Factores de emisiones de gases del sector porcicola en el departamento de Antioquia

El crecimiento explosivo de las explotaciones confinadas de cerdos en todo el mundo ha generado preocupación en muchos investigadores sobre el impacto ambiental, la salud, la productividad ganadera y la generación de biogases asociados a este tipo de producción a gran escala. El objetivo de este tra...

Full description

Autores:
Castrillón Mejía, Natalia
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/79847
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/79847
https://repositorio.unal.edu.co/
Palabra clave:
Medio Ambiente
zootecnia
Gases de invernadero
Cría de cerdos
Indice de confort animal
Bienestar animal
Emisiones de metano
Gases de efecto invernadero
Porcicultura
Animal comfort index
Thermal stress
Animal welfare
Methane emissions
Greenhouse gases
Natural ventilation
Pig farming
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_645e7dc3d6bfd509f2530497b9b0cbd4
oai_identifier_str oai:repositorio.unal.edu.co:unal/79847
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Factores de emisiones de gases del sector porcicola en el departamento de Antioquia
dc.title.translated.eng.fl_str_mv Gas emission factors of the swine production in the department of Antioquia
title Factores de emisiones de gases del sector porcicola en el departamento de Antioquia
spellingShingle Factores de emisiones de gases del sector porcicola en el departamento de Antioquia
Medio Ambiente
zootecnia
Gases de invernadero
Cría de cerdos
Indice de confort animal
Bienestar animal
Emisiones de metano
Gases de efecto invernadero
Porcicultura
Animal comfort index
Thermal stress
Animal welfare
Methane emissions
Greenhouse gases
Natural ventilation
Pig farming
title_short Factores de emisiones de gases del sector porcicola en el departamento de Antioquia
title_full Factores de emisiones de gases del sector porcicola en el departamento de Antioquia
title_fullStr Factores de emisiones de gases del sector porcicola en el departamento de Antioquia
title_full_unstemmed Factores de emisiones de gases del sector porcicola en el departamento de Antioquia
title_sort Factores de emisiones de gases del sector porcicola en el departamento de Antioquia
dc.creator.fl_str_mv Castrillón Mejía, Natalia
dc.contributor.advisor.none.fl_str_mv González Cadavid, Verónica
Osorio Saraz, Jairo Alexander
dc.contributor.author.none.fl_str_mv Castrillón Mejía, Natalia
dc.contributor.researchgroup.spa.fl_str_mv Ingeniería Agrícola
dc.subject.ddc.spa.fl_str_mv Medio Ambiente
zootecnia
topic Medio Ambiente
zootecnia
Gases de invernadero
Cría de cerdos
Indice de confort animal
Bienestar animal
Emisiones de metano
Gases de efecto invernadero
Porcicultura
Animal comfort index
Thermal stress
Animal welfare
Methane emissions
Greenhouse gases
Natural ventilation
Pig farming
dc.subject.lemb.none.fl_str_mv Gases de invernadero
Cría de cerdos
dc.subject.proposal.spa.fl_str_mv Indice de confort animal
Bienestar animal
Emisiones de metano
Gases de efecto invernadero
Porcicultura
dc.subject.proposal.eng.fl_str_mv Animal comfort index
Thermal stress
Animal welfare
Methane emissions
Greenhouse gases
Natural ventilation
Pig farming
description El crecimiento explosivo de las explotaciones confinadas de cerdos en todo el mundo ha generado preocupación en muchos investigadores sobre el impacto ambiental, la salud, la productividad ganadera y la generación de biogases asociados a este tipo de producción a gran escala. El objetivo de este trabajo fue estudiar la concentración y las emisiones de gas metano de diez tipologías constructivas diferentes en función de las variables climáticas, constructivas y de confort térmico. Para lograr el objetivo se plantearon las características constructivas más relevantes para mejorar el confort térmico de los animales, disminuir las emisiones de gases, y proponer las tipologías por grupo etareo en función del piso térmico y características constructivas que mejor se adaptan a las condiciones de producción animal. Adicionalmente se visitaron 10 granjas de etapa de ceba ubicadas en el departamento de Antioquia - Colombia, entre 800-2300 metros sobre el nivel del mar, únicamente fue posible encontrar tipologías que trabajaban con ventilación natural. En los alojamientos de los animales se realizaron mediciones climáticas con sensores manuales con cuyos resultados se calcularon los índices de humedad y temperatura de globo negro (BGHI) y el Índice de Humedad y Temperatura (THI) para cada una de las instalaciones, encontrando resultados entre los rangos 78 ± 5 - 68 ± 2; y 79 ± 4 - 69 ± 3 respectivamente. Las medidas de metano se tomaron con sensores ubicados en puntos intermedios de las áreas de entrada y salida de ventilación y se analizó el comportamiento de la concentración y emisión de metano de las instalaciones junto con la correlación y evolución temporal de las variables climáticas, índices de confort y tipologías constructivas. La información se analizó mediante estadística descriptiva, análisis de varianza (ANOVA) y análisis de componentes principales (PCA). Se encontraron resultados como: un promedio de tasa de Emisión de CH4 (ER) por instalación (Kg año -1) de 607.9, Potencial de Calentamiento Global (GWP) por instalación (Kg año-1) de 15197.42 y correlaciones significativas entre RE, frecuencia de limpieza (CF), unidad animal (AU), flujo de aire (Q), densidad animal (DA) y humedad relativa (HR). Esta es la primera investigación con este alcance reportada en Colombia, la cual será importante para futuras investigaciones y políticas gubernamentales. (Tomado de la fuente)
