–7), 495–499. https://doi.org/10.1016/S0098-1354(00)00513-5
Ponce, G. H. S. F., Alves, M., Miranda, J. C. C., Maciel Filho, R., & Wolf Maciel, M. R. (2015). Using an internally heat-integrated distillation column for ethanol-water separation for fuel applications. Chemical Engineering Research and Design, 95, 55–63. https://doi.org/10.1016/j.cherd.2015.01.002
Taylor, R., & Krishna, R. (1993). Multicomponent Mass Transfer. Wiley, New York.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xxvi, 164 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Química
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/84597/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/84597/2/79954487.2022.pdf
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
02988440ff7a95d3cf142cb8a996974a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1806886602598776832
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Martínez Riascos, Carlos Arturo7501b10c506c5cbabf2e1accdb873f50Mendoza Muñoz, Diego Fernandoa8a2b1488519e77794d9bdc9c69b071cMancera Apolinar, Javier Alexandera0294f2d79efdf7162e17d9d998ecb750000-0003-4793-7442Javier Alexander Mancera (https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001349782)2023-08-24T16:35:29Z2023-08-24T16:35:29Z2022-11https://repositorio.unal.edu.co/handle/unal/84597Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasIn this study, the performance of a concentric distillation column with internal energy integration (HIDiC) was analyzed, considering the system propylene-propane and based on the second thermodynamic law. Additionally, the hydraulic behavior was studied and the efficiency of some trays in different points of column was estimated by CFD. To achieve that, five specific objectives were established: 1) Select the most suitable type of concentric HIDiC configuration for the separation of the propylene-propane mixture, considering second thermodynamic law, as well as the effect of the configuration on the entropy generation, the energy and exergy required for the separation. 2) Fit a CFD model for predicting the hydraulic behavior and mass transfer efficiency in a tray of the selected HIDiC. 3) Identify effects of column design and operating variables on thermal, hydraulic and mass transfer performance in a HIDiC tray. 4) Analyze the second law efficiency in the selected HIDiC, distinguishing the exergetic losses by phenomena, and 5) Propose a preliminary methodology for the conceptual design of concentric HIDiCs, considering the operational viability and its thermodynamic efficiency. In the development of the first objective, it was possible to determine that the HIDiC column that presents the best exergetic behavior, for the separation of the studied system, is the Top-HIDiC (Chapter 1). In the second objective, due to the absence of experimental data for the chosen system, we first proceeded to validate the use of CFD for a known binary system with experimental data of its hydrodynamic behavior (Chapter 2), and mass transfer, through tray efficiency (Chapter 3). Once the hydrodynamic and mass transfer components were validated, the CFD was applied to a tray of the HIDiC for the propylene-propane system (Chapter 4), predicting the clear liquid height and the tray efficiency in rectification and stripping sections, obtained results were coherent with the studied phenomenon. For the third objective (Chapter4), three integrated trays ‒located in different places of the HIDiC: above, in the middle and in the lower‒ were analyzed to check the influence of initial and boundary conditions on the studied properties (clear liquid height and tray efficiency). For the fourth objective, it was possible to discriminate the exergetic losses for each component of the HIDiC column and they were compared with the losses generated in a Conventional Column and a Vapor Recompression Column, confirming a higher thermodynamic performance for the HIDiC (Chapter 5). Finally, in the development of the last