Análisis del microbioma fúngico presente en diferentes tipos de suelos cacaoteros con cadmio en el municipio de Yacopí - Cundinamarca

ilustraciones, diagramas, mapas

Autores:
González Bello, Diego Alejandro
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/84379
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/84379
https://repositorio.unal.edu.co/
Palabra clave:
630 - Agricultura y tecnologías relacionadas::633 - Cultivos de campo y de plantación
630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales
Microbiomas
Acondicionadores del suelo
Microbiomes
Soil conditioners
Comunidad-fúngica
Theobroma-cacao
Ecología-microbiana
Metataxonomía
Metales-pesados
Fungal-community
Theobroma-cacao
Microbial-ecology
Metataxonomy
Heavy-metals
Theobroma-cacao
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_6413eac8a73223cfd312cad201e4a7ec
oai_identifier_str oai:repositorio.unal.edu.co:unal/84379
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Análisis del microbioma fúngico presente en diferentes tipos de suelos cacaoteros con cadmio en el municipio de Yacopí - Cundinamarca
dc.title.translated.eng.fl_str_mv Analysis of the fungal microbiome present in cocoa soils with different cadmium concentrations
title Análisis del microbioma fúngico presente en diferentes tipos de suelos cacaoteros con cadmio en el municipio de Yacopí - Cundinamarca
spellingShingle Análisis del microbioma fúngico presente en diferentes tipos de suelos cacaoteros con cadmio en el municipio de Yacopí - Cundinamarca
630 - Agricultura y tecnologías relacionadas::633 - Cultivos de campo y de plantación
630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales
Microbiomas
Acondicionadores del suelo
Microbiomes
Soil conditioners
Comunidad-fúngica
Theobroma-cacao
Ecología-microbiana
Metataxonomía
Metales-pesados
Fungal-community
Theobroma-cacao
Microbial-ecology
Metataxonomy
Heavy-metals
Theobroma-cacao
title_short Análisis del microbioma fúngico presente en diferentes tipos de suelos cacaoteros con cadmio en el municipio de Yacopí - Cundinamarca
title_full Análisis del microbioma fúngico presente en diferentes tipos de suelos cacaoteros con cadmio en el municipio de Yacopí - Cundinamarca
title_fullStr Análisis del microbioma fúngico presente en diferentes tipos de suelos cacaoteros con cadmio en el municipio de Yacopí - Cundinamarca
title_full_unstemmed Análisis del microbioma fúngico presente en diferentes tipos de suelos cacaoteros con cadmio en el municipio de Yacopí - Cundinamarca
title_sort Análisis del microbioma fúngico presente en diferentes tipos de suelos cacaoteros con cadmio en el municipio de Yacopí - Cundinamarca
dc.creator.fl_str_mv González Bello, Diego Alejandro
dc.contributor.advisor.none.fl_str_mv Torres Rojas, Esperanza
Caro Quintero, Alejandro
dc.contributor.author.none.fl_str_mv González Bello, Diego Alejandro
dc.contributor.researchgroup.spa.fl_str_mv Agrobiodiversidad y Biotecnología
dc.contributor.orcid.spa.fl_str_mv González Bello, Diego [0000000268915907]
dc.subject.ddc.spa.fl_str_mv 630 - Agricultura y tecnologías relacionadas::633 - Cultivos de campo y de plantación
630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales
topic 630 - Agricultura y tecnologías relacionadas::633 - Cultivos de campo y de plantación
630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales
Microbiomas
Acondicionadores del suelo
Microbiomes
Soil conditioners
Comunidad-fúngica
Theobroma-cacao
Ecología-microbiana
Metataxonomía
Metales-pesados
Fungal-community
Theobroma-cacao
Microbial-ecology
Metataxonomy
Heavy-metals
Theobroma-cacao
dc.subject.agrovoc.spa.fl_str_mv Microbiomas
Acondicionadores del suelo
dc.subject.agrovoc.eng.fl_str_mv Microbiomes
Soil conditioners
dc.subject.proposal.spa.fl_str_mv Comunidad-fúngica
Theobroma-cacao
Ecología-microbiana
Metataxonomía
Metales-pesados
dc.subject.proposal.eng.fl_str_mv Fungal-community
Theobroma-cacao
Microbial-ecology
Metataxonomy
Heavy-metals
Theobroma-cacao
description ilustraciones, diagramas, mapas
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-07-31T20:04:00Z
dc.date.available.none.fl_str_mv 2023-07-31T20:04:00Z
dc.date.issued.none.fl_str_mv 2023-07-24
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/84379
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/84379
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Abatenh, E., Gizaw, B., Tsegaye, Z., Wassie, M., Abatenh, E., Gizaw, B., Tsegaye, Z., & Wassie, M. (2017). The role of microorganisms in bioremediation- a review. Open Journal of Environmental Biology, 2(1), 038-046. https://doi.org/10.17352/ojeb.000007
Abbas, S. Z., Rafatullah, M., Hossain, K., Ismail, N., Tajarudin, H. A., & Abdul Khalil, H. P. S. (2018). A review on mechanism and future perspectives of cadmium-resistant bacteria. International Journal of Environmental Science and Technology, 15(1), 243-262. https://doi.org/10.1007/s13762-017-1400-5
Abdel-Azeem, A. (2015). Occurrence and diversity of mycobiota in heavy metal contaminated sediments of Mediterranean coastal lagoon El-Manzala, Egypt. Mycosphere, 6(2), 228-240. https://doi.org/10.5943/mycosphere/6/2/12
Abdu, N., Abdullahi, A. A., & Abdulkadir, A. (2017). Heavy metals and soil microbes. Environmental Chemistry Letters, 15(1), 65-84. https://doi.org/10.1007/s10311-016-0587-x
Abt, E., Fong Sam, J., Gray, P., & Robin, L. P. (2018). Cadmium and lead in cocoa powder and chocolate products in the US Market. Food Additives & Contaminants: Part B, 11(2), 92-102. https://doi.org/10.1080/19393210.2017.1420700
Adamo, I., Castaño, C., Bonet, J. A., Colinas, C., Martínez de Aragón, J., & Alday, J. G. (2021). Soil physico-chemical properties have a greater effect on soil fungi than host species in Mediterranean pure and mixed pine forests. Soil Biology and Biochemistry, 160, 108320. https://doi.org/10.1016/j.soilbio.2021.108320
Adeoye, A. O., Adebayo, I. A., Afodun, A. M., & Ajijolakewu, K. A. (2022). Benefits and limitations of phytoremediation: Heavy metal remediation review. En Phytoremediation (pp. 227-238). Elsevier. https://doi.org/10.1016/B978-0-323-89874-4.00002-9
Adriano, D. C. (2002). Trace elements in terrestrial environments: Biogeochemistry, bioavailability, and risks of metals (2nd ed). Springer.
Aguirre-Forero, S. E., Piraneque-Gambasica, N. V., & Vásquez-Polo, J. R. (2020). Heavy metals content in soils and cocoa tissues in Magdalena department Colombia: Emphasis in cadmium. Entramado, 16(2), 298-310. https://doi.org/10.18041/1900-3803/entramado.2.6753
Ahmed, B., Smart, L. B., & Hijri, M. (2021). Microbiome of field grown hemp reveals potential microbial interactions with root and rhizosphere soil. Frontiers in Microbiology, 12, 741597. https://doi.org/10.3389/fmicb.2021.741597
Ainsworth, G. C., & Bisby, G. R. (2011). Ainsworth & Bisby’s dictionary of the fungi (P. M. Kirk, Ed.; 10. ed. 2011). CABI.
Akhtar, N., & Mannan, M. A. (2020). Mycoremediation: Expunging environmental pollutants. Biotechnology Reports, 26, e00452. https://doi.org/10.1016/j.btre.2020.e00452
Ali, H., Khan, E., & Ilahi, I. (2019). Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. Journal of Chemistry, 2019, 1-14. https://doi.org/10.1155/2019/6730305
Alloway, B. J. (2013). Sources of heavy metals and metalloids in soils. En B. J. Alloway (Ed.), Heavy Metals in Soils (Vol. 22, pp. 11-50). Springer Netherlands. https://doi.org/10.1007/978-94-007-4470-7_2
Álvarez-Carrillo, F., Rojas-Molina, J., & Suárez-Salazar, J. C. (2015). Effect of organic and conventional fertilization on the growth and production of theobroma cacao l. Under an agroforestry system in rivera(Huila, colombia). Ciencia y Tecnología Agropecuaria, 16(2), 307-314.
Amacher, M. C. (2018). Nickel, cadmium, and lead. En D. L. Sparks, A. L. Page, P. A. Helmke, R. H. Loeppert, P. N. Soltanpour, M. A. Tabatabai, C. T. Johnston, & M. E. Sumner (Eds.), SSSA Book Series (pp. 739-768). Soil Science Society of America, American Society of Agronomy. https://doi.org/10.2136/sssabookser5.3.c28
Anahid, S., Yaghmaei, S., & Ghobadinejad, Z. (2011). Heavy metal tolerance of fungi. Scientia Iranica, 18(3), 502-508. https://doi.org/10.1016/j.scient.2011.05.015
Anani, O. A., Mishra, R. R., Mishra, P., Olomukoro, J. O., Imoobe, T. O. T., & Adetunji, C. O. (2020). Influence of heavy metal on food security: Recent advances. En P. Mishra, R. R. Mishra, & C. O. Adetunji (Eds.), Innovations in Food Technology (pp. 257-267). Springer Singapore. https://doi.org/10.1007/978-981-15-6121-4_18
Anderson, C., Beare, M., Buckley, H. L., & Lear, G. (2017). Bacterial and fungal communities respond differently to varying tillage depth in agricultural soils. PeerJ, 5, e3930. https://doi.org/10.7717/peerj.3930
Andrews, S. (2010). FastQC: A Quality Control Tool for High Throughput Sequence Data [Online]. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ Arévalo-Gardini, E., Canto, M., Alegre, J.,
Antunes, L. P., Martins, L. F., Pereira, R. V., Thomas, A. M., Barbosa, D., Lemos, L. N., Silva, G. M. M., Moura, L. M. S., Epamino, G. W. C., Digiampietri, L. A., Lombardi, K. C., Ramos, P. L., Quaggio, R. B., de Oliveira, J. C. F., Pascon, R. C., Cruz, J. B. da, da Silva, A. M., & Setubal, J. C. (2016). Microbial community structure and dynamics in thermophilic composting viewed through metagenomics and metatranscriptomics. Scientific Reports, 6(1), 38915. https://doi.org/10.1038/srep38915
Anyimah-Ackah, E., Ofosu, I. W., Lutterodt, H. E., & Darko, G. (2019). Exposures and risks of arsenic, cadmium, lead, and mercury in cocoa beans and cocoa-based foods: A systematic review. Food Quality and Safety, 3(1), 1-8. https://doi.org/10.1093/fqsafe/fyy025
Arévalo-Gardini, E., Arévalo-Hernández, C. O., Baligar, V. C., & He, Z. L. (2017). Heavy metal accumulation in leaves and beans of cacao (Theobroma cacao L.) in major cacao growing regions in Peru. Science of The Total Environment, 605-606, 792-800. https://doi.org/10.1016/j.scitotenv.2017.06.122
Arévalo-Hernández, C. O., Arévalo-Gardini, E., Barraza, F., Farfán, A., He, Z., & Baligar, V. C. (2021). Growth and nutritional responses of wild and domesticated cacao genotypes to soil Cd stress. Science of The Total Environment, 763, 144021. https://doi.org/10.1016/j.scitotenv.2020.144021
Arévalo-Hernández, C. O., Loli, O., Julca, A., & Baligar, V. (2020). Cacao agroforestry management systems effects on soil fungi diversity in the Peruvian Amazon. Ecological Indicators, 115, 106404. https://doi.org/10.1016/j.ecolind.2020.106404
Argüello, D., Chavez, E., Lauryssen, F., Vanderschueren, R., Smolders, E., & Montalvo, D. (2019). Soil properties and agronomic factors affecting cadmium concentrations in cacao beans: A nationwide survey in Ecuador. Science of The Total Environment, 649, 120-127. https://doi.org/10.1016/j.scitotenv.2018.08.292
Arias Espana, V. A., Rodriguez Pinilla, A. R., Bardos, P., & Naidu, R. (2018). Contaminated land in Colombia: A critical review of current status and future approach for the management of contaminated sites. Science of The Total Environment, 618, 199-209. https://doi.org/10.1016/j.scitotenv.2017.10.245
Armitage, D. W., & Jones, S. E. (2019). How sample heterogeneity can obscure the signal of microbial interactions. The ISME Journal, 13(11), 2639-2646. https://doi.org/10.1038/s41396-019-0463-3
Arora, M., Kiran, B., Rani, S., Rani, A., Kaur, B., & Mittal, N. (2008). Heavy metal accumulation in vegetables irrigated with water from different sources. Food Chemistry, 111(4), 811-815. https://doi.org/10.1016/j.foodchem.2008.04.049
Ashrafi, S., Stadler, M., Dababat, A. A., Richert-Pöggeler, K. R., Finckh, M. R., & Maier, W. (2017). Monocillium gamsii sp. nov. and Monocillium bulbillosum: Two nematode-associated fungi parasitising the eggs of Heterodera filipjevi. MycoKeys, 27, 21-38. https://doi.org/10.3897/mycokeys.27.21254
Ayangbenro, A., & Babalola, O. (2017). A new strategy for heavy metal polluted environments: A review of microbial biosorbents. International Journal of Environmental Research and Public Health, 14(1), 94. https://doi.org/10.3390/ijerph14010094
Baldrian, P. (2003). Interactions of heavy metals with white-rot fungi. Enzyme and Microbial Technology, 32(1), 78-91. https://doi.org/10.1016/S0141-0229(02)00245-4
Banerjee, S., Walder, F., Büchi, L., Meyer, M., Held, A. Y., Gattinger, A., Keller, T., Charles, R., & van der Heijden, M. G. A. (2019). Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots. The ISME Journal, 13(7), 1722-1736. https://doi.org/10.1038/s41396-019-0383-2
Bari, M. A., Akther, M. S., Reza, M. A., & Kabir, A. H. (2019). Cadmium tolerance is associated with the root-driven coordination of cadmium sequestration, iron regulation, and ROS scavenging in rice. Plant Physiology and Biochemistry, 136, 22-33. https://doi.org/10.1016/j.plaphy.2019.01.007
Bar-On, Y. M., Phillips, R., & Milo, R. (2018). The biomass distribution on Earth. Proceedings of the National Academy of Sciences, 115(25), 6506-6511. https://doi.org/10.1073/pnas.1711842115
Barraza, F., Moore, R. E. T., Rehkämper, M., Schreck, E., Lefeuvre, G., Kreissig, K., Coles, B. J., & Maurice, L. (2019). Cadmium isotope fractionation in the soil – cacao systems of Ecuador: A pilot field study. RSC Advances, 9(58), 34011-34022. https://doi.org/10.1039/C9RA05516A
Barrientos, L. D. P., Oquendo, J. D. T., Garzón, M. A. G., & Álvarez, O. L. M. (2019). Effect of the solar drying process on the sensory and chemical quality of cocoa (Theobroma cacao L.) cultivated in Antioquia, Colombia. Food Research International, 115, 259-267. https://doi.org/10.1016/j.foodres.2018.08.084
Bauer, R., Garnica, S., Oberwinkler, F., Riess, K., Weiß, M., & Begerow, D. (2015). Entorrhizomycota: A new fungal phylum reveals new perspectives on the evolution of fungi. PLOS ONE, 10(7), e0128183. https://doi.org/10.1371/journal.pone.0128183
Bayramoglu, G. (2003). Biosorption of heavy metal ions on immobilized white-rot fungus Trametes versicolor. Journal of Hazardous Materials, 101(3), 285-300. https://doi.org/10.1016/S0304-3894(03)00178-X
Beattie, R. E., Henke, W., Campa, M. F., Hazen, T. C., McAliley, L. R., & Campbell, J. H. (2018). Variation in microbial community structure correlates with heavy-metal contamination in soils decades after mining ceased. Soil Biology and Biochemistry, 126, 57-63. https://doi.org/10.1016/j.soilbio.2018.08.011
Beimforde, C., Feldberg, K., Nylinder, S., Rikkinen, J., Tuovila, H., Dörfelt, H., Gube, M., Jackson, D. J., Reitner, J., Seyfullah, L. J., & Schmidt, A. R. (2014). Estimating the Phanerozoic history of the Ascomycota lineages: Combining fossil and molecular data. Molecular Phylogenetics and Evolution, 78, 386-398. https://doi.org/10.1016/j.ympev.2014.04.024
Bellemain, E., Carlsen, T., Brochmann, C., Coissac, E., Taberlet, P., & Kauserud, H. (2010). ITS as an environmental DNA barcode for fungi: An in silico approach reveals potential PCR biases. BMC Microbiology, 10(1), 189. https://doi.org/10.1186/1471-2180-10-189
Bellion, M., Courbot, M., Jacob, C., Blaudez, D., & Chalot, M. (2006). Extracellular and cellular mechanisms sustaining metal tolerance in ectomycorrhizal fungi. FEMS Microbiology Letters, 254(2), 173-181. https://doi.org/10.1111/j.1574-6968.2005.00044.x
Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological), 57(1), 289-300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
Bertoldi, D., Barbero, A., Camin, F., Caligiani, A., & Larcher, R. (2016). Multielemental fingerprinting and geographic traceability of Theobroma cacao beans and cocoa products. Food Control, 65, 46-53. https://doi.org/10.1016/j.foodcont.2016.01.013
Blaalid, R., Kumar, S., Nilsson, R. H., Abarenkov, K., Kirk, P. M., & Kauserud, H. (2013). its 1 versus its 2 as dna metabarcodes for fungi. Molecular Ecology Resources, 13(2), 218-224. https://doi.org/10.1111/1755-0998.12065
Bohn, H. L., McNeal, B. L., O’Connor, G. A., & Sánchez Orozco, M. (1993). Química del suelo. Limusa.
Bolan, N. S., Adriano, D. C., & Curtin, D. (2003). Soil acidification and liming interactions with nutrientand heavy metal transformationand bioavailability. En Advances in Agronomy (Vol. 78, pp. 215-272). Elsevier. https://doi.org/10.1016/S0065-2113(02)78006-1
Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114-2120. https://doi.org/10.1093/bioinformatics/btu170
Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C., Al-Ghalith, G. A., Alexander, H., Alm, E. J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J. E., Bittinger, K., Brejnrod, A., Brislawn, C. J., Brown, C. T., Callahan, B. J., Caraballo-Rodríguez, A. M., Chase, J., … Caporaso, J. G. (2018). QIIME 2: Reproducible, interactive, scalable, and extensible microbiome data science [Preprint]. PeerJ Preprints. https://doi.org/10.7287/peerj.preprints.27295v2
Boros-Lajszner, E., Wyszkowska, J., Borowik, A., & Kucharski, J. (2021). The response of the soil microbiome to contamination with cadmium, cobalt and nickel in soil sown with brassica napus. Minerals, 11(5), 498. https://doi.org/10.3390/min11050498
Boyd, R. S., & Rajakaruna, N. (2013). Heavy metal tolerance (pp. 9780199830060-9780199830137) [Data set]. Oxford University Press. https://doi.org/10.1093/obo/9780199830060-0137
Bravo Realpe, I. D. S., Arboleda Pardo, C. A., & Martin Peinado, F. J. (2014). Efecto de la calidad de la materia orgánica asociada con el uso y manejo de suelos en la retención de cadmio en sistemas altoandinos de Colombia. Acta Agronómica, 63(2), 164-174. https://doi.org/10.15446/acag.v63n2.39569
Bravo, D., & Braissant, O. (2022). Cadmium‐tolerant bacteria: Current trends and applications in agriculture. Letters in Applied Microbiology, 74(3), 311-333. https://doi.org/10.1111/lam.13594
Bravo, D., Leon-Moreno, C., Martínez, C. A., Varón-Ramírez, V. M., Araujo-Carrillo, G. A., Vargas, R., Quiroga-Mateus, R., Zamora, A., & Rodríguez, E. A. G. (2021). The first national survey of cadmium in cacao farm soil in colombia. Agronomy, 11(4), 761. Yi
Bravo, D., León-Moreno, C., Quiroga, R., Duarte, D., Zamora, A., Gutiérrez, E., Aristizábal, A., Arroyave, C., Cardona, L., Guerra, B., Olarte, H., Cuervo, C., Orozco, M. L., & Moreno, E. (2021). Recomendaciones mínimas para la mitigación de cadmio (Primera). Corporación Colombiana de Investigación Agropecuaria (Agrosavia). https://doi.org/10.21930/agrosavia.nbook.7404555
Bravo, D., Pardo‐Díaz, S., Benavides‐Erazo, J., Rengifo‐Estrada, G., Braissant, O., & Leon‐Moreno, C. (2018). Cadmium and cadmium‐tolerant soil bacteria in cacao crops from northeastern Colombia. Journal of Applied Microbiology, 124(5), 1175-1194. https://doi.org/10.1111/jam.13698
Cáceres, P. F. F., Vélez, L. P., Junca, H., & Moreno-Herrera, C. X. (2021). Theobroma cacao L. agricultural soils with natural low and high cadmium (Cd) in Santander (Colombia), contain a persistent shared bacterial composition shaped by multiple soil variables and bacterial isolates highly resistant to Cd concentrations. Current Research in Microbial Sciences, 2, 100086. https://doi.org/10.1016/j.crmicr.2021.100086
Callahan, B. J., McMurdie, P. J., & Holmes, S. P. (2017). Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. The ISME Journal, 11(12), 2639-2643. https://doi.org/10.1038/ismej.2017.119
Cameron, E. S., Schmidt, P. J., Tremblay, B. J.-M., Emelko, M. B., & Müller, K. M. (2020). To rarefy or not to rarefy: Enhancing diversity analysis of microbial communities through next-generation sequencing and rarefying repeatedly [Preprint]. Bioinformatics. https://doi.org/10.1101/2020.09.09.290049
Cánovas, D., Vooijs, R., Schat, H., & de Lorenzo, V. (2004). The role of thiol species in the hypertolerance of aspergillus sp. P37 to arsenic. Journal of Biological Chemistry, 279(49), 51234-51240. https://doi.org/10.1074/jbc.M408622200
Carney, K. M., & Matson, P. A. (2005). Plant communities, soil microorganisms, and soil carbon cycling: Does altering the world belowground matter to ecosystem functioning? Ecosystems, 8(8), 928-940. https://doi.org/10.1007/s10021-005-0047-0
Carson, J. K., Gonzalez-Quiñones, V., Murphy, D. V., Hinz, C., Shaw, J. A., & Gleeson, D. B. (2010). Low pore connectivity increases bacterial diversity in soil. Applied and Environmental Microbiology, 76(12), 3936-3942. https://doi.org/10.1128/AEM.03085-09
Cazabonne, J., Bartrop, L., Dierickx, G., Gafforov, Y., Hofmann, T. A., Martin, T. E., Piepenbring, M., Rivas-Ferreiro, M., & Haelewaters, D. (2022). Molecular-based diversity studies and field surveys are not mutually exclusive: On the importance of integrated methodologies in mycological research. Frontiers in Fungal Biology, 3, 860777. https://doi.org/10.3389/ffunb.2022.860777
Ceci, A., Pinzari, F., Russo, F., Persiani, A. M., & Gadd, G. M. (2019). Roles of saprotrophic fungi in biodegradation or transformation of organic and inorganic pollutants in co-contaminated sites. Applied Microbiology and Biotechnology, 103(1), 53-68. https://doi.org/10.1007/s00253-018-9451-1
Challacombe, J. F., Hesse, C. N., Bramer, L. M., McCue, L. A., Lipton, M., Purvine, S., Nicora, C., Gallegos-Graves, L. V., Porras-Alfaro, A., & Kuske, C. R. (2019). Genomes and secretomes of Ascomycota fungi reveal diverse functions in plant biomass decomposition and pathogenesis. BMC Genomics, 20(1), 976. https://doi.org/10.1186/s12864-019-6358-x
Chang, J., Sun, Y., Tian, L., Ji, L., Luo, S., Nasir, F., Kuramae, E. E., & Tian, C. (2021). The structure of rhizosphere fungal communities of wild and domesticated rice: Changes in diversity and co-occurrence patterns. Frontiers in Microbiology, 12, 610823. https://doi.org/10.3389/fmicb.2021.610823
Chaves-López, C., Serio, A., Grande-Tovar, C. D., Cuervo-Mulet, R., Delgado-Ospina, J., & Paparella, A. (2014). Traditional fermented foods and beverages from a microbiological and nutritional perspective: The colombian heritage: colombian fermented foods and beverages…. Comprehensive Reviews in Food Science and Food Safety, 13(5), 1031-1048. https://doi.org/10.1111/1541-4337.12098
Chavez, E., He, Z. L., Stoffella, P. J., Mylavarapu, R. S., Li, Y. C., Moyano, B., & Baligar, V. C. (2015). Concentration of cadmium in cacao beans and its relationship with soil cadmium in southern Ecuador. Science of The Total Environment, 533, 205-214. https://doi.org/10.1016/j.scitotenv.2015.06.106
Chen, H., Zhang, W., Yang, X., Wang, P., McGrath, S. P., & Zhao, F.-J. (2018). Effective methods to reduce cadmium accumulation in rice grain. Chemosphere, 207, 699-707. https://doi.org/10.1016/j.chemosphere.2018.05.143
Chen, X. W., Wu, L., Luo, N., Mo, C. H., Wong, M. H., & Li, H. (2019). Arbuscular mycorrhizal fungi and the associated bacterial community influence the uptake of cadmium in rice. Geoderma, 337, 749-757. https://doi.org/10.1016/j.geoderma.2018.10.029
Chen, Y. P., Liu, Q., Liu, Y. J., Jia, F. A., & He, X. H. (2014). Responses of soil microbial activity to cadmium pollution and elevated CO2. Scientific Reports, 4(1), 4287. https://doi.org/10.1038/srep04287
Choi, S., & Yun, Y. (2006). Biosorption of cadmium by various types of dried sludge: An equilibrium study and investigation of mechanisms. Journal of Hazardous Materials, 138(2), 378-383. https://doi.org/10.1016/j.jhazmat.2006.05.059
Chong, J., Liu, P., Zhou, G., & Xia, J. (2020). Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nature Protocols, 15(3), 799-821. https://doi.org/10.1038/s41596-019-0264-1
Chunhabundit, R. (2016). Cadmium exposure and potential health risk from foods in contaminated area, thailand. Toxicological Research, 32(1), 65-72. https://doi.org/10.5487/TR.2016.32.1.065
Clemens, S., Aarts, M. G. M., Thomine, S., & Verbruggen, N. (2013). Plant science: The key to preventing slow cadmium poisoning. Trends in Plant Science, 18(2), 92-99. https://doi.org/10.1016/j.tplants.2012.08.003
Coller, E., Cestaro, A., Zanzotti, R., Bertoldi, D., Pindo, M., Larger, S., Albanese, D., Mescalchin, E., & Donati, C. (2019). Microbiome of vineyard soils is shaped by geography and management. Microbiome, 7(1), 140. https://doi.org/10.1186/s40168-019-0758-7
Commission Regulation (EU). (2021) Commission Regulation (EU) 2021/1323 of 10 August 2021 amending Regulation (EC) No 1881/2006 as regards maximum levels of cadmium in certain foodstuffs (Text with EEA relevance). url: https://eur-lex.europa.eu/eli/reg/2021/1323/oj. Consultado: Diciembre, 2022.
Compant, S., Samad, A., Faist, H., & Sessitsch, A. (2019). A review on the plant microbiome: Ecology, functions, and emerging trends in microbial application. Journal of Advanced Research, 19, 29-37. https://doi.org/10.1016/j.jare.2019.03.004
Consejo Municipal Yacopí - Cundinamarca. (2000). Esquema de Ordenamiento Territorial (EOT) del municipio de Yacopí, Cundinamarca: EOT Yacopí Cundinamarca 2000. url: https://repositoriocdim.esap.edu.co/handle/123456789/19167. Consulta: Diciembre, 2022.
Cordoba-Novoa, H. A., Cáceres-Zambrano, J., & Torres-Rojas, E. (2022). Assessment of native cadmium-tolerant bacteria in cacao (Theobroma cacao L.)—Cultivated soils in Cundinamarca-Colombia [Preprint]. In Review. https://doi.org/10.21203/rs.3.rs-1726295/v1
Correa Alvarez, J., Castro Martínez, S., & Coy, J. (2014). Estado de la Moniliasis del cacao causada por Moniliophthora roreri en Colombia. Acta Agronómica, 63(4), 388-399. https://doi.org/10.15446/acag.v63n4.42747
Correa, J. E., Ramírez, R., Ruíz, O., & Leiva, E. I. (2021). Effect of soil characteristics on cadmium absorption and plant growth of Theobroma cacao L. seedlings. Journal of the Science of Food and Agriculture, 101(13), 5437-5445. https://doi.org/10.1002/jsfa.11192
Creamer, R. E., Hannula, S. E., Leeuwen, J. P. V., Stone, D., Rutgers, M., Schmelz, R. M., Ruiter, P. C. de, Hendriksen, N. B., Bolger, T., Bouffaud, M. L., Buee, M., Carvalho, F., Costa, D., Dirilgen, T., Francisco, R., Griffiths, B. S., Griffiths, R., Martin, F., Silva, P. M. da, … Lemanceau, P. (2016). Ecological network analysis reveals the inter-connection between soil biodiversity and ecosystem function as affected by land use across Europe. Applied Soil Ecology, 97, 112-124. https://doi.org/10.1016/j.apsoil.2015.08.006
Cullen, J. T., & Maldonado, M. T. (2013). Biogeochemistry of cadmium and its release to the environment. En A. Sigel, H. Sigel, & R. K. Sigel (Eds.), Cadmium: From Toxicity to Essentiality (Vol. 11, pp. 31-62). Springer Netherlands. https://doi.org/10.1007/978-94-007-5179-8_2
da Cunha, M. de L. R. de S. (2019). Molecular biology in microbiological analysis. En Reference Module in Food Science (p. B9780081005965230000). Elsevier. https://doi.org/10.1016/B978-0-08-100596-5.22935-1
Dai, W., Chen, J., & Xiong, J. (2019). Concept of microbial gatekeepers: Positive guys? Applied Microbiology and Biotechnology, 103(2), 633-641. https://doi.org/10.1007/s00253-018-9522-3
Das, N., Vimala, R. and Karthika, P. (2008) Biosorption of Heavy Metals—An Overview. Indian Journal of Biotechnology, 7, 159-169.
