Differential simplicity and a criterion for normality
Let P be a point on an algebraic variety V over a ground field k. Let R be the local ring of P on V, and let D be the module of derivations of R into itself. If R is D-simple, then P is a normal point. Let P be a point on a noetherian scheme X. Let R he the local ring of P on X, and let D be the...
- Autores:
-
Lequain, Ives
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 1974
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/42347
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/42347
http://bdigital.unal.edu.co/32444/
- Palabra clave:
- Algebraic variety
local ring
noetherian scheme
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
Summary: | Let P be a point on an algebraic variety V over a ground field k. Let R be the local ring of P on V, and let D be the module of derivations of R into itself. If R is D-simple, then P is a normal point. Let P be a point on a noetherian scheme X. Let R he the local ring of P on X, and let D be the module of derivations of R into itself. If R is D-simple, then P need not be anymore a normal point. We give a necessary and sufficient condition for P to be normal. |
---|