Estudio de la soldabilidad de la aleación de aluminio 2024 mediante el proceso GTAW de alta frecuencia, con mezcla de gases Ar-N2O-O2 y electrodo EWG

ilustraciones

Autores:
Ramírez Vargas, David Alberto
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/79643
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/79643
https://repositorio.unal.edu.co/
Palabra clave:
660 - Ingeniería química::669 - Metalurgia
Soldadura
Welding
Soldadura
ER4043
Aluminio 2024-T3
Duraluminios
Soldadura autógena
GTAW-P
Weldability
Filler metal
Non-consumable electrode
Dendrites
Welding speed
Heat input
Metalurgia
Metallurgy
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_644983d8c083e57b8ea80aabb719cbfc
oai_identifier_str oai:repositorio.unal.edu.co:unal/79643
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Estudio de la soldabilidad de la aleación de aluminio 2024 mediante el proceso GTAW de alta frecuencia, con mezcla de gases Ar-N2O-O2 y electrodo EWG
dc.title.translated.eng.fl_str_mv Weldability study of the 2024 aluminum alloy by means of a high frequency GTAW process, with gas blend Ar-N2O-O2 and EWG electrode
title Estudio de la soldabilidad de la aleación de aluminio 2024 mediante el proceso GTAW de alta frecuencia, con mezcla de gases Ar-N2O-O2 y electrodo EWG
spellingShingle Estudio de la soldabilidad de la aleación de aluminio 2024 mediante el proceso GTAW de alta frecuencia, con mezcla de gases Ar-N2O-O2 y electrodo EWG
660 - Ingeniería química::669 - Metalurgia
Soldadura
Welding
Soldadura
ER4043
Aluminio 2024-T3
Duraluminios
Soldadura autógena
GTAW-P
Weldability
Filler metal
Non-consumable electrode
Dendrites
Welding speed
Heat input
Metalurgia
Metallurgy
title_short Estudio de la soldabilidad de la aleación de aluminio 2024 mediante el proceso GTAW de alta frecuencia, con mezcla de gases Ar-N2O-O2 y electrodo EWG
title_full Estudio de la soldabilidad de la aleación de aluminio 2024 mediante el proceso GTAW de alta frecuencia, con mezcla de gases Ar-N2O-O2 y electrodo EWG
title_fullStr Estudio de la soldabilidad de la aleación de aluminio 2024 mediante el proceso GTAW de alta frecuencia, con mezcla de gases Ar-N2O-O2 y electrodo EWG
title_full_unstemmed Estudio de la soldabilidad de la aleación de aluminio 2024 mediante el proceso GTAW de alta frecuencia, con mezcla de gases Ar-N2O-O2 y electrodo EWG
title_sort Estudio de la soldabilidad de la aleación de aluminio 2024 mediante el proceso GTAW de alta frecuencia, con mezcla de gases Ar-N2O-O2 y electrodo EWG
dc.creator.fl_str_mv Ramírez Vargas, David Alberto
dc.contributor.advisor.none.fl_str_mv Herrera Quintero, Liz Karen
dc.contributor.author.none.fl_str_mv Ramírez Vargas, David Alberto
dc.contributor.researchgroup.spa.fl_str_mv GRUPO DE INVESTIGACIÓN AFIS (ANÁLISIS DE FALLAS, INTEGRIDAD Y SUPERFICIES)
dc.subject.ddc.spa.fl_str_mv 660 - Ingeniería química::669 - Metalurgia
topic 660 - Ingeniería química::669 - Metalurgia
Soldadura
Welding
Soldadura
ER4043
Aluminio 2024-T3
Duraluminios
Soldadura autógena
GTAW-P
Weldability
Filler metal
Non-consumable electrode
Dendrites
Welding speed
Heat input
Metalurgia
Metallurgy
dc.subject.other.none.fl_str_mv Soldadura
Welding
dc.subject.proposal.spa.fl_str_mv Soldadura
ER4043
Aluminio 2024-T3
Duraluminios
Soldadura autógena
GTAW-P
dc.subject.proposal.eng.fl_str_mv Weldability
Filler metal
Non-consumable electrode
Dendrites
Welding speed
Heat input
dc.subject.unesco.none.fl_str_mv Metalurgia
Metallurgy
description ilustraciones
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-06-17T19:47:27Z
dc.date.available.none.fl_str_mv 2021-06-17T19:47:27Z
dc.date.issued.none.fl_str_mv 2021-06-11
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/79643
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/79643
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv [1] A. P. Mouritz, Introduction to aerospace materials. Cambridge, England: Woodhead Publishing, 2012, vol. 55, no. 7.
[2] J. E. Hatch, Aluminum Properties and Physical Metallurgy, 1st ed. Materials Park, OH: ASM International, 1984.
[3] ASM International, “ASM Volume 6 - Welding, Brazing and Soldering,” in ASM Handbook, Materials Park, OH, 1993.
[4] ASM International, “ASM Volume 2 - Properties and Selection: Nonferrous Alloys and Special Purpose Materials,” in ASM Handbook, Materials Park, Ohio, 1990.
[5] J. G. Kaufman, Introduction to Aluminium Alloys and Tempers, 1st ed. Materials Park, Ohio: ASM International, 2000.
[6] L. F. Mondolfo, Aluminum Alloys: Structure and Properties, 1st ed. Boston, MA: Butterworth-Heinemann, Elsevier, 1976.
[7] W. F. Smith and J. Hashemi, Foundations of materials science and engineering, 5th ed. Texas, USA: McGrawHill, 2004.
[8] ASM International, “Aluminum and Aluminum Alloys,” in ASM Specialty Handbook, Materials Park, OH, 1993.
[9] D. Dye, “MSE 104 : Microstructure and Properties of Materials – Phase Metallurgy,” Imperial College of London, pp. 1–65, 2013. [Online]. Available: http://learn.imperial.ac.uk
[10] Z. Ling, “Notes from The Zang Research Group -Department of Materials Science and engineering,” pp. 1–5, 2008. [Online]. Available: https://pubweb.eng.utah.edu/{_}lzan g/images
[11] H. Bhadeshia, “Notes from Phase Transformations & Complex Properties Research Group - Materials science and metallurgy,” 2010. [Online]. Available: https://www.phase-trans.msm.cam.ac.uk/
[12] ASM International, “ASM Volume 4 - Heat Treating,” in ASM Handbook, Materials Park, OH, 1991.
[13] D. A. Porter, K. E. Easterling, and M. Y. Sherif, Phase Transformations in Metals and Alloys, 3rd ed. Boca Raton, FL: CRC Press, 2009.
[14] W. C. Carter, “MIT 3.00 Thermodynamics of Materials Lecture Notes,” 2002. [Online]. Available: http://pruffle.mit.edu/3.00
[15] ASM International, “ASM Volume 9 - Metallography and Microstructure,” in ASM Handbook, Materials Park, OH, 2004.
[16] E. Sander and T. Wanner, “Unexpectedly linear behavior for the Cahn–Hilliard equation,”SIAM Journal on Applied Mathematics, vol. 60, no. 6, pp. 2182–2202, 2000.