Dasgupta, D., & Brahmaprakash, G. P. (2021). Soil microbes are shaped by soil physico-chemical properties: A brief review of existing literature. International Journal of Plant & Soil Science, 59-71. https://doi.org/10.9734/ijpss/2021/v33i130409
De Beenhouwer, M., Aerts, R., & Honnay, O. (2013). A global meta-analysis of the biodiversity and ecosystem service benefits of coffee and cacao agroforestry. Agriculture, Ecosystems & Environment, 175, 1-7. https://doi.org/10.1016/j.agee.2013.05.003
De Filippis, F., Laiola, M., Blaiotta, G., & Ercolini, D. (2017). Different amplicon targets for sequencing-based studies of fungal diversity. Applied and Environmental Microbiology, 83(17), e00905-17. https://doi.org/10.1128/AEM.00905-17
de Menezes, A. B., Prendergast-Miller, M. T., Richardson, A. E., Toscas, P., Farrell, M., Macdonald, L. M., Baker, G., Wark, T., & Thrall, P. H. (2015). Network analysis reveals that bacteria and fungi form modules that correlate independently with soil parameters: Network analysis of microbial community structure. Environmental Microbiology, 17(8), 2677-2689. https://doi.org/10.1111/1462-2920.12559
de Vries, F. T., Griffiths, R. I., Bailey, M., Craig, H., Girlanda, M., Gweon, H. S., Hallin, S., Kaisermann, A., Keith, A. M., Kretzschmar, M., Lemanceau, P., Lumini, E., Mason, K. E., Oliver, A., Ostle, N., Prosser, J. I., Thion, C., Thomson, B., & Bardgett, R. D. (2018). Soil bacterial networks are less stable under drought than fungal networks. Nature Communications, 9(1), 3033. https://doi.org/10.1038/s41467-018-05516-7
Degens, B. (2000). Decreases in organic C reserves in soils can reduce the catabolic diversity of soil microbial communities. Soil Biology and Biochemistry, 32(2), 189-196. https://doi.org/10.1016/S0038-0717(99)00141-8
Delgado‐Baquerizo, M., Reith, F., Dennis, P. G., Hamonts, K., Powell, J. R., Young, A., Singh, B. K., & Bissett, A. (2018). Ecological drivers of soil microbial diversity and soil biological networks in the Southern Hemisphere. Ecology, 99(3), 583-596. https://doi.org/10.1002/ecy.2137
Deng, X., Yuan, X., Chen, L., Chen, Y., Rong, X., Zeng, Q., & Yang, Y. (2022). Field-scale remediation of cadmium-contaminated farmland soil by Cichorium intybus L.: Planting density, repeated harvests, and safe use of its Cd-enriched biomass for protein feed. Industrial Crops and Products, 188, 115604. https://doi.org/10.1016/j.indcrop.2022.115604
Deng, Y., Huang, H., Fu, S., Jiang, L., Liang, Y., Liu, X., Jiang, H., & Liu, H. (2021). Cadmium uptake and growth responses of potted vegetables to the cd-contaminated soil inoculated with cd-tolerant purpureocillium lilacinum n1. Minerals, 11(6), 622. https://doi.org/10.3390/min11060622
Dhankhar, R., & Hooda, A. (2011). Fungal biosorption – an alternative to meet the challenges of heavy metal pollution in aqueous solutions. Environmental Technology, 32(5), 467-491. https://doi.org/10.1080/09593330.2011.572922
Din, G., Hassan, A., Dunlap, J., Ripp, S., & Shah, A. A. (2022). Cadmium tolerance and bioremediation potential of filamentous fungus Penicillium chrysogenum FMS2 isolated from soil. International Journal of Environmental Science and Technology, 19(4), 2761-2770. https://doi.org/10.1007/s13762-021-03211-7
Ding, C., Ma, Y., Li, X., Zhang, T., & Wang, X. (2018). Determination and validation of soil thresholds for cadmium based on food quality standard and health risk assessment. Science of The Total Environment, 619-620, 700-706. https://doi.org/10.1016/j.scitotenv.2017.11.137
Doku, T., & Belford, E. (2015). The potential of Aspergillus fumigatus and Aspergillus niger in bioaccumulation of heavy metals from the Chemu Lagoon, Ghana. Journal of Applied Biosciences, 94(1), 8907. https://doi.org/10.4314/jab.v94i1.12
Domka, A. M., Rozpaądek, P., & Turnau, K. (2019). Are fungal endophytes merely mycorrhizal copycats? The role of fungal endophytes in the adaptation of plants to metal toxicity. Frontiers in Microbiology, 10, 371. https://doi.org/10.3389/fmicb.2019.00371
Donovan, P. D., Gonzalez, G., Higgins, D. G., Butler, G., & Ito, K. (2018). Identification of fungi in shotgun metagenomics datasets. PLOS ONE, 13(2), e0192898. https://doi.org/10.1371/journal.pone.0192898
dos Reis, J. B. A., Lorenzi, A. S., & do Vale, H. M. M. (2022). Methods used for the study of endophytic fungi: A review on methodologies and challenges, and associated tips. Archives of Microbiology, 204(11), 675. https://doi.org/10.1007/s00203-022-03283-0
Dray, S., & Dufour, A.-B. (2007). The ade4 package: Implementing the duality diagram for ecologists. Journal of Statistical Software, 22(4). https://doi.org/10.18637/jss.v022.i04
Edwards, J. E., Forster, R. J., Callaghan, T. M., Dollhofer, V., Dagar, S. S., Cheng, Y., Chang, J., Kittelmann, S., Fliegerova, K., Puniya, A. K., Henske, J. K., Gilmore, S. P., O’Malley, M. A., Griffith, G. W., & Smidt, H. (2017). Pcr and omics based techniques to study the diversity, ecology and biology of anaerobic fungi: Insights, challenges and opportunities. Frontiers in Microbiology, 8, 1657. https://doi.org/10.3389/fmicb.2017.01657
Egidi, E., Delgado-Baquerizo, M., Plett, J. M., Wang, J., Eldridge, D. J., Bardgett, R. D., Maestre, F. T., & Singh, B. K. (2019). A few Ascomycota taxa dominate soil fungal communities worldwide. Nature Communications, 10(1), 2369. https://doi.org/10.1038/s41467-019-10373-z
Ehis-Eriakha, C. B., & Akemu, S. E. (2022). Impact of heavy metal pollution on the biotic and abiotic components of the environment. South Asian Journal of Research in Microbiology, 38-54. https://doi.org/10.9734/sajrm/2022/v13i330302
Engbersen, N., Gramlich, A., Lopez, M., Schwarz, G., Hattendorf, B., Gutierrez, O., & Schulin, R. (2019). Cadmium accumulation and allocation in different cacao cultivars. Science of The Total Environment, 678, 660-670. https://doi.org/10.1016/j.scitotenv.2019.05.001
Engelbrecht, C. J., Harrington, T. C., & Alfenas, A. (2007). Ceratocystis wilt of cacao—A disease of increasing importance. Phytopathology®, 97(12), 1648-1649. https://doi.org/10.1094/PHYTO-97-12-1648
Estaki, M., Jiang, L., Bokulich, N. A., McDonald, D., González, A., Kosciolek, T., Martino, C., Zhu, Q., Birmingham, A., Vázquez‐Baeza, Y., Dillon, M. R., Bolyen, E., Caporaso, J. G., & Knight, R. (2020). Qiime 2 enables comprehensive end‐to‐end analysis of diverse microbiome data and comparative studies with publicly available data. Current Protocols in Bioinformatics, 70(1). https://doi.org/10.1002/cpbi.100
Esteves, A. C., Saraiva, M., Correia, A., & Alves, A. (2014). Botryosphaeriales fungi produce extracellular enzymes with biotechnological potential. Canadian Journal of Microbiology, 60(5), 332-342. https://doi.org/10.1139/cjm-2014-0134
European Commission , 2021. Commission Regulation (EU) 2021/1323 of 10 August 2021 amending Regulation (EC) No 1881/2006 as regards maximum levels of cadmium in certain foodstuffs (Text with EEA relevance). Off. J. Eur. Union 138, 75.
Ewels, P., Magnusson, M., Lundin, S., & Käller, M. (2016). MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics, 32(19), 3047-3048. https://doi.org/10.1093/bioinformatics/btw354
Faith, J. J., Guruge, J. L., Charbonneau, M., Subramanian, S., Seedorf, H., Goodman, A. L., Clemente, J. C., Knight, R., Heath, A. C., Leibel, R. L., Rosenbaum, M., & Gordon, J. I. (2013). The long-term stability of the human gut microbiota. Science, 341(6141), 1237439. https://doi.org/10.1126/science.1237439
Fassbender, H. W., & Bornemisza, E. (1987). Química de suelos con énfasis en suelos de América Latina (2nd. rev. and enl). Instituto Interamericano de Cooperación para la Agricultura.
Federación Nacional de Cacaoteros (FEDECACAO), (2015). Guía técnica para el cultivo del Cacao (Sexta edic, Vol. 6). Bogotá, Colombia
Federación Nacional de Cacaoteros (FEDECACAO), (2022), Producción Nacional de Cacao. url: https://www.fedecacao.com.co/economianacional. Consulta: Diciembre, 2022
Felczykowska, A., Krajewska, A., Zielińska, S., & Łoś, J. M. (2015). Sampling, metadata and DNA extraction—Important steps in metagenomic studies. Acta Biochimica Polonica, 62(1), 151-160. https://doi.org/10.18388/abp.2014_916
Fenner, N., & Freeman, C. (2011). Drought-induced carbon loss in peatlands. Nature Geoscience, 4(12), 895-900. https://doi.org/10.1038/ngeo1323
Feria-Cáceres, P. F., Penagos-Velez, L., & Moreno-Herrera, C. X. (2022). Tolerance and cadmium (Cd) immobilization by native bacteria isolated in cocoa soils with increased metal content. Microbiology Research, 13(3), 556-573. https://doi.org/10.3390/microbiolres13030039
Fernandes, A. D., Reid, J. N., Macklaim, J. M., McMurrough, T. A., Edgell, D. R., & Gloor, G. B. (2014). Unifying the analysis of high-throughput sequencing datasets: Characterizing RNA-seq, 16S rRNA gene sequencing and selective growth experiments by compositional data analysis. Microbiome, 2(1), 15. https://doi.org/10.1186/2049-2618-2-15
Fernandes, P. (2016). Fusidic acid: A bacterial elongation factor inhibitor for the oral treatment of acute and chronic staphylococcal infections. Cold Spring Harbor Perspectives in Medicine, 6(1), a025437. https://doi.org/10.1101/cshperspect.a025437
FHIA. (2005). Guía práctica. PRODUCCIÓN DE PLANTAS DE CACAO POR INJERTO / Proyecto Control de la Moniliasis. Fundación Hondureña De Investigación Agrícola
Fierer, N., Strickland, M. S., Liptzin, D., Bradford, M. A., & Cleveland, C. C. (2009). Global patterns in belowground communities. Ecology Letters, 12(11), 1238-1249. https://doi.org/10.1111/j.1461-0248.2009.01360.x
Florida Rofner, N. (2021). Cadmium in soil and cacao beans of Peruvian and South American origin. Revista Facultad Nacional de Agronomía Medellín, 74(2). https://doi.org/10.15446/rfnam.v74n2.91107
Fomina, M., Hillier, S., Charnock, J. M., Melville, K., Alexander, I. J., & Gadd, G. M. (2005). Role of oxalic acid overexcretion in transformations of toxic metal minerals by beauveria caledonica. Applied and Environmental Microbiology, 71(1), 371-381. https://doi.org/10.1128/AEM.71.1.371-381.2005
Food and Agriculture Organization of the United Nations (FAO). (2022). FAOSTAT statistical database. [Rome]. Url: https://www.fao.org/faostat/en/#data/QCL/visualize. Consulta: Diciembre, 2022
Foster, Z. S. L., Sharpton, T. J., & Grünwald, N. J. (2017). Metacoder: An R package for visualization and manipulation of community taxonomic diversity data. PLOS Computational Biology, 13(2), e1005404. https://doi.org/10.1371/journal.pcbi.1005404
Frąc, M., Hannula, S. E., Bełka, M., & Jędryczka, M. (2018). Fungal biodiversity and their role in soil health. Frontiers in Microbiology, 9, 707. https://doi.org/10.3389/fmicb.2018.00707
Freilich, M. A., Wieters, E., Broitman, B. R., Marquet, P. A., & Navarrete, S. A. (2018). Species co-occurrence networks: Can they reveal trophic and non-trophic interactions in ecological communities? Ecology, 99(3), 690-699. https://doi.org/10.1002/ecy.2142
Friedman, J., & Alm, E. J. (2012). Inferring correlation networks from genomic survey data. PLoS Computational Biology, 8(9), e1002687. https://doi.org/10.1371/journal.pcbi.1002687
Fröhlich-Nowoisky, J., Hill, T. C. J., Pummer, B. G., Yordanova, P., Franc, G. D., & Pöschl, U. (2015). Ice nucleation activity in the widespread soil fungus <i>Mortierella alpina</i> Biogeosciences, 12(4), 1057-1071. https://doi.org/10.5194/bg-12-1057-2015
Furcal Beriguete, P. (2016). Extracción de nutrientes por los frutos de cacao en dos localidades en Costa Rica. Agronomía Mesoamericana, 28(1), 113. https://doi.org/10.15517/am.v28i1.23236
Gadd, G. M. (2007). Geomycology: Biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycological Research, 111(1), 3-49. https://doi.org/10.1016/j.mycres.2006.12.001
Gadd, G. M. (2021). Fungal biomineralization. Current Biology, 31(24), R1557-R1563. https://doi.org/10.1016/j.cub.2021.10.041
Gajewska, J., Floryszak-Wieczorek, J., Sobieszczuk-Nowicka, E., Mattoo, A., & Arasimowicz-Jelonek, M. (2022). Fungal and oomycete pathogens and heavy metals: An inglorious couple in the environment. IMA Fungus, 13(1), 6. https://doi.org/10.1186/s43008-022-00092-4
Garbeva, P., van Veen, J. A., & van Elsas, J. D. (2004). Microbial diversity in soil: Selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annual Review of Phytopathology, 42(1), 243-270. https://doi.org/10.1146/annurev.phyto.42.012604.135455
Gautam, A. K., Verma, R. K., Avasthi, S., Sushma, Bohra, Y., Devadatha, B., Niranjan, M., & Suwannarach, N. (2022). Current insight into traditional and modern methods in fungal diversity estimates. Journal of Fungi, 8(3), 226. https://doi.org/10.3390/jof8030226
Genchi, G., Sinicropi, M. S., Lauria, G., Carocci, A., & Catalano, A. (2020). The effects of cadmium toxicity. International Journal of Environmental Research and Public Health, 17(11), 3782. https://doi.org/10.3390/ijerph17113782
Geng, H.-X., & Wang, L. (2019). Cadmium: Toxic effects on placental and embryonic development. Environmental Toxicology and Pharmacology, 67, 102-107. https://doi.org/10.1016/j.etap.2019.02.006
Ghosh, S. (2021). Fungi-mediated detoxification of heavy metals: En S. Dey & B. Acharya (Eds.), Advances in Environmental Engineering and Green Technologies (pp. 205-219). IGI Global. https://doi.org/10.4018/978-1-7998-4888-2.ch011
Gil, J. P., López-Zuleta, S., Quiroga-Mateus, R. Y., Benavides-Erazo, J., Chaali, N., & Bravo, D. (2022). Cadmium distribution in soils, soil litter and cacao beans: A case study from Colombia. International Journal of Environmental Science and Technology, 19(4), 2455-2476. https://doi.org/10.1007/s13762-021-03299-x
Giller, K. E., Witter, E., & McGrath, S. P. (2009). Heavy metals and soil microbes. Soil Biology and Biochemistry, 41(10), 2031-2037. https://doi.org/10.1016/j.soilbio.2009.04.026
Giweta, M. (2020). Role of litter production and its decomposition, and factors affecting the processes in a tropical forest ecosystem: A review. Journal of Ecology and Environment, 44(1), 11. https://doi.org/10.1186/s41610-020-0151-2
Gleyzes, C., Tellier, S., & Astruc, M. (2002). Fractionation studies of trace elements in contaminated soils and sediments: A review of sequential extraction procedures. TrAC Trends in Analytical Chemistry, 21(6-7), 451-467. https://doi.org/10.1016/S0165-9936(02)00603-9
Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V., & Egozcue, J. J. (2017). Microbiome datasets are compositional: And this is not optional. Frontiers in Microbiology, 8, 2224. https://doi.org/10.3389/fmicb.2017.02224
Goberna, M., & Verdú, M. (2022). Cautionary notes on the use of co-occurrence networks in soil ecology. Soil Biology and Biochemistry, 166, 108534. https://doi.org/10.1016/j.soilbio.2021.108534
Goberna, M., Montesinos‐Navarro, A., Valiente‐Banuet, A., Colin, Y., Gómez‐Fernández, A., Donat, S., Navarro‐Cano, J. A., & Verdú, M. (2019). Incorporating phylogenetic metrics to microbial co‐occurrence networks based on amplicon sequences to discern community assembly processes. Molecular Ecology Resources, 19(6), 1552-1564. https://doi.org/10.1111/1755-0998.13079
Gobernación de Cundinamarca. (2020). Plan Departamental de Extensión Agropecuaria 2020. Url: https://www.adr.gov.co/wp-content/uploads/2021/07/PDEA-Cundinamarca.pdf. Consulta: Diciembre, 2022
Gómez, J. & Montes, N.E., compiladores. 2020. Atlas Geológico de Colombia 2020. Escala 1:500 000. Servicio Geológico Colombiano, 26 hojas. Bogotá.
Gong, H., Rose, A. W., & Suhr, N. H. (1977). The geochemistry of cadmium in some sedimentary rocks. Geochimica et Cosmochimica Acta, 41(12), 1687-1692. https://doi.org/10.1016/0016-7037(77)90200-9
Gouma, S., Fragoeiro, S., Bastos, A. C., & Magan, N. (2014). Bacterial and fungal bioremediation strategies. En Microbial Biodegradation and Bioremediation (pp. 301-323). Elsevier. https://doi.org/10.1016/B978-0-12-800021-2.00013-3
Gqozo, M. P., Bill, M., Siyoum, N., Labuschagne, N., & Korsten, L. (2020). Fungal diversity and community composition of wheat rhizosphere and non-rhizosphere soils from three different agricultural production regions of South Africa. Applied Soil Ecology, 151, 103543. https://doi.org/10.1016/j.apsoil.2020.103543
Gramlich, A., Tandy, S., Andres, C., Chincheros Paniagua, J., Armengot, L., Schneider, M., & Schulin, R. (2017). Cadmium uptake by cocoa trees in agroforestry and monoculture systems under conventional and organic management. Science of The Total Environment, 580, 677-686. https://doi.org/10.1016/j.scitotenv.2016.12.014
Gramlich, A., Tandy, S., Gauggel, C., López, M., Perla, D., Gonzalez, V., & Schulin, R. (2018). Soil cadmium uptake by cocoa in Honduras. Science of The Total Environment, 612, 370-378. https://doi.org/10.1016/j.scitotenv.2017.08.145
Griffioen, J., & Appelo, C. A. J. (1993). Adsorption of calcium and its complexes by two sediments in calcium-hydrogen-chlorine-carbon dioxide systems. Soil Science Society of America Journal, 57(3), 716-722. https://doi.org/10.2136/sssaj1993.03615995005700030015x
Grządziel, J., & Gałązka, A. (2019). Fungal biodiversity of the most common types of polish soil in a long-term microplot experiment. Frontiers in Microbiology, 10, 6. https://doi.org/10.3389/fmicb.2019.00006
Gu, X., Evans, L. J., & Barabash, S. J. (2010). Modeling the adsorption of cd (Ii), cu (Ii), ni (Ii), pb (Ii) and zn (Ii) onto montmorillonite. Geochimica et Cosmochimica Acta, 74(20), 5718-5728. https://doi.org/10.1016/j.gca.2010.07.016
Guala, S. D., Vega, F. A., & Covelo, E. F. (2010). The dynamics of heavy metals in plant–soil interactions. Ecological Modelling, 221(8), 1148-1152. https://doi.org/10.1016/j.ecolmodel.2010.01.003
Guarro, J., Gene, J., Stchigel, A.M. and Figueras, M.J. (2012). Atlas of Soil Ascomycetes. Issue 10 of CBS Biodiversity Series, Holland.
Guerra Sierra, B. E., Arteaga-Figueroa, L. A., Sierra-Pelaéz, S., & Alvarez, J. C. (2022). Talaromyces santanderensis: A new cadmium-tolerant fungus from cacao soils in colombia. Journal of Fungi, 8(10), 1042. https://doi.org/10.3390/jof8101042
Guggenberger, G. (2005). Humification and mineralization in soils. En A. Varma & F. Buscot (Eds.), Microorganisms in Soils: Roles in Genesis and Functions (Vol. 3, pp. 85-106). Springer-Verlag. https://doi.org/10.1007/3-540-26609-7_4
Guiasu, R. C., & Guiasu, S. (2010). The Rich-Gini-Simpson quadratic index of biodiversity. Natural Science, 2(10), 1130-1137. https://doi.org/10.4236/ns.2010.210140
Guo, B., Liang, Y., & Zhu, Y. (2009). Does salicylic acid regulate antioxidant defense system, cell death, cadmium uptake and partitioning to acquire cadmium tolerance in rice? Journal of Plant Physiology, 166(1), 20-31. https://doi.org/10.1016/j.jplph.2008.01.002
Guo, H., Nasir, M., Lv, J., Dai, Y., & Gao, J. (2017). Understanding the variation of microbial community in heavy metals contaminated soil using high throughput sequencing. Ecotoxicology and Environmental Safety, 144, 300-306. https://doi.org/10.1016/j.ecoenv.2017.06.048
Guo, P., Wang, C., Jia, Y., Wang, Q., Han, G., & Tian, X. (2011). Responses of soil microbial biomass and enzymatic activities to fertilizations of mixed inorganic and organic nitrogen at a subtropical forest in East China. Plant and Soil, 338(1-2), 355-366. https://doi.org/10.1007/s11104-010-0550-8
Guo, Y., Cheng, S., Fang, H., Yang, Y., Li, Y., & Zhou, Y. (2022). Responses of soil fungal taxonomic attributes and enzyme activities to copper and cadmium co-contamination in paddy soils. Science of The Total Environment, 844, 157119. https://doi.org/10.1016/j.scitotenv.2022.157119
Gutiérrez-Macías, P., Mirón-Mérida, V. A., Rodríguez-Nava, C. O., & Barragán-Huerta, B. E. (2021). Cocoa: Beyond chocolate, a promising material for potential value-added products. En Valorization of Agri-Food Wastes and By-Products (pp. 267-288). Elsevier. https://doi.org/10.1016/B978-0-12-824044-1.00038-6
Haider, F. U., Liqun, C., Coulter, J. A., Cheema, S. A., Wu, J., Zhang, R., Wenjun, M., & Farooq, M. (2021). Cadmium toxicity in plants: Impacts and remediation strategies. Ecotoxicology and Environmental Safety, 211, 111887. https://doi.org/10.1016/j.ecoenv.2020.111887
Haj-Amor, Z., Araya, T., Kim, D.-G., Bouri, S., Lee, J., Ghiloufi, W., Yang, Y., Kang, H., Jhariya, M. K., Banerjee, A., & Lal, R. (2022). Soil salinity and its associated effects on soil microorganisms, greenhouse gas emissions, crop yield, biodiversity and desertification: A review. Science of The Total Environment, 843, 156946. https://doi.org/10.1016/j.scitotenv.2022.156946
Hakim, S., Nawaz, M. S., Siddique, M. J., Hayat, M., Gulzar, U., & Imran, A. (2022). Metagenomics for rhizosphere engineering. En Rhizosphere Engineering (pp. 395-416). Elsevier. https://doi.org/10.1016/B978-0-323-89973-4.00022-3
Handelsman, J., Rondon, M. R., Brady, S. F., Clardy, J., & Goodman, R. M. (1998). Molecular biological access to the chemistry of unknown soil microbes: A new frontier for natural products. Chemistry & Biology, 5(10), R245-R249. https://doi.org/10.1016/S1074-5521(98)90108-9
Hannula, S. E., Heinen, R., Huberty, M., Steinauer, K., De Long, J. R., Jongen, R., & Bezemer, T. M. (2021). Persistence of plant-mediated microbial soil legacy effects in soil and inside roots. Nature Communications, 12(1), 5686. https://doi.org/10.1038/s41467-021-25971-z
Hao, W., Flynn, S. L., Alessi, D. S., & Konhauser, K. O. (2018). Change of the point of zero net proton charge (Phpznpc) of clay minerals with ionic strength. Chemical Geology, 493, 458-467. https://doi.org/10.1016/j.chemgeo.2018.06.023
Hao, X., Bai, L., Liu, X., Zhu, P., Liu, H., Xiao, Y., Geng, J., Liu, Q., Huang, L., & Jiang, H. (2021). Cadmium speciation distribution responses to soil properties and soil microbes of plow layer and plow pan soils in cadmium-contaminated paddy fields. Frontiers in Microbiology, 12, 774301. https://doi.org/10.3389/fmicb.2021.774301
Hartemink, A. E. (2005). Nutrient stocks, nutrient cycling, and soil changes in cocoa ecosystems: A review. En Advances in Agronomy (Vol. 86, pp. 227-253). Elsevier. https://doi.org/10.1016/S0065-2113(05)86005-5
Hayakawa, N., Tomioka, R., & Takenaka, C. (2011). Effects of calcium on cadmium uptake and transport in the tree species Gamblea innovans. Soil Science and Plant Nutrition, 57(5), 691-695. https://doi.org/10.1080/00380768.2011.608196
He, S., He, Z., Yang, X., Stoffella, P. J., & Baligar, V. C. (2015). Soil biogeochemistry, plant physiology, and phytoremediation of cadmium-contaminated soils. En Advances in Agronomy (Vol. 134, pp. 135-225). Elsevier. https://doi.org/10.1016/bs.agron.2015.06.005
He, S., Yang, X., He, Z., & Baligar, V. C. (2017). Morphological and physiological responses of plants to cadmium toxicity: A review. Pedosphere, 27(3), 421-438. https://doi.org/10.1016/S1002-0160(17)60339-4
Helmke, P. A. (1999). Chemistry of cadmium in soil solution. En M. J. McLaughlin & B. R. Singh (Eds.), Cadmium in Soils and Plants (pp. 39-64). Springer Netherlands. https://doi.org/10.1007/978-94-011-4473-5_3
Hernández-Núñez, H. E., Gutiérrez-Montes, I., Sánchez-Acosta, J. R., Rodríguez-Suárez, L., Gutiérrez-García, G. A., Suárez-Salazar, J. C., & Casanoves, F. (2020). Agronomic conditions of cacao cultivation: Its relationship with the capitals endowment of Colombian rural households. Agroforestry Systems, 94(6), 2367-2380. https://doi.org/10.1007/s10457-020-00556-9
Hirano, H., & Takemoto, K. (2019). Difficulty in inferring microbial community structure based on co-occurrence network approaches. BMC Bioinformatics, 20(1), 329. https://doi.org/10.1186/s12859-019-2915-1
Hoggard, M., Vesty, A., Wong, G., Montgomery, J. M., Fourie, C., Douglas, R. G., Biswas, K., & Taylor, M. W. (2018). Characterizing the human mycobiota: A comparison of small subunit rrna, its1, its2, and large subunit rrna genomic targets. Frontiers in Microbiology, 9, 2208. https://doi.org/10.3389/fmicb.2018.02208
Hossain, M., Siddique, M. R. H., Rahman, Md. S., Hossain, Md. Z., & Hasan, Md. M. (2011). Nutrient dynamics associated with leaf litter decomposition of three agroforestry tree species (Azadirachta indica, Dalbergia sissoo, and Melia azedarach) of Bangladesh. Journal of Forestry Research, 22(4), 577-582. https://doi.org/10.1007/s11676-011-0175-7
Hou, D., O’Connor, D., Igalavithana, A. D., Alessi, D. S., Luo, J., Tsang, D. C. W., Sparks, D. L., Yamauchi, Y., Rinklebe, J., & Ok, Y. S. (2020). Metal contamination and bioremediation of agricultural soils for food safety and sustainability. Nature Reviews Earth & Environment, 1(7), 366-381. https://doi.org/10.1038/s43017-020-0061-y
Hu, Y., Irinyi, L., Hoang, M. T. V., Eenjes, T., Graetz, A., Stone, E. A., Meyer, W., Schwessinger, B., & Rathjen, J. P. (2022). Inferring species compositions of complex fungal communities from long- and short-read sequence data. MBio, 13(2), e02444-21. https://doi.org/10.1128/mbio.02444-21
Hussain, A., Ali, S., Rizwan, M., Zia-ur-Rehman, M., Yasmeen, T., Hayat, M. T., Hussain, I., Ali, Q., & Hussain, S. M. (2019). Morphological and physiological responses of plants to cadmium toxicity. En Cadmium Toxicity and Tolerance in Plants (pp. 47-72). Elsevier. https://doi.org/10.1016/B978-0-12-814864-8.00003-6
Huybrechts, M., Hendrix, S., Bertels, J., Beemster, G. T. S., Vandamme, D., & Cuypers, A. (2020). Spatial analysis of the rice leaf growth zone under controlled and cadmium-exposed conditions. Environmental and Experimental Botany, 177, 104120. https://doi.org/10.1016/j.envexpbot.2020.104120
Igiri, B. E., Okoduwa, S. I. R., Idoko, G. O., Akabuogu, E. P., Adeyi, A. O., & Ejiogu, I. K. (2018). Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: A review. Journal of Toxicology, 2018, 1-16. https://doi.org/10.1155/2018/2568038
Ignatova, L., Kistaubayeva, A., Brazhnikova, Y., Omirbekova, A., Mukasheva, T., Savitskaya, I., Karpenyuk, T., Goncharova, A., Egamberdieva, D., & Sokolov, A. (2021). Characterization of cadmium-tolerant endophytic fungi isolated from soybean (Glycine max) and barley (Hordeum vulgare). Heliyon, 7(11), e08240. https://doi.org/10.1016/j.heliyon.2021.e08240
Instituto Colombiano Agustin Codazzi (IGAC). (2000). CATÁLOGO DE REPRESENTACIÓN CARTOGRAFÍA BÁSICA DIGITAL IGAC ESCALA 1:2.000. url: https://www.igac.gov.co/sites/igac.gov.co/files/catalogo_representacion_2k_v1.0.pdf. Consulta: Diciembre, 2022.
Instituto Colombiano Agustin Codazzi (IGAC). (2006). Métodos analíticos del Laboratorio de Suelos. Instituto Colombiano Agustin Codazzi. 6a edicion. Bogotá Colombia.
International Cocoa Organization (ICCO). (2022). COCOA MARKET REPORT NOVEMBER 2022. Url: https://www.icco.org/wp-content/uploads/ICCO-Monthly-Cocoa-Market-Report-November-2022.pdf. Consulta: Diciembre, 2022.
