Differential simplicity and a criterion for normality

Let P be a point on an algebraic variety V over a ground field k. Let R be the local ring of P on V, and let   D be the module of derivations of R into itself. If R is D-simple,  then P is a normal point. Let P be a point on a noetherian scheme X.  Let R he the local ring of P on X, and let D be the...

Full description

Autores:
Lequain, Ives
Tipo de recurso:
Article of journal
Fecha de publicación:
1974
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/42347
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/42347
http://bdigital.unal.edu.co/32444/
Palabra clave:
Algebraic variety
local ring
noetherian scheme
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
Description
Summary:Let P be a point on an algebraic variety V over a ground field k. Let R be the local ring of P on V, and let   D be the module of derivations of R into itself. If R is D-simple,  then P is a normal point. Let P be a point on a noetherian scheme X.  Let R he the local ring of P on X, and let D be the module of derivations of R into itself.  If R is D-simple, then P need not be anymore a normal point. We give a necessary and sufficient condition for P to be normal.