[17] D. E. Velazquez, “Descomposición espinodal y transformación martensítica en Beta Cu-Al-Mn,” 2018.
[18] W. D. Callister and D. G. Rethwisch, Materials science and engineering – An introduction, 8th ed. John Wiley & Sons, Inc., 2010, vol. 12, no. 1.
[19] G. E. Dieter, Mechanical Metallurgy, 2nd ed. Singapore: McGrawHill, 1988.
[20] ASM International, Binary Alloy Phase Diagrams - Volume 1, Metals Park, OH, 1986.
[21] M. F. Ashby and D. R. Jones, Engineering Materials 2 - An Introduction to Microstructures, Processing and Design, 3rd ed. Jordan Hill, Oxford: Butterworth Heinemann, Elsevier, 2006.
[22] R. R. Ambriz and D. Jaramillo, “Mechanical behavior of precipitation hardened aluminum alloys welds,” Light Metal Alloys Applications, pp. 35–59, 2014.
[23] G. Sha, R. K. W. Marceau, X. Gao, B. C. Muddle, and S. P. Ringer, “Nanostructure of aluminium alloy 2024: Segregation, clustering and precipitation processes,” Acta Materialia, vol. 59, no. 4, pp. 1659–1670, 2011. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1359645410007883
[24] Y. Liu, F. Teng, F. H. Cao, Z. X. Yin, Y. Jiang, S. B. Wang, and P. K. Shen, “Defective GP-zones and their evolution in an Al-Cu-Mg alloy during high-temperature aging,” Journal of Alloys and Compounds, vol. 774, pp. 988–996, 2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0925838818337277
[25] J. Zander and R. Sandstr¨om, “One parameter model for strength properties of hardenable aluminium alloys,” Materials & Design, vol. 29, no. 8, pp. 1540–1548, 2008. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0261306908000 174
[26] S. B. Wang, J. H. Chen, M. J. Yin, Z. R. Liu, D. W. Yuan, J. Z. Liu, C. H. Liu, and C. L. Wu, “Double-atomic-wall-based dynamic precipitates of the early-stage S-phase in AlCuMg alloys,” Acta Materialia, vol. 60, no. 19, pp. 6573–6580, 2012. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1359645412005526
[27] S. B. Wang, Z. R. Liu, S. L. Xia, J. Key, and J. H. Chen, “Tetragonal-prism-like Guinier–Preston–Bagaryatsky zones in an AlCuMg alloy,” Materials Characterization, vol. 132, pp. 139–144, 2017. [Online]. Available: https://www.sciencedirect.com/scienc e/article/pii/S1044580317312834
[28] S. Kou, Welding Metallurgy, 2nd ed. John Wiley & Sons, Inc., 2003.
[29] J. T. Staley and M. Tiryakioglu, “The use of TTP curves and quench factor analysis for property prediction in aluminum alloys,” in Proceedings from Materials Solutions Conference, 2001, pp. 5–8.
[30] T. H. Courtney, Mechanical Behavior of Materials, 2nd ed. Illinois, USA: Waveland Press Inc., 2000.
[31] T. Gladman, “Precipitation hardening in metals,” Materials science and technology, vol. 15, no. 1, pp. 30–36, 1999.
[32] ASM International, “ASM Volume 3 - Alloy Phase Diagrams,” in ASM Handbook, Materials Park, OH, 1992.
[33] Q. Du, D. G. Eskin, and L. Katgerman, “Modeling macrosegregation during direct-chill casting of multicomponent aluminum alloys,” Metallurgical and materials transactions A, vol. 38, no. 1, pp. 180–189, 2007.
[34] N. A. Belov, D. G. Eskin, and A. A. Aksenov, Multicomponent phase diagrams, 1st ed. Elsevier Ltd, 2005.
[35] M. Liang, L. Chen, G. Zhao, and Y. Guo, “Effects of solution treatment on the microstructure and mechanical properties of naturally aged EN AW 2024 Al alloy sheet,” Journal of Alloys and Compounds, vol. 824, p. 153943, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0925838820303066
[36] A. Boag, A. E. Hughes, N. C. Wilson, A. Torpy, C. M. MacRae, A. M. Glenn, and T. H. Muster, “How complex is the microstructure of AA2024-T3?” Corrosion Science, vol. 51, no. 8, pp. 1565–1568, 2009. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0010938X0900184X
[37] R. G. Buchheit, R. P. Grant, P. F. Hlava, B. Mckenzie, and G. L. Zender, “Local Dissolution Phenomena Associated with S Phase Al2CuMg Particles in Aluminum Alloy 2024-T3,” Journal of The Electrochemical Society, vol. 144, no. 8, pp. 2621–2628, 1997. [Online]. Available: https://doi.org/10.1149/1.1837874
[38] E. A. Starke and J. T. Staley, “Application of modern aluminum alloys to aircraft,” Progress in Aerospace Sciences, vol. 32, no. 2, pp. 131–172, 1996. [Online]. Available: https://www.sciencedirect.com/science/article/pii/0376042195000046
[39] G. S. Chen, M. Gao, and R. P. Wei, “Microconstituent-induced pitting corrosion in aluminum alloy 2024-T3,” corrosion, vol. 52, no. 1, pp. 8–15, 1996.
[40] J. C. Lippold, Welding metallurgy and weldability, 1st ed. Hoboken, New Jersey: John Wiley & Sons, Inc., 2015.
[41] J. Lancaster, Metallurgy of Welding, 6th ed. Cambridge, England: Abington Publishing, 1999.
[42] G. Mathers, The Welding of aluminium and its alloys, 1st ed. Cambridge, England: CRC Press, 2002.
[43] R.-d. Fu, J.-f. Zhang, Y.-j. Li, J. Kang, H.-j. Liu, and F.-c. Zhang, “Effect of welding heat input and post-welding natural aging on hardness of stir zone for friction stir-welded 2024-T3 aluminum alloy thin-sheet,” Materials Science and Engineering: A, vol. 559, pp. 319–324, 2013. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0921509312012385
[44] Y. CHEN, H. DING, J.-z. LI, J.-w. ZHAO, M.-j. FU, and X.-h. LI, “Effect of welding heat input and post-welded heat treatment on hardness of stir zone for friction stir-welded 2024-T3 aluminum alloy,” Transactions of Nonferrous Metals Society of China, vol. 25, no. 8, pp. 2524–2532, 2015. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1003632615638717
[45] M. J. Jones, P. Heurtier, C. Desrayaud, F. Montheillet, D. Allehaux, and J. H. Driver, “Correlation between microstructure and microhardness in a friction stir welded 2024 aluminium alloy,” Scripta Materialia, vol. 52, no. 8, pp. 693–697, 2005. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1359646204007201
[46] P. Cavaliere, R. Nobile, F. W. Panella, and A. Squillace, “Mechanical and microstructural behaviour of 2024–7075 aluminium alloy sheets joined by friction stir welding,” International Journal of Machine Tools and Manufacture, vol. 46, no. 6, pp. 588–594, 2006. [Online]. Available: https://www.sciencedirect.com/science/article/pii/ S0890695505001665
[47] P. S. Gowthaman and B. A. Saravanan, “Determination of weldability study on mechanical properties of dissimilar Al-alloys using Friction stir welding process,” Materials Today: Proceedings, 2020. [Online]. Available: https://www.sciencedirect.co m/science/article/pii/S2214785320364816
[48] A. F. Norman, V. Drazhner, and P. B. Prangnell, “Effect of welding parameters on the solidification microstructure of autogenous TIG welds in an Al–Cu–Mg–Mn alloy,” Materials Science and Engineering: A, vol. 259, no. 1, pp. 53–64, 1999. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0921509398008739
[49] H. Maamar, K. Mohamed, R. O. Rafik, F. Toufik, D. Nabil, and A. Djilali, “Heat treatment and welding effects on mechanical properties and microstructure evolution of 2024 and 7075 aluminium alloys,” MATERIALI IN TEHNOLOGIJE, vol. 42, no. I, p. 18, 2008.