Ismael, M. A., Elyamine, A. M., Moussa, M. G., Cai, M., Zhao, X., & Hu, C. (2019). Cadmium in plants: Uptake, toxicity, and its interactions with selenium fertilizers. Metallomics, 11(2), 255-277. https://doi.org/10.1039/C8MT00247A
Jan, S., & Parray, J. A. (2016). Heavy metal uptake in plants. En S. Jan & J. A. Parray, Approaches to Heavy Metal Tolerance in Plants (pp. 1-18). Springer Singapore. https://doi.org/10.1007/978-981-10-1693-6_1
Järup, L. (2003). Hazards of heavy metal contamination. British Medical Bulletin, 68(1), 167-182. https://doi.org/10.1093/bmb/ldg032
Jaworska, H., & Lemanowicz, J. (2019). Heavy metal contents and enzymatic activity in soils exposed to the impact of road traffic. Scientific Reports, 9(1), 19981. https://doi.org/10.1038/s41598-019-56418-7
Jenkins, J. R., Viger, M., Arnold, E. C., Harris, Z. M., Ventura, M., Miglietta, F., Girardin, C., Edwards, R. J., Rumpel, C., Fornasier, F., Zavalloni, C., Tonon, G., Alberti, G., & Taylor, G. (2017). Biochar alters the soil microbiome and soil function: Results of next-generation amplicon sequencing across Europe. GCB Bioenergy, 9(3), 591-612. https://doi.org/10.1111/gcbb.12371
Jia, T., Wang, R., Fan, X., & Chai, B. (2018). A comparative study of fungal community structure, diversity and richness between the soil and the phyllosphere of native grass species in a copper tailings dam in shanxi province, china. Applied Sciences, 8(8), 1297. https://doi.org/10.3390/app8081297
Jiang, S., Chen, Y., Han, S., Lv, L., & Li, L. (2022). Next-generation sequencing applications for the study of fungal pathogens. Microorganisms, 10(10), 1882. https://doi.org/10.3390/microorganisms10101882
Jiao, S., Chen, W., Wang, J., Du, N., Li, Q., & Wei, G. (2018). Soil microbiomes with distinct assemblies through vertical soil profiles drive the cycling of multiple nutrients in reforested ecosystems. Microbiome, 6(1), 146. https://doi.org/10.1186/s40168-018-0526-0
Kabata-Pendias, A. (2010). Trace elements in soils and plants (0 ed.). CRC Press. https://doi.org/10.1201/b10158
Kamble, A., & Singh, H. (2020). Different methods of soil dna extraction. BIO-PROTOCOL, 10(2). https://doi.org/10.21769/BioProtoc.3521
Kant, R., Kumar, A., & Sironen, T. (2020). From microbial genomics to metagenomics. International Journal of Genomics, 2020, 1-2. https://doi.org/10.1155/2020/9357450
Karimi, B., Maron, P. A., Chemidlin-Prevost Boure, N., Bernard, N., Gilbert, D., & Ranjard, L. (2017). Microbial diversity and ecological networks as indicators of environmental quality. Environmental Chemistry Letters, 15(2), 265-281. https://doi.org/10.1007/s10311-017-0614-6
Kassambara, A & Mundt, F. (2020). factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R package version 1.0.7. https://CRAN.R-project.org/package=factoextra
Kaur, H., & Garg, N. (2018). Recent perspectives on cross talk between cadmium, zinc, and arbuscular mycorrhizal fungi in plants. Journal of Plant Growth Regulation, 37(2), 680-693. https://doi.org/10.1007/s00344-017-9750-2
Khan, M. A., Khan, S., Khan, A., & Alam, M. (2017). Soil contamination with cadmium, consequences and remediation using organic amendments. Science of The Total Environment, 601-602, 1591-1605. https://doi.org/10.1016/j.scitotenv.2017.06.030
Kim, B.-R., Shin, J., Guevarra, R. B., Lee, J. H., Kim, D. W., Seol, K.-H., Lee, J.-H., Kim, H. B., & Isaacson, R. E. (2017). Deciphering diversity indices for a better understanding of microbial communities. Journal of Microbiology and Biotechnology, 27(12), 2089-2093. https://doi.org/10.4014/jmb.1709.09027
Kirchman, D. L. (2018). Processes in microbial ecology (Vol. 1). Oxford University Press. https://doi.org/10.1093/oso/9780198789406.001.0001
Kirkham, M. B. (2006). Cadmium in plants on polluted soils: Effects of soil factors, hyperaccumulation, and amendments. Geoderma, 137(1-2), 19-32. https://doi.org/10.1016/j.geoderma.2006.08.024
Kirpichtchikova, T. A., Manceau, A., Spadini, L., Panfili, F., Marcus, M. A., & Jacquet, T. (2006). Speciation and solubility of heavy metals in contaminated soil using X-ray microfluorescence, EXAFS spectroscopy, chemical extraction, and thermodynamic modeling. Geochimica et Cosmochimica Acta, 70(9), 2163-2190. https://doi.org/10.1016/j.gca.2006.02.006
Koranda, M., Kaiser, C., Fuchslueger, L., Kitzler, B., Sessitsch, A., Zechmeister-Boltenstern, S., & Richter, A. (2014). Fungal and bacterial utilization of organic substrates depends on substrate complexity and N availability. FEMS Microbiology Ecology, 87(1), 142-152. https://doi.org/10.1111/1574-6941.12214
Krämer, U. (2010). Metal hyperaccumulation in plants. Annual Review of Plant Biology, 61(1), 517-534. https://doi.org/10.1146/annurev-arplant-042809-112156
Krauss, U., Ten Hoopen, M., Rees, R., Stirrup, T., Argyle, T., George, A., Arroyo, C., Corrales, E., & Casanoves, F. (2013). Mycoparasitism by Clonostachys byssicola and Clonostachys rosea on Trichoderma spp. From cocoa (Theobroma cacao) and implication for the design of mixed biocontrol agents. Biological Control, 67(3), 317-327. https://doi.org/10.1016/j.biocontrol.2013.09.011
Kravchenko, A., Falconer, R. E., Grinev, D., & Otten, W. (2011). Fungal colonization in soils with different management histories: Modeling growth in three-dimensional pore volumes. Ecological Applications, 21(4), 1202-1210. https://doi.org/10.1890/10-0525.1
Krehenwinkel, H., Pomerantz, A., Henderson, J. B., Kennedy, S. R., Lim, J. Y., Swamy, V., Shoobridge, J. D., Graham, N., Patel, N. H., Gillespie, R. G., & Prost, S. (2019). Nanopore sequencing of long ribosomal DNA amplicons enables portable and simple biodiversity assessments with high phylogenetic resolution across broad taxonomic scale. GigaScience, 8(5), giz006. https://doi.org/10.1093/gigascience/giz006
Kumar, U., Saqib, H. S. A., Islam, W., Prashant, P., Patel, N., Chen, W., Yang, F., You, M., & He, W. (2022). Landscape composition and soil physical–chemical properties drive the assemblages of bacteria and fungi in conventional vegetable fields. Microorganisms, 10(6), 1202. https://doi.org/10.3390/microorganisms10061202
Kumar, V., Singh, S., Singh, G., & Dwivedi, S. K. (2019). Exploring the cadmium tolerance and removal capability of a filamentous fungus fusarium solani. Geomicrobiology Journal, 36(9), 782-791. https://doi.org/10.1080/01490451.2019.1627443
Küpper, H., & Leitenmaier, B. (2013). Cadmium-accumulating plants. En A. Sigel, H. Sigel, & R. K. Sigel (Eds.), Cadmium: From Toxicity to Essentiality (Vol. 11, pp. 373-393). Springer Netherlands. https://doi.org/10.1007/978-94-007-5179-8_12
Lamb, E. G., Kennedy, N., & Siciliano, S. D. (2011). Effects of plant species richness and evenness on soil microbial community diversity and function. Plant and Soil, 338(1-2), 483-495. https://doi.org/10.1007/s11104-010-0560-6
Lamb, E. G., Kennedy, N., & Siciliano, S. D. (2011). Effects of plant species richness and evenness on soil microbial community diversity and function. Plant and Soil, 338(1-2), 483-495. https://doi.org/10.1007/s11104-010-0560-6
Latiffah, Z., Mah Kok, F., Heng Mei, H., Maziah, Z., & Baharuddin, S. (2010). Fusarium species isolated from mangrove soil in kampung pantai acheh, balik pulau, pulau pinang, malaysia. Tropical Life Sciences Research, 21(1), 21-29.
Lee, K. K., Kim, H., & Lee, Y.-H. (2022). Cross-kingdom co-occurrence networks in the plant microbiome: Importance and ecological interpretations. Frontiers in Microbiology, 13, 953300. https://doi.org/10.3389/fmicb.2022.953300
Leff, J. W., Jones, S. E., Prober, S. M., Barberán, A., Borer, E. T., Firn, J. L., Harpole, W. S., Hobbie, S. E., Hofmockel, K. S., Knops, J. M. H., McCulley, R. L., La Pierre, K., Risch, A. C., Seabloom, E. W., Schütz, M., Steenbock, C., Stevens, C. J., & Fierer, N. (2015). Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proceedings of the National Academy of Sciences, 112(35), 10967-10972. https://doi.org/10.1073/pnas.1508382112
Qin, S., Liu, H., Nie, Z., Rengel, Z., Gao, W., Li, C., & Zhao, P. (2020). Toxicity of cadmium and its competition with mineral nutrients for uptake by plants: A review. Pedosphere, 30(2), 168-180. https://doi.org/10.1016/S1002-0160(20)60002-9
Qiu, M., Yuan, C., & Yin, G. (2020). Effect of terrain gradient on cadmium accumulation in soils. Geoderma, 375, 114501. https://doi.org/10.1016/j.geoderma.2020.114501
Quail, M. A., Swerdlow, H., & Turner, D. J. (2009). Improved protocols for the illumina genome analyzer sequencing system. Current Protocols in Human Genetics, 62(1). https://doi.org/10.1002/0471142905.hg1802s62
Quezada-Hinojosa, R. P., Föllmi, K. B., Verrecchia, E., Adatte, T., & Matera, V. (2015). Speciation and multivariable analyses of geogenic cadmium in soils at Le Gurnigel, Swiss Jura Mountains. CATENA, 125, 10-32. https://doi.org/10.1016/j.catena.2014.10.003
Raich, J. W., Clark, D. A., Schwendenmann, L., & Wood, T. E. (2014). Aboveground tree growth varies with belowground carbon allocation in a tropical rainforest environment. PLoS ONE, 9(6), e100275. https://doi.org/10.1371/journal.pone.0100275
Raja, H. A., Miller, A. N., Pearce, C. J., & Oberlies, N. H. (2017). Fungal identification using molecular tools: A primer for the natural products research community. Journal of Natural Products, 80(3), 756-770. https://doi.org/10.1021/acs.jnatprod.6b01085
Rajput, V., Minkina, T., Semenkov, I., Klink, G., Tarigholizadeh, S., & Sushkova, S. (2021). Phylogenetic analysis of hyperaccumulator plant species for heavy metals and polycyclic aromatic hydrocarbons. Environmental Geochemistry and Health, 43(4), 1629-1654. https://doi.org/10.1007/s10653-020-00527-0
Ramette, A. (2007). Multivariate analyses in microbial ecology: Multivariate analyses in microbial ecology. FEMS Microbiology Ecology, 62(2), 142-160. https://doi.org/10.1111/j.1574-6941.2007.00375.x
Ramtahal, G., Umaharan, P., Hanuman, A., Davis, C., & Ali, L. (2019). The effectiveness of soil amendments, biochar and lime, in mitigating cadmium bioaccumulation in Theobroma cacao L. Science of The Total Environment, 693, 133563. https://doi.org/10.1016/j.scitotenv.2019.07.369
Ramtahal, G., Yen, I. C., Bekele, I., Bekele, F., Wilson, L., Maharaj, K., & Harrynanan, L. (2016). Relationships between cadmium in tissues of cacao trees and soils in plantations of trinidad and tobago. Food and Nutrition Sciences, 07(01), 37-43. https://doi.org/10.4236/fns.2016.71005
Rangel Mendoza, J. A., & Silva Parra, A. (2020). Agroforestry systems of Theobroma cacao L. affects soil and leaf litter quality. Colombia forestal, 23(2), 75-88. https://doi.org/10.14483/2256201X.16123
Reese, A. T., & Dunn, R. R. (2018). Drivers of microbiome biodiversity: A review of general rules, feces, and ignorance. MBio, 9(4), e01294-18. https://doi.org/10.1128/mBio.01294-18
Reeves, R. D., Baker, A. J. M., Jaffré, T., Erskine, P. D., Echevarria, G., & Ent, A. (2018). A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytologist, 218(2), 407-411. https://doi.org/10.1111/nph.14907
Rehman, K., Fatima, F., Waheed, I., & Akash, M. S. H. (2018). Prevalence of exposure of heavy metals and their impact on health consequences. Journal of Cellular Biochemistry, 119(1), 157-184. https://doi.org/10.1002/jcb.26234
Rehner, S. A., Minnis, A. M., Sung, G.-H., Luangsa-ard, J. J., Devotto, L., & Humber, R. A. (2011). Phylogeny and systematics of the anamorphic, entomopathogenic genus Beauveria. Mycologia, 103(5), 1055-1073. https://doi.org/10.3852/10-302
Renella, G., Chaudri, A. M., & Brookes, P. C. (2002). Fresh additions of heavy metals do not model long-term effects on microbial biomass and activity. Soil Biology and Biochemistry, 34(1), 121-124. https://doi.org/10.1016/S0038-0717(01)00150-X
Ricotta, C., & Podani, J. (2017). On some properties of the Bray-Curtis dissimilarity and their ecological meaning. Ecological Complexity, 31, 201-205. https://doi.org/10.1016/j.ecocom.2017.07.003
Riess, K., Schön, M. E., Ziegler, R., Lutz, M., Shivas, R. G., Piątek, M., & Garnica, S. (2019). The origin and diversification of the Entorrhizales: Deep evolutionary roots but recent speciation with a phylogenetic and phenotypic split between associates of the Cyperaceae and Juncaceae. Organisms Diversity & Evolution, 19(1), 13-30. https://doi.org/10.1007/s13127-018-0384-4
Rizvi, A., Zaidi, A., Ameen, F., Ahmed, B., AlKahtani, M. D. F., & Khan, Mohd. S. (2020). Heavy metal induced stress on wheat: Phytotoxicity and microbiological management. RSC Advances, 10(63), 38379-38403. https://doi.org/10.1039/D0RA05610C
Robinson, J. R., Isikhuemhen, O. S., & Anike, F. N. (2021). Fungal–metal interactions: A review of toxicity and homeostasis. Journal of Fungi, 7(3), 225. https://doi.org/10.3390/jof7030225
Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2010a). Edger: A bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26(1), 139-140. https://doi.org/10.1093/bioinformatics/btp616
Rodríguez Albarrcín, H. S., Darghan Contreras, A. E., & Henao, M. C. (2019). Spatial regression modeling of soils with high cadmium content in a cocoa producing area of Central Colombia. Geoderma Regional, 16, e00214. https://doi.org/10.1016/j.geodrs.2019.e00214
Romero-Estévez, D., Yánez-Jácome, G. S., Dazzini Langdon, M., Simbaña-Farinango, K., Rebolledo Monsalve, E., Durán Cobo, G., & Navarrete, H. (2020). An overview of cadmium, chromium, and lead content in bivalves consumed by the community of santa rosa island (Ecuador) and its health risk assessment. Frontiers in Environmental Science, 8, 134. https://doi.org/10.3389/fenvs.2020.00134
Rosales Huamani, J. A., Centeno Rojas, L., Cajacuri Perez, J. R., Breña Ore, J., & Chávez Chapana, C. (2021). Identificación de Cadmio y Plomo en los cultivos de Cacao ubicados en la zona de Satipo—Junín. TECNIA, 21(2). https://doi.org/10.21754/tecnia.v21i2.1062
Rose, P. K., & Devi, R. (2018). Heavy metal tolerance and adaptability assessment of indigenous filamentous fungi isolated from industrial wastewater and sludge samples. Beni-Suef University Journal of Basic and Applied Sciences, 7(4), 688-694. https://doi.org/10.1016/j.bjbas.2018.08.001
Rousk, J., Brookes, P. C., & Bååth, E. (2010). Investigating the mechanisms for the opposing pH relationships of fungal and bacterial growth in soil. Soil Biology and Biochemistry, 42(6), 926-934. https://doi.org/10.1016/j.soilbio.2010.02.009
Sácký, J., Černý, J., Šantrůček, J., Borovička, J., Leonhardt, T., & Kotrba, P. (2021). Cadmium hyperaccumulating mushroom Cystoderma carcharias has two metallothionein isoforms usable for cadmium and copper storage. Fungal Genetics and Biology, 153, 103574. https://doi.org/10.1016/j.fgb.2021.103574
Samuel, M. S., E.A. Abigail, M., & Ramalingam, C. (2015). Biosorption of cr(Vi) by ceratocystis paradoxa msr2 using isotherm modelling, kinetic study and optimization of batch parameters using response surface methodology. PLOS ONE, 10(3), e0118999. https://doi.org/10.1371/journal.pone.0118999
Sánchez-Castro, I., Gianinazzi-Pearson, V., Cleyet-Marel, J. C., Baudoin, E., & van Tuinen, D. (2017). Glomeromycota communities survive extreme levels of metal toxicity in an orphan mining site. Science of The Total Environment, 598, 121-128. https://doi.org/10.1016/j.scitotenv.2017.04.084
Sandoval Pineda, J. F., Pérez, U. A., Rodriguez, A., & Rojas, E. T. (2020). Alta presencia de cadmio resulta en baja diversidad de hongos formadores de micorrizas arbusculares asociados a cacao (Theobroma cacao L.). Acta Biológica Colombiana, 25(3), 333-344. https://doi.org/10.15446/abc.v25n3.78746
Sandoval Cárdenas, D. I., Gomez-Ramirez, M., Rojas-Avelizapa, N. G., & Vidales-Hurtado, M. A. (2017). Synthesis of Cadmium Sulfide Nanoparticles by Biomass of Fusarium oxysporum f. Sp. Lycopersici . Journal of Nano Research, 46, 179-191. https://doi.org/10.4028/www.scientific.net/JNanoR.46.179
Santoyo, G., Hernández-Pacheco, C., Hernández-Salmerón, J., & Hernández-León, R. (2017). The role of abiotic factors modulating the plant-microbe-soil interactions: Toward sustainable agriculture. A review. Spanish Journal of Agricultural Research, 15(1), e03R01. https://doi.org/10.5424/sjar/2017151-9990
Schadt, C. W., & Rosling, A. (2015). Comment on “Global diversity and geography of soil fungi”. Science, 348(6242), 1438-1438. https://doi.org/10.1126/science.aaa4269
Schappe, T., Albornoz, F. E., Turner, B. L., & Jones, F. A. (2020). Co-occurring fungal functional groups respond differently to tree neighborhoods and soil properties across three tropical rainforests in panama. Microbial Ecology, 79(3), 675-685. https://doi.org/10.1007/s00248-019-01446-z
Schmidt, S. K., Nemergut, D. R., Darcy, J. L., & Lynch, R. (2014). Do bacterial and fungal communities assemble differently during primary succession? Molecular Ecology, 23(2), 254-258. https://doi.org/10.1111/mec.12589
Schneegurt, M. A., Dore, S. Y., and Kulpa, C. F. Jr. (2003). Direct extraction of DNA from soils for studies in microbial ecology. Curr. Issues Mol. Biol. 5, 1–8.
Schoch, C. L., Seifert, K. A., Huhndorf, S., Robert, V., Spouge, J. L., Levesque, C. A., Chen, W., Fungal Barcoding Consortium, Fungal Barcoding Consortium Author List, Bolchacova, E., Voigt, K., Crous, P. W., Miller, A. N., Wingfield, M. J., Aime, M. C., An, K.-D., Bai, F.-Y., Barreto, R. W., Begerow, D., … Schindel, D. (2012). Nuclear ribosomal internal transcribed spacer (Its) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences, 109(16), 6241-6246. https://doi.org/10.1073/pnas.1117018109
Schreck, E., Dappe, V., Sarret, G., Sobanska, S., Nowak, D., Nowak, J., Stefaniak, E. A., Magnin, V., Ranieri, V., & Dumat, C. (2014). Foliar or root exposures to smelter particles: Consequences for lead compartmentalization and speciation in plant leaves. Science of The Total Environment, 476-477, 667-676. https://doi.org/10.1016/j.scitotenv.2013.12.089
Schwartz, M. O. (2000). Cadmium in zinc deposits: Economic geology of a polluting element. International Geology Review, 42(5), 445-469. https://doi.org/10.1080/00206810009465091
Seaton, F. M., George, P. B. L., Lebron, I., Jones, D. L., Creer, S., & Robinson, D. A. (2020). Soil textural heterogeneity impacts bacterial but not fungal diversity. Soil Biology and Biochemistry, 144, 107766. https://doi.org/10.1016/j.soilbio.2020.107766
Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W. S., & Huttenhower, C. (2011). Metagenomic biomarker discovery and explanation. Genome Biology, 12(6), R60. https://doi.org/10.1186/gb-2011-12-6-r60
Senanayake, I. C., Crous, P. W., Groenewald, J. Z., Maharachchikumbura, S. S. N., Jeewon, R., Phillips, A. J. L., Bhat, J. D., Perera, R. H., Li, Q. R., Li, W. J., Tangthirasunun, N., Norphanphoun, C., Karunarathna, S. C., Camporesi, E., Manawasighe, I. S., Al-Sadi, A. M., & Hyde, K. D. (2017). Families of Diaporthales based on morphological and phylogenetic evidence. Studies in Mycology, 86(1), 217-296. https://doi.org/10.1016/j.simyco.2017.07.003
Sessitsch, A., Weilharter, A., Gerzabek, M. H., Kirchmann, H., & Kandeler, E. (2001). Microbial population structures in soil particle size fractions of a long-term fertilizer field experiment. Applied and Environmental Microbiology, 67(9), 4215-4224. https://doi.org/10.1128/AEM.67.9.4215-4224.2001
Shadmani, L., Jamali, S., & Fatemi, A. (2021). Effects of root endophytic fungus, Microdochium bolleyi on cadmium uptake, translocation and tolerance by Hordeum vulgare L. Biologia, 76(2), 711-719. https://doi.org/10.2478/s11756-020-00598-5
Shadmani, L., Jamali, S., & Fatemi, A. (2021). Isolation, identification, and characterization of cadmium-tolerant endophytic fungi isolated from barley (Hordeum vulgare L.) roots and their role in enhancing phytoremediation. Brazilian Journal of Microbiology, 52(3), 1097-1106. https://doi.org/10.1007/s42770-021-00493-4
Shahid, M., Dumat, C., Khalid, S., Niazi, N. K., & Antunes, P. M. C. (2016). Cadmium bioavailability, uptake, toxicity and detoxification in soil-plant system. En P. de Voogt (Ed.), Reviews of Environmental Contamination and Toxicology Volume 241 (Vol. 241, pp. 73-137). Springer International Publishing. https://doi.org/10.1007/398_2016_8
Shanmugaraj, B. M., Malla, A., & Ramalingam, S. (2019). Cadmium stress and toxicity in plants: An overview. En Cadmium Toxicity and Tolerance in Plants (pp. 1-17). Elsevier. https://doi.org/10.1016/B978-0-12-814864-8.00001-2
Sharma, V., & Pant, D. (2018). Structural basis for expanding the application of bioligand in metal bioremediation: A review. Bioresource Technology, 252, 188-197. https://doi.org/10.1016/j.biortech.2017.12.070
Sheldon, A. R., & Menzies, N. W. (2005). The effect of copper toxicity on the growth and root morphology of rhodes grass (Chloris gayana Knuth.) in resin buffered solution culture. Plant and Soil, 278(1-2), 341-349. https://doi.org/10.1007/s11104-005-8815-3
Silverman, J. D., Bloom, R. J., Jiang, S., Durand, H. K., Dallow, E., Mukherjee, S., & David, L. A. (2021). Measuring and mitigating PCR bias in microbiota datasets. PLOS Computational Biology, 17(7), e1009113. https://doi.org/10.1371/journal.pcbi.1009113
Singh, R., Gautam, N., Mishra, A., & Gupta, R. (2011). Heavy metals and living systems: An overview. Indian Journal of Pharmacology, 43(3), 246. https://doi.org/10.4103/0253-7613.81505
Solis-Hernández, A. P., Chávez-Vergara, B. M., Rodríguez-Tovar, A. V., Beltrán-Paz, O. I., Santillán, J., & Rivera-Becerril, F. (2022). Effect of the natural establishment of two plant species on microbial activity, on the composition of the fungal community, and on the mitigation of potentially toxic elements in an abandoned mine tailing. Science of The Total Environment, 802, 149788. https://doi.org/10.1016/j.scitotenv.2021.149788
Song, C., Zhu, F., Carrión, V. J., & Cordovez, V. (2020). Beyond plant microbiome composition: Exploiting microbial functions and plant traits via integrated approaches. Frontiers in Bioengineering and Biotechnology, 8, 896. https://doi.org/10.3389/fbioe.2020.00896
Song, Y., Jin, L., & Wang, X. (2017). Cadmium absorption and transportation pathways in plants. International Journal of Phytoremediation, 19(2), 133-141. https://doi.org/10.1080/15226514.2016.1207598
Soonvald, L., Loit, K., Runno-Paurson, E., Astover, A., & Tedersoo, L. (2020). Characterising the effect of crop species and fertilisation treatment on root fungal communities. Scientific Reports, 10(1), 18741. https://doi.org/10.1038/s41598-020-74952-7
Sterckeman, T., & Thomine, S. (2020). Mechanisms of cadmium accumulation in plants. Critical Reviews in Plant Sciences, 39(4), 322-359. https://doi.org/10.1080/07352689.2020.1792179
Suárez Salazar, J. C., Ngo Bieng, M. A., Melgarejo, L. M., Di Rienzo, J. A., & Casanoves, F. (2018). First typology of cacao (Theobroma cacao L.) systems in Colombian Amazonia, based on tree species richness, canopy structure and light availability. PLOS ONE, 13(2), e0191003. https://doi.org/10.1371/journal.pone.0191003
Suárez, L. R., Suárez Salazar, J. C., Casanoves, F., & Ngo Bieng, M. A. (2021). Cacao agroforestry systems improve soil fertility: Comparison of soil properties between forest, cacao agroforestry systems, and pasture in the Colombian Amazon. Agriculture, Ecosystems & Environment, 314, 107349. https://doi.org/10.1016/j.agee.2021.107349
Suhani, I., Sahab, S., Srivastava, V., & Singh, R. P. (2021). Impact of cadmium pollution on food safety and human health. Current Opinion in Toxicology, 27, 1-7. https://doi.org/10.1016/j.cotox.2021.04.004
Sui, X., Zhang, R., Frey, B., Yang, L., Liu, Y., Ni, H., & Li, M. (2021). Soil physicochemical properties drive the variation in soil microbial communities along a forest successional series in a degraded wetland in northeastern China. Ecology and Evolution, 11(5), 2194-2208. https://doi.org/10.1002/ece3.7184
Sulistyo, B. P., Larsson, K.-H., Haelewaters, D., & Ryberg, M. (2021). Multigene phylogeny and taxonomic revision of Atheliales s.l.: Reinstatement of three families and one new family, Lobuliciaceae fam. nov. Fungal Biology, 125(3), 239-255. https://doi.org/10.1016/j.funbio.2020.11.007
Sun, H., Shao, C., Jin, Q., Li, M., Zhang, Z., Liang, H., Lei, H., Qian, J., & Zhang, Y. (2022). Effects of cadmium contamination on bacterial and fungal communities in Panax ginseng-growing soil. BMC Microbiology, 22(1), 77. https://doi.org/10.1186/s12866-022-02488-z
Sun, J.-M., Irzykowski, W., Jedryczka, M., & Han, F.-X. (2005). Analysis of the genetic structure of sclerotinia sclerotiorum (Lib.) de bary populations from different regions and host plants by random amplified polymorphic dna markers. Journal of Integrative Plant Biology, 47(4), 385-395. https://doi.org/10.1111/j.1744-7909.2005.00077.x
Taiyun, W & Viliam, S. (2021). R package 'corrplot': Visualization of a Correlation Matrix (Version 0.92). Available from https://github.com/taiyun/corrplot
Takamatsu, R., Asakura, K., Chun, W.-J., Miyazaki, T., & Nakano, M. (2006). Exafs studies about the sorption of cadmium ions on montmorillonite. Chemistry Letters, 35(2), 224-225. https://doi.org/10.1246/cl.2006.224
Tamariz-Angeles, C., Huamán, G. D., Palacios-Robles, E., Olivera-Gonzales, P., & Castañeda-Barreto, A. (2021). Characterization of siderophore-producing microorganisms associated to plants from high-Andean heavy metal polluted soil from Callejón de Huaylas (Ancash, perú). Microbiological Research, 250, 126811. https://doi.org/10.1016/j.micres.2021.126811
Tecon, R., & Or, D. (2017). Biophysical processes supporting the diversity of microbial life in soil. FEMS Microbiology Reviews, 41(5), 599-623. https://doi.org/10.1093/femsre/fux039
Tedersoo, L., Anslan, S., Bahram, M., Drenkhan, R., Pritsch, K., Buegger, F., Padari, A., Hagh-Doust, N., Mikryukov, V., Gohar, D., Amiri, R., Hiiesalu, I., Lutter, R., Rosenvald, R., Rähn, E., Adamson, K., Drenkhan, T., Tullus, H., Jürimaa, K., … Abarenkov, K. (2020). Regional-scale in-depth analysis of soil fungal diversity reveals strong ph and plant species effects in northern europe. Frontiers in Microbiology, 11, 1953. https://doi.org/10.3389/fmicb.2020.01953
Tedersoo, L., Bahram, M., Põlme, S., Kõljalg, U., Yorou, N. S., Wijesundera, R., Ruiz, L. V., Vasco-Palacios, A. M., Thu, P. Q., Suija, A., Smith, M. E., Sharp, C., Saluveer, E., Saitta, A., Rosas, M., Riit, T., Ratkowsky, D., Pritsch, K., Põldmaa, K., … Abarenkov, K. (2014). Global diversity and geography of soil fungi. Science, 346(6213), 1256688. https://doi.org/10.1126/science.1256688
Tedersoo, L., Bahram, M., Zinger, L., Nilsson, R. H., Kennedy, P. G., Yang, T., Anslan, S., & Mikryukov, V. (2022). Best practices in metabarcoding of fungi: From experimental design to results. Molecular Ecology, 31(10), 2769-2795. https://doi.org/10.1111/mec.16460
Tian, S., Lu, L., Labavitch, J., Yang, X., He, Z., Hu, H., Sarangi, R., Newville, M., Commisso, J., & Brown, P. (2011). Cellular sequestration of cadmium in the hyperaccumulator plant species sedum alfredii. Plant Physiology, 157(4), 1914-1925. https://doi.org/10.1104/pp.111.183947
Tkavc, R., Matrosova, V. Y., Grichenko, O. E., Gostinčar, C., Volpe, R. P., Klimenkova, P., Gaidamakova, E. K., Zhou, C. E., Stewart, B. J., Lyman, M. G., Malfatti, S. A., Rubinfeld, B., Courtot, M., Singh, J., Dalgard, C. L., Hamilton, T., Frey, K. G., Gunde-Cimerman, N., Dugan, L., & Daly, M. J. (2018). Prospects for fungal bioremediation of acidic radioactive waste sites: Characterization and genome sequence of rhodotorula taiwanensis md1149. Frontiers in Microbiology, 8, 2528. https://doi.org/10.3389/fmicb.2017.02528
Toju, H., Tanabe, A. S., Yamamoto, S., & Sato, H. (2012). High-coverage its primers for the dna-based identification of ascomycetes and basidiomycetes in environmental samples. PLoS ONE, 7(7), e40863. https://doi.org/10.1371/journal.pone.0040863
Torres-Cruz, T. J., Hesse, C., Kuske, C. R., & Porras-Alfaro, A. (2018). Presence and distribution of heavy metal tolerant fungi in surface soils of a temperate pine forest. Applied Soil Ecology, 131, 66-74. https://doi.org/10.1016/j.apsoil.2018.08.001
Torsvik, V., & Øvreås, L. (2002). Microbial diversity and function in soil: From genes to ecosystems. Current Opinion in Microbiology, 5(3), 240-245. https://doi.org/10.1016/S1369-5274(02)00324-7
Trivedi, P., Batista, B. D., Bazany, K. E., & Singh, B. K. (2022). Plant–microbiome interactions under a changing world: Responses, consequences and perspectives. New Phytologist, 234(6), 1951-1959. https://doi.org/10.1111/nph.18016
U.S. Environmental Protection Agency (USEPA) (2002) Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms. 5th Edition, Washington DC, EPA-821-R-02-012.