objective, it was possible to establish a preliminary conceptual design through 5 general steps, with the exergetic loss as the main design criteria (Chapter 6). (Texto tomado de la fuente)En este estudio se analizó el desempeño termodinámico de una columna de destilación concéntrica, con integración energética interna, para separar la mezcla propileno-propano, mediante el análisis de segunda ley de la columna. Adicional, se estudió el comportamiento hidráulico y se determinó la eficiencia de un plato en diferentes secciones de este tipo de columnas mediante CFD. Para lograr esto, se establecieron cinco objetivos específicos: 1) Seleccionar del tipo de configuración HIDiC concéntrica más adecuado para la separación de la mezcla propileno-propano mediante el análisis de segunda ley de la termodinámica aplicado en la columna completa considerando el efecto de la configuración sobre la entropía generada, la energía y exergía requerida para la separación. 2) Predecir el comportamiento hidráulico y la eficiencia de transferencia de masa en un plato de la HIDiC seleccionada usando CFD. 3) Identificar efectos de las variables de diseño y de operación de la columna sobre el desempeño térmico, hidráulico y de transferencia de masa en un plato de la columna HIDiC. 4) Analizar la eficiencia de segunda ley en la HIDiC seleccionada considerando las pérdidas exergéticas generadas por cada uno de los fenómenos, y 5) Proponer una metodología preliminar para el diseño conceptual de columnas HIDiC concéntricas, considerando la viabilidad operacional y su eficiencia termodinámica. En el desarrollo del primer objetivo, se logró determinar que la columna HIDiC que presenta mejores resultados exergéticos (segunda ley), para la separación del sistema de estudio, fue la HIDiC de tope (Capítulo 1). En el segundo objetivo, debido a la ausencia de datos experimentales del sistema en este tipo de columnas, se procedió primeramente a validar el uso de CFD para el caso de un sistema binario conocido que contara con datos experimentales tanto en la parte hidrodinámica mediante la propiedad altura del líquido claro (Capítulo 2), como de transferencia de masa mediante la eficiencia de plato (Capítulo 3) obteniéndose resultados muy cercanos a los experimentales; éstas simulaciones se realizaron sobre un plato perforado rectangular. Una vez validado la parte hidrodinámica y de transferencia de masa, se procedió a aplicar el CFD a una sección de plato de la columna HIDiC (Capítulo 4), prediciendo la altura del líquido claro y la eficiencia de plato, en ambas secciones, rectificación y agotamiento, obteniéndose resultados coherentes con los fenómenos estudiados. Para dar cumplimento al objetivo tres, se tomaron tres platos integrados ubicados en diferentes lugares de la columna HIDiC, uno arriba, otro en el medio y otro en la parte de debajo de la columna las cuales contaban con tres condiciones diferentes (Capítulo 4) comprobando la influencia de estas condiciones iniciales y de frontera sobre las propiedades estudiadas (altura del líquido claro y eficiencia de plato). En el cuarto objetivo se logró discriminar las perdidas exergéticas por cada componente de la columna HIDiC y se compararon con las pérdidas generadas con la columna convencional y la de recompresión de vapor obteniéndose mejores resultados en la columna HIDiC (Capítulo 5). Para finalizar, en el desarrollo del último objetivo, se logró establecer un diseño conceptual preliminar mediante 5 pasos generales teniendo como base principal del diseño el principio de pérdida exergética (Capítulo 6).Colciencias - Beca 617DoctoradoDoctor en Ingeniería Químicaxxvi, 164 páginasapplication/pdfengUniversidad Nacional de ColombiaBogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería QuímicaFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede BogotáAnalysis of a depropanizer column with internal energy integration of concentric configurationAnálisis de una columna depropanizadora con integración energética interna