[50] A. Hima Bindu, B. S. K. Chaitanya, K. Ajay, and I. Sudhakar, “Investigation on feasibility of dissimilar welding of AA2124 and AA7075 aluminium alloy using tungsten inert gas welding,” Materials Today: Proceedings, vol. 26, pp. 2283–2288, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2214785320312499
[51] S. Vijay, S. Rajanarayanan, and G. N. Ganeshan, “Analysis on mechanical properties of gas tungsten arc welded dissimilar aluminium alloy (Al2024 & Al6063),” Materials Today: Proceedings, vol. 21, pp. 384–391, 2020.
[52] M. M. Esfahani, A. Farzadi, and S. R. A. Zaree, “Effect of welding speed on gas metal arc weld pool in commercially pure aluminum: theoretically and experimentally,” Russian Journal of Non-Ferrous Metals, vol. 59, no. 1, pp. 82–92, 2018.
[53] J. Du, G. Zhao, and Z. Wei, “Effects of Welding Speed and Pulse Frequency on Surface Depression in Variable Polarity Gas Tungsten Arc Welding of Aluminum Alloy,” Metals, vol. 9, no. 2, 2019. [Online]. Available: https://www.mdpi.com/2075-4701/9/2/114
[54] S. Mohapatra and H. Sarangi, “Comparison between tungsten inert gas and friction stir welding in commercial aluminium alloy plates,” Journal of Chemical and Pharmaceutical Sciences, vol. 2, no. 3, 2016.
[55] A. Squillace, A. De Fenzo, G. Giorleo, and F. Bellucci, “A comparison between FSW and TIG welding techniques: modifications of microstructure and pitting corrosion resistance in AA 2024-T3 butt joints,” Journal of Materials Processing Technology, vol. 152, no. 1, pp. 97–105, 2004. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0924013604004339
[56] J. Ahn, E. He, L. Chen, J. Dear, and C. Davies, “The effect of Ar and He shielding gas on fibre laser weld shape and microstructure in AA 2024-T3,” Journal of Manufacturing Processes, vol. 29, pp. 62–73, 2017. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1526612517301755
[57] J. Ahn, L. Chen, E. He, C. M. Davies, and J. P. Dear, “Effect of filler metal feed rate and composition on microstructure and mechanical properties of fibre laser welded AA 2024-T3,” Journal of Manufacturing Processes, vol. 25, pp. 26–36, 2017. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1526612516301244
[58] S. Prakash, R. John Felix Kumar, and S. Jerome, “Effect of heat treatment on microstructure and mechanical properties of CMT welded Aluminium alloy 2024,” Materials Today: Proceedings, vol. 5, no. 13, Part 3, pp. 26 997–27 003, 2018. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2214785318321709
[59] American Welding Society, “ANSI/AWS A3.0-20 - Standard Welding Terms and Definitions,” p. 119, 2020.
[60] American Welding Society, ANSI/AWS A2.4:20 - Standard Symbols for Welding, Brazing, and Nondestructive Examination, 2020.
[61] National Aeronautics and Space Administration (NASA), “STD-5006 - General fusion welding requirements for aerospace materials used in flight hardware,” p. 23, 1999.
[62] R. Blondeau, Metallurgy and mechanics of welding: processes and industrial applications. John Wiley & Sons, 2013.
[63] American Welding Society, AWS D1.2/D1.2M: 2014 - Structural Welding Code- Aluminum, 6th ed. American National Standard, 2014.
[64] J. Lawson, Design and Analysis of Experiments with R. Utah, USA: CRC Press, 2015.
[65] H. Gutierrez Pulido and R. de la Vara Salazar, “An´alisis y dise˜no de experimentos,” 2012.
[66] D. C. Montgomery, Design and Analysis of Experiments, 8th ed. Arizona: John Wiley & Sons, Inc., 2012.
[67] R. Christensen, J. J. Faraway, M. Tanner, J. Zidek, F. Abramovich, Y. Ritov, A. Afifi, S. May, V. Clark, D. Altman, A. Anderson, S. Banerjee, A. Roy, P. J. Bickel, K. A. Doksum, C. R. Bilder, T. M. Loughin, D. Bissell, J. K. Blitzstein, and J. Hwang, Analysis of Variance, Design, and Regression - Linear Modeling for Unbalanced Data, 2nd ed. Albuquerque, USA: CRC Press, 2016.
[68] S. Kou and Y. Le, “Welding parameters and the grain structure of weld metal—A thermodynamic consideration,” Metallurgical Transactions A, vol. 19, no. 4, pp. 1075– 1082, 1988.
[69] T. Soysal and S. Kou, “Effect of filler metals on solidification cracking susceptibility of Al alloys 2024 and 6061,” Journal of Materials Processing Technology, vol. 266, pp. 421–428, 2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/ S0924013618305119 [70] American Welding Society, “AWS A51.0/A5.10M:2012 - Welding Consumables-Wire Electrodes, Wires and Rods for Welding of Aluminum and Aluminum-Alloys Classification,” AWS International, 2012.
[71] T. B¨ollinghaus and H. Herold, Hot Cracking Phenomena in Welds, ser. Springer ebook collection / Chemistry and Materials Science 2005-2008. Springer Berlin Heidelberg, 2005. [Online]. Available: https://books.google.com.co/books?id=pLprPeLY-T0C
[72] American Welding Society, AWS A5.12M/A5.12:2009 - Specification for Tungsten and Oxide Dispersed Tungsten Electrodes for Arc Welding and Cutting, 2009, vol. 2009.
[73] M. A. D. Tier, J. F. dos Santos, T. de Souza Rosendo, J. A. E. Mazzaferro, C. C. P. Mazzaferro, T. R. Strohaecker, L. A. Bergmann, C. A. W. Olea, and A. da Silva, “A study about the mechanical properties of Alclad AA 2024 connections processed by friction spot welding 1,” Research Gate, 2009.
[74] American Welding Society, AWS D17.1/D17.1M:2017 - Specification for Resistance Welding for Aerospace Applications, 3rd ed. American National Standard, 2017.
[75] American Welding Society, “ANSI/AWS A5.32/A53.2M-97 - Specification for Welding Shielding Gases,” AWS International, p. 26, 1997.