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-07-26T19:55:34Z
dc.date.available.none.fl_str_mv 2021-07-26T19:55:34Z
dc.date.issued.none.fl_str_mv 2021
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/79847
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/79847
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Ameen, R. F. M., & Mourshed, M. (2019). Urban sustainability assessment framework development: The ranking and weighting of sustainability indicators using analytic hierarchy process. Sustainable Cities and Society, 44(October 2018), 356–366. https://doi.org/10.1016/j.scs.2018.10.020
Bjerg, B., Brandt, P., Sørensen, K., Pedersen, P., & Zhang, G. (2019). Review of methods to mitigate heat stress among sows. 2019 ASABE Annual International Meeting, June. https://doiorg/10.13031/aim.201900741
Bjerg, B., Demeyer, P., Hoyaux, J., Didara, M., Grönroos, J., Hassouna, M., Amon, B., Bartzanas, T., Sándor, R., Fogarty, M., Klas, S., Schiavon, S., Juskiene, V., Radeski, M., Attard, G., Aarnink, A., Gülzari, Ş. Ö., Kuczyński, T., Fangueiro, D., … Norton, T. (2019). Review of legal requirements on ammonia and greenhouse gases emissions from animal production buildings in european countries. 2019 ASABE Annual International Meeting, June, 23. https://doi.org/10.13031/aim.201901070
Briukhanov, A., Subbotin, I., Uvarov, R., & Vasilev, E. (2017). Method of designing of manure utilization technology. Agronoy Research, 15(3), 658–663.
Broucek, J. (2018). Nitrous Oxide Release from Poultry and Pig Housing. 27(2), 467–479. https://doi.org/10.15244/pjoes/75871
Castrillón, N., González, V., Osorio, J. A., Montoya, A. P., & Correa, G. (2020). Assessment of the methane emission for different typologies of fattening swine facilities in the department of antioquia Colombia. Agronomy Research, 18(Special Issue 2), 1189–1202. https://doi.org/10.15159/AR.20.108
Cecchin, D., Pereira, C. R., Campos, A. T., Ferraz, P. F. P., Amaral, P. I. S., Sousa, F. A., Hüther, C. M., & Cruz, V. M. F. (2019). Behavior of swine hosted in facilities with different construction typologies. Journal of Animal Behaviour and Biometeorology, 7(1), 6–10. https://doi.org/10.31893/2318-1265jabb.v7n1p6-10
Cecchin, D, Campos, A., Cruz, V., Sousa, F., Amaral, P., & Yanagi Junior, T. (2017). Air quality in swine growing and finishing facilities with different building typologies TT - Qualidade do ar em instalações para suínos em crescimento e terminação com diferentes tipologias construtivas. Revista Brasileira de Engenharia Agrícola e Ambiental, 21(5), 339–343. https://doi.org/10.1590/1807-1929/agriambi.v21n5p339-343
Cecchin, Daiane, Da Cruz, V. F., Campos, A. T., Sousa, F. A., Amaral, P. I. S., Da Silva Ramos Freitas, L. C., & Andrade, R. R. (2017). Thermal environment in growing and finishing pig facilities of different building typologies. Journal of Animal Behaviour and Biometeorology, 5(4), 118–123. https://doi.org/10.14269/2318-1265/jabb.v5n4p118-123
CIGR. (2006). ANIMAL HOUSING IN HOT CLIMATES: A multidisciplinary view (I. de A. Nääs & D. J. Moura (eds.)). CIGR. de Oliveira Júnior, A. J., de Souza, S. R. L., da Cruz, V. F., Vicentin, T. A., & Glavina, A. S. G. (2018). Development of an android APP to calculate thermal comfort indexes on animals and people. Computers and Electronics in Agriculture, 151(October 2017), 175–184. https://doi.org/10.1016/j.compag.2018.05.014
de Vries, M., & de Boer, I. J. M. (2010). Comparing environmental impacts for livestock products: A review of life cycle assessments. Livestock Science, 128(1–3), 1–11. https://doi.org/10.1016/j.livsci.2009.11.007
Departamento Administrativo Nacional de Estadística (DANE). (2016). 3rd National Agricultural Survey, Colombia. Dominica, I., Suharjito, Noviantri, V., & Utama, D. N. (2018). Thermal comfort modelling based on house’s architecture using ghost point quadratic explicit method. International Review of Civil Engineering, 9(4), 141–147. https://doi.org/10.15866/irece.v9i4.14417
Ferrari, S., Costa, A., & Guarino, M. (2013). Heat stress assessment by swine related vocalizations. Livestock Science, 151(1), 29–34. https://doi.org/10.1016/j.livsci.2012.10.013
Gabriel, D., Allen, A., Bastviken, D., Conrad, R., Gudasz, C., St-Pierre, A., Thanh-Duc, N., & Del Giorgio, P. A. (2014). Methane fluxes show consistent temperature dependence across microbial to ecosystem scales. Nature, 507(7493), 488–491. https://doi.org/10.1038/nature13164
Gerber, P. ., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., Falcucci, A., & Tempio, G. (2013). Facing climate change through livestock.