de configuración concéntricaTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDBejan, A. (2013). Entropy generation minimization: the method of thermodynamic optimization of finite-size systems and finite-time processes. CRC press.Hanley, N., McGregor, P., Swales, J., & Tuner, K. (2009). Do increases in resource productivity improve environmental quality and sustainability? Ecological Economics, 68(3), 692–709. https://dspace.stir.ac.uk/bitstream/1893/7707/1/Hanley et al Ecological Economics 2009_turner last.pdfHepbasli, A. (2008). A key review on exergetic analysis and assessment of renewable energy resources for a sustainable future. Renewable and Sustainable Energy Reviews, 12(3), 593–661. https://doi.org/10.1016/j.rser.2006.10.001Kemp, I. C. (2007). Pinch Analysis and Process Integration: A User Guide on Process Integration for the Efficient Use of Energy (I. C. B. T.-P. A. and P. I. (Second E. Kemp (ed.); Second). Butterworth-Heinemann. https://doi.org/https://doi.org/10.1016/B978-075068260-2.50006-7Kotas, T. J. (1995). The exergy method of thermal plant analysis. Krieger Pub.Krishna, R., & Van Baten, J. M. (2003). Modelling sieve tray hydraulics using computational fluid dynamics. Chemical Engineering Research and Design, 81(1), 27–38. https://doi.org/10.1205/026387603321158168Morar, M., & Agachi, P. S. (2010). Review: Important contributions in development and improvement of the heat integration techniques. Computers and Chemical Engineering, 34(8), 1171–1179. https://doi.org/10.1016/j.compchemeng.2010.02.038Nakaiwa, M., Huang, K., Endo, A., Ohmori, T., Akiya, T., & Takamatsu, T. (2003). Internally heat-integrated distillation columns: A review. Chemical Engineering Research and Design, 81(1), 162–177. https://doi.org/10.1205/026387603321158320Sun, A. (2010). Internal heat exchange in a concentric tray heat integrated distillation column (HIDiC). DELF UNIVERSITY OF TECHNOLOGY.Tu, J., Yeoh, G. H., & Liu, C. (2018). Computational fluid dynamics: a practical approach (Third). Butterworth-Heinemann.González Plaza, M., Ferreira, A., Santos, J., Ribeiro, A., Müller, U., Trukhan, N., Loureiro, J., & Rodrigues, A. (2011). Propane/propylene separation by adsorption using shaped copper trimesate MOF. Microporous and Mesoporous Materials - MICROPOROUS MESOPOROUS MAT, 157. https://doi.org/10.1016/j.micromeso.2011.06.024Kiss, A. A., & Olujić, Ž. (2014). A review on process intensification in internally heat-integrated distillation columns. Chemical Engineering and Processing: Process Intensification, 86, 125–144. https://doi.org/10.1016/j.cep.2014.10.017Liu, X. G., & Qian, J. X. (2000). Modeling, Control, and Optimization of Ideal Internal Thermally Coupled Distillation Columns. Chemical Engineering and Technology, 23(3), 235–241. https://doi.org/10.1201/b11330-2Matsuda, K., Iwakabe, K., Ohmori, T., & Nakaiwa, M. (2010). Dynamic behavior of an internally heat-integrated distillation column (HIDiC). Chemical Engineering Transactions, 21, 127–132. https://doi.org/10.3303/CET1021022Mendoza, D. F., Palacio, L. M., Graciano, J. E. A., Riascos, C. A. M., Vianna, A. S., & Roux, G. A. C. Le. (2013). Real-Time Optimization of an Industrial-Scale Vapor Recompression Distillation Process . Model Validation and Analysis. Industrial and Engineering Chemistry Research, 52, 5735–5746.Mendoza, D. F., & Riascos, C. A. M. (2011). Entropy minimization in design of extractive distillation system with internal heat exchangers. Chemical Engineering Transactions, 25, 405–410. https://doi.org/10.3303/CET1125068Nakaiwa, M., Huang, K., Naito, K., Endo, A., Akiya, T., Nakane, T., & Takamatsu, T. (2001). Parameter analysis and optimization of ideal heat integrated distillation columns. Computers and Chemical Engineering, 25(4–6), 737–744. https://doi.org/10.1016/S0098-1354(01)00649-4Nakaiwa, M., Huang, K., Owa, M., Akiya, T., Nakane, T., Sato, M., & Takamatsu, T. (1997). Energy savings in heat-integrated columns. Energy, 22(6), 621–625.Olujić, Ž., Sun, L., de