[76] P. L. Miller, K. A. Lyttle, J. B. Neff, D. A. Steyer, and K. G. Pierce., “Welding Gas Compositions and method for use,” 2015. [Online]. Available: https://patents.justia.com/patent/20150165565{#}history
[77] American Welding Society, Welding Inspection Handbook, 4th ed., 2015.
[78] American Welding Society, ANSI/AWS B1.10:16 - Guide for the nondestructive Inspection of Welds, 2016.
[79] American Welding Society, ANSI/AWS B1.11:15 - Guide for the Visual Inspection of Welds, Miami, FL, 2015.
[80] ASTM E165/E165M-18, “Standard Practice for Liquid Penetrant Testing for General Industry,” ASTM, pp. 1–11, 2010.
[81] ASTM E1417/E1417M-16, “Standard Practice for Liquid Penetrant Testing,” ASTM International, pp. 1–11, 2010.
[82] ASTM E1220-10, “Standard Practice for Visible Penetrant Testing Using Solvent Removable,” ASTM International, vol. i, pp. 1–6, 2010.
[83] ASTM E1219-16, “Standard Practice for Fluorescent Liquid Penetrant Testing Using the Solvent-Removable Process,” West Conshohocken, PA, Tech. Rep., 2016.
[84] J. Lippold, T. B¨ollinghaus, and C. E. Cross, Hot cracking phenomena in welds III. Springer Science & Business Media, 2011.
[85] Z. Feng, “A methodology for quantifying the thermal and mechanical conditions for weld metal solidification cracking,” Ph.D. dissertation, The Ohio State University, 1993.
[86] J. Liu and S. Kou, “Susceptibility of ternary aluminum alloys to cracking during solidification,” Acta Materialia, vol. 125, pp. 513–523, 2017. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1359645416309648
[87] ASM International, “ASM Volume 11 - Failure Analysis and Prevention,” in ASM Handbook, Materials Park, OH, 2002.
[88] M. Olabode, “Weldability of high strength aluminium alloys,” 2015.
[89] H. Kaya, E. C¸ ad\irh, M. G¨und¨uz, and A. ¨Ulgen, “Effect of the temperature gradient, growth rate, and the interflake spacing on the microhardness in the directionally solidified Al-Si eutectic alloy,” Journal of Materials Engineering and Performance, vol. 12, no. 5, pp. 544–551, 2003.
[90] K. Easterling, “Chapter4 - Cracking and fracture in welds,” in Introduction to the Physical Metallurgy of Welding, 2nd ed., K. Easterling, Ed. Butterworth-Heinemann, 1992, pp. 191–260. [Online]. Available: https://www.sciencedirect.com/science/article/ pii/B9780750603942500095
[91] T. Hashimoto, X. Zhang, X. Zhou, P. Skeldon, S. J. Haigh, and G. E. Thompson, “Investigation of dealloying of S phase (Al2CuMg) in AA 2024- T3 aluminium alloy using high resolution 2D and 3D electron imaging,” Corrosion Science, vol. 103, pp. 157–164, 2016. [Online]. Available: https: //www.sciencedirect.com/science/article/pii/S0010938X15301554
[92] J. Laigo, F. Christien, R. Le Gall, F. Tancret, and J. Furtado, “SEM, EDS, EPMA-WDS and EBSD characterization of carbides in HP type heat resistant alloys,” Materials Characterization, vol. 59, no. 11, pp. 1580–1586, 2008. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1044580308000648
[93] A. Albannai, “Innovative Tandem GTAW with Alternating Side-by-Side Spot-Like Welds to Minimize Centerline Solidification Cracking,” Ph.D. dissertation, The Ohio State University, 2017.
[94] Z. Huda, N. I. Taib, and T. Zaharinie, “Characterization of 2024-T3: An aerospace aluminum alloy,” Materials Chemistry and Physics, vol. 113, no. 2, pp. 515–517, 2009. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0254058408007 682
[95] ASTM E3-17, “Standard Guide for Preparation of Metallographic Specimens,” ASTM International, vol. 03.01, no. July, pp. 1–12, 2012.
[96] American Welding Society, Welding Handbook, Volume 1 - Welding science and Technology, 9th ed., Miami, FL, 1987, vol. 1.
[97] S. Henry, T. Minghetti, and M. Rappaz, “Dendrite growth morphologies in aluminium alloys,” Acta Materialia, vol. 46, no. 18, pp. 6431–6443, 1998. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1359645498003085 [98] ASM International, “ASM Volume 15 - Casting,” in ASM Handbook, Materials Park, OH, 1992, no. USA, ASM International.
[99] American Welding Society, “AWS B2.1-84-98 - Standard for Welding Procedures and Performance Qualification,” Miami, FL, 1998.
[100] American Welding Society, AWS B4.0:16 - Standard Methods for Mechanical of Welds, 2016.
[101] ASTM E8/E8M-21, “Standard test methods for tension testing of metallic materials 1,” ASTM International, no. C, pp. 1–27, 2021.
[102] ASTM B209-14, “Aluminum and Aluminum-Alloy Sheet and Plate 1,” ASTM International, pp. 1–25, 2014.
[103] E. Espejo Mora and H. Hernandez Albanil, Analisis de fallas de estructuras y elementos mecanicos. Universidad Nacional de Colombia, 2017.
[104] N. Coniglio and C. E. Cross, “Initiation and growth mechanisms for weld solidification cracking,” International Materials Reviews, vol. 58, no. 7, pp. 375–397, 2013. [Online]. Available: https://doi.org/10.1179/1743280413Y.0000000020
[105] J. Campbell, “The Solidification of Metals,” ISI Publication, vol. 110, pp. 18–26, 1968.
[106] ASTM E384-17, “Standard Test Method for Microindentation Hardness of Materials,” ASTM International, vol. E384, pp. 1–40, 2017.
[107] ASTM E190-14, “Standard Test Method for Guided Bend Test for Ductility of Welds,” ASTM International, vol. 03, no. Reapproved, pp. 2–4, 2015.