Gitz, V., Meybeck, A., Lipper, L., Young, C., & Braatz, S. (2016). Climate change and food security: Risks and responses. In Food and Agriculture Organization of the United Nations. https://doi.org/10.1080/14767058.2017.1347921
Gobernación de Antioquia. (2014). Anuario estadístico del sector agropecuario en el departamento de Antioquia. Hansen, R., & Bjerg, B. (2018). Natural ventilation’s ability to prevent high indoor temperatures. m(April).
Huerta_Crispin, R., & Gas, J. (2012). Manual de Buenas Prácticas de Producción Porcina. Lineamientos generales para el pequeño y mediano productor de cerdos. In Manual de Buenas Prácticas de Producción Porcina. Lineamientos generales para el pequeño y mediano productor de cerdos.
IDEAM, PNUD, MADS, DNP, C. (2015). National Inventory of Greenhouse Gases (GHG) Colombia 2012. Instituto Colombiano de Hidrología Meteorología y Estudios Ambientales - IDEAM. (2005). Atlas climatológico de Colombia. Atlas Climatológico de Colombia, 219. http://www.ideam.gov.co/
Jackson, P., Guy, J. H., Sturm, B., Bull, S., & Edwards, S. A. (2018). An innovative concept building design incorporating passive technology to improve resource efficiency and welfare of finishing pigs. Biosystems Engineering, 174, 190–203. https://doi.org/10.1016/j.biosystemseng.2018.07.008
Lenerts, A., Popluga, D., & Naglis-Liepa, K. (2019). Benchmarking the GHG emissions intensities of crop and livestock–derived agricultural commodities produced in Latvia. Agronomy Research, 17(5), 1942–1952. https://doi.org/10.15159/AR.19.148
Machado, S. T., Nääs, I. D. A., Dos Reis, J. G. ., Caldara, F. R., & Santos, R. C. (2016a). Sows and piglets thermal comfort: A comparative study of the tiles used in the farrowing housing. Engenharia Agricola, 36(6), 996–1004. https://doi.org/10.1590/1809-4430-Eng.Agric.v36n6p996-1004/2016
Machado, S. T., Nääs, I. D. A., Dos Reis, J. G. M., Caldara, F. R., & Santos, R. C. (2016b). Sows and piglets thermal comfort: A comparative study of the tiles used in the farrowing housing. Engenharia Agricola, 36(6), 996–1004. https://doi.org/10.1590/1809-4430-Eng.Agric.v36n6p996-1004/2016
Mayorga, E. J., Renaudeau, D., Ramirez, B. C., Ross, J. W., & Baumgard, L. H. (2019). Heat stress adaptations in pigs. Animal Frontiers, 9(1), 54–61. https://doi.org/10.1093/af/vfy035
Ministerio de Agricultura y Desarrollo Rural (MADR). (2019). National Agroclimatic Report May 2019. In Ministerio de Agricultura y Desarrollo Rural (MADR) (Vol. 53).
Monteny, G. J., Bannink, A., & Chadwick, D. (2006). Greenhouse gas abatement strategies for animal husbandry. Agriculture, Ecosystems and Environment, 112(2–3), 163–170. https://doi.org/10.1016/j.agee.2005.08.015
Myer, R., & Bucklin, R. (2012). Influence of Hot-Humid Environment on Growth Performance and Reproduction of Swine 1 Methods to Minimize Heat Stress. University of Florida, IFAS Extension. AN 107, 1–8.
Nations Food and Agriculture - FAO. (2011). World Livestock 2011 - Livestock in food security World. In FAO. https://doi.org/10.1080/00036841003742587
Noya, I., Villanueva-Rey, P., González-García, S., Fernandez, M. D., Rodriguez, M. R., & Moreira, M. T. (2017). Life Cycle Assessment of pig production: A case study in Galicia. Journal of Cleaner Production, 142, 4327–4338. https://doi.org/10.1016/j.jclepro.2016.11.160
Noya, Isabel, Aldea, X., Gasol, C. M., González-García, S., Amores, M. J., Colón, J., Ponsá, S., Roman, I., Rubio, M. A., Casas, E., Moreira, M. T., & Boschmonart-Rives, J. (2016). Carbon and water footprint of pork supply chain in Catalonia: From feed to final products. Journal of Environmental Management, 171, 133–143. https://doi.org/10.1016/j.jenvman.2016.01.039
OCDE/FAO. (2018). OCDE-FAO Perspectivas Agrícolas 2013-2022. UNIVERSIDAD AUTÓNOMA CHAPINGO.