Rijke, A., & Jansens, P. J. (2006). Conceptual design of an internally heat integrated propylene-propane splitter. Energy, 31(15), 3083–3096. https://doi.org/10.1016/j.energy.2006.03.030Pulido, J. L. (2008). Study of a New Concept of Distillation Column: Heat-Integrated Distillation Column (HIDiC). In Bachelor Thesis in Chemical Engineering. Industrial University of SantanderSuphanit, B. (2010). Design of internally heat-integrated distillation column (HIDiC): Uniform heat transfer area versus uniform heat distribution. Energy, 35(3), 1505–1514. https://doi.org/10.1016/j.energy.2009.12.008ANSYS Release 19. (2018). ANSYS Fluent Theory Guide.Bennett, D. L., Agrawal, R., & Cook, P. J. (1983). New pressure drop correlation for sieve tray distillation columns. AIChE Journal, 29(3), 434–442. https://doi.org/10.1002/aic.690290313Bhole, M. R., Joshi, J. B., & Ramkrishna, D. (2008). CFD simulation of bubble columns incorporating population balance modeling. Chemical Engineering Science, 63(8), 2267–2282. https://doi.org/10.1016/j.ces.2008.01.013Chen, G., Xiong, Q., Morris, P. J., Paterson, E. G., Sergeev, A., & Wang, Y.-C. (2014). OpenFOAM for Computational Fluid Dynamics. Notices of the American Mathematical Society, 61(4), 354. https://doi.org/10.1090/noti1095Gesit, G., Nandakumar, K., & Chuang, K. T. (2003). CFD modeling of flow patterns and hydraulics of commercial-scale sieve trays. AIChE Journal, 49(4), 910–924. https://doi.org/10.1002/aic.690490410Grace, J. R., Wairegi, T., & Brophy, J. (1978). Break‐up of drops and bubbles in stagnant media. The Canadian Journal of Chemical Engineering, 56(1). https://doi.org/10.1002/cjce.5450560101Gupta, A., & Roy, S. (2013). Euler-Euler simulation of bubbly flow in a rectangular bubble column: Experimental validation with Radioactive Particle Tracking. Chemical Engineering Journal, 225. https://doi.org/10.1016/j.cej.2012.11.012Hofer, H. (1983). Influence of gas-phase dispersion on plate column efficiency. German Chemical Engineering, 6(2).Ishii, M., & Zuber, N. (1979). Drag coefficient and relative velocity in bubbly, droplet or particulate flows. AIChE Journal, 25(5), 843–855. https://doi.org/10.1002/aic.690250513Kaltenbacher, E. (1984). On the Effect of the Bubble Size Distribution and the Gas-Phase Diffusion on the Selectivity of Sieve Trays. Chemical Engineering Fundamentals, 1(47).Kataoka, I., & Serizawa, A. (1989). Basic equations of turbulence in gas-liquid two-phase flow. International Journal of Multiphase Flow, 15(5). https://doi.org/10.1016/0301-9322(89)90045-1Krishna, R., Urseanu, M. I., Van Baten, J. M., & Ellenberger, J. (1999). Rise velocity of a swarm of large gas bubbles in liquids. Chemical Engineering Science, 54(2), 171–183. https://doi.org/10.1016/S0009-2509(98)00245-0Krishna, R., Van Baten, J. M., Ellenberger, J., Higler, A. P., & Taylor, R. (1999). CFD simulations of sieve tray hydrodynamics. Chemical Engineering Research and Design, 77(7), 639–646. https://doi.org/10.1205/026387699526575Laborde-Boutet, C., Larachi, F., Dromard, N., Delsart, O., & Schweich, D. (2009). CFD simulation of bubble column flows: Investigations on turbulence models in RANS approach. Chemical Engineering Science, 64(21). https://doi.org/10.1016/j.ces.2009.07.009Li, X., Yang, N., Sun, Y., Zhang, L., Li, X., & Jiang, B. (2014). Computational fluid dynamics modeling of hydrodynamics of a new type of fixed valve tray. Industrial and Engineering Chemistry Research, 53(1), 379–389. https://doi.org/10.1021/ie400408uLiang, X. F., Pan, H., Su, Y. H., & Luo, Z. H. (2016). CFD-PBM approach with modified drag model for the gas–liquid flow in a bubble column. Chemical Engineering Research and Design, 112, 88–102. https://doi.org/10.1016/j.cherd.2016.06.014Lockett, M. J. (1986). Distillation tray fundamentals. Cambridge University Press.Lockett, M. J., Kirkpatrick, R. D., & Uddin, M. S. (1979). Froth regime point efficiency for gas-film controlled mass transfer on a two-dimensional sieve tray. Trans Inst Chem Eng, 