[108] ASTM E290-14, “Standard Test Methods for Bend Testing of Material for Ductility,” ASTM International, vol. 03, no. February, pp. 1–7, 1998.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 231 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Ingeniería - Materiales y Procesos
dc.publisher.department.spa.fl_str_mv Departamento de Ingeniería Mecánica y Mecatrónica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/79643/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/79643/2/Tesis%20maestr%c3%ada.pdf
https://repositorio.unal.edu.co/bitstream/unal/79643/3/license_rdf
https://repositorio.unal.edu.co/bitstream/unal/79643/4/Tesis%20maestr%c3%ada.pdf.jpg
bitstream.checksum.fl_str_mv cccfe52f796b7c63423298c2d3365fc6
763180648b24e14a826234246d2e32ca
4460e5956bc1d1639be9ae6146a50347
a41e0409241007c2cde5ff427a69a19e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089303189356544
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Herrera Quintero, Liz Karen466450389e49c1dfef02fa0d2392b456600Ramírez Vargas, David Alberto40d5aa45e77c06516bcce36520be9333600GRUPO DE INVESTIGACIÓN AFIS (ANÁLISIS DE FALLAS, INTEGRIDAD Y SUPERFICIES)2021-06-17T19:47:27Z2021-06-17T19:47:27Z2021-06-11https://repositorio.unal.edu.co/handle/unal/79643Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustracionesEn el presente documento se presenta el estudio de la soldabilidad de la aleación de aluminio 2024-T3 mediante soldadura por arco pulsado de tungsteno con gas. El objetivo de esta investigación fue el realizar un análisis de la soldadura de dicha aleación de aluminio endurecible por precipitación, realizando algunas combinaciones de variables esenciales como metal de aporte y electrodo no consumible. La investigación siguió los lineamientos planteados por la Asociación Americana de Soldadura (AWS) en sus estándares D1.2 y D17.1 y las especificaciones y los resultados se registraron en las respectivas especificaciones de los procedimientos (WPS) y registros de calificación (PQR), respectivamente. La calidad de la soldadura se evaluó primero mediante inspección visual e inspección por líquidos penetrantes, posteriormente se evaluó mediante inspección metalográfica con microscopía óptica (OM) y microscopía electrónica de barrido (SEM). Además, se determinó el ablandamiento de la soldadura mediante pruebas de microdureza. La resistencia y ductilidad de las soldaduras se evaluaron haciendo uso de ensayos de tracción y ensayos de doblez guiados de raíz y cara. Adicionalmente, se realizó un análisis estadístico de un diseño experimental de $ 2 ^ 2 $ para obtener e informar los efectos principales de la combinación de dos factores. Para explicar mejor el deterioro de la resistencia, se realizó un análisis de la superficie de la fractura, identificando una trayectoria intergranular y textura granular, relacionada con una fractura frágil. Los estudios arrojan que un proceso manual, como el empleado en la investigación, se encuentra altamente limitado en la reducción de la tendencia al agrietamiento y la respectiva caída de sus propiedades mecánicas de ductilidad y resistencia mecánica. También, dada la elevada presencia de porosidad de gas y las evidencias de fragilización, se concluye que no hubo un adecuado manejo de las potenciales fuentes de hidrógeno. Como posible solución, se plantea el manejo de un material de aporte con mayor contenido de cobre y silicio, junto con el debido uso de un proceso de soldadura automatizado o mecanizado. (Apartes del texto)This document presents a study of the weldability of the aluminum alloy 2024-T3 using gas tungsten arc welding . The objective of this research was to do an analysis of the welding for the precipitation hardenable alloy, doing some combinations of essential variables as filler metal and non-consumable electrode. The research was conducted under the guidelines of the American Welding Society (AWS) on its D1.2 and D17.1 standards and the specifications and results were recorded in the welding procedure specification (WPS) and procedure qualification records (PQR), respectively. The weld quality was firstly evaluated using visual inspection and penetrant testing, secondly it was evaluated using metallographic inspection with optical microscopy (OM)and Scanning Electron Microscope (SEM). Furthermore, the softening of the weldment was inspected using microhardness testing. The strength and ductility of the welds were evaluated by mean of cross-tension tests and guided root and face bend tests. In addition, statistical analysis of a 2 2 experimental design was conducted in order to obtain and report the main effects from the combination of two factors. To explain in a better way the decay in strength, a fracture surface analysis was done, identifying an intergranular path and granular texture, related to a brittle fracture. Studies showed that a manual process, like the used in the investigation, is highly restricted to reduce the cracking tendency and the subsequent decay in mechanical properties of ductility and tensile strength. Additionally, due to the high presence of gas porosity and to embrittlement evidences, it was concluded that it had not have a proper control of hydrogen sources. As possible solution it is proposed the usage of a higher copper and silicon content filler, complemented by the usage of a automated or mechanized process. (Apartes del texto)MaestríaMagíster en Ingeniería - Materiales y ProcesosProcesos de manufactura y metalurgia231 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Materiales y ProcesosDepartamento de Ingeniería Mecánica y MecatrónicaFacultad de IngenieríaUniversidad Nacional de Colombia - Sede Bogotá660 - Ingeniería química::669 - MetalurgiaSoldaduraWeldingSoldaduraER4043Aluminio 2024-T3DuraluminiosSoldadura autógenaGTAW-PWeldabilityFiller metalNon-consumable electrodeDendritesWelding speedHeat inputMetalurgiaMetallurgyEstudio de la soldabilidad de la aleación de aluminio 2024 mediante el proceso GTAW de alta frecuencia, con mezcla de gases Ar-N2O-O2 y electrodo EWGWeldability study of the 2024 aluminum alloy by means of a high frequency GTAW process, with gas blend Ar-N2O-O2 and EWG electrodeTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TM[1] A. P. Mouritz, Introduction to aerospace materials. Cambridge, England: Woodhead Publishing, 2012, vol. 55, no. 7.[2] J. E. Hatch, Aluminum Properties and Physical Metallurgy, 1st ed. Materials Park, OH: ASM International, 1984.[3] ASM International, “ASM Volume 6 - Welding, Brazing and Soldering,” in ASM Handbook, Materials Park, OH, 1993.[4] ASM International, “ASM Volume 2 - Properties and Selection: Nonferrous Alloys and Special Purpose Materials,” in ASM Handbook, Materials Park, Ohio, 1990.