Osorio-Saraz, J. A., Ferreira-Tinoco, I. D. fatima, Gates, R. S., Oliveira-Rocha, K. S., Combatt-Caballero, E. M., & Campos-de-Sousa, F. (2014). Adaptation and validation of a methdology for determing ammonia flux generated by litter in naturally ventilated poultry houses. Dyna, 81(187), 137–143. https://doi.org/10.15446/dyna.v81n187.40806
Petersen, S. O., Olsen, A. B., Elsgaard, L., Triolo, J. M., & Sommer, S. G. (2016). Estimation of methane emissions from slurry pits below pig and cattle confinements. PLoS ONE, 11(8), 1–16. https://doi.org/10.1371/journal.pone.0160968
Pezzopane, J. R. M., Nicodemo, M. L. F., Bosi, C., Garcia, A. R., & Lulu, J. (2019). Animal thermal comfort indexes in silvopastoral systems with different tree arrangements. Journal of Thermal Biology, 79(November 2018), 103–111. https://doi.org/10.1016/j.jtherbio.2018.12.015
Philippe, F X., Laitat, M., Nicks, B., & Cabaraux, J. F. (2012). Ammonia and greenhouse gas emissions during the fattening of pigs kept on two types of straw floor. Agriculture, Ecosystems and Environment, 150, 45–53. https://doi.org/10.1016/j.agee.2012.01.006
Philippe, F X, Laitat, M., Wavreille, J., Nicks, B., & Cabaraux, J. F. (2013). Influence of permanent use of feeding stalls as living area on ammonia and greenhouse gas emissions for group-housed gestating sows kept on straw deep-litter. Livestock Science, 155(2–3), 397–406. https://doi.org/10.1016/j.livsci.2013.05.005
Philippe, F X, & Nicks, B. (2015). Review on greenhouse gas emissions from pig houses: Production of carbon dioxide, methane and nitrous oxide by animals and manure. Agriculture, Ecosystems and Environment, 199, 10–25. https://doi.org/10.1016/j.agee.2014.08.015
Philippe, François Xavier, Cabaraux, J. F., & Nicks, B. (2011). Ammonia emissions from pig houses: Influencing factors and mitigation techniques. Agriculture, Ecosystems and Environment, 141(3–4), 245–260. https://doi.org/10.1016/j.agee.2011.03.012
Pietrosemoli, S., & Tang, C. (2020). Animal welfare and production challenges associated with pasture pig systems: A review. Agriculture (Switzerland), 10(6), 1–34. https://doi.org/10.3390/agriculture10060223
Porkcolombia, & PigCHAMP. (2015). Guia de mejores técnicas disponibles para el sector porcícola en Colombia. (p. 34). Reckmann, K., Traulsen, I., & Krieter, J. (2013). Life Cycle Assessment of pork production: A data inventory for the case of Germany. Livestock Science, 157(2–3), 586–596. https://doi.org/10.1016/j.livsci.2013.09.001
Reimert, I., Rodenburg, T. B., Ursinus, W. W., Kemp, B., & Bolhuis, J. E. (2014). Selection based on indirect genetic effects for growth, environmental enrichment and coping style affect the immune status of pigs. PLoS ONE, 9(10). https://doi.org/10.1371/journal.pone.0108700
Rhodes, T., Appleby, M., Chinn, K., Douglas, L., Firkins, L., Houpt, K., Irwin, C., McGlone, J., Dundberg, P., Tokach, L., & Wills, R. (2005). A comprehensive review of housing for pregnant sows Members - Task Force Report. Javma, 227(10), 1580–1590.
Rodrigues, N. E. B., Zangeronimo, M. G., & Fialho, E. T. (2010). Suínos Sob Estresse Térmico. Revista Eletrônica Nutritime, 7(2), 1197–1211.
Ross, J. W., Hale, B. J., Gabler, N. K., Rhoads, R. P., Keating, A. F., & Baumgard, L. H. (2015). Physiological consequences of heat stress in pigs. Animal Production Science, 55(11–12), 1381–1390. https://doi.org/10.1071/AN15267
Salomon, S., Qin, D., Manning, M., Marquis, M., Averyt, K., Tignor, M. M. B., LeRoy Miller, H. jr, & Chen, Z. (2007). Climate change 2007: The Physical Science Basis. In Cambridge University Press, Cambridge, United Kingdom and New York (Issues 1–4). https://doi.org/10.1007/s11270-007-9372-6
Sedorovich, D. M., Rotz, A., & Richard, T. L. (2007). Greenhouse gas emissions from dairy farms. 2007 ASABE Annual International Meeting, Technical Papers, 9, 14. https://doi.org/10.13031/2013.23112
Seibert, L., & Norwood, F. B. (2011). Production costs and animal welfare for four stylized hog production systems. Journal of Applied Animal Welfare Science, 14(1), 1–17. https://doi.org/10.1080/10888705.2011.527596
Sharpe, R. ., Harper, L. ., & Simmons, J. . (2001). Methane emission from swine houses in North Carolina. Chemosphere Global Change Science, 3, 1–6.
Sousa, F. C., Tinôco, I. F. F., Barbari, M., Baptista, F., Souza, C. F., Saraz, A. O., Coelho, D. J. R., & Silva, A. L. (2018). Diagnosis of air quality in broilers production facilities in hot climates. Agronomy Research, 16(2), 582–592. https://doi.org/10.15159/AR.18.070
Steinfeld, H., & Gerber, P. (2010). Livestock production and the global environment: Consume less or produce better? Proceedings of the National Academy of Sciences, 107(43), 18237–18238. https://doi.org/10.1073/pnas.1012541107 USDA. (2011). Department of agriculture national agricultural statistics service agricultural - Agricultural Statistics 2010. 1–9.