57(1).Lopez de Bertodano M, Lahey RT, J. O. (1994). Development of a k-e model for bubbly two-phase flow. Journal of Fluids Engineering, 116. https://doi.org/https://doi.org/10.1115/1.2910220Lote, D. A., Vinod, V., & Patwardhan, A. W. (2018). Comparison of models for drag and non-drag forces for gas-liquid two-phase bubbly flow. Multiphase Science and Technology, 30(1), 31–76. https://doi.org/10.1615/MultScienTechn.2018025983Magolan, B., Lubchenko, N., & Baglietto, E. (2019). A quantitative and generalized assessment of bubble-induced turbulence models for gas-liquid systems. Chemical Engineering Science: X, 2, 100009. https://doi.org/10.1016/j.cesx.2019.100009Rahimi, R., Mazarei Sotoodeh, M., & Bahramifar, E. (2012). The effect of tray geometry on the sieve tray efficiency. Chemical Engineering Science, 76, 90–98. https://doi.org/10.1016/j.ces.2012.01.006Roshdi, S., Kasiri, N., Hashemabadi, S. H., & Ivakpour, J. (2013). Computational fluid dynamics simulation of multiphase flow in packed sieve tray of distillation column. Korean Journal of Chemical Engineering, 30(3), 563–573. https://doi.org/10.1007/s11814-012-0166-1Rzehak, R., & Krepper, E. (2013a). Bubble-induced turbulence: Comparison of CFD models. Nuclear Engineering and Design, 258, 57–65. https://doi.org/10.1016/j.nucengdes.2013.02.008Rzehak, R., & Krepper, E. (2013b). CFD modeling of bubble-induced turbulence. International Journal of Multiphase Flow, 55, 138–155. https://doi.org/10.1016/j.ijmultiphaseflow.2013.04.007Sadripour, M., Rahimi, A., & Hatamipour, M. S. (2012). Experimental Study and CFD Modeling of Wall Deposition in a Spray Dryer. Drying Technology, 30(6), 574–582. https://doi.org/10.1080/07373937.2011.653613Sato, Y., Sadatomi, M., & Sekoguchi, K. (1981). Momentum and heat transfer in two-phase bubble flow-I. Theory. International Journal of Multiphase Flow, 7(2). https://doi.org/10.1016/0301-9322(81)90003-3Schiller, L., & Naumann, Z. (1935). A drag coefficient correlation. In Z.Ver.Deutsch.Ing (Vol. 77, Issues 13–14). https://doi.org/10.1016/j.ijheatmasstransfer.2009.02.006Simonin, O., & Viollet, P. L. (1990). Prediction of an oxygen droplet pulverization in a compressible subsonic coflowing hydrogen flow. American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FED, 91.Sun, Z. M., Liu, B., Yuan, X. G., Liu, C. J., & Yu, K. T. (2005). New turbulent model for computational mass transfer and its application to a commercial-scale distillation column. Industrial and Engineering Chemistry Research, 44(12), 4427–4434. https://doi.org/10.1021/ie049382yTomiyama, A. (1998). Struggle with computational bubble dynamics. Multiphase Sci Technol. Multiphase Science Technology, 10.Treybal, R. E. (1981). Mass Transfer Operations 3th edition. In McGraw-Hill.Troshko, A. A., & Hassan, Y. A. (2001). A two-equation turbulence model of turbulent bubbly flows. International Journal of Multiphase Flow, 27(11). https://doi.org/10.1016/S0301-9322(01)00043-XVan Baten, J. M., Ellenberger, J., & Krishna, R. (2001). Hydrodynamics of reactive distillation tray column with catalyst containing envelopes: Experiments vs. CFD simulations. Catalysis Today, 66(2–4), 233–240. https://doi.org/10.1016/S0920-5861(00)00625-8Wang, T., & Wang, J. (2007). Numerical simulations of gas-liquid mass transfer in bubble columns with a CFD-PBM coupled model. Chemical Engineering Science, 62(24), 7107–7118. https://doi.org/10.1016/j.ces.2007.08.033Wang, T., Wang, J., & Jin, Y. (2005). Population balance model for gas - Liquid flows: Influence of bubble coalescence and breakup models. Industrial and Engineering Chemistry Research, 44(19), 7540–7549. https://doi.org/10.1021/ie0489002Wang, T., Wang, J., & Jin, Y. (2006). A CFD-PBM coupled model for gas-liquid flows. AIChE Journal, 52(1), 125–140. https://doi.org/10.1002/aic.10611Xing, C., Wang, T., & Wang, J. (2013). Experimental study and numerical simulation with a coupled CFD-PBM model of the effect of liquid viscosity in a bubble column. Chemical Engineering