Văcar, C. L., Covaci, E., Chakraborty, S., Li, B., Weindorf, D. C., Frențiu, T., Pârvu, M., & Podar, D. (2021). Heavy metal-resistant filamentous fungi as potential mercury bioremediators. Journal of Fungi, 7(5), 386. https://doi.org/10.3390/jof7050386
Vanderschueren, R., Argüello, D., Blommaert, H., Montalvo, D., Barraza, F., Maurice, L., Schreck, E., Schulin, R., Lewis, C., Vazquez, J. L., Umaharan, P., Chavez, E., Sarret, G., & Smolders, E. (2021). Mitigating the level of cadmium in cacao products: Reviewing the transfer of cadmium from soil to chocolate bar. Science of The Total Environment, 781, 146779. https://doi.org/10.1016/j.scitotenv.2021.146779
Vásquez-Barajas, E. F., García-Torres, N. E., Bastos-Osorio, L. M., & Lázaro-Pacheco, J. M. (2018). Análisis económico del sector cacaotero en Norte de Santander, Colombia y a nivel internacional. Revista de Investigación, Desarrollo e Innovación, 8(2), 237-250. https://doi.org/10.19053/20278306.v8.n2.2018.7963
Verbruggen, N., Juraniec, M., Baliardini, C., & Meyer, C.-L. (2013). Tolerance to cadmium in plants: The special case of hyperaccumulators. BioMetals, 26(4), 633-638. https://doi.org/10.1007/s10534-013-9659-6
Větrovský, T., Morais, D., Kohout, P., Lepinay, C., Algora, C., Awokunle Hollá, S., Bahnmann, B. D., Bílohnědá, K., Brabcová, V., D’Alò, F., Human, Z. R., Jomura, M., Kolařík, M., Kvasničková, J., Lladó, S., López-Mondéjar, R., Martinović, T., Mašínová, T., Meszárošová, L., … Baldrian, P. (2020). GlobalFungi, a global database of fungal occurrences from high-throughput-sequencing metabarcoding studies. Scientific Data, 7(1), 228. https://doi.org/10.1038/s41597-020-0567-7
Viehweger, K. (2014). How plants cope with heavy metals. Botanical Studies, 55(1), 35. https://doi.org/10.1186/1999-3110-55-35
Violante, A., Cozzolino, V., Perelomov, L., Caporale, A. G., & Pigna, M. (2010). Mobility and bioavailability of heavy metals and metalloids in soil environments. Journal of Soil Science and Plant Nutrition, 10(3). https://doi.org/10.4067/S0718-95162010000100005
Vishwakarma, G. S., Bhattacharjee, G., Gohil, N., & Singh, V. (2020). Current status, challenges and future of bioremediation. En Bioremediation of Pollutants (pp. 403-415). Elsevier. https://doi.org/10.1016/B978-0-12-819025-8.00020-X
Vliet, J. A. van, Vliet, J. A. van, & Giller, K. (2015). Mineral nutrition of cocoa: A review. Wageningen UR.
Wachira, P., Kimenju, J., Okoth, S., & Kiarie, J. (2014). Conservation and sustainable management of soil biodiversity for agricultural productivity. En N. Kaneko, S. Yoshiura, & M. Kobayashi (Eds.), Sustainable Living with Environmental Risks (pp. 27-34). Springer Japan. https://doi.org/10.1007/978-4-431-54804-1_3
Wade, J., Ac-Pangan, M., Favoretto, V. R., Taylor, A. J., Engeseth, N., & Margenot, A. J. (2022). Drivers of cadmium accumulation in Theobroma cacao L. beans: A quantitative synthesis of soil-plant relationships across the Cacao Belt. PLOS ONE, 17(2), e0261989. https://doi.org/10.1371/journal.pone.0261989
Wagner, B. D., Grunwald, G. K., Zerbe, G. O., Mikulich-Gilbertson, S. K., Robertson, C. E., Zemanick, E. T., & Harris, J. K. (2018). On the use of diversity measures in longitudinal sequencing studies of microbial communities. Frontiers in Microbiology, 9, 1037. https://doi.org/10.3389/fmicb.2018.01037
Wahsha, M., Nadimi-Goki, M., Fornasier, F., Al-Jawasreh, R., Hussein, E. I., & Bini, C. (2017). Microbial enzymes as an early warning management tool for monitoring mining site soils. CATENA, 148, 40-45. https://doi.org/10.1016/j.catena.2016.02.021
Wallenius, K., Rita, H., Simpanen, S., Mikkonen, A., & Niemi, R. M. (2010). Sample storage for soil enzyme activity and bacterial community profiles. Journal of Microbiological Methods, 81(1), 48-55. https://doi.org/10.1016/j.mimet.2010.01.021
Walsh, A. M., Crispie, F., Claesson, M. J., & Cotter, P. D. (2017). Translating omics to food microbiology. Annual Review of Food Science and Technology, 8(1), 113-134. https://doi.org/10.1146/annurev-food-030216-025729
Wang, M., Chen, S., Chen, L., & Wang, D. (2019). Responses of soil microbial communities and their network interactions to saline-alkaline stress in Cd-contaminated soils. Environmental Pollution, 252, 1609-1621. https://doi.org/10.1016/j.envpol.2019.06.082
Wang, M., Chen, Z., Song, W., Hong, D., Huang, L., & Li, Y. (2021). A review on cadmium exposure in the population and intervention strategies against cadmium toxicity. Bulletin of Environmental Contamination and Toxicology, 106(1), 65-74. https://doi.org/10.1007/s00128-020-03088-1
Wang, M., Wang, L., Zhao, S., Li, S., Lei, X., Qin, L., Sun, X., & Chen, S. (2021). Manganese facilitates cadmium stabilization through physicochemical dynamics and amino acid accumulation in rice rhizosphere under flood-associated low pe+pH. Journal of Hazardous Materials, 416, 126079. https://doi.org/10.1016/j.jhazmat.2021.126079
Wang, S., & Mulligan, C. N. (2006). Effect of natural organic matter on arsenic release from soils and sediments into groundwater. Environmental Geochemistry and Health, 28(3), 197-214. https://doi.org/10.1007/s10653-005-9032-y
Wang, S., Dai, H., Wei, S., Skuza, L., & Chen, Y. (2022). Effects of Cd-resistant fungi on uptake and translocation of Cd by soybean seedlings. Chemosphere, 291, 132908. https://doi.org/10.1016/j.chemosphere.2021.132908
Wang, T. Y., Wang, L., Zhang, J. H., & Dong, W. H. (2011). A simplified universal genomic DNA extraction protocol suitable for PCR. Genetics and Molecular Research, 10(1), 519-525. https://doi.org/10.4238/vol10-1gmr1055
Wang, W., Zhai, Y., Cao, L., Tan, H., & Zhang, R. (2016). Endophytic bacterial and fungal microbiota in sprouts, roots and stems of rice ( Oryza sativa L.). Microbiological Research, 188-189, 1-8. https://doi.org/10.1016/j.micres.2016.04.009
Wang, Y., Xu, X., Liu, T., Wang, H., Yang, Y., Chen, X., & Zhu, S. (2020). Analysis of bacterial and fungal communities in continuous-cropping ramie (Boehmeria nivea l. Gaud) fields in different areas in China. Scientific Reports, 10(1), 3264. https://doi.org/10.1038/s41598-020-58608-0
Wang, Y., Xu, X., Liu, T., Wang, H., Yang, Y., Chen, X., & Zhu, S. (2020). Analysis of bacterial and fungal communities in continuous-cropping ramie (Boehmeria nivea l. Gaud) fields in different areas in China. Scientific Reports, 10(1), 3264. https://doi.org/10.1038/s41598-020-58608-0
Weiss, S., Van Treuren, W., Lozupone, C., Faust, K., Friedman, J., Deng, Y., Xia, L. C., Xu, Z. Z., Ursell, L., Alm, E. J., Birmingham, A., Cram, J. A., Fuhrman, J. A., Raes, J., Sun, F., Zhou, J., & Knight, R. (2016). Correlation detection strategies in microbial data sets vary widely in sensitivity and precision. The ISME Journal, 10(7), 1669-1681. https://doi.org/10.1038/ismej.2015.235
Welch, R. M., & Norvell, W. A. (1999). Mechanisms of cadmium uptake, translocation and deposition in plants. En M. J. McLaughlin & B. R. Singh (Eds.), Cadmium in Soils and Plants (pp. 125-150). Springer Netherlands. https://doi.org/10.1007/978-94-011-4473-5_6
Wijayawardene, N. (2020). Outline of Fungi and fungus-like taxa. Mycosphere, 11(1), 1060-1456. https://doi.org/10.5943/mycosphere/11/1/8
Willis, A. D. (2019). Rarefaction, alpha diversity, and statistics. Frontiers in Microbiology, 10, 2407. https://doi.org/10.3389/fmicb.2019.02407
Wong, C., Roberts, S. M., & Saab, I. N. (2022). Review of regulatory reference values and background levels for heavy metals in the human diet. Regulatory Toxicology and Pharmacology, 130, 105122. https://doi.org/10.1016/j.yrtph.2022.105122
Wu, B., Luo, H., Wang, X., Liu, H., Peng, H., Sheng, M., Xu, F., & Xu, H. (2022). Effects of environmental factors on soil bacterial community structure and diversity in different contaminated districts of Southwest China mine tailings. Science of The Total Environment, 802, 149899. https://doi.org/10.1016/j.scitotenv.2021.149899
Wu, D., Ma, Y., Yang, T., Gao, G., Wang, D., Guo, X., & Chu, H. (2022). Phosphorus and zinc are strongly associated with belowground fungal communities in wheat field under long-term fertilization. Microbiology Spectrum, 10(2), e00110-22. https://doi.org/10.1128/spectrum.00110-22
Wu, H., Wen, Q., Hu, L., & Gong, M. (2018). Effect of adsorbate concentration to adsorbent dosage ratio on the sorption of heavy metals on soils. Journal of Environmental Engineering, 144(2), 04017094. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001306
Xia, Q., Rufty, T., & Shi, W. (2020). Soil microbial diversity and composition: Links to soil texture and associated properties. Soil Biology and Biochemistry, 149, 107953. https://doi.org/10.1016/j.soilbio.2020.107953
Xu, L., Ravnskov, S., Larsen, J., Nilsson, R. H., & Nicolaisen, M. (2012). Soil fungal community structure along a soil health gradient in pea fields examined using deep amplicon sequencing. Soil Biology and Biochemistry, 46, 26-32. https://doi.org/10.1016/j.soilbio.2011.11.010
Yamanaka, T. (2003). The effect of pH on the growth of saprotrophic and ectomycorrhizal ammonia fungi in vitro. Mycologia, 95(4), 584-589. https://doi.org/10.1080/15572536.2004.11833062
Yang, G.-L., Zheng, M.-M., Tan, A.-J., Liu, Y.-T., Feng, D., & Lv, S.-M. (2021). Research on the mechanisms of plant enrichment and detoxification of cadmium. Biology, 10(6), 544. https://doi.org/10.3390/biology10060544
Yang, T., Adams, J. M., Shi, Y., He, J., Jing, X., Chen, L., Tedersoo, L., & Chu, H. (2017). Soil fungal diversity in natural grasslands of the Tibetan Plateau: Associations with plant diversity and productivity. New Phytologist, 215(2), 756-765. https://doi.org/10.1111/nph.14606
Yasanthika, W., Wanasinghe, D., Mortimer, P., Monkai, J., & Farias, A. (2022). The importance of culture-based techniques in the genomic era for assessing the taxonomy and diversity of soil fungi. Mycosphere, 13(1), 724-751. https://doi.org/10.5943/mycosphere/13/1/8
Yelle, D. J., Ralph, J., Lu, F., & Hammel, K. E. (2008). Evidence for cleavage of lignin by a brown rot basidiomycete. Environmental Microbiology, 10(7), 1844-1849. https://doi.org/10.1111/j.1462-2920.2008.01605.x
Yi, Z., Lehto, N. J., Robinson, B. H., & Cavanagh, J.-A. E. (2020). Environmental and edaphic factors affecting soil cadmium uptake by spinach, potatoes, onion and wheat. Science of The Total Environment, 713, 136694. https://doi.org/10.1016/j.scitotenv.2020.136694
Yin, C., Schlatter, D. C., Kroese, D. R., Paulitz, T. C., & Hagerty, C. H. (2021). Responses of soil fungal communities to lime application in wheat fields in the pacific northwest. Frontiers in Microbiology, 12, 576763. https://doi.org/10.3389/fmicb.2021.576763
Zaia, F. C., Gama-Rodrigues, A. C., Gama-Rodrigues, E. F., Moço, M. K. S., Fontes, A. G., Machado, R. C. R., & Baligar, V. C. (2012). Carbon, nitrogen, organic phosphorus, microbial biomass and N mineralization in soils under cacao agroforestry systems in Bahia, Brazil. Agroforestry Systems, 86(2), 197-212. https://doi.org/10.1007/s10457-012-9550-4
Zeilinger, S., Gupta, V. K., Dahms, T. E. S., Silva, R. N., Singh, H. B., Upadhyay, R. S., Gomes, E. V., Tsui, C. K.-M., & Nayak S, C. (2016). Friends or foes? Emerging insights from fungal interactions with plants. FEMS Microbiology Reviews, 40(2), 182-207. https://doi.org/10.1093/femsre/fuv045
Zhang, D., Du, G., Chen, D., Shi, G., Rao, W., Li, X., Jiang, Y., Liu, S., & Wang, D. (2019). Effect of elemental sulfur and gypsum application on the bioavailability and redistribution of cadmium during rice growth. Science of The Total Environment, 657, 1460-1467. https://doi.org/10.1016/j.scitotenv.2018.12.057
Zhang, H., Chen, J., Zhu, L., Yang, G., & Li, D. (2014). Transfer of cadmium from soil to vegetable in the pearl river delta area, south china. PLoS ONE, 9(9), e108572. https://doi.org/10.1371/journal.pone.0108572
Zhang, L., Chen, F., Zeng, Z., Xu, M., Sun, F., Yang, L., Bi, X., Lin, Y., Gao, Y., Hao, H., Yi, W., Li, M., & Xie, Y. (2021). Advances in metagenomics and its application in environmental microorganisms. Frontiers in Microbiology, 12, 766364. https://doi.org/10.3389/fmicb.2021.766364
Zhang, X., Fu, G., Xing, S., Fu, W., Liu, X., Wu, H., Zhou, X., Ma, Y., Zhang, X., & Chen, B. (2022). Structure and diversity of fungal communities in long-term copper-contaminated agricultural soil. Science of The Total Environment, 806, 151302. https://doi.org/10.1016/j.scitotenv.2021.151302
Zhang, Y., Naafs, B. D. A., Huang, X., Song, Q., Xue, J., Wang, R., Zhao, M., Evershed, R. P., Pancost, R. D., & Xie, S. (2022). Variations in wetland hydrology drive rapid changes in the microbial community, carbon metabolic activity, and greenhouse gas fluxes. Geochimica et Cosmochimica Acta, 317, 269-285. https://doi.org/10.1016/j.gca.2021.11.014
Zhao, M., Wang, M., Zhao, Y., Hu, N., Qin, L., Ren, Z., Wang, G., & Jiang, M. (2022). Soil microbial abundance was more affected by soil depth than the altitude in peatlands. Frontiers in Microbiology, 13, 1068540. https://doi.org/10.3389/fmicb.2022.1068540
Zhao, Y., Gao, L., Zha, F., Chen, X., Zhou, X., Wang, X., Chen, Y., & Pan, X. (2021). Research on heavy metal level and co-occurrence network in typical ecological fragile area. Journal of Environmental Health Science and Engineering, 19(1), 531-540. https://doi.org/10.1007/s40201-021-00625-w
Zheng, L., Li, Y., Shang, W., Dong, X., Tang, Q., & Cheng, H. (2019). The inhibitory effect of cadmium and/or mercury on soil enzyme activity, basal respiration, and microbial community structure in coal mine–affected agricultural soil. Annals of Microbiology, 69(8), 849-859. https://doi.org/10.1007/s13213-019-01478-3
Zhou, Q., An, X., & Wei, S. (2008). [Heavy metal pollution ecology of macro-fungi: Research advances and expectation]. Ying Yong Sheng Tai Xue Bao = The Journal of Applied Ecology, 19(8), 1848-1853.
Zhu, P., Li, Y., Gao, Y., Yin, M., Wu, Y., Liu, L., Du, N., Liu, J., Yu, X., Wang, L., & Guo, W. (2021). Insight into the effect of nitrogen-rich substrates on the community structure and the co-occurrence network of thermophiles during lignocellulose-based composting. Bioresource Technology, 319, 124111. https://doi.org/10.1016/j.biortech.2020.124111
Zhu, Y., Ge, X., Wang, L., You, Y., Cheng, Y., Ma, J., & Chen, F. (2022). Biochar rebuilds the network complexity of rare and abundant microbial taxa in reclaimed soil of mining areas to cooperatively avert cadmium stress. Frontiers in Microbiology, 13, 972300. https://doi.org/10.3389/fmicb.2022.972300
Žifčáková, L., Větrovský, T., Howe, A., & Baldrian, P. (2016). Microbial activity in forest soil reflects the changes in ecosystem properties between summer and winter: Seasonal dynamics of a soil microbial community. Environmental Microbiology, 18(1), 288-301. https://doi.org/10.1111/1462-2920.13026
Zulfiqar, U., Jiang, W., Xiukang, W., Hussain, S., Ahmad, M., Maqsood, M. F., Ali, N., Ishfaq, M., Kaleem, M., Haider, F. U., Farooq, N., Naveed, M., Kucerik, J., Brtnicky, M., & Mustafa, A. (2022). Cadmium phytotoxicity, tolerance, and advanced remediation approaches in agricultural soils; a comprehensive review. Frontiers in Plant Science, 13, 773815. https://doi.org/10.3389/fpls.2022.773815
Lewis, C., Lennon, A. M., Eudoxie, G., & Umaharan, P. (2018). Genetic variation in bioaccumulation and partitioning of cadmium in Theobroma cacao L. Science of The Total Environment, 640-641, 696-703. https://doi.org/10.1016/j.scitotenv.2018.05.365
Li, T., Liang, C., Han, X., & Yang, X. (2013). Mobilization of cadmium by dissolved organic matter in the rhizosphere of hyperaccumulator Sedum alfredii. Chemosphere, 91(7), 970-976. https://doi.org/10.1016/j.chemosphere.2013.01.100
Libohova, Z., J.M. Martín-López, M. da Silva, C. Lagoueyte, J. Cruz, P. Drohan, S. Maximova, M. Guiltinan, M.G. Ferruzzi, D. Guarín, P. Reich, C. Kome, Y.P. Zapata, G. Gallego-Sánchez, C. Quintero, C. Botero, N.P. Winters, and M. Robotham. (2020). Soil and cacao genomics survey of Sierra Nevada de Santa Marta Region, Colombia. United States Department of Agriculture, Natural Resources Conservation Service; International Center for Tropical Agriculture (CIAT); and Pennsylvania State University
Liu, H., Wang, H., Ma, Y., Wang, H., & Shi, Y. (2016). Role of transpiration and metabolism in translocation and accumulation of cadmium in tobacco plants (Nicotiana tabacum L.). Chemosphere, 144, 1960-1965. https://doi.org/10.1016/j.chemosphere.2015.10.093
Liu, Y., Alessi, D. S., Flynn, S. L., Alam, Md. S., Hao, W., Gingras, M., Zhao, H., & Konhauser, K. O. (2018). Acid-base properties of kaolinite, montmorillonite and illite at marine ionic strength. Chemical Geology, 483, 191-200. https://doi.org/10.1016/j.chemgeo.2018.01.018
Liu, Y., Xiao, T., Ning, Z., Li, H., Tang, J., & Zhou, G. (2013). High cadmium concentration in soil in the Three Gorges region: Geogenic source and potential bioavailability. Applied Geochemistry, 37, 149-156. https://doi.org/10.1016/j.apgeochem.2013.07.022
Llatance, W. O., Gonza Saavedra, C. J., Guzmán Castillo, W., & Pariente Mondragón, E. (2018). Bioacumulación de cadmio en el cacao (Theobroma cacao) en la Comunidad.Revista Forestal del Perú, 33(1), 63. https://doi.org/10.21704/rfp.v33i1.1156
Mahar, A., Wang, P., Ali, A., Awasthi, M. K., Lahori, A. H., Wang, Q., Li, R., & Zhang, Z. (2016). Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review. Ecotoxicology and Environmental Safety, 126, 111-121. https://doi.org/10.1016/j.ecoenv.2015.12.023
Mary Ugwu, I., & Anthony Igbokwe, O. (2019). Sorption of heavy metals on clay minerals and oxides: A review. En S. Edebali (Ed.), Advanced Sorption Process Applications. IntechOpen. https://doi.org/10.5772/intechopen.80989
McLaughlin, M. J., Smolders, E., Zhao, F. J., Grant, C., & Montalvo, D. (2021). Managing cadmium in agricultural systems. En Advances in Agronomy (Vol. 166, pp. 1-129). Elsevier. https://doi.org/10.1016/bs.agron.2020.10.004
Mendoza, O. H., Portilla, K. A., Pérez, A., Castellanos, F. y Orejuela, C,J., (2020). Cadmio-(Cd) En: Atlas Geoquímico de Colombia, versión 2020, Bogotá: Servicio Geológico Colombiano.
Meter, A., Atkinson, R. J., & Laliberte, B. (2019). Cadmium in Cacao From Latin America and The Caribbean. A Review of Research and Potential Mitigation Solutions. Caracas: CAF. Retrieved from http://scioteca.caf.com/handle/123456789/1506
Meunier, N., Blais, J.-F., & Tyagi, R. D. (2004). Removal of heavy metals from acid soil leachate using cocoa shells in a batch counter-current sorption process. Hydrometallurgy, 73(3-4), 225-235. https://doi.org/10.1016/j.hydromet.2003.10.011
Minasny, B., & McBratney, A. B. (2006). A conditioned Latin hypercube method for sampling in the presence of ancillary information. Computers & Geosciences, 32(9), 1378-1388. https://doi.org/10.1016/j.cageo.2005.12.009
Ministerio de Agricultura (MINAGRICULTURA). (2021). CADENA DE CACAO Dirección de Cadenas Agrícolas y Forestales Marzo 2021. Url: https://sioc.minagricultura.gov.co/Cacao/Documentos/2021-03-31%20Cifras%20Sectoriales.pdf. Consulta: Diciembre, 2022.
Morais, F. (1985). Sistema de Producao do cacaueiro na Amazonia brasileira. Belém, Pará, Bra.: CEPLAC.
Naeem, A., Zafar, M., Khalid, H., Zia-ur-Rehman, M., Ahmad, Z., Ayub, M. A., & Farooq Qayyum, M. (2019). Cadmium-induced imbalance in nutrient and water uptake by plants. En Cadmium Toxicity and Tolerance in Plants (pp. 299-326). Elsevier. https://doi.org/10.1016/B978-0-12-814864-8.00012-7
Nagajyoti, P. C., Lee, K. D., & Sreekanth, T. V. M. (2010). Heavy metals, occurrence and toxicity for plants: A review. Environmental Chemistry Letters, 8(3), 199-216. https://doi.org/10.1007/s10311-010-0297-8
Ogunlade, M. O., Oluyole, K. A., & Aikpokpodion, P. O. (2009). An evaluation of the level of fertilizer utilization for cocoa production in nigeria. Journal of Human Ecology, 25(3), 175-178. https://doi.org/10.1080/09709274.2009.11906152
Oliva, M., Rubio, K., Epquin, M., Marlo, G., & Leiva, S. (2020). Cadmium uptake in native cacao trees in agricultural lands of bagua, peru. Agronomy, 10(10), 1551. https://doi.org/10.3390/agronomy10101551
Oliveira, B. R. M., de Almeida, A.-A. F., Santos, N. de A., & Pirovani, C. P. (2022). Tolerance strategies and factors that influence the cadmium uptake by cacao tree. Scientia Horticulturae, 293, 110733. https://doi.org/10.1016/j.scienta.2021.110733
Pabón, M., & Pabón, M. (2016). Caracterizacion socio-económica y productiva del cultivo de cacao en el departamento de santander (Colombia). https://doi.org/10.22004/AG.ECON.239289
Pichtel, J., Kuroiwa, K., & Sawyerr, H. T. (2000). Distribution of Pb, Cd and Ba in soils and plants of two contaminated sites. Environmental Pollution, 110(1), 171-178. https://doi.org/10.1016/S0269-7491(99)00272-9
Liaquat, F., Munis, M. F. H., Haroon, U., Arif, S., Saqib, S., Zaman, W., Khan, A. R., Shi, J., Che, S., & Liu, Q. (2020). Evaluation of metal tolerance of fungal strains isolated from contaminated mining soil of nanjing, china. Biology, 9(12), 469. https://doi.org/10.3390/biology9120469
Lin, H., & Peddada, S. D. (2020). Analysis of microbial compositions: A review of normalization and differential abundance analysis. Npj Biofilms and Microbiomes, 6(1), 60. https://doi.org/10.1038/s41522-020-00160-w
Liu, C., Cui, Y., Li, X., & Yao, M. (2021). microeco: An r package for data mining in microbial community ecology. FEMS Microbiology Ecology, 97(2), fiaa255. https://doi.org/10.1093/femsec/fiaa255
Liu, H., Wang, C., Xie, Y., Luo, Y., Sheng, M., Xu, F., & Xu, H. (2020). Ecological responses of soil microbial abundance and diversity to cadmium and soil properties in farmland around an enterprise-intensive region. Journal of Hazardous Materials, 392, 122478. https://doi.org/10.1016/j.jhazmat.2020.122478
Lombard, N., Prestat, E., van Elsas, J. D., & Simonet, P. (2011). Soil-specific limitations for access and analysis of soil microbial communities by metagenomics: Limitations in soil metagenomics. FEMS Microbiology Ecology, 78(1), 31-49. https://doi.org/10.1111/j.1574-6941.2011.01140.x
Lorenz, M. G., & Wackernagel, W. (1994). Bacterial gene transfer by natural genetic transformation in the environment. Microbiological Reviews, 58(3), 563-602. https://doi.org/10.1128/mr.58.3.563-602.1994
Lourenço, K. S., Suleiman, A. K. A., Pijl, A., Cantarella, H., & Kuramae, E. E. (2020). Dynamics and resilience of soil mycobiome under multiple organic and inorganic pulse disturbances. Science of The Total Environment, 733, 139173. https://doi.org/10.1016/j.scitotenv.2020.139173
McMurdie, P. J., & Holmes, S. (2013). Phyloseq: An r package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE, 8(4), e61217. https://doi.org/10.1371/journal.pone.0061217
Menolli, N., & Sánchez-García, M. (2020). Brazilian fungal diversity represented by DNA markers generated over 20 years. Brazilian Journal of Microbiology, 51(2), 729-749. https://doi.org/10.1007/s42770-019-00206-y
Menzies, N. W., Donn, M. J., & Kopittke, P. M. (2007). Evaluation of extractants for estimation of the phytoavailable trace metals in soils. Environmental Pollution, 145(1), 121-130. https://doi.org/10.1016/j.envpol.2006.03.021
Mohammadian, E., Babai Ahari, A., Arzanlou, M., Oustan, S., & Khazaei, S. H. (2017). Tolerance to heavy metals in filamentous fungi isolated from contaminated mining soils in the Zanjan Province, Iran. Chemosphere, 185, 290-296. https://doi.org/10.1016/j.chemosphere.2017.07.022
Mohammadian Fazli, M., Soleimani, N., Mehrasbi, M., Darabian, S., Mohammadi, J., & Ramazani, A. (2015). Highly cadmium tolerant fungi: Their tolerance and removal potential. Journal of Environmental Health Science and Engineering, 13(1), 19. https://doi.org/10.1186/s40201-015-0176-0
Nearing, J. T., Douglas, G. M., Hayes, M. G., MacDonald, J., Desai, D. K., Allward, N., Jones, C. M. A., Wright, R. J., Dhanani, A. S., Comeau, A. M., & Langille, M. G. I. (2022). Microbiome differential abundance methods produce different results across 38 datasets. Nature Communications, 13(1), 342. https://doi.org/10.1038/s41467-022-28034-z
Ngu, M., Moya, E., & Magan, N. (1998). Tolerance and uptake of cadmium, arsenic and lead by Fusarium pathogens of cereals. International Biodeterioration & Biodegradation, 42(1), 55-62. https://doi.org/10.1016/S0964-8305(98)00047-X
Nicaise, V., Chereau, S., Pinson-Gadais, L., Verdal-Bonnin, M.-N., Ducos, C., Jimenez, M., Coriou, C., Bussière, S., Robert, T., Nguyen, C., Richard-Forget, F., & Cornu, J.-Y. (2022). Interaction between the accumulation of cadmium and deoxynivalenol mycotoxin produced by fusarium graminearum in durum wheat grains. Journal of Agricultural and Food Chemistry, 70(26), 8085-8096. https://doi.org/10.1021/acs.jafc.2c01673
Nilsson, R. H., Anslan, S., Bahram, M., Wurzbacher, C., Baldrian, P., & Tedersoo, L. (2019). Mycobiome diversity: High-throughput sequencing and identification of fungi. Nature Reviews Microbiology, 17(2), 95-109. https://doi.org/10.1038/s41579-018-0116-y
Nilsson, R. H., Larsson, K.-H., Taylor, A. F. S., Bengtsson-Palme, J., Jeppesen, T. S., Schigel, D., Kennedy, P., Picard, K., Glöckner, F. O., Tedersoo, L., Saar, I., Kõljalg, U., & Abarenkov, K. (2019). The UNITE database for molecular identification of fungi: Handling dark taxa and parallel taxonomic classifications. Nucleic Acids Research, 47(D1), D259-D264. https://doi.org/10.1093/nar/gky1022
Nyika, J. M. (2021). Tolerance of microorganisms to heavy metals: En S. Dey & B. Acharya (Eds.), Advances in Environmental Engineering and Green Technologies (pp. 19-35). IGI Global. https://doi.org/10.4018/978-1-7998-4888-2.ch002
Passarini, M. R. Z., Ottoni, J. R., Costa, P. E. dos S., Hissa, D. C., Falcão, R. M., Melo, V. M. M., Balbino, V. Q., Mendonça, L. A. R., Lima, M. G. de S., Coutinho, H. D. M., & Verde, L. C. L. (2022). Fungal community diversity of heavy metal contaminated soils revealed by metagenomics. Archives of Microbiology, 204(5), 255. https://doi.org/10.1007/s00203-022-02860-7
Phukhamsakda, C., Nilsson, R. H., Bhunjun, C. S., de Farias, A. R. G., Sun, Y.-R., Wijesinghe, S. N., Raza, M., Bao, D.-F., Lu, L., Tibpromma, S., Dong, W., Tennakoon, D. S., Tian, X.-G., Xiong, Y.-R., Karunarathna, S. C., Cai, L., Luo, Z.-L., Wang, Y., Manawasinghe, I. S., … Hyde, K. D. (2022). The numbers of fungi: Contributions from traditional taxonomic studies and challenges of metabarcoding. Fungal Diversity, 114(1), 327-386. https://doi.org/10.1007/s13225-022-00502-3
Lehmann, A., Zheng, W., Ryo, M., Soutschek, K., Roy, J., Rongstock, R., Maaß, S., & Rillig, M. C. (2020). Fungal traits important for soil aggregation. Frontiers in Microbiology, 10, 2904. https://doi.org/10.3389/fmicb.2019.02904
Li, F., Jin, Z., Wang, Z., Liao, Y., Yu, L., & Li, X. (2022). Host plant selection imprints structure and assembly of fungal community along the soil-root continuum. MSystems, 7(4), e00361-22. https://doi.org/10.1128/msystems.00361-22
Li, B., Xu, R., Sun, X., Han, F., Xiao, E., Chen, L., Qiu, L., & Sun, W. (2021). Microbiome–environment interactions in antimony-contaminated rice paddies and the correlation of core microbiome with arsenic and antimony contamination. Chemosphere, 263, 128227. https://doi.org/10.1016/j.chemosphere.2020.128227
Li, Y., Li, Z., Arafat, Y., & Lin, W. (2020). Studies on fungal communities and functional guilds shift in tea continuous cropping soils by high-throughput sequencing. Annals of Microbiology, 70(1), 7. https://doi.org/10.1186/s13213-020-01555-y
Lin, Y., Xiao, W., Ye, Y., Wu, C., Hu, Y., & Shi, H. (2020). Adaptation of soil fungi to heavy metal contamination in paddy fields—A case study in eastern China. Environmental Science and Pollution Research, 27(22), 27819-27830. https://doi.org/10.1007/s11356-020-09049-9
Lladó, S., López-Mondéjar, R., & Baldrian, P. (2018). Drivers of microbial community structure in forest soils. Applied Microbiology and Biotechnology, 102(10), 4331-4338. https://doi.org/10.1007/s00253-018-8950-4
Lorena, B.-B., Javiera, O., & Jean Franco, C. (2021). Facultative fungal endophytes and their potential for the development of sustainable agriculture. En Microbial Management of Plant Stresses (pp. 1-12). Elsevier. https://doi.org/10.1016/B978-0-323-85193-0.00014-0