XIONG, Y., MENG, Q. shi, GAO, J., TANG, X. fang, & ZHANG, H. fu. (2017). Effects of relative humidity on animal health and welfare. Journal of Integrative Agriculture, 16(8), 1653–1658. https://doi.org/10.1016/S2095-3119(16)61532-0
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 107 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.city.none.fl_str_mv Antioquia (Colombia)
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Minas - Maestría en Medio Ambiente y Desarrollo
dc.publisher.department.spa.fl_str_mv Departamento de Geociencias y Medo Ambiente
dc.publisher.faculty.spa.fl_str_mv Facultad de Minas
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/79847/5/license.txt
https://repositorio.unal.edu.co/bitstream/unal/79847/10/42151807.2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/79847/11/42151807.2021.pdf.jpg
bitstream.checksum.fl_str_mv cccfe52f796b7c63423298c2d3365fc6
055e1f75d6527c0fba753f04d2439092
848f36343765ed3ce2448ac01b5ffcb7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089474103050240
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2González Cadavid, Verónica ff65f04acd473e4029f0427034f847b3600Osorio Saraz, Jairo Alexander93075c8ef7e485f88a2db8981e3b16a0600Castrillón Mejía, Nataliaa03d212c243d4b26ed516c7e021fc9c8Ingeniería Agrícola2021-07-26T19:55:34Z2021-07-26T19:55:34Z2021https://repositorio.unal.edu.co/handle/unal/79847Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/El crecimiento explosivo de las explotaciones confinadas de cerdos en todo el mundo ha generado preocupación en muchos investigadores sobre el impacto ambiental, la salud, la productividad ganadera y la generación de biogases asociados a este tipo de producción a gran escala. El objetivo de este trabajo fue estudiar la concentración y las emisiones de gas metano de diez tipologías constructivas diferentes en función de las variables climáticas, constructivas y de confort térmico. Para lograr el objetivo se plantearon las características constructivas más relevantes para mejorar el confort térmico de los animales, disminuir las emisiones de gases, y proponer las tipologías por grupo etareo en función del piso térmico y características constructivas que mejor se adaptan a las condiciones de producción animal. Adicionalmente se visitaron 10 granjas de etapa de ceba ubicadas en el departamento de Antioquia - Colombia, entre 800-2300 metros sobre el nivel del mar, únicamente fue posible encontrar tipologías que trabajaban con ventilación natural. En los alojamientos de los animales se realizaron mediciones climáticas con sensores manuales con cuyos resultados se calcularon los índices de humedad y temperatura de globo negro (BGHI) y el Índice de Humedad y Temperatura (THI) para cada una de las instalaciones, encontrando resultados entre los rangos 78 ± 5 - 68 ± 2; y 79 ± 4 - 69 ± 3 respectivamente. Las medidas de metano se tomaron con sensores ubicados en puntos intermedios de las áreas de entrada y salida de ventilación y se analizó el comportamiento de la concentración y emisión de metano de las instalaciones junto con la correlación y evolución temporal de las variables climáticas, índices de confort y tipologías constructivas. La información se analizó mediante estadística descriptiva, análisis de varianza (ANOVA) y análisis de componentes principales (PCA). Se encontraron resultados como: un promedio de tasa de Emisión de CH4 (ER) por instalación (Kg año -1) de 607.9, Potencial de Calentamiento Global (GWP) por instalación (Kg año-1) de 15197.42 y correlaciones significativas entre RE, frecuencia de limpieza (CF), unidad animal (AU), flujo de aire (Q), densidad animal (DA) y humedad relativa (HR). Esta es la primera investigación con este alcance reportada en Colombia, la cual será importante para futuras investigaciones y políticas gubernamentales. (Tomado de la fuente)The explosive growth of pig production at high densities in confined farms around the world has raised concerns among many researchers about the environmental impact, health and productivity of livestock and the production of biogases associated with this type of largescale production. The objective of this work was to study the concentration and emissions of methane gas from ten different construction typologies based on climatic, constructive and animal welfare variables. To achieve the objective, the most relevant constructive characteristics were proposed that allow improving the thermal comfort conditions of the animals, reducing gas emissions; and propose the typologies by age group according to the thermal floor and construction characteristics that best adapt to the conditions of animal production. Additionally, 10 fattening stage farms were visited located in the department of Antioquia - Colombia, between 800-2300 meters above sea level, it was only possible to find typologies that worked with natural ventilation, Measurements to climatic variables were carried out in the housing of the animals with manual sensors, with the results the humidity and temperature indices of the black globe (BGHI) and the Humidity and Temperature Index (THI) were calculated for each of the facilities, finding results