[5] J. G. Kaufman, Introduction to Aluminium Alloys and Tempers, 1st ed. Materials Park, Ohio: ASM International, 2000.[6] L. F. Mondolfo, Aluminum Alloys: Structure and Properties, 1st ed. Boston, MA: Butterworth-Heinemann, Elsevier, 1976.[7] W. F. Smith and J. Hashemi, Foundations of materials science and engineering, 5th ed. Texas, USA: McGrawHill, 2004.[8] ASM International, “Aluminum and Aluminum Alloys,” in ASM Specialty Handbook, Materials Park, OH, 1993.[9] D. Dye, “MSE 104 : Microstructure and Properties of Materials – Phase Metallurgy,” Imperial College of London, pp. 1–65, 2013. [Online]. Available: http://learn.imperial.ac.uk[10] Z. Ling, “Notes from The Zang Research Group -Department of Materials Science and engineering,” pp. 1–5, 2008. [Online]. Available: https://pubweb.eng.utah.edu/{_}lzan g/images[11] H. Bhadeshia, “Notes from Phase Transformations & Complex Properties Research Group - Materials science and metallurgy,” 2010. [Online]. Available: https://www.phase-trans.msm.cam.ac.uk/[12] ASM International, “ASM Volume 4 - Heat Treating,” in ASM Handbook, Materials Park, OH, 1991.[13] D. A. Porter, K. E. Easterling, and M. Y. Sherif, Phase Transformations in Metals and Alloys, 3rd ed. Boca Raton, FL: CRC Press, 2009.[14] W. C. Carter, “MIT 3.00 Thermodynamics of Materials Lecture Notes,” 2002. [Online]. Available: http://pruffle.mit.edu/3.00[15] ASM International, “ASM Volume 9 - Metallography and Microstructure,” in ASM Handbook, Materials Park, OH, 2004.[16] E. Sander and T. Wanner, “Unexpectedly linear behavior for the Cahn–Hilliard equation,”SIAM Journal on Applied Mathematics, vol. 60, no. 6, pp. 2182–2202, 2000.[17] D. E. Velazquez, “Descomposición espinodal y transformación martensítica en Beta Cu-Al-Mn,” 2018.[18] W. D. Callister and D. G. Rethwisch, Materials science and engineering – An introduction, 8th ed. John Wiley & Sons, Inc., 2010, vol. 12, no. 1.[19] G. E. Dieter, Mechanical Metallurgy, 2nd ed. Singapore: McGrawHill, 1988.[20] ASM International, Binary Alloy Phase Diagrams - Volume 1, Metals Park, OH, 1986.[21] M. F. Ashby and D. R. Jones, Engineering Materials 2 - An Introduction to Microstructures, Processing and Design, 3rd ed. Jordan Hill, Oxford: Butterworth Heinemann, Elsevier, 2006.[22] R. R. Ambriz and D. Jaramillo, “Mechanical behavior of precipitation hardened aluminum alloys welds,” Light Metal Alloys Applications, pp. 35–59, 2014.[23] G. Sha, R. K. W. Marceau, X. Gao, B. C. Muddle, and S. P. Ringer, “Nanostructure of aluminium alloy 2024: Segregation, clustering and precipitation processes,” Acta Materialia, vol. 59, no. 4, pp. 1659–1670, 2011. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1359645410007883[24] Y. Liu, F. Teng, F. H. Cao, Z. X. Yin, Y. Jiang, S. B. Wang, and P. K. Shen, “Defective GP-zones and their evolution in an Al-Cu-Mg alloy during high-temperature aging,” Journal of Alloys and Compounds, vol. 774, pp. 988–996, 2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0925838818337277[25] J. Zander and R. Sandstr¨om, “One parameter model for strength properties of hardenable aluminium alloys,” Materials & Design, vol. 29, no. 8, pp. 1540–1548, 2008. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0261306908000 174[26] S. B. Wang, J. H. Chen, M. J. Yin, Z. R. Liu, D. W. Yuan, J. Z. Liu, C. H. Liu, and C. L. Wu, “Double-atomic-wall-based dynamic precipitates of the early-stage S-phase in AlCuMg alloys,” Acta Materialia, vol. 60, no. 19, pp. 6573–6580, 2012. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1359645412005526[27] S. B. Wang, Z. R. Liu, S. L. Xia, J. Key, and J. H. Chen, “Tetragonal-prism-like Guinier–Preston–Bagaryatsky zones in an AlCuMg alloy,” Materials Characterization, vol. 132, pp. 139–144, 2017. [Online]. Available: https://www.sciencedirect.com/scienc e/article/pii/S1044580317312834[28] S. Kou, Welding Metallurgy, 2nd ed. John Wiley & Sons, Inc., 2003.[29] J. T. Staley and M. Tiryakioglu, “The use of TTP curves and quench factor analysis for property prediction in aluminum alloys,” in Proceedings from Materials Solutions Conference, 2001, pp. 5–8.[30] T. H. Courtney, Mechanical Behavior of Materials, 2nd ed. Illinois, USA: Waveland Press Inc., 2000.[31] T. Gladman, “Precipitation hardening in metals,” Materials science and technology, vol. 15, no. 1, pp. 30–36, 1999.[32] ASM International, “ASM Volume 3 - Alloy Phase Diagrams,” in ASM Handbook, Materials Park, OH, 1992.[33] Q. Du, D. G. Eskin, and L. Katgerman, “Modeling macrosegregation during direct-chill casting of multicomponent aluminum alloys,” Metallurgical and materials transactions A, vol. 38, no. 1, pp. 180–189, 2007.[34] N. A. Belov, D. G. Eskin, and A. A. Aksenov, Multicomponent phase diagrams, 1st ed. Elsevier Ltd, 2005.[35] M. Liang, L. Chen, G. Zhao, and Y. Guo, “Effects of solution treatment on the microstructure and mechanical properties of naturally aged EN AW 2024 Al alloy sheet,” Journal of Alloys and Compounds, vol. 824, p. 153943, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0925838820303066[36] A. Boag, A. E. Hughes, N. C. Wilson, A. Torpy, C. M. MacRae, A. M. Glenn, and T. H. Muster, “How complex is the microstructure of AA2024-T3?” Corrosion Science, vol. 51, no. 8, pp. 1565–1568, 2009. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0010938X0900184X[37] R. G. Buchheit, R. P. Grant, P. F. Hlava, B. Mckenzie, and G. L. Zender, “Local Dissolution Phenomena Associated with S Phase Al2CuMg Particles in Aluminum Alloy 2024-T3,” Journal of The Electrochemical Society, vol. 144, no. 8, pp. 2621–2628, 1997. [Online]. Available: https://doi.org/10.1149/1.1837874[38] E. A. Starke and J. T. Staley, “Application of modern aluminum alloys to aircraft,” Progress in Aerospace Sciences, vol. 32, no. 2, pp. 131–172, 1996. [Online]. Available: https://www.sciencedirect.com/science/article/pii/0376042195000046[39] G. S. Chen, M. Gao, and R. P. Wei, “Microconstituent-induced pitting corrosion in aluminum alloy 2024-T3,” corrosion, vol. 52, no. 1, pp. 8–15, 1996.[40] J. C. Lippold, Welding metallurgy and weldability, 1st ed. Hoboken, New Jersey: John Wiley & Sons, Inc., 2015.[41] J. Lancaster, Metallurgy of Welding, 6th ed. Cambridge, England: Abington Publishing, 1999.[42] G. Mathers, The Welding of aluminium and its alloys, 1st ed. Cambridge, England: CRC Press, 2002.[43] R.-d. Fu, J.-f. Zhang, Y.-j. Li, J. Kang, H.-j. Liu, and F.-c. Zhang, “Effect of welding heat input and post-welding natural aging on hardness of stir zone for friction stir-welded 2024-T3 aluminum alloy thin-sheet,” Materials Science and Engineering: A, vol. 559, pp. 319–324, 2013. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0921509312012385[44] Y. CHEN, H. DING, J.-z. LI, J.-w. ZHAO, M.