Ma, A., Zhuang, X., Wu, J., Cui, M., Lv, D., Liu, C., & Zhuang, G. (2013). Ascomycota members dominate fungal communities during straw residue decomposition in arable soil. PLoS ONE, 8(6), e66146. https://doi.org/10.1371/journal.pone.0066146
Malik, A. A., Chowdhury, S., Schlager, V., Oliver, A., Puissant, J., Vazquez, P. G. M., Jehmlich, N., von Bergen, M., Griffiths, R. I., & Gleixner, G. (2016). Soil fungal:bacterial ratios are linked to altered carbon cycling. Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.01247
Memić, M., Vrtačnik, M., Boh, B., Pohleven, F., & Mahmutović, O. (2020). Biodegradation of pahs by ligninolytic fungi hypoxylon fragiforme and coniophora puteana. Polycyclic Aromatic Compounds, 40(2), 206-213. https://doi.org/10.1080/10406638.2017.1392326
Mantzoukas, S., Lagogiannis, I., Mpousia, D., Ntoukas, A., Karmakolia, K., Eliopoulos, P. A., & Poulas, K. (2021). Beauveria bassiana endophytic strain as plant growth promoter: The case of the grape vine vitis vinifera. Journal of Fungi, 7(2), 142. https://doi.org/10.3390/jof7020142
Matchado, M. S., Lauber, M., Reitmeier, S., Kacprowski, T., Baumbach, J., Haller, D., & List, M. (2021). Network analysis methods for studying microbial communities: A mini review. Computational and Structural Biotechnology Journal, 19, 2687-2698. https://doi.org/10.1016/j.csbj.2021.05.001
Mhete, M., Eze, P. N., Rahube, T. O., & Akinyemi, F. O. (2020). Soil properties influence bacterial abundance and diversity under different land-use regimes in semi-arid environments. Scientific African, 7, e00246. https://doi.org/10.1016/j.sciaf.2019.e00246
Moreira-Morrillo, A. A., Cedeño-Moreira, Á. V., Canchignia-Martínez, F., & Garcés-Fiallos, F. R. (2021). Lasiodiplodiatheobromae(Pat.) Griffon & Maubl [(Syn.) Botryodiplodia theobromae Pat] in the cocoa crop: Symptoms, biological cycle,and strategies management. Scientia Agropecuaria, 12(4), 653-662. https://doi.org/10.17268/sci.agropecu.2021.068
Muneer, M. A., Huang, X., Hou, W., Zhang, Y., Cai, Y., Munir, M. Z., Wu, L., & Zheng, C. (2021). Response of fungal diversity, community composition, and functions to nutrients management in red soil. Journal of Fungi, 7(7), 554. https://doi.org/10.3390/jof7070554
Naveed, M., Herath, L., Moldrup, P., Arthur, E., Nicolaisen, M., Norgaard, T., Ferré, T. P. A., & de Jonge, L. W. (2016). Spatial variability of microbial richness and diversity and relationships with soil organic carbon, texture and structure across an agricultural field. Applied Soil Ecology, 103, 44-55. https://doi.org/10.1016/j.apsoil.2016.03.004
Naylor, D., McClure, R., & Jansson, J. (2022). Trends in microbial community composition and function by soil depth. Microorganisms, 10(3), 540. https://doi.org/10.3390/microorganisms10030540
Nicolitch, O., Feucherolles, M., Churin, J.-L., Fauchery, L., Turpault, M.-P., & Uroz, S. (2019). A microcosm approach highlights the response of soil mineral weathering bacterial communities to an increase of K and Mg availability. Scientific Reports, 9(1), 14403. https://doi.org/10.1038/s41598-019-50730-y
Nishiyama, M., Sugita, R., Otsuka, S., & Senoo, K. (2012). Community structure of bacteria on different types of mineral particles in a sandy soil. Soil Science and Plant Nutrition, 58(5), 562-567. https://doi.org/10.1080/00380768.2012.729226
Nongmaithem, N., Roy, A., & Bhattacharya, P. M. (2016). Screening of Trichoderma isolates for their potential of biosorption of nickel and cadmium. Brazilian Journal of Microbiology, 47(2), 305-313. https://doi.org/10.1016/j.bjm.2016.01.008
Obayomi, O., Seyoum, M. M., Ghazaryan, L., Tebbe, C. C., Murase, J., Bernstein, N., & Gillor, O. (2021). Soil texture and properties rather than irrigation water type shape the diversity and composition of soil microbial communities. Applied Soil Ecology, 161, 103834. https://doi.org/10.1016/j.apsoil.2020.103834
Oueriaghli, N., Castro, D. J., Llamas, I., Béjar, V., & Martínez-Checa, F. (2018). Study of bacterial community composition and correlation of environmental variables in rambla salada, a hypersaline environment in south-eastern spain. Frontiers in Microbiology, 9, 1377. https://doi.org/10.3389/fmicb.2018.01377
Pečiulytė, D., & Dirginčiutė-Volodkienė, V. (2012). Effect of zinc and copper on cultivable populations of soil fungi with special reference to entomopathogenic fungi. Ekologija, 58(2). https://doi.org/10.6001/ekologija.v58i2.2524
Poll, C., Brune, T., Begerow, D., & Kandeler, E. (2010). Small-scale diversity and succession of fungi in the detritusphere of rye residues. Microbial Ecology, 59(1), 130-140. https://doi.org/10.1007/s00248-009-9541-9
Proulx, S., Promislow, D., & Phillips, P. (2005). Network thinking in ecology and evolution. Trends in Ecology & Evolution, 20(6), 345-353. https://doi.org/10.1016/j.tree.2005.04.004
Li, H., Dong, X., da Silva, E. B., de Oliveira, L. M., Chen, Y., & Ma, L. Q. (2017). Mechanisms of metal sorption by biochars: Biochar characteristics and modifications. Chemosphere, 178, 466-478. https://doi.org/10.1016/j.chemosphere.2017.03.072
Liang, G., Gong, W., Li, B., Zuo, J., Pan, L., & Liu, X. (2019). Analysis of heavy metals in foodstuffs and an assessment of the health risks to the general public via consumption in beijing, china. International Journal of Environmental Research and Public Health, 16(6), 909. https://doi.org/10.3390/ijerph16060909
Liao, M., Luo, Y., Zhao, X., & Huang, C. (2005). Toxicity of cadmium to soil microbial biomass and its activity: Effect of incubation time on Cd ecological dose in a paddy soil. Journal of Zhejiang University-SCIENCE B, 6(5), 324-330. https://doi.org/10.1631/jzus.2005.B0324
Lin, Y.-F., & Aarts, M. G. M. (2012). The molecular mechanism of zinc and cadmium stress response in plants. Cellular and Molecular Life Sciences, 69(19), 3187-3206. https://doi.org/10.1007/s00018-012-1089-z
Luo, J.-S., & Zhang, Z. (2021). Mechanisms of cadmium phytoremediation and detoxification in plants. The Crop Journal, 9(3), 521-529. https://doi.org/10.1016/j.cj.2021.02.001
Luo, J., Xiao, X., & Luo, sheng-lian. (2010). Biosorption of cadmium(Ii) from aqueous solutions by industrial fungus Rhizopus cohnii. Transactions of Nonferrous Metals Society of China, 20(6), 1104-1111. https://doi.org/10.1016/S1003-6326(09)60264-8
Lux, A., Martinka, M., Vaculik, M., & White, P. J. (2011). Root responses to cadmium in the rhizosphere: A review. Journal of Experimental Botany, 62(1), 21-37. https://doi.org/10.1093/jxb/erq281
Malik, A. (2004). Metal bioremediation through growing cells. Environment International, 30(2), 261-278. https://doi.org/10.1016/j.envint.2003.08.001
Manguilimotan, L. C., & Bitacura, J. G. (2018). Biosorption of cadmium by filamentous fungi isolated from coastal water and sediments. Journal of Toxicology, 2018, 1-6. https://doi.org/10.1155/2018/7170510
Manzotti, A., Bergna, A., Burow, M., Jørgensen, H. J. L., Cernava, T., Berg, G., Collinge, D. B., & Jensen, B. (2020). Insights into the community structure and lifestyle of the fungal root endophytes of tomato by combining amplicon sequencing and isolation approaches with phytohormone profiling. FEMS Microbiology Ecology, 96(5), fiaa052. https://doi.org/10.1093/femsec/fiaa052
Marchetti, C. (2013). Role of calcium channels in heavy metal toxicity. ISRN Toxicology, 2013, 1-9. https://doi.org/10.1155/2013/184360
Mathivanan, K., Chandirika, J. U., Vinothkanna, A., Yin, H., Liu, X., & Meng, D. (2021). Bacterial adaptive strategies to cope with metal toxicity in the contaminated environment – A review. Ecotoxicology and Environmental Safety, 226, 112863. https://doi.org/10.1016/j.ecoenv.2021.112863
Mengistu, D. A. (2021). Public health implications of heavy metals in foods and drinking water in Ethiopia (2016 to 2020): Systematic review. BMC Public Health, 21(1), 2114. https://doi.org/10.1186/s12889-021-12189-3
Meter, A., Atkinson, R. J., & Laliberte, B. (2019). Cadmium in cacao from latin america and the caribbean. A review of research and potential mitigation solutions. CAF. https://cafscioteca.azurewebsites.net/handle/123456789/1506
Muszyńska, E., & Hanus-Fajerska, E. (2015). Why are heavy metal hyperaccumulating plants so amazing? BioTechnologia, 4, 265-271. https://doi.org/10.5114/bta.2015.57730
Nagy, Z., Montigny, C., Leverrier, P., Yeh, S., Goffeau, A., Garrigos, M., & Falson, P. (2006). Role of the yeast ABC transporter Yor1p in cadmium detoxification. Biochimie, 88(11), 1665-1671. https://doi.org/10.1016/j.biochi.2006.05.014
Osmolovskaya, N. G., Dung, V. V., Kudryashova, Z. K., Kuchaeva, L. N., & Popova, N. F. (2018). Effect of cadmium on distribution of potassium, calcium, magnesium, and oxalate accumulation in amaranthus cruentus l. Plants. Russian Journal of Plant Physiology, 65(4), 553-562. https://doi.org/10.1134/S1021443718040076
Ott, T., Fritz, E., Polle, A., & Schützendübel, A. (2002). Characterisation of antioxidative systems in the ectomycorrhiza-building basidiomycete Paxillus involutus (Bartsch) Fr. And its reaction to cadmium. FEMS Microbiology Ecology, 42(3), 359-366. https://doi.org/10.1111/j.1574-6941.2002.tb01025.x
Page, V., & Feller, U. (2015). Heavy metals in crop plants: Transport and redistribution processes on the whole plant level. Agronomy, 5(3), 447-463. https://doi.org/10.3390/agronomy5030447
Pambuka, G. T., Kinge, T. R., Ghosh, S., Cason, E. D., Nyaga, M. M., & Gryzenhout, M. (2022). Plant and soil core mycobiomes in a two-year sorghum–legume intercropping system of underutilized crops in south africa. Microorganisms, 10(10), 2079. https://doi.org/10.3390/microorganisms10102079
Pereira de Araújo, R., Furtado de Almeida, A.-A., Silva Pereira, L., Mangabeira, P. A. O., Olimpio Souza, J., Pirovani, C. P., Ahnert, D., & Baligar, V. C. (2017). Photosynthetic, antioxidative, molecular and ultrastructural responses of young cacao plants to Cd toxicity in the soil. Ecotoxicology and Environmental Safety, 144, 148-157. https://doi.org/10.1016/j.ecoenv.2017.06.006
Peršoh, D. (2015). Plant-associated fungal communities in the light of meta’omics. Fungal Diversity, 75(1), 1-25. https://doi.org/10.1007/s13225-015-0334-9
Praveen, R., & Nagalakshmi, R. (2022). Review on bioremediation and phytoremediation techniques of heavy metals in contaminated soil from dump site. Materials Today: Proceedings, 68, 1562-1567. https://doi.org/10.1016/j.matpr.2022.07.190
Prifti, E., & Zucker, J.-D. (2015). The new science of metagenomics and the challenges of its use in both developed and developing countries. En S. Morand, J.-P. Dujardin, R. Lefait-Robin, & C. Apiwathnasorn (Eds.), Socio-Ecological Dimensions of Infectious Diseases in Southeast Asia (pp. 191-216). Springer Singapore. https://doi.org/10.1007/978-981-287-527-3_12
Priyadarshini, E., Priyadarshini, S. S., Cousins, B. G., & Pradhan, N. (2021). Metal-Fungus interaction: Review on cellular processes underlying heavy metal detoxification and synthesis of metal nanoparticles. Chemosphere, 274, 129976. https://doi.org/10.1016/j.chemosphere.2021.129976
Qadir, S., Jamshieed, S., Rasool, S., Ashraf, M., Akram, N. A., & Ahmad, P. (2014). Modulation of plant growth and metabolism in cadmium-enriched environments. En D. M. Whitacre (Ed.), Reviews of Environmental Contamination and Toxicology (Vol. 229, pp. 51-88). Springer International Publishing. https://doi.org/10.1007/978-3-319-03777-6_4
Rodríguez Eugenio, N., McLaughlin, M. J., & Pennock, D. J. (2018). Soil pollution: A hidden reality. Food and Agriculture Organization of the United Nations.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 204 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.country.none.fl_str_mv Colombia
dc.coverage.region.none.fl_str_mv Yacopí
Cundinamarca
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias Agrarias - Maestría en Ciencias Agrarias
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Agrarias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/84379/2/1032466943.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/84379/3/license.txt
https://repositorio.unal.edu.co/bitstream/unal/84379/4/1032466943.2023.pdf.jpg
bitstream.checksum.fl_str_mv 1caac842ce17f4034dba4b059b67e25d
eb34b1cf90b7e1103fc9dfd26be24b4a
715d375a27d1d89de9748a06f3689dc0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089575866302464
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Torres Rojas, Esperanzadab829cf50bdc7b183de0183f2ebe854Caro Quintero, Alejandro62821879e223aa58e3168a169ceee82cGonzález Bello, Diego Alejandro41f238563130a3b363a98d154f9fe037Agrobiodiversidad y BiotecnologíaGonzález Bello, Diego [0000000268915907]2023-07-31T20:04:00Z2023-07-31T20:04:00Z2023-07-24https://repositorio.unal.edu.co/handle/unal/84379Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, mapasEl cadmio (Cd) es un metal pesado tóxico que altera el crecimiento y desarrollo de todos los organismos presentes en los sistemas agrícolas. Las plantas de cacao acumulan Cd y se han registrado altas concentraciones en los granos de cacao, lo que afecta la seguridad alimentaria y su comercialización. La comunidad microbiana del suelo cumple un papel importante en el ciclaje de nutrientes y en la biorremediación de suelos contaminados con metales pesados. Dentro de esta comunidad se destacan los hongos, que establecen redes miceliales que colonizan el suelo y exhiben mecanismos de tolerancia que les permiten sobrevivir altas concentraciones del metal. Sin embargo, pocos estudios han evaluado el efecto de las propiedades fisicoquímicas del suelo y del Cd sobre la comunidad fúngica presente en suelos cacaoteros. El objetivo de este estudio fue caracterizar la diversidad estructural de los microbiomas fúngicos presentes en suelos cacaoteros con diferentes propiedades físicas, químicas y concentraciones de Cd del municipio de Yacopí-Cundinamarca. Para ello, se seleccionaron tres fincas cacaoteras con diferentes concentraciones de Cd (F1>5,0 mg kg-1; F2 y F3<2 mg kg-1) y dos lotes uno con cultivo de cacao (SCC) y otro sin cultivo de cacao (SWC) en cada finca. Se colectaron muestras de suelo rizosférico (Rz) y no Rz a dos profundidades, D1 (0-30 cm) y D2 (31-100 cm); y muestras de hojarasca (HJ), hojas (HF) y frutos en los lotes SCC. Para los lotes SWC se colectaron únicamente suelo a las profundidades D1 y D2. (i) Se determinaron las propiedades fisicoquímicas del suelo y su relación con el Cd en suelos, hojarasca, hoja y grano de cacao en las tres fincas. Se encontró que la distribución de Cd fue heterogénea y mayor en F1>F3>F2, y en los suelos de F1 los contenidos de Cd fueron mayores SCC>SWC y en suelos Rz>D1=D2, alcanzado un valor promedio de 10,24 mg kg-1. Las concentraciones de Cd presentes en los suelos de las tres fincas fueron superiores a los niveles establecidos por las entidades regulatorias internacionales para suelos agrícolas no contaminados (1,0 mg kg-1) y el contenido de Cd en granos fue superior a las concentraciones permitidas por la comunidad europea para grano seco (0,6 mg kg-1). La concentración de Cd en los tejidos vegetales analizados fue mayor en HJ>HF>G. También el contenido de Cd en la HJ fue mayor a lo encontrado en el suelo a profundidad de D1, lo que podría contribuir a la recirculación del Cd en sistema suelo-planta. Posteriormente, (ii) se caracterizó la riqueza y abundancia relativa de la comunidad fúngica presentes en los suelos analizados. Los resultados muestran que la riqueza y la abundancia relativa encontrada en SCC fue mayor que la presente en SWC, indicando que el cultivo de cacao crea ambientes diferentes que favorecen la diversidad. Los ASVs (taxones) encontrados en los suelos de la finca F1 mostraron menor similitud con respecto a los presentes en los suelos de las fincas F2 y F3, mayor número de ASVs únicos en suelos con cultivo (SCC) y en suelos Rz; lo que indica que la estructura de la comunidad fúngica se ve alterada por las propiedades fisicoquímicas, el contenido de Cd en el suelo, el cultivo de cacao y la rizosfera. Los phylum Ascomycota (68%) y Basidiomycota (25%) fueron los más abundantes, donde los órdenes Hypocreales, Pleosporales y Capnodiales fueron los más representativos. Adicionalmente, los análisis de abundancia diferencial destacan los géneros Hypoxylon, Microdochium, Xylaria y la familia Nectricaceae, los cuales han sido reportados como tolerantes a metales pesados. También se encontraron géneros raros y pocos conocidos como Plectosphaerella, Tetracladium, Microdihum y Cyberlindnera que podrían tener capacidad de tolerar altas concentraciones de Cd. Finalmente, (iii) se evaluó el efecto de las características fisicoquímicas y concentraciones de Cd presente en suelos cacaoteros sobre la diversidad estructural de las comunidades fúngicas. Se encontró que las propiedades fisicoquímicas de los suelos presentaron bajas correlaciones con los índices de diversidad alfa, indicando que la estructura de las comunidades fúngicas está determinada por múltiples factores. La textura, el pH, CO, N, Na y Cdt mostraron tener mayor efecto en la diversidad estructural. Las redes de co-ocurrencia mostraron géneros fúngicos únicos y compartidos por finca. A su vez, se encontró que la finca F1 se presentó una estructura más homogénea debido posiblemente a los altos contenido de Cd y propiedades fisicoquímicas encontradas, en contraste, la finca F2, la estructura cambia de acuerdo a la profundidad del suelo. Esta investigación aporta por primera vez al conocimiento de la diversidad de la comunidad fúngica presente en SCC y SWC enriquecido con concentraciones de Cd natural. (Texto tomado de la fuente)Cadmium (Cd) is a toxic heavy metal that alters the growth and development of all organisms present in agricultural systems. Cacao plants accumulate Cd and high concentrations have been recorded in cacao beans, affecting food safety and marketing. The soil microbial community plays an important role in nutrient cycling and in the bioremediation of soils contaminated with heavy metals. Within this community, fungi stand out, establishing mycelial networks that colonize the soil and exhibit tolerance mechanisms that allow them to survive high concentrations of this metal. However, few studies have evaluated the effect of soil physicochemical properties and Cd on the fungal community present in cacao soils. The objective of this study was to characterize the structural diversity of fungal microbiomes present in cocoa soils with different physical and chemical properties and Cd concentrations in the municipality of Yacopí-Cundinamarca. For this purpose, three cocoa farms with different Cd concentrations (F1>5,0 mg kg-1 ; F2 and F3<2,0 mg kg-1 ) and two lots, one with cacao crop (SCC) and one without cacao crop (SWC) were selected in each farm. Rhizospheric (Rz) and non-Rz soil samples were collected at two depths, D1 (0-30 cm) and D2 (31-100 cm); and leaf litter (HJ), leaf (HF) and pods samples were collected in the SCC plots. For the SWC plots, only soil was collected at depths D1 and D2. (i) The physicochemical properties of the soil and their relationship with Cd in soils, leaf litter, leaves and cacao beans were determined on the three farms. It was found that the distribution of Cd was heterogeneous and higher in F1>F3>F2, and in F1 soils the Cd contents were higher SCC>SWC and in Rz>D1=D2 soils, reaching an average value of 10.24 mg kg-1 . The Cd concentrations present in the soils of the three farms were higher than the levels established by international regulatory for non-contaminated agricultural soils (1.0 mg kg-1) and the Cd content in grains was higher than the concentrations allowed by the European community for dry beans (0.6 mg kg-1). The Cd concentration in the plant tissues analyzed was higher in HJ>HF>G. Also, the Cd content in HJ was higher than that found in the soil at the depth of D1, which could contribute to the recirculation of Cd in the soil-plant system. Subsequently, (ii) the richness and relative abundance of the fungal community present in the analyzed soils were characterized. The results show that the richness and relative abundance found in SCC was higher than that present in SWC, indicating that cacao cultivation creates different environments that favor diversity. The ASVs (taxa) found in F1 farm soils showed lower similarity with respect to those present in F2 and F3 farm soils, higher number of unique ASVs in SCC and in Rz soils; indicating that the fungal community structure is altered by physicochemical properties, soil Cd content, cacao crop and rhizosphere. The phylum Ascomycota (68%) and Basidiomycota (25%) were the most abundant, where the orders Hypocreales, Pleosporales and Capnodiales were the most representative. In addition, differential abundance analyses highlighted the genera Hypoxylon, Microdochium, Xylaria and the family Nectricaceae, which have been reported to be tolerant to heavy metals. Rare and little known genera such as Plectosphaerella, Tetracladium, Microdihum and Cyberlindnera were also found that could be able to tolerate high Cd concentrations. Finally, (iii) the effect of physicochemical characteristics and Cd concentrations present in cacao soils on the structural diversity of fungal communities was evaluated. It was found that the physicochemical properties of the soils presented low correlations with the alpha diversity indices, indicating that the structure of fungal communities is determined by multiple factors. Texture, pH, organic carbon, N, Na and Cdt were shown to have the greatest effect on structural diversity. Co-occurrence networks showed unique and shared fungal genera per farm. At the same time, it was found that the F1 farm presented a more homogeneous structure, possibly due to the high Cd content and physicochemical properties found, in contrast, the F2 farm, the structure changes according to soil depth. This research contributes for the first time to the knowledge of the diversity of the fungal community present in SCC and SWC enriched with natural Cd concentrations.MaestríaMagíster en Ciencias Agrarias204 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias Agrarias - Maestría en Ciencias AgrariasFacultad de Ciencias AgrariasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá630 - Agricultura y tecnologías relacionadas::633 - Cultivos de campo y de plantación630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materialesMicrobiomasAcondicionadores del sueloMicrobiomesSoil conditionersComunidad-fúngicaTheobroma-cacaoEcología-microbianaMetataxonomíaMetales-pesadosFungal-communityTheobroma-cacaoMicrobial-ecologyMetataxonomyHeavy-metalsTheobroma-cacaoAnálisis del microbioma fúngico presente en diferentes tipos de suelos cacaoteros con cadmio en el municipio de Yacopí - CundinamarcaAnalysis of the fungal microbiome present in cocoa soils with different cadmium concentrationsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMColombiaYacopíCundinamarcaAbatenh, E., Gizaw, B., Tsegaye, Z., Wassie, M., Abatenh, E., Gizaw, B., Tsegaye, Z., & Wassie, M. (2017). The role of microorganisms in bioremediation- a review. Open Journal of Environmental Biology, 2(1), 038-046. https://doi.org/10.17352/ojeb.000007Abbas, S. Z., Rafatullah, M., Hossain, K., Ismail, N., Tajarudin, H. A., & Abdul Khalil, H. P. S. (2018). A review on mechanism and future perspectives of cadmium-resistant bacteria. International Journal of Environmental Science and Technology, 15(1), 243-262. https://doi.org/10.1007/s13762-017-1400-5Abdel-Azeem, A. (2015). Occurrence and diversity of mycobiota in heavy metal contaminated sediments of Mediterranean coastal lagoon El-Manzala, Egypt. Mycosphere, 6(2), 228-240. https://doi.org/10.5943/mycosphere/6/2/12Abdu, N., Abdullahi, A. A., & Abdulkadir, A. (2017). Heavy metals and soil microbes. Environmental Chemistry Letters, 15(1), 65-84. https://doi.org/10.1007/s10311-016-0587-xAbt, E., Fong Sam, J., Gray, P., & Robin, L. P. (2018). Cadmium and lead in cocoa powder and chocolate products in the US Market. Food Additives & Contaminants: Part B, 11(2), 92-102. https://doi.org/10.1080/19393210.2017.1420700Adamo, I., Castaño, C., Bonet, J. A., Colinas, C., Martínez de Aragón, J., & Alday, J. G. (2021). Soil physico-chemical properties have a greater effect on soil fungi than host species in Mediterranean pure and mixed pine forests. Soil Biology and Biochemistry, 160, 108320. https://doi.org/10.1016/j.soilbio.2021.108320Adeoye, A. O., Adebayo, I. A., Afodun, A. M., & Ajijolakewu, K. A. (2022). Benefits and limitations of phytoremediation: Heavy metal remediation review. En Phytoremediation (pp. 227-238). Elsevier. https://doi.org/10.1016/B978-0-323-89874-4.00002-9Adriano, D. C. (2002). Trace elements in terrestrial environments: Biogeochemistry, bioavailability, and risks of metals (2nd ed). Springer.Aguirre-Forero, S. E., Piraneque-Gambasica, N. V., & Vásquez-Polo, J. R. (2020). Heavy metals content in soils and cocoa tissues in Magdalena department Colombia: Emphasis in cadmium. Entramado, 16(2), 298-310. https://doi.org/10.18041/1900-3803/entramado.2.6753Ahmed, B., Smart, L. B., & Hijri, M. (2021). Microbiome of field grown hemp reveals potential microbial interactions with root and rhizosphere soil. Frontiers in Microbiology, 12, 741597. https://doi.org/10.3389/fmicb.2021.741597Ainsworth, G. C., & Bisby, G. R. (2011). Ainsworth & Bisby’s dictionary of the fungi (P. M. Kirk, Ed.; 10. ed. 2011). CABI.Akhtar, N., & Mannan, M. A. (2020). Mycoremediation: Expunging environmental pollutants. Biotechnology Reports, 26, e00452. https://doi.org/10.1016/j.btre.2020.e00452Ali, H., Khan, E., & Ilahi, I. (2019). Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. Journal of Chemistry, 2019, 1-14. https://doi.org/10.1155/2019/6730305Alloway, B. J. (2013). Sources of heavy metals and metalloids in soils. En B. J. Alloway (Ed.), Heavy Metals in Soils (Vol. 22, pp. 11-50). Springer Netherlands. https://doi.org/10.1007/978-94-007-4470-7_2Álvarez-Carrillo, F., Rojas-Molina, J., & Suárez-Salazar, J. C. (2015). Effect of organic and conventional fertilization on the growth and production of theobroma cacao l. Under an agroforestry system in rivera(Huila, colombia). Ciencia y Tecnología Agropecuaria, 16(2), 307-314.Amacher, M. C. (2018). Nickel, cadmium, and lead. En D. L. Sparks, A. L. Page, P. A. Helmke, R. H. Loeppert, P. N. Soltanpour, M. A. Tabatabai, C. T. Johnston, & M. E. Sumner (Eds.), SSSA Book Series (pp. 739-768). Soil Science Society of America, American Society of Agronomy. https://doi.org/10.2136/sssabookser5.3.c28Anahid, S., Yaghmaei, S., & Ghobadinejad, Z. (2011). Heavy metal tolerance of fungi. Scientia Iranica, 18(3), 502-508. https://doi.org/10.1016/j.scient.2011.05.015Anani, O. A., Mishra, R. R., Mishra, P., Olomukoro, J. O., Imoobe, T. O. T., & Adetunji, C. O. (2020). Influence of heavy metal on food security: Recent advances. En P. Mishra, R. R. Mishra, & C. O. Adetunji (Eds.), Innovations in Food Technology (pp. 257-267). Springer Singapore. https://doi.org/10.1007/978-981-15-6121-4_18Anderson, C., Beare, M., Buckley, H. L., & Lear, G. (2017). Bacterial and fungal communities respond differently to varying tillage depth in agricultural soils. PeerJ, 5, e3930. https://doi.org/10.7717/peerj.3930Andrews, S. (2010). FastQC: A Quality Control Tool for High Throughput Sequence Data [Online]. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ Arévalo-Gardini, E., Canto, M., Alegre, J.,Antunes, L. P., Martins, L. F., Pereira, R. V., Thomas, A. M., Barbosa, D., Lemos, L. N., Silva, G. M. M., Moura, L. M. S., Epamino, G. W. C., Digiampietri, L. A., Lombardi, K. C., Ramos, P. L., Quaggio, R. B., de Oliveira, J. C. F., Pascon, R. C., Cruz, J. B. da, da Silva, A. M., & Setubal, J. C. (2016). Microbial community structure and dynamics in thermophilic composting viewed through metagenomics and metatranscriptomics. Scientific Reports, 6(1), 38915. https://doi.org/10.1038/srep38915Anyimah-Ackah, E., Ofosu, I. W., Lutterodt, H. E., & Darko, G. (2019). Exposures and risks of arsenic, cadmium, lead, and mercury in cocoa beans and cocoa-based foods: A systematic review. Food Quality and Safety, 3(1), 1-8. https://doi.org/10.1093/fqsafe/fyy025Arévalo-Gardini, E., Arévalo-Hernández, C. O., Baligar, V. C., & He, Z. L. (2017). Heavy metal accumulation in leaves and beans of cacao (Theobroma cacao L.) in major cacao growing regions in Peru. Science of The Total Environment, 605-606, 792-800. https://doi.org/10.1016/j.scitotenv.2017.06.122Arévalo-Hernández, C. O., Arévalo-Gardini, E., Barraza, F., Farfán, A., He, Z., & Baligar, V. C. (2021). Growth and nutritional responses of wild and domesticated cacao genotypes to soil Cd stress. Science of The Total Environment, 763, 144021. https://doi.org/10.1016/j.scitotenv.2020.144021Arévalo-Hernández, C. O., Loli, O., Julca, A., & Baligar, V. (2020). Cacao agroforestry management systems effects on soil fungi diversity in the Peruvian Amazon. Ecological Indicators, 115, 106404. https://doi.org/10.1016/j.ecolind.2020.106404Argüello, D., Chavez, E., Lauryssen, F., Vanderschueren, R., Smolders, E., & Montalvo, D. (2019). Soil properties and agronomic factors affecting cadmium concentrations in cacao beans: A nationwide survey in Ecuador. Science of The Total Environment, 649, 120-127. https://doi.org/10.1016/j.scitotenv.2018.08.292Arias Espana, V. A., Rodriguez Pinilla, A. R., Bardos, P., & Naidu, R. (2018). Contaminated land in Colombia: A critical review of current status and future approach for the management of contaminated sites. Science of The Total Environment, 618, 199-209. https://doi.org/10.1016/j.scitotenv.2017.10.245Armitage, D. W., & Jones, S. E. (2019). How sample heterogeneity can obscure the signal of microbial interactions. The ISME Journal, 13(11), 2639-2646. https://doi.org/10.1038/s41396-019-0463-3Arora, M., Kiran, B., Rani, S., Rani, A., Kaur, B., & Mittal, N. (2008). Heavy metal accumulation in vegetables irrigated with water from different sources. Food Chemistry, 111(4), 811-815. https://doi.org/10.1016/j.foodchem.2008.04.049Ashrafi, S., Stadler, M., Dababat, A. A., Richert-Pöggeler, K. R., Finckh, M. R., & Maier, W. (2017). Monocillium gamsii sp. nov. and Monocillium bulbillosum: Two nematode-associated fungi parasitising the eggs of Heterodera filipjevi. MycoKeys, 27, 21-38. https://doi.org/10.3897/mycokeys.27.21254Ayangbenro, A., & Babalola, O. (2017). A new strategy for heavy metal polluted environments: A review of microbial biosorbents. International Journal of Environmental Research and Public Health, 14(1), 94. https://doi.org/10.3390/ijerph14010094Baldrian, P. (2003). Interactions of heavy metals with white-rot fungi. Enzyme and Microbial Technology, 32(1), 78-91. https://doi.org/10.1016/S0141-0229(02)00245-4Banerjee, S., Walder, F., Büchi, L., Meyer, M., Held, A. Y., Gattinger, A., Keller, T., Charles, R., & van der Heijden, M. G. A. (2019). Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots. The ISME Journal, 13(7), 1722-1736. https://doi.org/10.1038/s41396-019-0383-2Bari, M. A., Akther, M. S., Reza, M. A., & Kabir, A. H. (2019). Cadmium tolerance is associated with the root-driven coordination of cadmium sequestration, iron regulation, and ROS scavenging in rice. Plant Physiology and Biochemistry, 136, 22-33. https://doi.org/10.1016/j.plaphy.2019.01.007Bar-On, Y. M., Phillips, R., & Milo, R. (2018). The biomass distribution on Earth. Proceedings of the National Academy of Sciences, 115(25), 6506-6511. https://doi.org/10.1073/pnas.1711842115Barraza, F., Moore, R. E. T., Rehkämper, M., Schreck, E., Lefeuvre, G., Kreissig, K., Coles, B. J., & Maurice, L. (2019). Cadmium isotope fractionation in the soil – cacao systems of Ecuador: A pilot field study. RSC Advances, 9(58), 34011-34022. https://doi.org/10.1039/C9RA05516ABarrientos, L. D. P., Oquendo, J. D. T., Garzón, M. A. G., & Álvarez, O. L. M. (2019). Effect of the solar drying process on the sensory and chemical quality of cocoa (Theobroma cacao L.) cultivated in Antioquia, Colombia. Food Research International, 115, 259-267. https://doi.org/10.1016/j.foodres.2018.08.084Bauer, R., Garnica, S., Oberwinkler, F., Riess, K., Weiß, M., & Begerow, D. (2015). Entorrhizomycota: A new fungal phylum reveals new perspectives on the evolution of fungi. PLOS ONE, 10(7), e0128183. https://doi.org/10.1371/journal.pone.0128183Bayramoglu, G. (2003). Biosorption of heavy metal ions on immobilized white-rot fungus Trametes versicolor. Journal of Hazardous Materials, 101(3), 285-300. https://doi.org/10.1016/S0304-3894(03)00178-XBeattie, R. E., Henke, W., Campa, M. F., Hazen, T. C., McAliley, L. R., & Campbell, J. H. (2018). Variation in microbial community structure correlates with heavy-metal contamination in soils decades after mining ceased. Soil Biology and Biochemistry, 126, 57-63. https://doi.org/10.1016/j.soilbio.2018.08.011Beimforde, C., Feldberg, K., Nylinder, S., Rikkinen, J., Tuovila, H., Dörfelt, H., Gube, M., Jackson, D. J., Reitner, J., Seyfullah, L. J., & Schmidt, A. R. (2014). Estimating the Phanerozoic history of the Ascomycota lineages: Combining fossil and molecular data. Molecular Phylogenetics and Evolution, 78, 386-398. https://doi.org/10.1016/j.ympev.2014.04.024Bellemain, E., Carlsen, T., Brochmann, C., Coissac, E., Taberlet, P., & Kauserud, H. (2010). ITS as an environmental DNA barcode for fungi: An in silico approach reveals potential PCR biases. BMC Microbiology, 10(1), 189. https://doi.org/10.1186/1471-2180-10-189Bellion, M., Courbot, M., Jacob, C., Blaudez, D., & Chalot, M. (2006). Extracellular and cellular mechanisms sustaining metal tolerance in ectomycorrhizal fungi. FEMS Microbiology Letters, 254(2), 173-181. https://doi.org/10.1111/j.1574-6968.2005.00044.xBenjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological), 57(1), 289-300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.xBertoldi, D., Barbero, A., Camin, F., Caligiani, A., & Larcher, R. (2016). Multielemental fingerprinting and geographic traceability of Theobroma cacao beans and cocoa products. Food Control, 65, 46-53. https://doi.org/10.1016/j.foodcont.2016.01.013Blaalid, R., Kumar, S., Nilsson, R. H., Abarenkov, K., Kirk, P. M., & Kauserud, H. (2013). its 1 versus its 2 as dna metabarcodes for fungi. Molecular Ecology Resources, 13(2), 218-224. https://doi.org/10.1111/1755-0998.12065Bohn, H. L., McNeal, B. L., O’Connor, G. A., & Sánchez Orozco, M. (1993). Química del suelo. Limusa.Bolan, N. S., Adriano, D. C., & Curtin, D. (2003). Soil acidification and liming interactions with nutrientand heavy metal transformationand bioavailability. En Advances in Agronomy (Vol. 78, pp. 215-272). Elsevier. https://doi.org/10.1016/S0065-2113(02)78006-1Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114-2120. https://doi.org/10.1093/bioinformatics/btu170Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C., Al-Ghalith, G. A., Alexander, H., Alm, E. J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J. E., Bittinger, K., Brejnrod, A., Brislawn, C. J., Brown, C. T., Callahan, B. J., Caraballo-Rodríguez, A. M., Chase, J., … Caporaso, J. G. (2018). QIIME 2: Reproducible, interactive, scalable, and extensible microbiome data science [Preprint]. PeerJ Preprints. https://doi.org/10.7287/peerj.preprints.27295v2Boros-Lajszner, E., Wyszkowska, J., Borowik, A., & Kucharski, J. (2021). The response of the soil microbiome to contamination with cadmium, cobalt and nickel in soil sown with brassica napus. Minerals, 11(5), 498. https://doi.org/10.3390/min11050498Boyd, R. S., & Rajakaruna, N. (2013). Heavy metal tolerance (pp. 9780199830060-9780199830137) [Data set]. Oxford University Press. https://doi.org/10.1093/obo/9780199830060-0137Bravo Realpe, I. D. S., Arboleda Pardo, C. A., & Martin Peinado, F. J. (2014). Efecto de la calidad de la materia orgánica asociada con el uso y manejo de suelos en la retención de cadmio en sistemas altoandinos de Colombia. Acta Agronómica, 63(2), 164-174. https://doi.org/10.15446/acag.v63n2.39569Bravo, D., & Braissant, O. (2022). Cadmium‐tolerant bacteria: Current trends and applications in agriculture. Letters in Applied Microbiology, 74(3), 311-333. https://doi.org/10.1111/lam.13594Bravo, D., Leon-Moreno, C., Martínez, C. A., Varón-Ramírez, V. M., Araujo-Carrillo, G. A., Vargas, R., Quiroga-Mateus, R., Zamora, A., & Rodríguez, E. A. G. (2021). The first national survey of cadmium in cacao farm soil in colombia. Agronomy, 11(4), 761. YiBravo, D., León-Moreno, C., Quiroga, R., Duarte, D., Zamora, A., Gutiérrez, E., Aristizábal, A., Arroyave, C., Cardona, L., Guerra, B., Olarte, H., Cuervo, C., Orozco, M. L., & Moreno, E. (2021). Recomendaciones mínimas para la mitigación de cadmio (Primera). Corporación Colombiana de Investigación Agropecuaria (Agrosavia). https://doi.org/10.21930/agrosavia.nbook.7404555Bravo, D., Pardo‐Díaz, S., Benavides‐Erazo, J., Rengifo‐Estrada, G., Braissant, O., & Leon‐Moreno, C. (2018). Cadmium and cadmium‐tolerant soil bacteria in cacao crops from northeastern Colombia. Journal of Applied Microbiology, 124(5), 1175-1194. https://doi.org/10.1111/jam.13698Cáceres, P. F. F., Vélez, L. P., Junca, H., & Moreno-Herrera, C. X. (2021). Theobroma cacao L. agricultural soils with natural low and high cadmium (Cd) in Santander (Colombia), contain a persistent shared bacterial composition shaped by multiple soil variables and bacterial isolates highly resistant to Cd concentrations. Current Research in Microbial Sciences, 2, 100086. https://doi.org/10.1016/j.crmicr.2021.100086Callahan, B. J., McMurdie, P. J., & Holmes, S. P. (2017). Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. The ISME Journal, 11(12), 2639-2643. https://doi.org/10.1038/ismej.2017.119Cameron, E. S., Schmidt, P. J., Tremblay, B. J.-M., Emelko, M. B., & Müller, K. M. (2020). To rarefy or not to rarefy: Enhancing diversity analysis of microbial communities through next-generation sequencing and rarefying repeatedly [Preprint]. Bioinformatics. https://doi.org/10.1101/2020.09.09.290049Cánovas, D., Vooijs, R., Schat, H., & de Lorenzo, V. (2004). The role of thiol species in the hypertolerance of aspergillus sp. P37 to arsenic. Journal of Biological Chemistry, 279(49), 51234-51240. https://doi.org/10.1074/jbc.M408622200Carney, K. M., & Matson, P. A. (2005). Plant communities, soil microorganisms, and soil carbon cycling: Does altering the world belowground matter to ecosystem functioning? Ecosystems, 8(8), 928-940. https://doi.org/10.1007/s10021-005-0047-0Carson, J. K., Gonzalez-Quiñones, V., Murphy, D. V., Hinz, C., Shaw, J. A., & Gleeson, D. B. (2010). Low pore connectivity increases bacterial diversity in soil. Applied and Environmental Microbiology, 76(12), 3936-3942. https://doi.org/10.1128/AEM.03085-09Cazabonne, J., Bartrop, L., Dierickx, G., Gafforov, Y., Hofmann, T. A., Martin, T. E., Piepenbring, M., Rivas-Ferreiro, M., & Haelewaters, D. (2022). Molecular-based diversity studies and field surveys are not mutually exclusive: On the importance of integrated methodologies in mycological research. Frontiers in Fungal Biology, 3, 860777. https://doi.org/10.3389/ffunb.2022.860777Ceci, A., Pinzari, F., Russo, F., Persiani, A. M., & Gadd, G. M. (2019). Roles of saprotrophic fungi in biodegradation or transformation of organic and inorganic pollutants in co-contaminated sites. Applied Microbiology and Biotechnology, 103(1), 53-68. https://doi.org/10.1007/s00253-018-9451-1Challacombe, J. F., Hesse, C. N., Bramer, L. M., McCue, L. A., Lipton, M., Purvine, S., Nicora, C., Gallegos-Graves, L. V., Porras-Alfaro, A., & Kuske, C. R. (2019). Genomes and secretomes of Ascomycota fungi reveal diverse functions in plant biomass decomposition and pathogenesis. BMC Genomics, 20(1), 976. https://doi.org/10.1186/s12864-019-6358-xChang, J., Sun, Y., Tian, L., Ji, L., Luo, S., Nasir, F., Kuramae, E. E., & Tian, C. (2021). The structure of rhizosphere fungal communities of wild and domesticated rice: Changes in diversity and co-occurrence patterns. Frontiers in Microbiology, 12, 610823. https://doi.org/10.3389/fmicb.2021.610823Chaves-López, C., Serio, A., Grande-Tovar, C. D., Cuervo-Mulet, R., Delgado-Ospina, J., & Paparella, A. (2014). Traditional fermented foods and beverages from a microbiological and nutritional perspective: The colombian heritage: colombian fermented foods and beverages…. Comprehensive Reviews in Food Science and Food Safety, 13(5), 1031-1048. https://doi.org/10.1111/1541-4337.12098Chavez, E., He, Z. L., Stoffella, P. J., Mylavarapu, R. S., Li, Y. C., Moyano, B., & Baligar, V. C. (2015). Concentration of cadmium in cacao beans and its relationship with soil cadmium in southern Ecuador. Science of The Total Environment, 533, 205-214. https://doi.org/10.1016/j.scitotenv.2015.06.106Chen, H., Zhang, W., Yang, X., Wang, P., McGrath, S. P., & Zhao, F.-J. (2018). Effective methods to reduce cadmium accumulation in rice grain. Chemosphere, 207, 699-707. https://doi.org/10.1016/j.chemosphere.2018.05.143Chen, X. W., Wu, L., Luo, N., Mo, C. H., Wong, M. H., & Li, H. (2019). Arbuscular mycorrhizal fungi and the associated bacterial community influence the uptake of cadmium in rice. Geoderma, 337, 749-757. https://doi.org/10.1016/j.geoderma.2018.10.029Chen, Y. P., Liu, Q., Liu, Y. J., Jia, F. A., & He, X. H. (2014). Responses of soil microbial activity to cadmium pollution and elevated CO2. Scientific Reports, 4(1), 4287. https://doi.org/10.1038/srep04287Choi, S., & Yun, Y. (2006). Biosorption of cadmium by various types of dried sludge: An equilibrium study and investigation of mechanisms. Journal of Hazardous Materials, 138(2), 378-383. https://doi.org/10.1016/j.jhazmat.2006.05.059Chong, J., Liu, P., Zhou, G., & Xia, J. (2020). Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nature Protocols, 15(3), 799-821. https://doi.org/10.1038/s41596-019-0264-1Chunhabundit, R. (2016). Cadmium exposure and potential health risk from foods in contaminated area, thailand. Toxicological Research, 32(1), 65-72. https://doi.org/10.5487/TR.2016.32.1.065Clemens, S., Aarts, M. G. M., Thomine, S., & Verbruggen, N. (2013). Plant science: The key to preventing slow cadmium poisoning. Trends in Plant Science, 18(2), 92-99. https://doi.org/10.1016/j.tplants.2012.08.003Coller, E., Cestaro, A., Zanzotti, R., Bertoldi, D., Pindo, M., Larger, S., Albanese, D., Mescalchin, E., & Donati, C. (2019). Microbiome of vineyard soils is shaped by geography and management. Microbiome, 7(1), 140. https://doi.org/10.1186/s40168-019-0758-7Commission Regulation (EU). (2021) Commission Regulation (EU) 2021/1323 of 10 August 2021 amending Regulation (EC) No 1881/2006 as regards maximum levels of cadmium in certain foodstuffs (Text with EEA relevance). url: https://eur-lex.europa.eu/eli/reg/2021/1323/oj. Consultado: Diciembre, 2022.Compant, S., Samad, A., Faist, H., & Sessitsch, A. (2019). A review on the plant microbiome: Ecology, functions, and emerging trends in microbial application. Journal of Advanced Research, 19, 29-37. https://doi.org/10.1016/j.jare.2019.03.004Consejo Municipal Yacopí - Cundinamarca. (2000). Esquema de Ordenamiento Territorial (EOT) del municipio de Yacopí, Cundinamarca: EOT Yacopí Cundinamarca 2000. url: https://repositoriocdim.esap.edu.co/handle/123456789/19167. Consulta: Diciembre, 2022.Cordoba-Novoa, H. A., Cáceres-Zambrano, J., & Torres-Rojas, E. (2022). Assessment of native cadmium-tolerant bacteria in cacao (Theobroma cacao L.)—Cultivated soils in Cundinamarca-Colombia [Preprint]. In Review. https://doi.org/10.21203/rs.3.rs-1726295/v1Correa Alvarez, J., Castro Martínez, S., & Coy, J. (2014). Estado de la Moniliasis del cacao causada por Moniliophthora roreri en Colombia. Acta Agronómica, 63(4), 388-399. https://doi.org/10.15446/acag.v63n4.42747Correa, J. E., Ramírez, R., Ruíz, O., & Leiva, E. I. (2021). Effect of soil characteristics on cadmium absorption and plant growth of Theobroma cacao L. seedlings. Journal of the Science of Food and Agriculture, 101(13), 5437-5445. https://doi.org/10.1002/jsfa.11192Creamer, R. E., Hannula, S. E., Leeuwen, J. P. V., Stone, D., Rutgers, M., Schmelz, R. M., Ruiter, P. C. de, Hendriksen, N. B., Bolger, T., Bouffaud, M. L., Buee, M., Carvalho, F., Costa, D., Dirilgen, T., Francisco, R., Griffiths, B. S., Griffiths, R., Martin, F., Silva, P. M. da, … Lemanceau, P. (2016). Ecological network analysis reveals the inter-connection between soil biodiversity and ecosystem function as affected by land use across Europe. Applied Soil Ecology, 97, 112-124. https://doi.org/10.1016/j.apsoil.2015.08.006Cullen, J. T., & Maldonado, M. T. (2013). Biogeochemistry of cadmium and its release to the environment. En A. Sigel, H. Sigel, & R. K. Sigel (Eds.), Cadmium: From Toxicity to Essentiality (Vol. 11, pp. 31-62). Springer Netherlands. https://doi.org/10.1007/978-94-007-5179-8_2da Cunha, M. de L. R. de S. (2019). Molecular biology in microbiological analysis. En Reference Module in Food Science (p. B9780081005965230000). Elsevier. https://doi.org/10.1016/B978-0-08-100596-5.22935-1Dai, W., Chen, J., & Xiong, J. (2019). Concept of microbial gatekeepers: Positive guys? Applied Microbiology and Biotechnology, 103(2), 633-641. https://doi.org/10.1007/s00253-018-9522-3Das, N., Vimala, R. and Karthika, P. (2008) Biosorption of Heavy Metals—An Overview. Indian Journal of Biotechnology, 7, 159-169.Dasgupta, D., & Brahmaprakash, G. P. (2021). Soil microbes are shaped by soil physico-chemical properties: A brief review of existing literature. International Journal of Plant & Soil Science, 59-71. https://doi.org/10.9734/ijpss/2021/v33i130409De Beenhouwer, M., Aerts, R., & Honnay, O. (2013). A global meta-analysis of the biodiversity and ecosystem service benefits of coffee and cacao agroforestry. Agriculture, Ecosystems & Environment, 175, 1-7. https://doi.org/10.1016/j.agee.2013.05.003De Filippis, F., Laiola, M., Blaiotta, G., & Ercolini, D. (2017). Different amplicon targets for sequencing-based studies of fungal diversity. Applied and Environmental Microbiology, 83(17), e00905-17. https://doi.org/10.1128/AEM.00905-17de Menezes, A. B., Prendergast-Miller, M. T., Richardson, A. E., Toscas, P., Farrell, M., Macdonald, L. M., Baker, G., Wark, T., & Thrall, P. H. (2015). Network analysis reveals that bacteria and fungi form modules that correlate independently with soil parameters: Network analysis of microbial community structure. Environmental Microbiology, 17(8), 2677-2689. https://doi.org/10.1111/1462-2920.12559de Vries, F. T., Griffiths, R. I., Bailey, M., Craig, H., Girlanda, M., Gweon, H. S., Hallin, S., Kaisermann, A., Keith, A. M., Kretzschmar, M., Lemanceau, P., Lumini, E., Mason, K. E., Oliver, A., Ostle, N., Prosser, J. I., Thion, C., Thomson, B., & Bardgett, R. D. (2018). Soil bacterial networks are less stable under drought than fungal networks. Nature Communications, 9(1), 3033. https://doi.org/10.1038/s41467-018-05516-7Degens, B. (2000). Decreases in organic C reserves in soils can reduce the catabolic diversity of soil microbial communities. Soil Biology and Biochemistry, 32(2), 189-196. https://doi.org/10.1016/S0038-0717(99)00141-8Delgado‐Baquerizo, M., Reith, F., Dennis, P. G., Hamonts, K., Powell, J. R., Young, A., Singh, B. K., & Bissett, A. (2018). Ecological drivers of soil microbial diversity and soil biological networks in the Southern Hemisphere. Ecology, 99(3), 583-596. https://doi.org/10.1002/ecy.2137Deng, X., Yuan, X., Chen, L., Chen, Y., Rong, X., Zeng, Q., & Yang, Y. (2022). Field-scale remediation of cadmium-contaminated farmland soil by Cichorium intybus L.: Planting density, repeated harvests, and safe use of its Cd-enriched biomass for protein feed. Industrial Crops and Products, 188, 115604. https://doi.org/10.1016/j.indcrop.2022.115604Deng, Y., Huang, H., Fu, S., Jiang, L., Liang, Y., Liu, X., Jiang, H., & Liu, H. (2021). Cadmium uptake and growth responses of potted vegetables to the cd-contaminated soil inoculated with cd-tolerant purpureocillium lilacinum n1. Minerals, 11(6), 622. https://doi.org/10.3390/min11060622Dhankhar, R., & Hooda, A. (2011). Fungal biosorption – an alternative to meet the challenges of heavy metal pollution in aqueous solutions. Environmental Technology, 32(5), 467-491. https://doi.org/10.1080/09593330.2011.572922Din, G., Hassan, A., Dunlap, J., Ripp, S., & Shah, A. A. (2022). Cadmium tolerance and bioremediation potential of filamentous fungus Penicillium chrysogenum FMS2 isolated from soil. International Journal of Environmental Science and Technology, 19(4), 2761-2770. https://doi.org/10.1007/s13762-021-03211-7Ding, C., Ma, Y., Li, X., Zhang, T., & Wang, X. (2018). Determination and validation of soil thresholds for cadmium based on food quality standard and health risk assessment. Science of The Total Environment, 619-620, 700-706. https://doi.org/10.1016/j.scitotenv.2017.11.137Doku, T., & Belford, E. (2015). The potential of Aspergillus fumigatus and Aspergillus niger in bioaccumulation of heavy metals from the Chemu Lagoon, Ghana. Journal of Applied Biosciences, 94(1), 8907. https://doi.org/10.4314/jab.v94i1.12Domka, A. M., Rozpaądek, P., & Turnau, K. (2019). Are fungal endophytes merely mycorrhizal copycats? The role of fungal endophytes in the adaptation of plants to metal toxicity. Frontiers in Microbiology, 10, 371. https://doi.org/10.3389/fmicb.2019.00371Donovan, P. D., Gonzalez, G., Higgins, D. G., Butler, G., & Ito, K. (2018). Identification of fungi in shotgun metagenomics datasets. PLOS ONE, 13(2), e0192898. https://doi.org/10.1371/journal.pone.0192898dos Reis, J. B. A., Lorenzi, A. S., & do Vale, H. M. M. (2022). Methods used for the study of endophytic fungi: A review on methodologies and challenges, and associated tips. Archives of Microbiology, 204(11), 675. https://doi.org/10.1007/s00203-022-03283-0Dray, S., & Dufour, A.-B. (2007). The ade4 package: Implementing the duality diagram for ecologists. Journal of Statistical Software, 22(4). https://doi.org/10.18637/jss.v022.i04Edwards, J. E., Forster, R. J., Callaghan, T. M., Dollhofer, V., Dagar, S. S., Cheng, Y., Chang, J., Kittelmann, S., Fliegerova, K., Puniya, A. K., Henske, J. K., Gilmore, S. P., O’Malley, M. A., Griffith, G. W., & Smidt, H. (2017). Pcr and omics based techniques to study the diversity, ecology and biology of anaerobic fungi: Insights, challenges and opportunities. Frontiers in Microbiology, 8, 1657. https://doi.org/10.3389/fmicb.2017.01657Egidi, E., Delgado-Baquerizo, M., Plett, J. M., Wang, J., Eldridge, D. J., Bardgett, R. D., Maestre, F. T., & Singh, B. K. (2019). A few Ascomycota taxa dominate soil fungal communities worldwide. Nature Communications, 10(1), 2369. https://doi.org/10.1038/s41467-019-10373-zEhis-Eriakha, C. B., & Akemu, S. E. (2022). Impact of heavy metal pollution on the biotic and abiotic components of the environment. South Asian Journal of Research in Microbiology, 38-54. https://doi.org/10.9734/sajrm/2022/v13i330302Engbersen, N., Gramlich, A., Lopez, M., Schwarz, G., Hattendorf, B., Gutierrez, O., & Schulin, R. (2019). Cadmium accumulation and allocation in different cacao cultivars. Science of The Total Environment, 678, 660-670. https://doi.org/10.1016/j.scitotenv.2019.05.001Engelbrecht, C. J., Harrington, T. C., & Alfenas, A. (2007). Ceratocystis wilt of cacao—A disease of increasing importance. Phytopathology®, 97(12), 1648-1649. https://doi.org/10.1094/PHYTO-97-12-1648Estaki, M., Jiang, L., Bokulich, N. A., McDonald, D., González, A., Kosciolek, T., Martino, C., Zhu, Q., Birmingham, A., Vázquez‐Baeza, Y., Dillon, M. R., Bolyen, E., Caporaso, J. G., & Knight, R. (2020). Qiime 2 enables comprehensive end‐to‐end analysis of diverse microbiome data and comparative studies with publicly available data. Current Protocols in Bioinformatics, 70(1). https://doi.org/10.1002/cpbi.100Esteves, A. C., Saraiva, M., Correia, A., & Alves, A. (2014). Botryosphaeriales fungi produce extracellular enzymes with biotechnological potential. Canadian Journal of Microbiology, 60(5), 332-342. https://doi.org/10.1139/cjm-2014-0134European Commission , 2021. Commission Regulation (EU) 2021/1323 of 10 August 2021 amending Regulation (EC) No 1881/2006 as regards maximum levels of cadmium in certain foodstuffs (Text with EEA relevance). Off. J. Eur. Union 138, 75.Ewels, P., Magnusson, M., Lundin, S., & Käller, M. (2016). MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics, 32(19), 3047-3048. https://doi.org/10.1093/bioinformatics/btw354Faith, J. J., Guruge, J. L., Charbonneau, M., Subramanian, S., Seedorf, H., Goodman, A. L., Clemente, J. C., Knight, R., Heath, A. C., Leibel, R. L., Rosenbaum, M., & Gordon, J. I. (2013). The long-term stability of the human gut microbiota. Science, 341(6141), 1237439. https://doi.org/10.1126/science.1237439Fassbender, H. W., & Bornemisza, E. (1987). Química de suelos con énfasis en suelos de América Latina (2nd. rev. and enl). Instituto Interamericano de Cooperación para la Agricultura.Federación Nacional de Cacaoteros (FEDECACAO), (2015). Guía técnica para el cultivo del Cacao (Sexta edic, Vol. 6). Bogotá, ColombiaFederación Nacional de Cacaoteros (FEDECACAO), (2022), Producción Nacional de Cacao. url: https://www.fedecacao.com.co/economianacional. Consulta: Diciembre, 2022Felczykowska, A., Krajewska, A., Zielińska, S., & Łoś, J. M. (2015). Sampling, metadata and DNA extraction—Important steps in metagenomic studies. Acta Biochimica Polonica, 62(1), 151-160. https://doi.org/10.18388/abp.2014_916Fenner, N., & Freeman, C. (2011). Drought-induced carbon loss in peatlands. Nature Geoscience, 4(12), 895-900. https://doi.org/10.1038/ngeo1323Feria-Cáceres, P. F., Penagos-Velez, L., & Moreno-Herrera, C. X. (2022). Tolerance and cadmium (Cd) immobilization by native bacteria isolated in cocoa soils with increased metal content. Microbiology Research, 13(3), 556-573. https://doi.org/10.3390/microbiolres13030039Fernandes, A. D., Reid, J. N., Macklaim, J. M., McMurrough, T. A., Edgell, D. R., & Gloor, G. B. (2014). Unifying the analysis of high-throughput sequencing datasets: Characterizing RNA-seq, 16S rRNA gene sequencing and selective growth experiments by compositional data analysis. Microbiome, 2(1), 15. https://doi.org/10.1186/2049-2618-2-15Fernandes, P. (2016). Fusidic acid: A bacterial elongation factor inhibitor for the oral treatment of acute and chronic staphylococcal infections. Cold Spring Harbor Perspectives in Medicine, 6(1), a025437. https://doi.org/10.1101/cshperspect.a025437FHIA. (2005). Guía práctica. PRODUCCIÓN DE PLANTAS DE CACAO POR INJERTO / Proyecto Control de la Moniliasis. Fundación Hondureña De Investigación AgrícolaFierer, N., Strickland, M. S., Liptzin, D., Bradford, M. A., & Cleveland, C. C. (2009). Global patterns in belowground communities. Ecology Letters, 12(11), 1238-1249. https://doi.org/10.1111/j.1461-0248.2009.01360.xFlorida Rofner, N. (2021). Cadmium in soil and cacao beans of Peruvian and South American origin. Revista Facultad Nacional de Agronomía Medellín, 74(2). https://doi.org/10.15446/rfnam.v74n2.91107Fomina, M., Hillier, S., Charnock, J. M., Melville, K., Alexander, I. J., & Gadd, G. M. (2005). Role of oxalic acid overexcretion in transformations of toxic metal minerals by beauveria caledonica. Applied and Environmental Microbiology, 71(1), 371-381. https://doi.org/10.1128/AEM.71.1.371-381.2005Food and Agriculture Organization of the United Nations (FAO). (2022). FAOSTAT statistical database. [Rome]. Url: https://www.fao.org/faostat/en/#data/QCL/visualize. Consulta: Diciembre, 2022Foster, Z. S. L., Sharpton, T. J., & Grünwald, N. J. (2017). Metacoder: An R package for visualization and manipulation of community taxonomic diversity data. PLOS Computational Biology, 13(2), e1005404. https://doi.org/10.1371/journal.pcbi.1005404Frąc, M., Hannula, S. E., Bełka, M., & Jędryczka, M. (2018). Fungal biodiversity and their role in soil health. Frontiers in Microbiology, 9, 707. https://doi.org/10.3389/fmicb.2018.00707Freilich, M. A., Wieters, E., Broitman, B. R., Marquet, P. A., & Navarrete, S. A. (2018). Species co-occurrence networks: Can they reveal trophic and non-trophic interactions in ecological communities? Ecology, 99(3), 690-699. https://doi.org/10.1002/ecy.2142Friedman, J., & Alm, E. J. (2012). Inferring correlation networks from genomic survey data. PLoS Computational Biology, 8(9), e1002687. https://doi.org/10.1371/journal.pcbi.1002687Fröhlich-Nowoisky, J., Hill, T. C. J., Pummer, B. G., Yordanova, P., Franc, G. D., & Pöschl, U. (2015). Ice nucleation activity in the widespread soil fungus &lt;i&gt;Mortierella alpina&lt;/i&gt; Biogeosciences, 12(4), 1057-1071. https://doi.org/10.5194/bg-12-1057-2015Furcal Beriguete, P. (2016). Extracción de nutrientes por los frutos de cacao en dos localidades en Costa Rica. Agronomía Mesoamericana, 28(1), 113. https://doi.org/10.15517/am.v28i1.23236Gadd, G. M. (2007). Geomycology: Biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycological Research, 111(1), 3-49. https://doi.org/10.1016/j.mycres.2006.12.001Gadd, G. M. (2021). Fungal biomineralization. Current Biology, 31(24), R1557-R1563. https://doi.org/10.1016/j.cub.2021.10.041Gajewska, J., Floryszak-Wieczorek, J., Sobieszczuk-Nowicka, E., Mattoo, A., & Arasimowicz-Jelonek, M. (2022). Fungal and oomycete pathogens and heavy metals: An inglorious couple in the environment. IMA Fungus, 13(1), 6. https://doi.org/10.1186/s43008-022-00092-4Garbeva, P., van Veen, J. A., & van Elsas, J. D. (2004). Microbial diversity in soil: Selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annual Review of Phytopathology, 42(1), 243-270. https://doi.org/10.1146/annurev.phyto.42.012604.135455Gautam, A. K., Verma, R. K., Avasthi, S., Sushma, Bohra, Y., Devadatha, B., Niranjan, M., & Suwannarach, N. (2022). Current insight into traditional and modern methods in fungal diversity estimates. Journal of Fungi, 8(3), 226. https://doi.org/10.3390/jof8030226Genchi, G., Sinicropi, M. S., Lauria, G., Carocci, A., & Catalano, A. (2020). The effects of cadmium toxicity. International Journal of Environmental Research and Public Health, 17(11), 3782. https://doi.org/10.3390/ijerph17113782Geng, H.