between the ranges 78 ± 5-68 ± 2 and 79 ± 4-69 ± 3 respectively. Methane measurements were taken with sensors located at intermediate points of the ventilation inlet and outlet areas and the behavior of the concentration and emission of methane from the facilities was analyzed together with the correlation and temporal evolution of the climatic variables, indices of comfort and construction typologies. The information was analyzed using descriptive statistics, analysis of variance (ANOVA) and principal component analysis (PCA). Results were found such as an average CH4 Emission rate (ER) per facility (Kg year -1) of 607.9, Global Warming Potential (GWP) per facility (Kg year-1) of 15197.42 and significant correlations between RE, cleaning frequency (CF), animal unit (AU), air flow (Q), animal density (DA) and relative humidity (RH). This is the first investigation reported in Colombia, which will be important for future investigations and government policies. (Tomado de la fuente)MaestríaMaster en Medio Ambiente y DesarrolloBioclimática aplicada a la agroindustria107 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Minas - Maestría en Medio Ambiente y DesarrolloDepartamento de Geociencias y Medo AmbienteFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede MedellínMedio AmbientezootecniaGases de invernaderoCría de cerdosIndice de confort animalBienestar animalEmisiones de metanoGases de efecto invernaderoPorciculturaAnimal comfort indexThermal stressAnimal welfareMethane emissionsGreenhouse gasesNatural ventilationPig farmingFactores de emisiones de gases del sector porcicola en el departamento de AntioquiaGas emission factors of the swine production in the department of AntioquiaTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAntioquia (Colombia)Ameen, R. F. M., & Mourshed, M. (2019). Urban sustainability assessment framework development: The ranking and weighting of sustainability indicators using analytic hierarchy process. Sustainable Cities and Society, 44(October 2018), 356–366. https://doi.org/10.1016/j.scs.2018.10.020Bjerg, B., Brandt, P., Sørensen, K., Pedersen, P., & Zhang, G. (2019). Review of methods to mitigate heat stress among sows. 2019 ASABE Annual International Meeting, June. https://doiorg/10.13031/aim.201900741Bjerg, B., Demeyer, P., Hoyaux, J., Didara, M., Grönroos, J., Hassouna, M., Amon, B., Bartzanas, T., Sándor, R., Fogarty, M., Klas, S., Schiavon, S., Juskiene, V., Radeski, M., Attard, G., Aarnink, A., Gülzari, Ş. Ö., Kuczyński, T., Fangueiro, D., … Norton, T. (2019). Review of legal requirements on ammonia and greenhouse gases emissions from animal production buildings in european countries. 2019 ASABE Annual International Meeting, June, 23. https://doi.org/10.13031/aim.201901070Briukhanov, A., Subbotin, I., Uvarov, R., & Vasilev, E. (2017). Method of designing of manure utilization technology. Agronoy Research, 15(3), 658–663.Broucek, J. (2018). Nitrous Oxide Release from Poultry and Pig Housing. 27(2), 467–479. https://doi.org/10.15244/pjoes/75871Castrillón, N., González, V., Osorio, J. A., Montoya, A. P., & Correa, G. (2020). Assessment of the methane emission for different typologies of fattening swine facilities in the department of antioquia Colombia. Agronomy Research, 18(Special Issue 2), 1189–1202. https://doi.org/10.15159/AR.20.108Cecchin, D., Pereira, C. R., Campos, A. T., Ferraz, P. F. P., Amaral, P. I. S., Sousa, F. A., Hüther, C. M., & Cruz, V. M. F. (2019). Behavior of swine hosted in facilities with different construction typologies. Journal of Animal Behaviour and Biometeorology, 7(1), 6–10. https://doi.org/10.31893/2318-1265jabb.v7n1p6-10Cecchin, D, Campos, A., Cruz, V., Sousa, F., Amaral, P., & Yanagi Junior, T. (2017). Air quality in swine growing and finishing facilities with different building typologies TT - Qualidade do ar em instalações para suínos em crescimento e terminação com diferentes tipologias construtivas. Revista Brasileira de Engenharia Agrícola e Ambiental, 21(5), 339–343. https://doi.org/10.1590/1807-1929/agriambi.v21n5p339-343Cecchin, Daiane, Da Cruz, V. F., Campos, A. T., Sousa, F. A., Amaral, P. I. S., Da Silva Ramos Freitas, L. C., & Andrade, R. R. (2017). Thermal environment in growing and finishing pig facilities of different building typologies. Journal of Animal Behaviour and Biometeorology, 5(4), 118–123. https://doi.org/10.14269/2318-1265/jabb.v5n4p118-123CIGR. (2006). ANIMAL HOUSING IN HOT CLIMATES: A multidisciplinary view (I. de A. Nääs & D. J. Moura (eds.)). CIGR. de Oliveira Júnior, A. J., de Souza, S. R. L., da Cruz, V. F., Vicentin, T. A., & Glavina, A. S. G. (2018). Development of an android APP to calculate thermal comfort indexes on animals and people. Computers and Electronics in Agriculture, 151(October 2017), 175–184. https://doi.org/10.1016/j.compag.2018.05.014de Vries, M., & de Boer, I. J. M. (2010). Comparing environmental impacts for livestock products: A review of life cycle assessments. Livestock Science, 128(1–3), 1–11. https://doi.org/10.1016/j.livsci.2009.11.007Departamento Administrativo Nacional de Estadística (DANE). (2016). 