Science, 95, 313–322. https://doi.org/10.1016/j.ces.2013.03.022Yang, G., Guo, K., & Wang, T. (2017). Numerical simulation of the bubble column at elevated pressure with a CFD-PBM coupled model. Chemical Engineering Science, 170, 251–262. https://doi.org/10.1016/j.ces.2017.01.013Zhao, H., Li, Q., Yu, G., Dai, C., & Lei, Z. (2019). Performance analysis and quantitative design of a flow-guiding sieve tray by computational fluid dynamics. AIChE Journal, 65(5), 1–13. https://doi.org/10.1002/aic.16563Abbasnia, S., Nasri, Z., & Najafi, M. (2019). Comparison of the mass transfer and efficiency of Nye tray and sieve tray by computational fluid dynamics. Separation and Purification Technology, 215. https://doi.org/10.1016/j.seppur.2019.01.010Biddulph, M. W., & Dribika, M. M. (1986). Distillation efficiencies on a large sieve plate with small‐diameter holes. AIChE Journal, 32(8), 1383–1388. https://doi.org/10.1002/aic.690320817Bird, R., Stewart, W., & Lightfoot, E. (1958). Transport Phenomena (2nd ed.).Morel, C. (1995). An order of magnitude analysis of the two-phase k–e model. International Fluid Mechanics. https://doi.org/10.1615/InterJFluidMechRes.v22.i3-4.30Dejanović, I., Matijašević, L., & Olujić, Ž. (2010). Dividing wall column-A breakthrough towards sustainable distilling. Chemical Engineering and Processing: Process Intensification, 49(6), 559–580. https://doi.org/10.1016/j.cep.2010.04.001Dribika, M. M., & Biddulph, M. W. (1986). Scaling‐up distillation efficiencies. AIChE Journal, 32(11), 1864–1875. https://doi.org/10.1002/aic.690321112Guevara, M. A., Guevara, F. A., & Belalcazar, L. C. (2018). Experimental Data and New Binary Interaction Parameters for Ethanol- Water VLE at Low Pressures Using NRTL and UNIQUAC. TECCIENCIA, 8(24), 17–26. https://doi.org/http://dx.doi.org/10.18180/tecciencia.2018.24.3Guevara, M., & Belalcazar, L. (2017). NGL supersonic separator: modeling, improvement, and validation and adjustment of k-epsilon RNG modified for swirl flow turbulence model. Revista Facultad de Ingeniería, 82, 82–93. https://doi.org/10.17533/udea.redin.n82a11Higbie, R. (1935). The rate of absorption of a pure gas into a still liquid during short periods of exposure. Transactions of the American Institute of Chemical Engineers, 35, 365–389.Kockmann, N. (2014). 200 Years in Innovation of Continuous Distillation. ChemBioEng Reviews, 1(1), 40–49. https://doi.org/10.1002/cben.201300003Lamont, J. C., & Scott, D. S. (1970). An eddy cell model of mass transfer into the surface of a turbulent liquid. AIChE Journal, 16(4). https://doi.org/10.1002/aic.690160403Yanagi, T., & Sakata, M. (1982). Performence of a comercial scale 14% hole area sieve tray. Industrial & Engineering Chemistry Process Design and Development, 21(4), 712–717. https://doi.org/https://doi.org/10.1021/i200019a029Malvin, A., Chan, A., & Lau, P. L. (2014). CFD study of distillation sieve tray flow regimes using the droplet size distribution technique. Journal of the Taiwan Institute of Chemical Engineers, 45(4), 1354–1368. https://doi.org/10.1016/j.jtice.2014.01.002Noriler, D., Barros, A. A. C., Wolf Maciel, M. R., & Meier, H. F. (2010). Simultaneous momentum, mass, and energy transfer analysis of a distillation sieve tray using CFD techniques: Prediction of efficiencies. Industrial and Engineering Chemistry Research, 49(14), 6599–6611. https://doi.org/10.1021/ie9013925Noriler, D., Meier, H. F., Barros, A. A. C., & Wolf Macel, M. R. (2009). Prediction of efficiencies through simultaneous momentum, mass and energy transfer analyses in a distillation sieve tray by CFD techniques. In Computer Aided Chemical Engineering (Vol. 27, Issue C). Elsevier Inc. https://doi.org/10.1016/S1570-7946(09)70415-8Olujić, Ž., Jödecke, M., Shilkin, A., Schuch, G., & Kaibel, B. (2009). Equipment improvement trends in distillation. Chemical Engineering and Processing: Process Intensification, 48(6), 1089–1104. https://doi.org/10.1016/j.cep.2009.03.004Rahimi, M. R., Rahimi, R., Shahraki, F., & Zivdar, M. (2006). Prediction