-X., & Wang, L. (2019). Cadmium: Toxic effects on placental and embryonic development. Environmental Toxicology and Pharmacology, 67, 102-107. https://doi.org/10.1016/j.etap.2019.02.006Ghosh, S. (2021). Fungi-mediated detoxification of heavy metals: En S. Dey & B. Acharya (Eds.), Advances in Environmental Engineering and Green Technologies (pp. 205-219). IGI Global. https://doi.org/10.4018/978-1-7998-4888-2.ch011Gil, J. P., López-Zuleta, S., Quiroga-Mateus, R. Y., Benavides-Erazo, J., Chaali, N., & Bravo, D. (2022). Cadmium distribution in soils, soil litter and cacao beans: A case study from Colombia. International Journal of Environmental Science and Technology, 19(4), 2455-2476. https://doi.org/10.1007/s13762-021-03299-xGiller, K. E., Witter, E., & McGrath, S. P. (2009). Heavy metals and soil microbes. Soil Biology and Biochemistry, 41(10), 2031-2037. https://doi.org/10.1016/j.soilbio.2009.04.026Giweta, M. (2020). Role of litter production and its decomposition, and factors affecting the processes in a tropical forest ecosystem: A review. Journal of Ecology and Environment, 44(1), 11. https://doi.org/10.1186/s41610-020-0151-2Gleyzes, C., Tellier, S., & Astruc, M. (2002). Fractionation studies of trace elements in contaminated soils and sediments: A review of sequential extraction procedures. TrAC Trends in Analytical Chemistry, 21(6-7), 451-467. https://doi.org/10.1016/S0165-9936(02)00603-9Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V., & Egozcue, J. J. (2017). Microbiome datasets are compositional: And this is not optional. Frontiers in Microbiology, 8, 2224. https://doi.org/10.3389/fmicb.2017.02224Goberna, M., & Verdú, M. (2022). Cautionary notes on the use of co-occurrence networks in soil ecology. Soil Biology and Biochemistry, 166, 108534. https://doi.org/10.1016/j.soilbio.2021.108534Goberna, M., Montesinos‐Navarro, A., Valiente‐Banuet, A., Colin, Y., Gómez‐Fernández, A., Donat, S., Navarro‐Cano, J. A., & Verdú, M. (2019). Incorporating phylogenetic metrics to microbial co‐occurrence networks based on amplicon sequences to discern community assembly processes. Molecular Ecology Resources, 19(6), 1552-1564. https://doi.org/10.1111/1755-0998.13079Gobernación de Cundinamarca. (2020). Plan Departamental de Extensión Agropecuaria 2020. Url: https://www.adr.gov.co/wp-content/uploads/2021/07/PDEA-Cundinamarca.pdf. Consulta: Diciembre, 2022Gómez, J. & Montes, N.E., compiladores. 2020. Atlas Geológico de Colombia 2020. Escala 1:500 000. Servicio Geológico Colombiano, 26 hojas. Bogotá.Gong, H., Rose, A. W., & Suhr, N. H. (1977). The geochemistry of cadmium in some sedimentary rocks. Geochimica et Cosmochimica Acta, 41(12), 1687-1692. https://doi.org/10.1016/0016-7037(77)90200-9Gouma, S., Fragoeiro, S., Bastos, A. C., & Magan, N. (2014). Bacterial and fungal bioremediation strategies. En Microbial Biodegradation and Bioremediation (pp. 301-323). Elsevier. https://doi.org/10.1016/B978-0-12-800021-2.00013-3Gqozo, M. P., Bill, M., Siyoum, N., Labuschagne, N., & Korsten, L. (2020). Fungal diversity and community composition of wheat rhizosphere and non-rhizosphere soils from three different agricultural production regions of South Africa. Applied Soil Ecology, 151, 103543. https://doi.org/10.1016/j.apsoil.2020.103543Gramlich, A., Tandy, S., Andres, C., Chincheros Paniagua, J., Armengot, L., Schneider, M., & Schulin, R. (2017). Cadmium uptake by cocoa trees in agroforestry and monoculture systems under conventional and organic management. Science of The Total Environment, 580, 677-686. https://doi.org/10.1016/j.scitotenv.2016.12.014Gramlich, A., Tandy, S., Gauggel, C., López, M., Perla, D., Gonzalez, V., & Schulin, R. (2018). Soil cadmium uptake by cocoa in Honduras. Science of The Total Environment, 612, 370-378. https://doi.org/10.1016/j.scitotenv.2017.08.145Griffioen, J., & Appelo, C. A. J. (1993). Adsorption of calcium and its complexes by two sediments in calcium-hydrogen-chlorine-carbon dioxide systems. Soil Science Society of America Journal, 57(3), 716-722. https://doi.org/10.2136/sssaj1993.03615995005700030015xGrządziel, J., & Gałązka, A. (2019). Fungal biodiversity of the most common types of polish soil in a long-term microplot experiment. Frontiers in Microbiology, 10, 6. https://doi.org/10.3389/fmicb.2019.00006Gu, X., Evans, L. J., & Barabash, S. J. (2010). Modeling the adsorption of cd (Ii), cu (Ii), ni (Ii), pb (Ii) and zn (Ii) onto montmorillonite. Geochimica et Cosmochimica Acta, 74(20), 5718-5728. https://doi.org/10.1016/j.gca.2010.07.016Guala, S. D., Vega, F. A., & Covelo, E. F. (2010). The dynamics of heavy metals in plant–soil interactions. Ecological Modelling, 221(8), 1148-1152. https://doi.org/10.1016/j.ecolmodel.2010.01.003Guarro, J., Gene, J., Stchigel, A.M. and Figueras, M.J. (2012). Atlas of Soil Ascomycetes. Issue 10 of CBS Biodiversity Series, Holland.Guerra Sierra, B. E., Arteaga-Figueroa, L. A., Sierra-Pelaéz, S., & Alvarez, J. C. (2022). Talaromyces santanderensis: A new cadmium-tolerant fungus from cacao soils in colombia. Journal of Fungi, 8(10), 1042. https://doi.org/10.3390/jof8101042Guggenberger, G. (2005). Humification and mineralization in soils. En A. Varma & F. Buscot (Eds.), Microorganisms in Soils: Roles in Genesis and Functions (Vol. 3, pp. 85-106). Springer-Verlag. https://doi.org/10.1007/3-540-26609-7_4Guiasu, R. C., & Guiasu, S. (2010). The Rich-Gini-Simpson quadratic index of biodiversity. Natural Science, 2(10), 1130-1137. https://doi.org/10.4236/ns.2010.210140Guo, B., Liang, Y., & Zhu, Y. (2009). Does salicylic acid regulate antioxidant defense system, cell death, cadmium uptake and partitioning to acquire cadmium tolerance in rice? Journal of Plant Physiology, 166(1), 20-31. https://doi.org/10.1016/j.jplph.2008.01.002Guo, H., Nasir, M., Lv, J., Dai, Y., & Gao, J. (2017). Understanding the variation of microbial community in heavy metals contaminated soil using high throughput sequencing. Ecotoxicology and Environmental Safety, 144, 300-306. https://doi.org/10.1016/j.ecoenv.2017.06.048Guo, P., Wang, C., Jia, Y., Wang, Q., Han, G., & Tian, X. (2011). Responses of soil microbial biomass and enzymatic activities to fertilizations of mixed inorganic and organic nitrogen at a subtropical forest in East China. Plant and Soil, 338(1-2), 355-366. https://doi.org/10.1007/s11104-010-0550-8Guo, Y., Cheng, S., Fang, H., Yang, Y., Li, Y., & Zhou, Y. (2022). Responses of soil fungal taxonomic attributes and enzyme activities to copper and cadmium co-contamination in paddy soils. Science of The Total Environment, 844, 157119. https://doi.org/10.1016/j.scitotenv.2022.157119Gutiérrez-Macías, P., Mirón-Mérida, V. A., Rodríguez-Nava, C. O., & Barragán-Huerta, B. E. (2021). Cocoa: Beyond chocolate, a promising material for potential value-added products. En Valorization of Agri-Food Wastes and By-Products (pp. 267-288). Elsevier. https://doi.org/10.1016/B978-0-12-824044-1.00038-6Haider, F. U., Liqun, C., Coulter, J. A., Cheema, S. A., Wu, J., Zhang, R., Wenjun, M., & Farooq, M. (2021). Cadmium toxicity in plants: Impacts and remediation strategies. Ecotoxicology and Environmental Safety, 211, 111887. https://doi.org/10.1016/j.ecoenv.2020.111887Haj-Amor, Z., Araya, T., Kim, D.-G., Bouri, S., Lee, J., Ghiloufi, W., Yang, Y., Kang, H., Jhariya, M. K., Banerjee, A., & Lal, R. (2022). Soil salinity and its associated effects on soil microorganisms, greenhouse gas emissions, crop yield, biodiversity and desertification: A review. Science of The Total Environment, 843, 156946. https://doi.org/10.1016/j.scitotenv.2022.156946Hakim, S., Nawaz, M. S., Siddique, M. J., Hayat, M., Gulzar, U., & Imran, A. (2022). Metagenomics for rhizosphere engineering. En Rhizosphere Engineering (pp. 395-416). Elsevier. https://doi.org/10.1016/B978-0-323-89973-4.00022-3Handelsman, J., Rondon, M. R., Brady, S. F., Clardy, J., & Goodman, R. M. (1998). Molecular biological access to the chemistry of unknown soil microbes: A new frontier for natural products. Chemistry & Biology, 5(10), R245-R249. https://doi.org/10.1016/S1074-5521(98)90108-9Hannula, S. E., Heinen, R., Huberty, M., Steinauer, K., De Long, J. R., Jongen, R., & Bezemer, T. M. (2021). Persistence of plant-mediated microbial soil legacy effects in soil and inside roots. Nature Communications, 12(1), 5686. https://doi.org/10.1038/s41467-021-25971-zHao, W., Flynn, S. L., Alessi, D. S., & Konhauser, K. O. (2018). Change of the point of zero net proton charge (Phpznpc) of clay minerals with ionic strength. Chemical Geology, 493, 458-467. https://doi.org/10.1016/j.chemgeo.2018.06.023Hao, X., Bai, L., Liu, X., Zhu, P., Liu, H., Xiao, Y., Geng, J., Liu, Q., Huang, L., & Jiang, H. (2021). Cadmium speciation distribution responses to soil properties and soil microbes of plow layer and plow pan soils in cadmium-contaminated paddy fields. Frontiers in Microbiology, 12, 774301. https://doi.org/10.3389/fmicb.2021.774301Hartemink, A. E. (2005). Nutrient stocks, nutrient cycling, and soil changes in cocoa ecosystems: A review. En Advances in Agronomy (Vol. 86, pp. 227-253). Elsevier. https://doi.org/10.1016/S0065-2113(05)86005-5Hayakawa, N., Tomioka, R., & Takenaka, C. (2011). Effects of calcium on cadmium uptake and transport in the tree species Gamblea innovans. Soil Science and Plant Nutrition, 57(5), 691-695. https://doi.org/10.1080/00380768.2011.608196He, S., He, Z., Yang, X., Stoffella, P. J., & Baligar, V. C. (2015). Soil biogeochemistry, plant physiology, and phytoremediation of cadmium-contaminated soils. En Advances in Agronomy (Vol. 134, pp. 135-225). Elsevier. https://doi.org/10.1016/bs.agron.2015.06.005He, S., Yang, X., He, Z., & Baligar, V. C. (2017). Morphological and physiological responses of plants to cadmium toxicity: A review. Pedosphere, 27(3), 421-438. https://doi.org/10.1016/S1002-0160(17)60339-4Helmke, P. A. (1999). Chemistry of cadmium in soil solution. En M. J. McLaughlin & B. R. Singh (Eds.), Cadmium in Soils and Plants (pp. 39-64). Springer Netherlands. https://doi.org/10.1007/978-94-011-4473-5_3Hernández-Núñez, H. E., Gutiérrez-Montes, I., Sánchez-Acosta, J. R., Rodríguez-Suárez, L., Gutiérrez-García, G. A., Suárez-Salazar, J. C., & Casanoves, F. (2020). Agronomic conditions of cacao cultivation: Its relationship with the capitals endowment of Colombian rural households. Agroforestry Systems, 94(6), 2367-2380. https://doi.org/10.1007/s10457-020-00556-9Hirano, H., & Takemoto, K. (2019). Difficulty in inferring microbial community structure based on co-occurrence network approaches. BMC Bioinformatics, 20(1), 329. https://doi.org/10.1186/s12859-019-2915-1Hoggard, M., Vesty, A., Wong, G., Montgomery, J. M., Fourie, C., Douglas, R. G., Biswas, K., & Taylor, M. W. (2018). Characterizing the human mycobiota: A comparison of small subunit rrna, its1, its2, and large subunit rrna genomic targets. Frontiers in Microbiology, 9, 2208. https://doi.org/10.3389/fmicb.2018.02208Hossain, M., Siddique, M. R. H., Rahman, Md. S., Hossain, Md. Z., & Hasan, Md. M. (2011). Nutrient dynamics associated with leaf litter decomposition of three agroforestry tree species (Azadirachta indica, Dalbergia sissoo, and Melia azedarach) of Bangladesh. Journal of Forestry Research, 22(4), 577-582. https://doi.org/10.1007/s11676-011-0175-7Hou, D., O’Connor, D., Igalavithana, A. D., Alessi, D. S., Luo, J., Tsang, D. C. W., Sparks, D. L., Yamauchi, Y., Rinklebe, J., & Ok, Y. S. (2020). Metal contamination and bioremediation of agricultural soils for food safety and sustainability. Nature Reviews Earth & Environment, 1(7), 366-381. https://doi.org/10.1038/s43017-020-0061-yHu, Y., Irinyi, L., Hoang, M. T. V., Eenjes, T., Graetz, A., Stone, E. A., Meyer, W., Schwessinger, B., & Rathjen, J. P. (2022). Inferring species compositions of complex fungal communities from long- and short-read sequence data. MBio, 13(2), e02444-21. https://doi.org/10.1128/mbio.02444-21Hussain, A., Ali, S., Rizwan, M., Zia-ur-Rehman, M., Yasmeen, T., Hayat, M. T., Hussain, I., Ali, Q., & Hussain, S. M. (2019). Morphological and physiological responses of plants to cadmium toxicity. En Cadmium Toxicity and Tolerance in Plants (pp. 47-72). Elsevier. https://doi.org/10.1016/B978-0-12-814864-8.00003-6Huybrechts, M., Hendrix, S., Bertels, J., Beemster, G. T. S., Vandamme, D., & Cuypers, A. (2020). Spatial analysis of the rice leaf growth zone under controlled and cadmium-exposed conditions. Environmental and Experimental Botany, 177, 104120. https://doi.org/10.1016/j.envexpbot.2020.104120Igiri, B. E., Okoduwa, S. I. R., Idoko, G. O., Akabuogu, E. P., Adeyi, A. O., & Ejiogu, I. K. (2018). Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: A review. Journal of Toxicology, 2018, 1-16. https://doi.org/10.1155/2018/2568038Ignatova, L., Kistaubayeva, A., Brazhnikova, Y., Omirbekova, A., Mukasheva, T., Savitskaya, I., Karpenyuk, T., Goncharova, A., Egamberdieva, D., & Sokolov, A. (2021). Characterization of cadmium-tolerant endophytic fungi isolated from soybean (Glycine max) and barley (Hordeum vulgare). Heliyon, 7(11), e08240. https://doi.org/10.1016/j.heliyon.2021.e08240Instituto Colombiano Agustin Codazzi (IGAC). (2000). CATÁLOGO DE REPRESENTACIÓN CARTOGRAFÍA BÁSICA DIGITAL IGAC ESCALA 1:2.000. url: https://www.igac.gov.co/sites/igac.gov.co/files/catalogo_representacion_2k_v1.0.pdf. Consulta: Diciembre, 2022.Instituto Colombiano Agustin Codazzi (IGAC). (2006). Métodos analíticos del Laboratorio de Suelos. Instituto Colombiano Agustin Codazzi. 6a edicion. Bogotá Colombia.International Cocoa Organization (ICCO). (2022). COCOA MARKET REPORT NOVEMBER 2022. Url: https://www.icco.org/wp-content/uploads/ICCO-Monthly-Cocoa-Market-Report-November-2022.pdf. Consulta: Diciembre, 2022.Ismael, M. A., Elyamine, A. M., Moussa, M. G., Cai, M., Zhao, X., & Hu, C. (2019). Cadmium in plants: Uptake, toxicity, and its interactions with selenium fertilizers. Metallomics, 11(2), 255-277. https://doi.org/10.1039/C8MT00247AJan, S., & Parray, J. A. (2016). Heavy metal uptake in plants. En S. Jan & J. A. Parray, Approaches to Heavy Metal Tolerance in Plants (pp. 1-18). Springer Singapore. https://doi.org/10.1007/978-981-10-1693-6_1Järup, L. (2003). Hazards of heavy metal contamination. British Medical Bulletin, 68(1), 167-182. https://doi.org/10.1093/bmb/ldg032Jaworska, H., & Lemanowicz, J. (2019). Heavy metal contents and enzymatic activity in soils exposed to the impact of road traffic. Scientific Reports, 9(1), 19981. https://doi.org/10.1038/s41598-019-56418-7Jenkins, J. R., Viger, M., Arnold, E. C., Harris, Z. M., Ventura, M., Miglietta, F., Girardin, C., Edwards, R. J., Rumpel, C., Fornasier, F., Zavalloni, C., Tonon, G., Alberti, G., & Taylor, G. (2017). Biochar alters the soil microbiome and soil function: Results of next-generation amplicon sequencing across Europe. GCB Bioenergy, 9(3), 591-612. https://doi.org/10.1111/gcbb.12371Jia, T., Wang, R., Fan, X., & Chai, B. (2018). A comparative study of fungal community structure, diversity and richness between the soil and the phyllosphere of native grass species in a copper tailings dam in shanxi province, china. Applied Sciences, 8(8), 1297. https://doi.org/10.3390/app8081297Jiang, S., Chen, Y., Han, S., Lv, L., & Li, L. (2022). Next-generation sequencing applications for the study of fungal pathogens. Microorganisms, 10(10), 1882. https://doi.org/10.3390/microorganisms10101882Jiao, S., Chen, W., Wang, J., Du, N., Li, Q., & Wei, G. (2018). Soil microbiomes with distinct assemblies through vertical soil profiles drive the cycling of multiple nutrients in reforested ecosystems. Microbiome, 6(1), 146. https://doi.org/10.1186/s40168-018-0526-0Kabata-Pendias, A. (2010). Trace elements in soils and plants (0 ed.). CRC Press. https://doi.org/10.1201/b10158Kamble, A., & Singh, H. (2020). Different methods of soil dna extraction. BIO-PROTOCOL, 10(2). https://doi.org/10.21769/BioProtoc.3521Kant, R., Kumar, A., & Sironen, T. (2020). From microbial genomics to metagenomics. International Journal of Genomics, 2020, 1-2. https://doi.org/10.1155/2020/9357450Karimi, B., Maron, P. A., Chemidlin-Prevost Boure, N., Bernard, N., Gilbert, D., & Ranjard, L. (2017). Microbial diversity and ecological networks as indicators of environmental quality. Environmental Chemistry Letters, 15(2), 265-281. https://doi.org/10.1007/s10311-017-0614-6Kassambara, A & Mundt, F. (2020). factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R package version 1.0.7. https://CRAN.R-project.org/package=factoextraKaur, H., & Garg, N. (2018). Recent perspectives on cross talk between cadmium, zinc, and arbuscular mycorrhizal fungi in plants. Journal of Plant Growth Regulation, 37(2), 680-693. https://doi.org/10.1007/s00344-017-9750-2Khan, M. A., Khan, S., Khan, A., & Alam, M. (2017). Soil contamination with cadmium, consequences and remediation using organic amendments. Science of The Total Environment, 601-602, 1591-1605. https://doi.org/10.1016/j.scitotenv.2017.06.030Kim, B.-R., Shin, J., Guevarra, R. B., Lee, J. H., Kim, D. W., Seol, K.-H., Lee, J.-H., Kim, H. B., & Isaacson, R. E. (2017). Deciphering diversity indices for a better understanding of microbial communities. Journal of Microbiology and Biotechnology, 27(12), 2089-2093. https://doi.org/10.4014/jmb.1709.09027Kirchman, D. L. (2018). Processes in microbial ecology (Vol. 1). Oxford University Press. https://doi.org/10.1093/oso/9780198789406.001.0001Kirkham, M. B. (2006). Cadmium in plants on polluted soils: Effects of soil factors, hyperaccumulation, and amendments. Geoderma, 137(1-2), 19-32. https://doi.org/10.1016/j.geoderma.2006.08.024Kirpichtchikova, T. A., Manceau, A., Spadini, L., Panfili, F., Marcus, M. A., & Jacquet, T. (2006). Speciation and solubility of heavy metals in contaminated soil using X-ray microfluorescence, EXAFS spectroscopy, chemical extraction, and thermodynamic modeling. Geochimica et Cosmochimica Acta, 70(9), 2163-2190. https://doi.org/10.1016/j.gca.2006.02.006Koranda, M., Kaiser, C., Fuchslueger, L., Kitzler, B., Sessitsch, A., Zechmeister-Boltenstern, S., & Richter, A. (2014). Fungal and bacterial utilization of organic substrates depends on substrate complexity and N availability. FEMS Microbiology Ecology, 87(1), 142-152. https://doi.org/10.1111/1574-6941.12214Krämer, U. (2010). Metal hyperaccumulation in plants. Annual Review of Plant Biology, 61(1), 517-534. https://doi.org/10.1146/annurev-arplant-042809-112156Krauss, U., Ten Hoopen, M., Rees, R., Stirrup, T., Argyle, T., George, A., Arroyo, C., Corrales, E., & Casanoves, F. (2013). Mycoparasitism by Clonostachys byssicola and Clonostachys rosea on Trichoderma spp. From cocoa (Theobroma cacao) and implication for the design of mixed biocontrol agents. Biological Control, 67(3), 317-327. https://doi.org/10.1016/j.biocontrol.2013.09.011Kravchenko, A., Falconer, R. E., Grinev, D., & Otten, W. (2011). Fungal colonization in soils with different management histories: Modeling growth in three-dimensional pore volumes. Ecological Applications, 21(4), 1202-1210. https://doi.org/10.1890/10-0525.1Krehenwinkel, H., Pomerantz, A., Henderson, J. B., Kennedy, S. R., Lim, J. Y., Swamy, V., Shoobridge, J. D., Graham, N., Patel, N. H., Gillespie, R. G., & Prost, S. (2019). Nanopore sequencing of long ribosomal DNA amplicons enables portable and simple biodiversity assessments with high phylogenetic resolution across broad taxonomic scale. GigaScience, 8(5), giz006. https://doi.org/10.1093/gigascience/giz006Kumar, U., Saqib, H. S. A., Islam, W., Prashant, P., Patel, N., Chen, W., Yang, F., You, M., & He, W. (2022). Landscape composition and soil physical–chemical properties drive the assemblages of bacteria and fungi in conventional vegetable fields. Microorganisms, 10(6), 1202. https://doi.org/10.3390/microorganisms10061202Kumar, V., Singh, S., Singh, G., & Dwivedi, S. K. (2019). Exploring the cadmium tolerance and removal capability of a filamentous fungus fusarium solani. Geomicrobiology Journal, 36(9), 782-791. https://doi.org/10.1080/01490451.2019.1627443Küpper, H., & Leitenmaier, B. (2013). Cadmium-accumulating plants. En A. Sigel, H. Sigel, & R. K. Sigel (Eds.), Cadmium: From Toxicity to Essentiality (Vol. 11, pp. 373-393). Springer Netherlands. https://doi.org/10.1007/978-94-007-5179-8_12Lamb, E. G., Kennedy, N., & Siciliano, S. D. (2011). Effects of plant species richness and evenness on soil microbial community diversity and function. Plant and Soil, 338(1-2), 483-495. https://doi.org/10.1007/s11104-010-0560-6Lamb, E. G., Kennedy, N., & Siciliano, S. D. (2011). Effects of plant species richness and evenness on soil microbial community diversity and function. Plant and Soil, 338(1-2), 483-495. https://doi.org/10.1007/s11104-010-0560-6Latiffah, Z., Mah Kok, F., Heng Mei, H., Maziah, Z., & Baharuddin, S. (2010). Fusarium species isolated from mangrove soil in kampung pantai acheh, balik pulau, pulau pinang, malaysia. Tropical Life Sciences Research, 21(1), 21-29.Lee, K. K., Kim, H., & Lee, Y.-H. (2022). Cross-kingdom co-occurrence networks in the plant microbiome: Importance and ecological interpretations. Frontiers in Microbiology, 13, 953300. https://doi.org/10.3389/fmicb.2022.953300Leff, J. W., Jones, S. E., Prober, S. M., Barberán, A., Borer, E. T., Firn, J. L., Harpole, W. S., Hobbie, S. E., Hofmockel, K. S., Knops, J. M. H., McCulley, R. L., La Pierre, K., Risch, A. C., Seabloom, E. W., Schütz, M., Steenbock, C., Stevens, C. J., & Fierer, N. (2015). Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proceedings of the National Academy of Sciences, 112(35), 10967-10972. https://doi.org/10.1073/pnas.1508382112Qin, S., Liu, H., Nie, Z., Rengel, Z., Gao, W., Li, C., & Zhao, P. (2020). Toxicity of cadmium and its competition with mineral nutrients for uptake by plants: A review. Pedosphere, 30(2), 168-180. https://doi.org/10.1016/S1002-0160(20)60002-9Qiu, M., Yuan, C., & Yin, G. (2020). Effect of terrain gradient on cadmium accumulation in soils. Geoderma, 375, 114501. https://doi.org/10.1016/j.geoderma.2020.114501Quail, M. A., Swerdlow, H., & Turner, D. J. (2009). Improved protocols for the illumina genome analyzer sequencing system. Current Protocols in Human Genetics, 62(1). https://doi.org/10.1002/0471142905.hg1802s62Quezada-Hinojosa, R. P., Föllmi, K. B., Verrecchia, E., Adatte, T., & Matera, V. (2015). Speciation and multivariable analyses of geogenic cadmium in soils at Le Gurnigel, Swiss Jura Mountains. CATENA, 125, 10-32. https://doi.org/10.1016/j.catena.2014.10.003Raich, J. W., Clark, D. A., Schwendenmann, L., & Wood, T. E. (2014). Aboveground tree growth varies with belowground carbon allocation in a tropical rainforest environment. PLoS ONE, 9(6), e100275. https://doi.org/10.1371/journal.pone.0100275Raja, H. A., Miller, A. N., Pearce, C. J., & Oberlies, N. H. (2017). Fungal identification using molecular tools: A primer for the natural products research community. Journal of Natural Products, 80(3), 756-770. https://doi.org/10.1021/acs.jnatprod.6b01085Rajput, V., Minkina, T., Semenkov, I., Klink, G., Tarigholizadeh, S., & Sushkova, S. (2021). Phylogenetic analysis of hyperaccumulator plant species for heavy metals and polycyclic aromatic hydrocarbons. Environmental Geochemistry and Health, 43(4), 1629-1654. https://doi.org/10.1007/s10653-020-00527-0Ramette, A. (2007). Multivariate analyses in microbial ecology: Multivariate analyses in microbial ecology. FEMS Microbiology Ecology, 62(2), 142-160. https://doi.org/10.1111/j.1574-6941.2007.00375.xRamtahal, G., Umaharan, P., Hanuman, A., Davis, C., & Ali, L. (2019). The effectiveness of soil amendments, biochar and lime, in mitigating cadmium bioaccumulation in Theobroma cacao L. Science of The Total Environment, 693, 133563. https://doi.org/10.1016/j.scitotenv.2019.07.369Ramtahal, G., Yen, I. C., Bekele, I., Bekele, F., Wilson, L., Maharaj, K., & Harrynanan, L. (2016). Relationships between cadmium in tissues of cacao trees and soils in plantations of trinidad and tobago. Food and Nutrition Sciences, 07(01), 37-43. https://doi.org/10.4236/fns.2016.71005Rangel Mendoza, J. A., & Silva Parra, A. (2020). Agroforestry systems of Theobroma cacao L. affects soil and leaf litter quality. Colombia forestal, 23(2), 75-88. https://doi.org/10.14483/2256201X.16123Reese, A. T., & Dunn, R. R. (2018). Drivers of microbiome biodiversity: A review of general rules, feces, and ignorance. MBio, 9(4), e01294-18. https://doi.org/10.1128/mBio.01294-18Reeves, R. D., Baker, A. J. M., Jaffré, T., Erskine, P. D., Echevarria, G., & Ent, A. (2018). A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytologist, 218(2), 407-411. https://doi.org/10.1111/nph.14907Rehman, K., Fatima, F., Waheed, I., & Akash, M. S. H. (2018). Prevalence of exposure of heavy metals and their impact on health consequences. Journal of Cellular Biochemistry, 119(1), 157-184. https://doi.org/10.1002/jcb.26234Rehner, S. A., Minnis, A. M., Sung, G.