3rd National Agricultural Survey, Colombia. Dominica, I., Suharjito, Noviantri, V., & Utama, D. N. (2018). Thermal comfort modelling based on house’s architecture using ghost point quadratic explicit method. International Review of Civil Engineering, 9(4), 141–147. https://doi.org/10.15866/irece.v9i4.14417Ferrari, S., Costa, A., & Guarino, M. (2013). Heat stress assessment by swine related vocalizations. Livestock Science, 151(1), 29–34. https://doi.org/10.1016/j.livsci.2012.10.013Gabriel, D., Allen, A., Bastviken, D., Conrad, R., Gudasz, C., St-Pierre, A., Thanh-Duc, N., & Del Giorgio, P. A. (2014). Methane fluxes show consistent temperature dependence across microbial to ecosystem scales. Nature, 507(7493), 488–491. https://doi.org/10.1038/nature13164Gerber, P. ., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., Falcucci, A., & Tempio, G. (2013). Facing climate change through livestock.Gitz, V., Meybeck, A., Lipper, L., Young, C., & Braatz, S. (2016). Climate change and food security: Risks and responses. In Food and Agriculture Organization of the United Nations. https://doi.org/10.1080/14767058.2017.1347921Gobernación de Antioquia. (2014). Anuario estadístico del sector agropecuario en el departamento de Antioquia. Hansen, R., & Bjerg, B. (2018). Natural ventilation’s ability to prevent high indoor temperatures. m(April).Huerta_Crispin, R., & Gas, J. (2012). Manual de Buenas Prácticas de Producción Porcina. Lineamientos generales para el pequeño y mediano productor de cerdos. In Manual de Buenas Prácticas de Producción Porcina. Lineamientos generales para el pequeño y mediano productor de cerdos.IDEAM, PNUD, MADS, DNP, C. (2015). National Inventory of Greenhouse Gases (GHG) Colombia 2012. Instituto Colombiano de Hidrología Meteorología y Estudios Ambientales - IDEAM. (2005). Atlas climatológico de Colombia. Atlas Climatológico de Colombia, 219. http://www.ideam.gov.co/Jackson, P., Guy, J. H., Sturm, B., Bull, S., & Edwards, S. A. (2018). An innovative concept building design incorporating passive technology to improve resource efficiency and welfare of finishing pigs. Biosystems Engineering, 174, 190–203. https://doi.org/10.1016/j.biosystemseng.2018.07.008Lenerts, A., Popluga, D., & Naglis-Liepa, K. (2019). Benchmarking the GHG emissions intensities of crop and livestock–derived agricultural commodities produced in Latvia. Agronomy Research, 17(5), 1942–1952. https://doi.org/10.15159/AR.19.148Machado, S. T., Nääs, I. D. A., Dos Reis, J. G. ., Caldara, F. R., & Santos, R. C. (2016a). Sows and piglets thermal comfort: A comparative study of the tiles used in the farrowing housing. Engenharia Agricola, 36(6), 996–1004. https://doi.org/10.1590/1809-4430-Eng.Agric.v36n6p996-1004/2016Machado, S. T., Nääs, I. D. A., Dos Reis, J. G. M., Caldara, F. R., & Santos, R. C. (2016b). Sows and piglets thermal comfort: A comparative study of the tiles used in the farrowing housing. Engenharia Agricola, 36(6), 996–1004. https://doi.org/10.1590/1809-4430-Eng.Agric.v36n6p996-1004/2016Mayorga, E. J., Renaudeau, D., Ramirez, B. C., Ross, J. W., & Baumgard, L. H. (2019). Heat stress adaptations in pigs. Animal Frontiers, 9(1), 54–61. https://doi.org/10.1093/af/vfy035Ministerio de Agricultura y Desarrollo Rural (MADR). (2019). National Agroclimatic Report May 2019. In Ministerio de Agricultura y Desarrollo Rural (MADR) (Vol. 53).Monteny, G. J., Bannink, A., & Chadwick, D. (2006). Greenhouse gas abatement strategies for animal husbandry. Agriculture, Ecosystems and Environment, 112(2–3), 163–170. https://doi.org/10.1016/j.agee.2005.08.015Myer, R., & Bucklin, R. (2012). Influence of Hot-Humid Environment on Growth Performance and Reproduction of Swine 1 Methods to Minimize Heat Stress. University of Florida, IFAS Extension. AN 107, 1–8.Nations Food and Agriculture - FAO. (2011). World Livestock 2011 - Livestock in food security World. In FAO. https://doi.org/10.1080/00036841003742587Noya, I., Villanueva-Rey, P., González-García, S., Fernandez, M. D., Rodriguez, M. R., & Moreira, M. T. (2017). Life Cycle Assessment of pig production: A case study in Galicia. Journal of Cleaner Production, 142, 4327–4338. https://doi.org/10.1016/j.jclepro.2016.11.160Noya, Isabel, Aldea, X., Gasol, C. M., González-García, S., Amores, M. J., Colón, J., Ponsá, S., Roman, I., Rubio, M. A., Casas, E., Moreira, M. T., & Boschmonart-Rives, J. (2016). Carbon and water footprint of pork supply chain in Catalonia: From feed to final products. Journal of Environmental Management, 171, 133–143. https://doi.org/10.1016/j.jenvman.2016.01.039OCDE/FAO. (2018). OCDE-FAO Perspectivas Agrícolas 2013-2022. UNIVERSIDAD AUTÓNOMA CHAPINGO.Osorio-Saraz, J. A., Ferreira-Tinoco, I. D. fatima, Gates, R. S., Oliveira-Rocha, K. S., Combatt-Caballero, E. M., & Campos-de-Sousa, F. (2014). Adaptation and validation of a methdology for determing ammonia flux generated by litter in naturally ventilated poultry houses. Dyna, 81(187), 137–143. https://doi.org/10.15446/dyna.v81n187.40806Petersen, S. O., Olsen, A. B., Elsgaard, L., Triolo, J. M., & Sommer, S. G. (2016). Estimation of methane emissions from slurry pits below pig and cattle confinements. PLoS ONE, 11(8), 