of temperature and concentration distributions of distillation sieve trays by CFD. Tamkang Journal of Science and Engineering, 9(3), 265–278.Ranz, W. E., & Marshall, W. R. (1952). Evaporation from drops. Parts I & II. Chem. Eng. Progr, 48(22).Sun, Z. M., Yu, K. T., Yuan, X. G., & Liu, C. J. (2007). A modified model of computational mass transfer for distillation column. Chemical Engineering Science, 62(7), 1839–1850. https://doi.org/10.1016/j.ces.2006.12.021Van Baten, J. M., & Krishna, R. (2000). Modelling sieve tray hydraulics using computational fluid dynamics. Chemical Engineering Journal, 77(3), 143–151. https://doi.org/10.1016/S1385-8947(99)00164-3Versteeg, H. K., & Malalasekera, W. (1995). An Introduction to Computational Fluid Dynamics The Finite Volume Method. In Fluid flow handbook. McGraw-Hill …. Longman Scitific & Technical. https://doi.org/10.2514/1.22547Wang, T., Wang, J., & Jin, J. (2004). An efficient numerical algorithm for “A novel theoretical breakup kernel function of bubble/droplet in a turbulent flow.” Chemical Engineering Science, 59(12), 2593–2595. https://doi.org/10.1016/j.ces.2004.03.011Ashrafizadeh, S. A., Amidpour, M., & Abolmashadi, M. (2013). Exergy analysis of distillation column using concept of driving forces. Journal of Chemical Engineering of Japan, 46(7), 434–443. https://doi.org/10.1252/jcej.11we038Bernal, D., Castellanos, O., Bejarano, P., & Rodriguez, G. (2011). Analisis y diseño de platos y columnas de platos. Universidad Nacional de Colombia.Claumann, C. A., Peruzzo, T., Felice, V. De, Marangoni, C., & Machado, R. A. F. (2015). Modeling and process optimization: an approach using aspen plus and matlab in the energy integration study of distillation columns. VIII Congreso Argentino de Ingeniería Química y 3 JASP, 1.Gadalla, M., Olujić, Ž., de Rijke, A., & Jansens, P. J. (2006). Reducing CO2 emissions of internally heat-integrated distillation columns for separation of close boiling mixtures. Energy, 31(13), 2409–2417. https://doi.org/10.1016/j.energy.2005.10.029Gadalla, M. A. (2009). Internal heat integrated distillation columns (iHIDiCs)-New systematic design methodology. Chemical Engineering Research and Design, 87(12), 1658–1666. https://doi.org/10.1016/j.cherd.2009.06.005Harvindran, V., & Foo, D. C. Y. (2021). Design of Internally Heat‐Integrated Distillation Column ( HIDiC ). Process Intensification and Integration for Sustainable Design, 117–129. https://doi.org/10.1002/9783527818730.ch6Heng Yeoh, G., & Tu, J. (2010). Computational Techniques for Multi-Phase Flows. ELSEVIER.Khosravi Nikou, M. R., & Ehsani, M. R. (2008). Turbulence models application on CFD simulation of hydrodynamics, heat and mass transfer in a structured packing. International Communications in Heat and Mass Transfer, 35(9), 1211–1219. https://doi.org/10.1016/j.icheatmasstransfer.2008.05.017Kister, H. Z. (1992). Tray Design and Operation. McGraw-Hill Professional, 1, 9–11.Mancera, J. A., Mendoza, D. F., & Riascos, C. A. M. (2018). HIDiC configuration selection based on exergetic analysis. Chemical Engineering Transactions, 69. https://doi.org/10.3303/CET1869151Olujic, Z., Fakhri, F., De Rijke, A., De Graauw, J., & Jansens, P. J. (2003). Internal heat integration - The key to an energy-conserving distillation column. Journal of Chemical Technology and Biotechnology, 78(2–3), 241–248. https://doi.org/10.1002/jctb.761Pulido, Jeffrey León, Martínez, E. L., Wolf, M. R., & Filho, R. M. I. (2011). Heat transfer study of heat-integrated distillation column (HIDiC) using simulation techniques. AIP Conference Proceedings, 1373, 242–254. https://doi.org/10.1063/1.3627209Rahimi, R., Rahimi, M. R., Shahraki, F., & Zivdar, M. (2006). Efficiencies of sieve tray distillation columns by CFD simulation. Chemical Engineering and Technology, 29(3), 326–335. https://doi.org/10.1002/ceat.200500285Riaño, S., Guevara, M. A., & Belalcázar, L. C. (2017). CFD Modeling and Evaluation of a Bi-Stable Micro-Diverter