-j. FU, and X.-h. LI, “Effect of welding heat input and post-welded heat treatment on hardness of stir zone for friction stir-welded 2024-T3 aluminum alloy,” Transactions of Nonferrous Metals Society of China, vol. 25, no. 8, pp. 2524–2532, 2015. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1003632615638717[45] M. J. Jones, P. Heurtier, C. Desrayaud, F. Montheillet, D. Allehaux, and J. H. Driver, “Correlation between microstructure and microhardness in a friction stir welded 2024 aluminium alloy,” Scripta Materialia, vol. 52, no. 8, pp. 693–697, 2005. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1359646204007201[46] P. Cavaliere, R. Nobile, F. W. Panella, and A. Squillace, “Mechanical and microstructural behaviour of 2024–7075 aluminium alloy sheets joined by friction stir welding,” International Journal of Machine Tools and Manufacture, vol. 46, no. 6, pp. 588–594, 2006. [Online]. Available: https://www.sciencedirect.com/science/article/pii/ S0890695505001665[47] P. S. Gowthaman and B. A. Saravanan, “Determination of weldability study on mechanical properties of dissimilar Al-alloys using Friction stir welding process,” Materials Today: Proceedings, 2020. [Online]. Available: https://www.sciencedirect.co m/science/article/pii/S2214785320364816[48] A. F. Norman, V. Drazhner, and P. B. Prangnell, “Effect of welding parameters on the solidification microstructure of autogenous TIG welds in an Al–Cu–Mg–Mn alloy,” Materials Science and Engineering: A, vol. 259, no. 1, pp. 53–64, 1999. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0921509398008739[49] H. Maamar, K. Mohamed, R. O. Rafik, F. Toufik, D. Nabil, and A. Djilali, “Heat treatment and welding effects on mechanical properties and microstructure evolution of 2024 and 7075 aluminium alloys,” MATERIALI IN TEHNOLOGIJE, vol. 42, no. I, p. 18, 2008.[50] A. Hima Bindu, B. S. K. Chaitanya, K. Ajay, and I. Sudhakar, “Investigation on feasibility of dissimilar welding of AA2124 and AA7075 aluminium alloy using tungsten inert gas welding,” Materials Today: Proceedings, vol. 26, pp. 2283–2288, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2214785320312499[51] S. Vijay, S. Rajanarayanan, and G. N. Ganeshan, “Analysis on mechanical properties of gas tungsten arc welded dissimilar aluminium alloy (Al2024 & Al6063),” Materials Today: Proceedings, vol. 21, pp. 384–391, 2020.[52] M. M. Esfahani, A. Farzadi, and S. R. A. Zaree, “Effect of welding speed on gas metal arc weld pool in commercially pure aluminum: theoretically and experimentally,” Russian Journal of Non-Ferrous Metals, vol. 59, no. 1, pp. 82–92, 2018.[53] J. Du, G. Zhao, and Z. Wei, “Effects of Welding Speed and Pulse Frequency on Surface Depression in Variable Polarity Gas Tungsten Arc Welding of Aluminum Alloy,” Metals, vol. 9, no. 2, 2019. [Online]. Available: https://www.mdpi.com/2075-4701/9/2/114[54] S. Mohapatra and H. Sarangi, “Comparison between tungsten inert gas and friction stir welding in commercial aluminium alloy plates,” Journal of Chemical and Pharmaceutical Sciences, vol. 2, no. 3, 2016.[55] A. Squillace, A. De Fenzo, G. Giorleo, and F. Bellucci, “A comparison between FSW and TIG welding techniques: modifications of microstructure and pitting corrosion resistance in AA 2024-T3 butt joints,” Journal of Materials Processing Technology, vol. 152, no. 1, pp. 97–105, 2004. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0924013604004339[56] J. Ahn, E. He, L. Chen, J. Dear, and C. Davies, “The effect of Ar and He shielding gas on fibre laser weld shape and microstructure in AA 2024-T3,” Journal of Manufacturing Processes, vol. 29, pp. 62–73, 2017. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1526612517301755[57] J. Ahn, L. Chen, E. He, C. M. Davies, and J. P. Dear, “Effect of filler metal feed rate and composition on microstructure and mechanical properties of fibre laser welded AA 2024-T3,” Journal of Manufacturing Processes, vol. 25, pp. 26–36, 2017. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1526612516301244[58] S. Prakash, R. John Felix Kumar, and S. Jerome, “Effect of heat treatment on microstructure and mechanical properties of CMT welded Aluminium alloy 2024,” Materials Today: Proceedings, vol. 5, no. 13, Part 3, pp. 26 997–27 003, 2018. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2214785318321709[59] American Welding Society, “ANSI/AWS A3.0-20 - Standard Welding Terms and Definitions,” p. 119, 2020.[60] American Welding Society, ANSI/AWS A2.4:20 - Standard Symbols for Welding, Brazing, and Nondestructive Examination, 2020.[61] National Aeronautics and Space Administration (NASA), “STD-5006 - General fusion welding requirements for aerospace materials used in flight hardware,” p. 23, 1999.[62] R. Blondeau, Metallurgy and mechanics of welding: processes and industrial applications. John Wiley & Sons, 2013.[63] American Welding Society, AWS D1.2/D1.2M: 2014 - Structural Welding Code- Aluminum, 6th ed. American National Standard, 2014.[64] J. Lawson, Design and Analysis of Experiments with R. Utah, USA: CRC Press, 2015.[65] H. Gutierrez Pulido and R. de la Vara Salazar, “An´alisis y dise˜no de experimentos,” 2012.[66] D. C. Montgomery, Design and Analysis of Experiments, 8th ed. Arizona: John Wiley & Sons, Inc., 2012.[67] R. Christensen, J. J. Faraway, M. Tanner, J. Zidek, F. Abramovich, Y. Ritov, A. Afifi, S. May, V. Clark, D. Altman, A. Anderson, S. Banerjee, A. Roy, P. J. Bickel, K. A. Doksum, C. R. Bilder, T. M. Loughin, D. Bissell, J. K. Blitzstein, and J. Hwang, Analysis of Variance, Design, and Regression - Linear Modeling for Unbalanced Data, 2nd ed. Albuquerque, USA: CRC Press, 2016.[68] S. Kou and Y. Le, “Welding parameters and the grain structure of weld metal—A thermodynamic consideration,” Metallurgical Transactions A, vol. 19, no. 4, pp. 1075– 1082, 1988.[69] T. Soysal and S. Kou, “Effect of filler metals on solidification cracking susceptibility of Al alloys 2024 and 6061,” Journal of Materials Processing Technology, vol. 266, pp. 421–428, 2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/ S0924013618305119 [70] American Welding Society, “AWS A51.0/A5.10M:2012 - Welding Consumables-Wire Electrodes, Wires and Rods for Welding of Aluminum and Aluminum-Alloys Classification,” AWS International, 2012.[71] T. B¨ollinghaus and H. Herold, Hot Cracking Phenomena in Welds, ser. Springer ebook collection / Chemistry and Materials Science 2005-2008. Springer Berlin Heidelberg, 2005. [Online]. Available: https://books.google.com.co/books?id=pLprPeLY-T0C[72] American Welding Society, AWS A5.12M/A5.12:2009 - Specification for Tungsten and Oxide Dispersed Tungsten Electrodes for Arc Welding and Cutting, 2009, vol. 2009.