1–16. https://doi.org/10.1371/journal.pone.0160968Pezzopane, J. R. M., Nicodemo, M. L. F., Bosi, C., Garcia, A. R., & Lulu, J. (2019). Animal thermal comfort indexes in silvopastoral systems with different tree arrangements. Journal of Thermal Biology, 79(November 2018), 103–111. https://doi.org/10.1016/j.jtherbio.2018.12.015Philippe, F X., Laitat, M., Nicks, B., & Cabaraux, J. F. (2012). Ammonia and greenhouse gas emissions during the fattening of pigs kept on two types of straw floor. Agriculture, Ecosystems and Environment, 150, 45–53. https://doi.org/10.1016/j.agee.2012.01.006Philippe, F X, Laitat, M., Wavreille, J., Nicks, B., & Cabaraux, J. F. (2013). Influence of permanent use of feeding stalls as living area on ammonia and greenhouse gas emissions for group-housed gestating sows kept on straw deep-litter. Livestock Science, 155(2–3), 397–406. https://doi.org/10.1016/j.livsci.2013.05.005Philippe, F X, & Nicks, B. (2015). Review on greenhouse gas emissions from pig houses: Production of carbon dioxide, methane and nitrous oxide by animals and manure. Agriculture, Ecosystems and Environment, 199, 10–25. https://doi.org/10.1016/j.agee.2014.08.015Philippe, François Xavier, Cabaraux, J. F., & Nicks, B. (2011). Ammonia emissions from pig houses: Influencing factors and mitigation techniques. Agriculture, Ecosystems and Environment, 141(3–4), 245–260. https://doi.org/10.1016/j.agee.2011.03.012Pietrosemoli, S., & Tang, C. (2020). Animal welfare and production challenges associated with pasture pig systems: A review. Agriculture (Switzerland), 10(6), 1–34. https://doi.org/10.3390/agriculture10060223Porkcolombia, & PigCHAMP. (2015). Guia de mejores técnicas disponibles para el sector porcícola en Colombia. (p. 34). Reckmann, K., Traulsen, I., & Krieter, J. (2013). Life Cycle Assessment of pork production: A data inventory for the case of Germany. Livestock Science, 157(2–3), 586–596. https://doi.org/10.1016/j.livsci.2013.09.001Reimert, I., Rodenburg, T. B., Ursinus, W. W., Kemp, B., & Bolhuis, J. E. (2014). Selection based on indirect genetic effects for growth, environmental enrichment and coping style affect the immune status of pigs. PLoS ONE, 9(10). https://doi.org/10.1371/journal.pone.0108700Rhodes, T., Appleby, M., Chinn, K., Douglas, L., Firkins, L., Houpt, K., Irwin, C., McGlone, J., Dundberg, P., Tokach, L., & Wills, R. (2005). A comprehensive review of housing for pregnant sows Members - Task Force Report. Javma, 227(10), 1580–1590.Rodrigues, N. E. B., Zangeronimo, M. G., & Fialho, E. T. (2010). Suínos Sob Estresse Térmico. Revista Eletrônica Nutritime, 7(2), 1197–1211.Ross, J. W., Hale, B. J., Gabler, N. K., Rhoads, R. P., Keating, A. F., & Baumgard, L. H. (2015). Physiological consequences of heat stress in pigs. Animal Production Science, 55(11–12), 1381–1390. https://doi.org/10.1071/AN15267Salomon, S., Qin, D., Manning, M., Marquis, M., Averyt, K., Tignor, M. M. B., LeRoy Miller, H. jr, & Chen, Z. (2007). Climate change 2007: The Physical Science Basis. In Cambridge University Press, Cambridge, United Kingdom and New York (Issues 1–4). https://doi.org/10.1007/s11270-007-9372-6Sedorovich, D. M., Rotz, A., & Richard, T. L. (2007). Greenhouse gas emissions from dairy farms. 2007 ASABE Annual International Meeting, Technical Papers, 9, 14. https://doi.org/10.13031/2013.23112Seibert, L., & Norwood, F. B. (2011). Production costs and animal welfare for four stylized hog production systems. Journal of Applied Animal Welfare Science, 14(1), 1–17. https://doi.org/10.1080/10888705.2011.527596Sharpe, R. ., Harper, L. ., & Simmons, J. . (2001). Methane emission from swine houses in North Carolina. Chemosphere Global Change Science, 3, 1–6.Sousa, F. C., Tinôco, I. F. F., Barbari, M., Baptista, F., Souza, C. F., Saraz, A. O., Coelho, D. J. R., & Silva, A. L. (2018). Diagnosis of air quality in broilers production facilities in hot climates. Agronomy Research, 16(2), 582–592. https://doi.org/10.15159/AR.18.070Steinfeld, H., & Gerber, P. (2010). Livestock production and the global environment: Consume less or produce better? Proceedings of the National Academy of Sciences, 107(43), 18237–18238. https://doi.org/10.1073/pnas.1012541107 USDA. (2011). Department of agriculture national agricultural statistics service agricultural - Agricultural Statistics 2010. 1–9.XIONG, Y., MENG, Q. shi, GAO, J., TANG, X. fang, & ZHANG, H. fu. (2017). Effects of relative humidity on animal health and welfare. Journal of Integrative Agriculture, 16(8), 1653–1658. https://doi.org/10.1016/S2095-3119(16)61532-0EspecializadaLICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79847/5/license.txtcccfe52f796b7c63423298c2d3365fc6MD55ORIGINAL42151807.2021.pdf42151807.2021.pdfTesis Maestría en Medio Ambiente y Desarrolloapplication/pdf2608132https://repositorio.unal.edu.co/bitstream/unal/79847/10/42151807.2021.pdf055e1f75d6527c0fba753f04d2439092MD510THUMBNAIL42151807.2021.pdf.jpg42151807.2021.pdf.jpgGenerated Thumbnailimage/jpeg4356https://repositorio.unal.edu.co/bitstream/unal/79847/11/42151807.2021.pdf.jpg848f36343765ed3ce2448ac01b5ffcb7MD511unal/79847oai:repositorio.unal.edu.co:unal/798472023-07-24 23:04:02.527Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==