Valve. Ciencia, Tecnologia y Futuro, 8(1), 77–84. https://doi.org/10.29047/01225383.94Shenvi, A. A., Herron, D. M., & Agrawal, R. (2011). Energy efficiency limitations of the conventional heat integrated distillation column (HIDiC) configuration for binary distillation. Industrial and Engineering Chemistry Research, 50(1), 119–130. https://doi.org/10.1021/ie101698fWinkle, M. V. (1967). Distillation. McGraw-Hill.Boles, M. A., & Cengel, Yunus A. (2014). Thermodynamics: An Engineering Approach. McGraw-Hill Education. https://books.google.com.co/books?id=Ao95ngEACAAJde Koeijer, G., & Rivero, R. (2003). Entropy production and exergy loss in experimental distillation columns. Chemical Engineering Science, 58(8), 1587–1597. https://doi.org/10.1016/S0009-2509(02)00627-9Delmar, T. (2019). An introduction to exergy and its evaluation using Aspen Plus. University of Utah.Gorak, A., & Sorensen, E. (2014). Distillation: Fundamentals and Principles. Academic Press.Grassmann, P. (1959). The exergy and the flow diagram of the technically available power. Allg Warmetech, 9, 79–86.Jogwar, Sujit S. & Daoutidis, Prodromos (2009). Vapor Recompression Distillation: Multi-Scale Dynamics and Control. Proceedings of Amer. Control Conference, 647-652Oliveira, S. (2013). Exergy: Production, Cost and Renewability. In Green Energy and Technology. Springer. https://doi.org/10.2174/97816080528511060101Gadalla, M., Jiménez, L., Olujic, Z., & Jansens, P. J. (2007). A thermo-hydraulic approach to conceptual design of an internally heat-integrated distillation column (i-HIDiC). Computers and Chemical Engineering, 31(10), 1346–1354. https://doi.org/10.1016/j.compchemeng.2006.11.006Gadalla, M., Olujic, Z., Sun, L., de Rijke, A., & Jansens, P. J. (2005). Pinch analysis-based approach to conceptual design of internally heat-integrated distillation columns. Chemical Engineering Research and Design, 83(8 A), 987–993. https://doi.org/10.1205/cherd.04301Horiuchi, K., Nakaiwa, M., Iwakabe, K., Matsuda, K., & Toda, M. (2008). Intensification of the process flow in the pilot plant of an internally heat-integrated distillation column (HIDiC). Kagaku Kogaku Ronbunshu, 34(1), 70–75. https://doi.org/10.1252/kakoronbunshu.34.70Mah, R. S. H., Nicholas, J. J., & Wodnik, R. B. (1977). Distillation with secondary reflux and vaporization: A comparative evaluation. AIChE Journal, 23(5), 651–658. https://doi.org/10.1002/aic.690230505Marin, M. D., Meyer, M., Mizzi, B., & Rouzineau, D. (2018). New conceptual design methodology for a concentric heat integrated distillation column (HIDiC). Chemical Engineering Transactions, 69, 883–888. https://doi.org/10.3303/CET1869148Naito, K., Nakaiwa, M., Huang, K., Endo, A., Aso, K., Nakanishi, T., Nakamura, T., Noda, H., & Takamatsu, T. (2000). Operation of a bench-scale ideal heat integrated distillation column (HIDiC): An experimental study. Computers and Chemical Engineering, 24(2–7), 495–499. https://doi.org/10.1016/S0098-1354(00)00513-5Ponce, G. H. S. F., Alves, M., Miranda, J. C. C., Maciel Filho, R., & Wolf Maciel, M. R. (2015). Using an internally heat-integrated distillation column for ethanol-water separation for fuel applications. Chemical Engineering Research and Design, 95, 55–63. https://doi.org/10.1016/j.cherd.2015.01.002Taylor, R., & Krishna, R. (1993). Multicomponent Mass Transfer. Wiley, New York.DistillationDestilaciónHydraulic controlControl hidraúlicoHIDiCExergyCFDDistillation sieve trayClear liquid heightTray efficiencyHIDiCExergíaDFCDestilación platos perforadosAltura de líquido claroEficiencia de platoLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84597/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL79954487.2022.pdf79954487.2022.pdfTesis de Doctorado en Ingeniería Químicaapplication/pdf4659318https://repositorio.unal.edu.co/bitstream/unal/84597/2/79954487.2022.pdf02988440ff7a95d3cf142cb8a996974aMD52unal/84597oai:repositorio.unal.edu.co:unal/845972023-08-24 11:38:59.068Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=