[73] M. A. D. Tier, J. F. dos Santos, T. de Souza Rosendo, J. A. E. Mazzaferro, C. C. P. Mazzaferro, T. R. Strohaecker, L. A. Bergmann, C. A. W. Olea, and A. da Silva, “A study about the mechanical properties of Alclad AA 2024 connections processed by friction spot welding 1,” Research Gate, 2009.[74] American Welding Society, AWS D17.1/D17.1M:2017 - Specification for Resistance Welding for Aerospace Applications, 3rd ed. American National Standard, 2017.[75] American Welding Society, “ANSI/AWS A5.32/A53.2M-97 - Specification for Welding Shielding Gases,” AWS International, p. 26, 1997.[76] P. L. Miller, K. A. Lyttle, J. B. Neff, D. A. Steyer, and K. G. Pierce., “Welding Gas Compositions and method for use,” 2015. [Online]. Available: https://patents.justia.com/patent/20150165565{#}history[77] American Welding Society, Welding Inspection Handbook, 4th ed., 2015.[78] American Welding Society, ANSI/AWS B1.10:16 - Guide for the nondestructive Inspection of Welds, 2016.[79] American Welding Society, ANSI/AWS B1.11:15 - Guide for the Visual Inspection of Welds, Miami, FL, 2015.[80] ASTM E165/E165M-18, “Standard Practice for Liquid Penetrant Testing for General Industry,” ASTM, pp. 1–11, 2010.[81] ASTM E1417/E1417M-16, “Standard Practice for Liquid Penetrant Testing,” ASTM International, pp. 1–11, 2010.[82] ASTM E1220-10, “Standard Practice for Visible Penetrant Testing Using Solvent Removable,” ASTM International, vol. i, pp. 1–6, 2010.[83] ASTM E1219-16, “Standard Practice for Fluorescent Liquid Penetrant Testing Using the Solvent-Removable Process,” West Conshohocken, PA, Tech. Rep., 2016.[84] J. Lippold, T. B¨ollinghaus, and C. E. Cross, Hot cracking phenomena in welds III. Springer Science & Business Media, 2011.[85] Z. Feng, “A methodology for quantifying the thermal and mechanical conditions for weld metal solidification cracking,” Ph.D. dissertation, The Ohio State University, 1993.[86] J. Liu and S. Kou, “Susceptibility of ternary aluminum alloys to cracking during solidification,” Acta Materialia, vol. 125, pp. 513–523, 2017. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1359645416309648[87] ASM International, “ASM Volume 11 - Failure Analysis and Prevention,” in ASM Handbook, Materials Park, OH, 2002.[88] M. Olabode, “Weldability of high strength aluminium alloys,” 2015.[89] H. Kaya, E. C¸ ad\irh, M. G¨und¨uz, and A. ¨Ulgen, “Effect of the temperature gradient, growth rate, and the interflake spacing on the microhardness in the directionally solidified Al-Si eutectic alloy,” Journal of Materials Engineering and Performance, vol. 12, no. 5, pp. 544–551, 2003.[90] K. Easterling, “Chapter4 - Cracking and fracture in welds,” in Introduction to the Physical Metallurgy of Welding, 2nd ed., K. Easterling, Ed. Butterworth-Heinemann, 1992, pp. 191–260. [Online]. Available: https://www.sciencedirect.com/science/article/ pii/B9780750603942500095[91] T. Hashimoto, X. Zhang, X. Zhou, P. Skeldon, S. J. Haigh, and G. E. Thompson, “Investigation of dealloying of S phase (Al2CuMg) in AA 2024- T3 aluminium alloy using high resolution 2D and 3D electron imaging,” Corrosion Science, vol. 103, pp. 157–164, 2016. [Online]. Available: https: //www.sciencedirect.com/science/article/pii/S0010938X15301554[92] J. Laigo, F. Christien, R. Le Gall, F. Tancret, and J. Furtado, “SEM, EDS, EPMA-WDS and EBSD characterization of carbides in HP type heat resistant alloys,” Materials Characterization, vol. 59, no. 11, pp. 1580–1586, 2008. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1044580308000648[93] A. Albannai, “Innovative Tandem GTAW with Alternating Side-by-Side Spot-Like Welds to Minimize Centerline Solidification Cracking,” Ph.D. dissertation, The Ohio State University, 2017.[94] Z. Huda, N. I. Taib, and T. Zaharinie, “Characterization of 2024-T3: An aerospace aluminum alloy,” Materials Chemistry and Physics, vol. 113, no. 2, pp. 515–517, 2009. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0254058408007 682[95] ASTM E3-17, “Standard Guide for Preparation of Metallographic Specimens,” ASTM International, vol. 03.01, no. July, pp. 1–12, 2012.[96] American Welding Society, Welding Handbook, Volume 1 - Welding science and Technology, 9th ed., Miami, FL, 1987, vol. 1.[97] S. Henry, T. Minghetti, and M. Rappaz, “Dendrite growth morphologies in aluminium alloys,” Acta Materialia, vol. 46, no. 18, pp. 6431–6443, 1998. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1359645498003085 [98] ASM International, “ASM Volume 15 - Casting,” in ASM Handbook, Materials Park, OH, 1992, no. USA, ASM International.[99] American Welding Society, “AWS B2.1-84-98 - Standard for Welding Procedures and Performance Qualification,” Miami, FL, 1998.[100] American Welding Society, AWS B4.0:16 - Standard Methods for Mechanical of Welds, 2016.[101] ASTM E8/E8M-21, “Standard test methods for tension testing of metallic materials 1,” ASTM International, no. C, pp. 1–27, 2021.[102] ASTM B209-14, “Aluminum and Aluminum-Alloy Sheet and Plate 1,” ASTM International, pp. 1–25, 2014.[103] E. Espejo Mora and H. Hernandez Albanil, Analisis de fallas de estructuras y elementos mecanicos. Universidad Nacional de Colombia, 2017.[104] N. Coniglio and C. E. Cross, “Initiation and growth mechanisms for weld solidification cracking,” International Materials Reviews, vol. 58, no. 7, pp. 375–397, 2013. [Online]. Available: https://doi.org/10.1179/1743280413Y.0000000020[105] J. Campbell, “The Solidification of Metals,” ISI Publication, vol. 110, pp. 18–26, 1968.[106] ASTM E384-17, “Standard Test Method for Microindentation Hardness of Materials,” ASTM International, vol. E384, pp. 1–40, 2017.[107] ASTM E190-14, “Standard Test Method for Guided Bend Test for Ductility of Welds,” ASTM International, vol. 03, no. Reapproved, pp. 2–4, 2015.[108] ASTM E290-14, “Standard Test Methods for Bend Testing of Material for Ductility,” ASTM International, vol. 03, no. February, pp. 1–7, 1998.General, EspecializadaLICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79643/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51ORIGINALTesis maestría.pdfTesis maestría.pdfTesis de Maestría en Ingeniería - Materiales y Procesosapplication/pdf144754459https://repositorio.unal.edu.co/bitstream/unal/79643/2/Tesis%20maestr%c3%ada.pdf763180648b24e14a826234246d2e32caMD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.unal.edu.co/bitstream/unal/79643/3/license_rdf4460e5956bc1d1639be9ae6146a50347MD53THUMBNAILTesis maestría.pdf.jpgTesis maestría.pdf.jpgGenerated Thumbnailimage/jpeg5317https://repositorio.unal.edu.co/bitstream/unal/79643/4/Tesis%20maestr%c3%ada.pdf.jpga41e0409241007c2cde5ff427a69a19eMD54unal/79643oai:repositorio.unal.edu.co:unal/796432023-07-21 23:04:08.256Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==