-H., Luangsa-ard, J. J., Devotto, L., & Humber, R. A. (2011). Phylogeny and systematics of the anamorphic, entomopathogenic genus Beauveria. Mycologia, 103(5), 1055-1073. https://doi.org/10.3852/10-302Renella, G., Chaudri, A. M., & Brookes, P. C. (2002). Fresh additions of heavy metals do not model long-term effects on microbial biomass and activity. Soil Biology and Biochemistry, 34(1), 121-124. https://doi.org/10.1016/S0038-0717(01)00150-XRicotta, C., & Podani, J. (2017). On some properties of the Bray-Curtis dissimilarity and their ecological meaning. Ecological Complexity, 31, 201-205. https://doi.org/10.1016/j.ecocom.2017.07.003Riess, K., Schön, M. E., Ziegler, R., Lutz, M., Shivas, R. G., Piątek, M., & Garnica, S. (2019). The origin and diversification of the Entorrhizales: Deep evolutionary roots but recent speciation with a phylogenetic and phenotypic split between associates of the Cyperaceae and Juncaceae. Organisms Diversity & Evolution, 19(1), 13-30. https://doi.org/10.1007/s13127-018-0384-4Rizvi, A., Zaidi, A., Ameen, F., Ahmed, B., AlKahtani, M. D. F., & Khan, Mohd. S. (2020). Heavy metal induced stress on wheat: Phytotoxicity and microbiological management. RSC Advances, 10(63), 38379-38403. https://doi.org/10.1039/D0RA05610CRobinson, J. R., Isikhuemhen, O. S., & Anike, F. N. (2021). Fungal–metal interactions: A review of toxicity and homeostasis. Journal of Fungi, 7(3), 225. https://doi.org/10.3390/jof7030225Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2010a). Edger: A bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26(1), 139-140. https://doi.org/10.1093/bioinformatics/btp616Rodríguez Albarrcín, H. S., Darghan Contreras, A. E., & Henao, M. C. (2019). Spatial regression modeling of soils with high cadmium content in a cocoa producing area of Central Colombia. Geoderma Regional, 16, e00214. https://doi.org/10.1016/j.geodrs.2019.e00214Romero-Estévez, D., Yánez-Jácome, G. S., Dazzini Langdon, M., Simbaña-Farinango, K., Rebolledo Monsalve, E., Durán Cobo, G., & Navarrete, H. (2020). An overview of cadmium, chromium, and lead content in bivalves consumed by the community of santa rosa island (Ecuador) and its health risk assessment. Frontiers in Environmental Science, 8, 134. https://doi.org/10.3389/fenvs.2020.00134Rosales Huamani, J. A., Centeno Rojas, L., Cajacuri Perez, J. R., Breña Ore, J., & Chávez Chapana, C. (2021). Identificación de Cadmio y Plomo en los cultivos de Cacao ubicados en la zona de Satipo—Junín. TECNIA, 21(2). https://doi.org/10.21754/tecnia.v21i2.1062Rose, P. K., & Devi, R. (2018). Heavy metal tolerance and adaptability assessment of indigenous filamentous fungi isolated from industrial wastewater and sludge samples. Beni-Suef University Journal of Basic and Applied Sciences, 7(4), 688-694. https://doi.org/10.1016/j.bjbas.2018.08.001Rousk, J., Brookes, P. C., & Bååth, E. (2010). Investigating the mechanisms for the opposing pH relationships of fungal and bacterial growth in soil. Soil Biology and Biochemistry, 42(6), 926-934. https://doi.org/10.1016/j.soilbio.2010.02.009Sácký, J., Černý, J., Šantrůček, J., Borovička, J., Leonhardt, T., & Kotrba, P. (2021). Cadmium hyperaccumulating mushroom Cystoderma carcharias has two metallothionein isoforms usable for cadmium and copper storage. Fungal Genetics and Biology, 153, 103574. https://doi.org/10.1016/j.fgb.2021.103574Samuel, M. S., E.A. Abigail, M., & Ramalingam, C. (2015). Biosorption of cr(Vi) by ceratocystis paradoxa msr2 using isotherm modelling, kinetic study and optimization of batch parameters using response surface methodology. PLOS ONE, 10(3), e0118999. https://doi.org/10.1371/journal.pone.0118999Sánchez-Castro, I., Gianinazzi-Pearson, V., Cleyet-Marel, J. C., Baudoin, E., & van Tuinen, D. (2017). Glomeromycota communities survive extreme levels of metal toxicity in an orphan mining site. Science of The Total Environment, 598, 121-128. https://doi.org/10.1016/j.scitotenv.2017.04.084Sandoval Pineda, J. F., Pérez, U. A., Rodriguez, A., & Rojas, E. T. (2020). Alta presencia de cadmio resulta en baja diversidad de hongos formadores de micorrizas arbusculares asociados a cacao (Theobroma cacao L.). Acta Biológica Colombiana, 25(3), 333-344. https://doi.org/10.15446/abc.v25n3.78746Sandoval Cárdenas, D. I., Gomez-Ramirez, M., Rojas-Avelizapa, N. G., & Vidales-Hurtado, M. A. (2017). Synthesis of Cadmium Sulfide Nanoparticles by Biomass of Fusarium oxysporum f. Sp. Lycopersici . Journal of Nano Research, 46, 179-191. https://doi.org/10.4028/www.scientific.net/JNanoR.46.179Santoyo, G., Hernández-Pacheco, C., Hernández-Salmerón, J., & Hernández-León, R. (2017). The role of abiotic factors modulating the plant-microbe-soil interactions: Toward sustainable agriculture. A review. Spanish Journal of Agricultural Research, 15(1), e03R01. https://doi.org/10.5424/sjar/2017151-9990Schadt, C. W., & Rosling, A. (2015). Comment on “Global diversity and geography of soil fungi”. Science, 348(6242), 1438-1438. https://doi.org/10.1126/science.aaa4269Schappe, T., Albornoz, F. E., Turner, B. L., & Jones, F. A. (2020). Co-occurring fungal functional groups respond differently to tree neighborhoods and soil properties across three tropical rainforests in panama. Microbial Ecology, 79(3), 675-685. https://doi.org/10.1007/s00248-019-01446-zSchmidt, S. K., Nemergut, D. R., Darcy, J. L., & Lynch, R. (2014). Do bacterial and fungal communities assemble differently during primary succession? Molecular Ecology, 23(2), 254-258. https://doi.org/10.1111/mec.12589Schneegurt, M. A., Dore, S. Y., and Kulpa, C. F. Jr. (2003). Direct extraction of DNA from soils for studies in microbial ecology. Curr. Issues Mol. Biol. 5, 1–8.Schoch, C. L., Seifert, K. A., Huhndorf, S., Robert, V., Spouge, J. L., Levesque, C. A., Chen, W., Fungal Barcoding Consortium, Fungal Barcoding Consortium Author List, Bolchacova, E., Voigt, K., Crous, P. W., Miller, A. N., Wingfield, M. J., Aime, M. C., An, K.-D., Bai, F.-Y., Barreto, R. W., Begerow, D., … Schindel, D. (2012). Nuclear ribosomal internal transcribed spacer (Its) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences, 109(16), 6241-6246. https://doi.org/10.1073/pnas.1117018109Schreck, E., Dappe, V., Sarret, G., Sobanska, S., Nowak, D., Nowak, J., Stefaniak, E. A., Magnin, V., Ranieri, V., & Dumat, C. (2014). Foliar or root exposures to smelter particles: Consequences for lead compartmentalization and speciation in plant leaves. Science of The Total Environment, 476-477, 667-676. https://doi.org/10.1016/j.scitotenv.2013.12.089Schwartz, M. O. (2000). Cadmium in zinc deposits: Economic geology of a polluting element. International Geology Review, 42(5), 445-469. https://doi.org/10.1080/00206810009465091Seaton, F. M., George, P. B. L., Lebron, I., Jones, D. L., Creer, S., & Robinson, D. A. (2020). Soil textural heterogeneity impacts bacterial but not fungal diversity. Soil Biology and Biochemistry, 144, 107766. https://doi.org/10.1016/j.soilbio.2020.107766Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W. S., & Huttenhower, C. (2011). Metagenomic biomarker discovery and explanation. Genome Biology, 12(6), R60. https://doi.org/10.1186/gb-2011-12-6-r60Senanayake, I. C., Crous, P. W., Groenewald, J. Z., Maharachchikumbura, S. S. N., Jeewon, R., Phillips, A. J. L., Bhat, J. D., Perera, R. H., Li, Q. R., Li, W. J., Tangthirasunun, N., Norphanphoun, C., Karunarathna, S. C., Camporesi, E., Manawasighe, I. S., Al-Sadi, A. M., & Hyde, K. D. (2017). Families of Diaporthales based on morphological and phylogenetic evidence. Studies in Mycology, 86(1), 217-296. https://doi.org/10.1016/j.simyco.2017.07.003Sessitsch, A., Weilharter, A., Gerzabek, M. H., Kirchmann, H., & Kandeler, E. (2001). Microbial population structures in soil particle size fractions of a long-term fertilizer field experiment. Applied and Environmental Microbiology, 67(9), 4215-4224. https://doi.org/10.1128/AEM.67.9.4215-4224.2001Shadmani, L., Jamali, S., & Fatemi, A. (2021). Effects of root endophytic fungus, Microdochium bolleyi on cadmium uptake, translocation and tolerance by Hordeum vulgare L. Biologia, 76(2), 711-719. https://doi.org/10.2478/s11756-020-00598-5Shadmani, L., Jamali, S., & Fatemi, A. (2021). Isolation, identification, and characterization of cadmium-tolerant endophytic fungi isolated from barley (Hordeum vulgare L.) roots and their role in enhancing phytoremediation. Brazilian Journal of Microbiology, 52(3), 1097-1106. https://doi.org/10.1007/s42770-021-00493-4Shahid, M., Dumat, C., Khalid, S., Niazi, N. K., & Antunes, P. M. C. (2016). Cadmium bioavailability, uptake, toxicity and detoxification in soil-plant system. En P. de Voogt (Ed.), Reviews of Environmental Contamination and Toxicology Volume 241 (Vol. 241, pp. 73-137). Springer International Publishing. https://doi.org/10.1007/398_2016_8Shanmugaraj, B. M., Malla, A., & Ramalingam, S. (2019). Cadmium stress and toxicity in plants: An overview. En Cadmium Toxicity and Tolerance in Plants (pp. 1-17). Elsevier. https://doi.org/10.1016/B978-0-12-814864-8.00001-2Sharma, V., & Pant, D. (2018). Structural basis for expanding the application of bioligand in metal bioremediation: A review. Bioresource Technology, 252, 188-197. https://doi.org/10.1016/j.biortech.2017.12.070Sheldon, A. R., & Menzies, N. W. (2005). The effect of copper toxicity on the growth and root morphology of rhodes grass (Chloris gayana Knuth.) in resin buffered solution culture. Plant and Soil, 278(1-2), 341-349. https://doi.org/10.1007/s11104-005-8815-3Silverman, J. D., Bloom, R. J., Jiang, S., Durand, H. K., Dallow, E., Mukherjee, S., & David, L. A. (2021). Measuring and mitigating PCR bias in microbiota datasets. PLOS Computational Biology, 17(7), e1009113. https://doi.org/10.1371/journal.pcbi.1009113Singh, R., Gautam, N., Mishra, A., & Gupta, R. (2011). Heavy metals and living systems: An overview. Indian Journal of Pharmacology, 43(3), 246. https://doi.org/10.4103/0253-7613.81505Solis-Hernández, A. P., Chávez-Vergara, B. M., Rodríguez-Tovar, A. V., Beltrán-Paz, O. I., Santillán, J., & Rivera-Becerril, F. (2022). Effect of the natural establishment of two plant species on microbial activity, on the composition of the fungal community, and on the mitigation of potentially toxic elements in an abandoned mine tailing. Science of The Total Environment, 802, 149788. https://doi.org/10.1016/j.scitotenv.2021.149788Song, C., Zhu, F., Carrión, V. J., & Cordovez, V. (2020). Beyond plant microbiome composition: Exploiting microbial functions and plant traits via integrated approaches. Frontiers in Bioengineering and Biotechnology, 8, 896. https://doi.org/10.3389/fbioe.2020.00896Song, Y., Jin, L., & Wang, X. (2017). Cadmium absorption and transportation pathways in plants. International Journal of Phytoremediation, 19(2), 133-141. https://doi.org/10.1080/15226514.2016.1207598Soonvald, L., Loit, K., Runno-Paurson, E., Astover, A., & Tedersoo, L. (2020). Characterising the effect of crop species and fertilisation treatment on root fungal communities. Scientific Reports, 10(1), 18741. https://doi.org/10.1038/s41598-020-74952-7Sterckeman, T., & Thomine, S. (2020). Mechanisms of cadmium accumulation in plants. Critical Reviews in Plant Sciences, 39(4), 322-359. https://doi.org/10.1080/07352689.2020.1792179Suárez Salazar, J. C., Ngo Bieng, M. A., Melgarejo, L. M., Di Rienzo, J. A., & Casanoves, F. (2018). First typology of cacao (Theobroma cacao L.) systems in Colombian Amazonia, based on tree species richness, canopy structure and light availability. PLOS ONE, 13(2), e0191003. https://doi.org/10.1371/journal.pone.0191003Suárez, L. R., Suárez Salazar, J. C., Casanoves, F., & Ngo Bieng, M. A. (2021). Cacao agroforestry systems improve soil fertility: Comparison of soil properties between forest, cacao agroforestry systems, and pasture in the Colombian Amazon. Agriculture, Ecosystems & Environment, 314, 107349. https://doi.org/10.1016/j.agee.2021.107349Suhani, I., Sahab, S., Srivastava, V., & Singh, R. P. (2021). Impact of cadmium pollution on food safety and human health. Current Opinion in Toxicology, 27, 1-7. https://doi.org/10.1016/j.cotox.2021.04.004Sui, X., Zhang, R., Frey, B., Yang, L., Liu, Y., Ni, H., & Li, M. (2021). Soil physicochemical properties drive the variation in soil microbial communities along a forest successional series in a degraded wetland in northeastern China. Ecology and Evolution, 11(5), 2194-2208. https://doi.org/10.1002/ece3.7184Sulistyo, B. P., Larsson, K.-H., Haelewaters, D., & Ryberg, M. (2021). Multigene phylogeny and taxonomic revision of Atheliales s.l.: Reinstatement of three families and one new family, Lobuliciaceae fam. nov. Fungal Biology, 125(3), 239-255. https://doi.org/10.1016/j.funbio.2020.11.007Sun, H., Shao, C., Jin, Q., Li, M., Zhang, Z., Liang, H., Lei, H., Qian, J., & Zhang, Y. (2022). Effects of cadmium contamination on bacterial and fungal communities in Panax ginseng-growing soil. BMC Microbiology, 22(1), 77. https://doi.org/10.1186/s12866-022-02488-zSun, J.-M., Irzykowski, W., Jedryczka, M., & Han, F.-X. (2005). Analysis of the genetic structure of sclerotinia sclerotiorum (Lib.) de bary populations from different regions and host plants by random amplified polymorphic dna markers. Journal of Integrative Plant Biology, 47(4), 385-395. https://doi.org/10.1111/j.1744-7909.2005.00077.xTaiyun, W & Viliam, S. (2021). R package 'corrplot': Visualization of a Correlation Matrix (Version 0.92). Available from https://github.com/taiyun/corrplotTakamatsu, R., Asakura, K., Chun, W.-J., Miyazaki, T., & Nakano, M. (2006). Exafs studies about the sorption of cadmium ions on montmorillonite. Chemistry Letters, 35(2), 224-225. https://doi.org/10.1246/cl.2006.224Tamariz-Angeles, C., Huamán, G. D., Palacios-Robles, E., Olivera-Gonzales, P., & Castañeda-Barreto, A. (2021). Characterization of siderophore-producing microorganisms associated to plants from high-Andean heavy metal polluted soil from Callejón de Huaylas (Ancash, perú). Microbiological Research, 250, 126811. https://doi.org/10.1016/j.micres.2021.126811Tecon, R., & Or, D. (2017). Biophysical processes supporting the diversity of microbial life in soil. FEMS Microbiology Reviews, 41(5), 599-623. https://doi.org/10.1093/femsre/fux039Tedersoo, L., Anslan, S., Bahram, M., Drenkhan, R., Pritsch, K., Buegger, F., Padari, A., Hagh-Doust, N., Mikryukov, V., Gohar, D., Amiri, R., Hiiesalu, I., Lutter, R., Rosenvald, R., Rähn, E., Adamson, K., Drenkhan, T., Tullus, H., Jürimaa, K., … Abarenkov, K. (2020). Regional-scale in-depth analysis of soil fungal diversity reveals strong ph and plant species effects in northern europe. Frontiers in Microbiology, 11, 1953. https://doi.org/10.3389/fmicb.2020.01953Tedersoo, L., Bahram, M., Põlme, S., Kõljalg, U., Yorou, N. S., Wijesundera, R., Ruiz, L. V., Vasco-Palacios, A. M., Thu, P. Q., Suija, A., Smith, M. E., Sharp, C., Saluveer, E., Saitta, A., Rosas, M., Riit, T., Ratkowsky, D., Pritsch, K., Põldmaa, K., … Abarenkov, K. (2014). Global diversity and geography of soil fungi. Science, 346(6213), 1256688. https://doi.org/10.1126/science.1256688Tedersoo, L., Bahram, M., Zinger, L., Nilsson, R. H., Kennedy, P. G., Yang, T., Anslan, S., & Mikryukov, V. (2022). Best practices in metabarcoding of fungi: From experimental design to results. Molecular Ecology, 31(10), 2769-2795. https://doi.org/10.1111/mec.16460Tian, S., Lu, L., Labavitch, J., Yang, X., He, Z., Hu, H., Sarangi, R., Newville, M., Commisso, J., & Brown, P. (2011). Cellular sequestration of cadmium in the hyperaccumulator plant species sedum alfredii. Plant Physiology, 157(4), 1914-1925. https://doi.org/10.1104/pp.111.183947Tkavc, R., Matrosova, V. Y., Grichenko, O. E., Gostinčar, C., Volpe, R. P., Klimenkova, P., Gaidamakova, E. K., Zhou, C. E., Stewart, B. J., Lyman, M. G., Malfatti, S. A., Rubinfeld, B., Courtot, M., Singh, J., Dalgard, C. L., Hamilton, T., Frey, K. G., Gunde-Cimerman, N., Dugan, L., & Daly, M. J. (2018). Prospects for fungal bioremediation of acidic radioactive waste sites: Characterization and genome sequence of rhodotorula taiwanensis md1149. Frontiers in Microbiology, 8, 2528. https://doi.org/10.3389/fmicb.2017.02528Toju, H., Tanabe, A. S., Yamamoto, S., & Sato, H. (2012). High-coverage its primers for the dna-based identification of ascomycetes and basidiomycetes in environmental samples. PLoS ONE, 7(7), e40863. https://doi.org/10.1371/journal.pone.0040863Torres-Cruz, T. J., Hesse, C., Kuske, C. R., & Porras-Alfaro, A. (2018). Presence and distribution of heavy metal tolerant fungi in surface soils of a temperate pine forest. Applied Soil Ecology, 131, 66-74. https://doi.org/10.1016/j.apsoil.2018.08.001Torsvik, V., & Øvreås, L. (2002). Microbial diversity and function in soil: From genes to ecosystems. Current Opinion in Microbiology, 5(3), 240-245. https://doi.org/10.1016/S1369-5274(02)00324-7Trivedi, P., Batista, B. D., Bazany, K. E., & Singh, B. K. (2022). Plant–microbiome interactions under a changing world: Responses, consequences and perspectives. New Phytologist, 234(6), 1951-1959. https://doi.org/10.1111/nph.18016U.S. Environmental Protection Agency (USEPA) (2002) Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms. 5th Edition, Washington DC, EPA-821-R-02-012.Văcar, C. L., Covaci, E., Chakraborty, S., Li, B., Weindorf, D. C., Frențiu, T., Pârvu, M., & Podar, D. (2021). Heavy metal-resistant filamentous fungi as potential mercury bioremediators. Journal of Fungi, 7(5), 386. https://doi.org/10.3390/jof7050386Vanderschueren, R., Argüello, D., Blommaert, H., Montalvo, D., Barraza, F., Maurice, L., Schreck, E., Schulin, R., Lewis, C., Vazquez, J. L., Umaharan, P., Chavez, E., Sarret, G., & Smolders, E. (2021). Mitigating the level of cadmium in cacao products: Reviewing the transfer of cadmium from soil to chocolate bar. Science of The Total Environment, 781, 146779. https://doi.org/10.1016/j.scitotenv.2021.146779Vásquez-Barajas, E. F., García-Torres, N. E., Bastos-Osorio, L. M., & Lázaro-Pacheco, J. M. (2018). Análisis económico del sector cacaotero en Norte de Santander, Colombia y a nivel internacional. Revista de Investigación, Desarrollo e Innovación, 8(2), 237-250. https://doi.org/10.19053/20278306.v8.n2.2018.7963Verbruggen, N., Juraniec, M., Baliardini, C., & Meyer, C.-L. (2013). Tolerance to cadmium in plants: The special case of hyperaccumulators. BioMetals, 26(4), 633-638. https://doi.org/10.1007/s10534-013-9659-6Větrovský, T., Morais, D., Kohout, P., Lepinay, C., Algora, C., Awokunle Hollá, S., Bahnmann, B. D., Bílohnědá, K., Brabcová, V., D’Alò, F., Human, Z. R., Jomura, M., Kolařík, M., Kvasničková, J., Lladó, S., López-Mondéjar, R., Martinović, T., Mašínová, T., Meszárošová, L., … Baldrian, P. (2020). GlobalFungi, a global database of fungal occurrences from high-throughput-sequencing metabarcoding studies. Scientific Data, 7(1), 228. https://doi.org/10.1038/s41597-020-0567-7Viehweger, K. (2014). How plants cope with heavy metals. Botanical Studies, 55(1), 35. https://doi.org/10.1186/1999-3110-55-35Violante, A., Cozzolino, V., Perelomov, L., Caporale, A. G., & Pigna, M. (2010). Mobility and bioavailability of heavy metals and metalloids in soil environments. Journal of Soil Science and Plant Nutrition, 10(3). https://doi.org/10.4067/S0718-95162010000100005Vishwakarma, G. S., Bhattacharjee, G., Gohil, N., & Singh, V. (2020). Current status, challenges and future of bioremediation. En Bioremediation of Pollutants (pp. 403-415). Elsevier. https://doi.org/10.1016/B978-0-12-819025-8.00020-XVliet, J. A. van, Vliet, J. A. van, & Giller, K. (2015). Mineral nutrition of cocoa: A review. Wageningen UR.Wachira, P., Kimenju, J., Okoth, S., & Kiarie, J. (2014). Conservation and sustainable management of soil biodiversity for agricultural productivity. En N. Kaneko, S. Yoshiura, & M. Kobayashi (Eds.), Sustainable Living with Environmental Risks (pp. 27-34). Springer Japan. https://doi.org/10.1007/978-4-431-54804-1_3Wade, J., Ac-Pangan, M., Favoretto, V. R., Taylor, A. J., Engeseth, N., & Margenot, A. J. (2022). Drivers of cadmium accumulation in Theobroma cacao L. beans: A quantitative synthesis of soil-plant relationships across the Cacao Belt. PLOS ONE, 17(2), e0261989. https://doi.org/10.1371/journal.pone.0261989Wagner, B. D., Grunwald, G. K., Zerbe, G. O., Mikulich-Gilbertson, S. K., Robertson, C. E., Zemanick, E. T., & Harris, J. K. (2018). On the use of diversity measures in longitudinal sequencing studies of microbial communities. Frontiers in Microbiology, 9, 1037. https://doi.org/10.3389/fmicb.2018.01037Wahsha, M., Nadimi-Goki, M., Fornasier, F., Al-Jawasreh, R., Hussein, E. I., & Bini, C. (2017). Microbial enzymes as an early warning management tool for monitoring mining site soils. CATENA, 148, 40-45. https://doi.org/10.1016/j.catena.2016.02.021Wallenius, K., Rita, H., Simpanen, S., Mikkonen, A., & Niemi, R. M. (2010). Sample storage for soil enzyme activity and bacterial community profiles. Journal of Microbiological Methods, 81(1), 48-55. https://doi.org/10.1016/j.mimet.2010.01.021Walsh, A. M., Crispie, F., Claesson, M. J., & Cotter, P. D. (2017). Translating omics to food microbiology. Annual Review of Food Science and Technology, 8(1), 113-134. https://doi.org/10.1146/annurev-food-030216-025729Wang, M., Chen, S., Chen, L., & Wang, D. (2019). Responses of soil microbial communities and their network interactions to saline-alkaline stress in Cd-contaminated soils. Environmental Pollution, 252, 1609-1621. https://doi.org/10.1016/j.envpol.2019.06.082Wang, M., Chen, Z., Song, W., Hong, D., Huang, L., & Li, Y. (2021). A review on cadmium exposure in the population and intervention strategies against cadmium toxicity. Bulletin of Environmental Contamination and Toxicology, 106(1), 65-74. https://doi.org/10.1007/s00128-020-03088-1Wang, M., Wang, L., Zhao, S., Li, S., Lei, X., Qin, L., Sun, X., & Chen, S. (2021). Manganese facilitates cadmium stabilization through physicochemical dynamics and amino acid accumulation in rice rhizosphere under flood-associated low pe+pH. Journal of Hazardous Materials, 416, 126079. https://doi.org/10.1016/j.jhazmat.2021.126079Wang, S., & Mulligan, C. N. (2006). Effect of natural organic matter on arsenic release from soils and sediments into groundwater. Environmental Geochemistry and Health, 28(3), 197-214. https://doi.org/10.1007/s10653-005-9032-yWang, S., Dai, H., Wei, S., Skuza, L., & Chen, Y. (2022). Effects of Cd-resistant fungi on uptake and translocation of Cd by soybean seedlings. Chemosphere, 291, 132908. https://doi.org/10.1016/j.chemosphere.2021.132908Wang, T. Y., Wang, L., Zhang, J. H., & Dong, W. H. (2011). A simplified universal genomic DNA extraction protocol suitable for PCR. Genetics and Molecular Research, 10(1), 519-525. https://doi.org/10.4238/vol10-1gmr1055Wang, W., Zhai, Y., Cao, L., Tan, H., & Zhang, R. (2016). Endophytic bacterial and fungal microbiota in sprouts, roots and stems of rice ( Oryza sativa L.). Microbiological Research, 188-189, 1-8. https://doi.org/10.1016/j.micres.2016.04.009Wang, Y., Xu, X., Liu, T., Wang, H., Yang, Y., Chen, X., & Zhu, S. (2020). Analysis of bacterial and fungal communities in continuous-cropping ramie (Boehmeria nivea l. Gaud) fields in different areas in China. Scientific Reports, 10(1), 3264. https://doi.org/10.1038/s41598-020-58608-0Wang, Y., Xu, X., Liu, T., Wang, H., Yang, Y., Chen, X., & Zhu, S. (2020). Analysis of bacterial and fungal communities in continuous-cropping ramie (Boehmeria nivea l. Gaud) fields in different areas in China. Scientific Reports, 10(1), 3264. https://doi.org/10.1038/s41598-020-58608-0Weiss, S., Van Treuren, W., Lozupone, C., Faust, K., Friedman, J., Deng, Y., Xia, L. C., Xu, Z. Z., Ursell, L., Alm, E. J., Birmingham, A., Cram, J. A., Fuhrman, J. A., Raes, J., Sun, F., Zhou, J., & Knight, R. (2016). Correlation detection strategies in microbial data sets vary widely in sensitivity and precision. The ISME Journal, 10(7), 1669-1681. https://doi.org/10.1038/ismej.2015.235Welch, R. M., & Norvell, W. A. (1999). Mechanisms of cadmium uptake, translocation and deposition in plants. En M. J. McLaughlin & B. R. Singh (Eds.), Cadmium in Soils and Plants (pp. 125-150). Springer Netherlands. https://doi.org/10.1007/978-94-011-4473-5_6Wijayawardene, N. (2020). Outline of Fungi and fungus-like taxa. Mycosphere, 11(1), 1060-1456. https://doi.org/10.5943/mycosphere/11/1/8Willis, A. D. (2019). Rarefaction, alpha diversity, and statistics. Frontiers in Microbiology, 10, 2407. https://doi.org/10.3389/fmicb.2019.02407Wong, C., Roberts, S. M., & Saab, I. N. (2022). Review of regulatory reference values and background levels for heavy metals in the human diet. Regulatory Toxicology and Pharmacology, 130, 105122. https://doi.org/10.1016/j.yrtph.2022.105122Wu, B., Luo, H., Wang, X., Liu, H., Peng, H., Sheng, M., Xu, F., & Xu, H. (2022). Effects of environmental factors on soil bacterial community structure and diversity in different contaminated districts of Southwest China mine tailings. Science of The Total Environment, 802, 149899. https://doi.org/10.1016/j.scitotenv.2021.149899Wu, D., Ma, Y., Yang, T., Gao, G., Wang, D., Guo, X., & Chu, H. (2022). Phosphorus and zinc are strongly associated with belowground fungal communities in wheat field under long-term fertilization. Microbiology Spectrum, 10(2), e00110-22. https://doi.org/10.1128/spectrum.00110-22Wu, H., Wen, Q., Hu, L., & Gong, M. (2018). Effect of adsorbate concentration to adsorbent dosage ratio on the sorption of heavy metals on soils. Journal of Environmental Engineering, 144(2), 04017094. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001306Xia, Q., Rufty, T., & Shi, W. (2020). Soil microbial diversity and composition: Links to soil texture and associated properties. Soil Biology and Biochemistry, 149, 107953. https://doi.org/10.1016/j.soilbio.2020.107953Xu, L., Ravnskov, S., Larsen, J., Nilsson, R. H., & Nicolaisen, M. (2012). Soil fungal community structure along a soil health gradient in pea fields examined using deep amplicon sequencing. Soil Biology and Biochemistry, 46, 26-32. https://doi.org/10.1016/j.soilbio.2011.11.010Yamanaka, T. (2003). The effect of pH on the growth of saprotrophic and ectomycorrhizal ammonia fungi in vitro. Mycologia, 95(4), 584-589. https://doi.org/10.1080/15572536.2004.11833062Yang, G.-L., Zheng, M.-M., Tan, A.-J., Liu, Y.-T., Feng, D., & Lv, S.-M. (2021). Research on the mechanisms of plant enrichment and detoxification of cadmium. Biology, 10(6), 544. https://doi.org/10.3390/biology10060544Yang, T., Adams, J. M., Shi, Y., He, J., Jing, X., Chen, L., Tedersoo, L., & Chu, H. (2017). Soil fungal diversity in natural grasslands of the Tibetan Plateau: Associations with plant diversity and productivity. New Phytologist, 215(2), 756-765. https://doi.org/10.1111/nph.14606Yasanthika, W., Wanasinghe, D., Mortimer, P., Monkai, J., & Farias, A. (2022). The importance of culture-based techniques in the genomic era for assessing the taxonomy and diversity of soil fungi. Mycosphere, 13(1), 724-751. https://doi.org/10.5943/mycosphere/13/1/8Yelle, D. J., Ralph, J., Lu, F., & Hammel, K. E. (2008). Evidence for cleavage of lignin by a brown rot basidiomycete. Environmental Microbiology, 10(7), 1844-1849. https://doi.org/10.1111/j.1462-2920.2008.01605.xYi, Z., Lehto, N. J., Robinson, B. H., & Cavanagh, J.-A. E. (2020). Environmental and edaphic factors affecting soil cadmium uptake by spinach, potatoes, onion and wheat. Science of The Total Environment, 713, 136694. https://doi.org/10.1016/j.scitotenv.2020.136694Yin, C., Schlatter, D. C., Kroese, D. R., Paulitz, T. C., & Hagerty, C. H. (2021). Responses of soil fungal communities to lime application in wheat fields in the pacific northwest. Frontiers in Microbiology, 12, 576763. https://doi.org/10.3389/fmicb.2021.576763Zaia, F. C., Gama-Rodrigues, A. C., Gama-Rodrigues, E. F., Moço, M. K. S., Fontes, A. G., Machado, R. C. R., & Baligar, V. C. (2012). Carbon, nitrogen, organic phosphorus, microbial biomass and N mineralization in soils under cacao agroforestry systems in Bahia, Brazil. Agroforestry Systems, 86(2), 197-212. https://doi.org/10.1007/s10457-012-9550-4Zeilinger, S., Gupta, V. K., Dahms, T. E. S., Silva, R. N., Singh, H. B., Upadhyay, R. S., Gomes, E. V., Tsui, C. K.-M., & Nayak S, C. (2016). Friends or foes? Emerging insights from fungal interactions with plants. FEMS Microbiology Reviews, 40(2), 182-207. https://doi.org/10.1093/femsre/fuv045Zhang, D., Du, G., Chen, D., Shi, G., Rao, W., Li, X., Jiang, Y., Liu, S., & Wang, D. (2019). Effect of elemental sulfur and gypsum application on the bioavailability and redistribution of cadmium during rice growth. Science of The Total Environment, 657, 1460-1467. https://doi.org/10.1016/j.scitotenv.2018.12.057Zhang, H., Chen, J., Zhu, L., Yang, G., & Li, D. (2014). Transfer of cadmium from soil to vegetable in the pearl river delta area, south china. PLoS ONE, 9(9), e108572. https://doi.org/10.1371/journal.pone.0108572Zhang, L., Chen, F., Zeng, Z., Xu, M., Sun, F., Yang, L., Bi, X., Lin, Y., Gao, Y., Hao, H., Yi, W., Li, M., & Xie, Y. (2021). Advances in metagenomics and its application in environmental microorganisms. Frontiers in Microbiology, 12, 766364. https://doi.org/10.3389/fmicb.2021.766364Zhang, X., Fu, G., Xing, S., Fu, W., Liu, X., Wu, H., Zhou, X., Ma, Y., Zhang, X., & Chen, B. (2022). Structure and diversity of fungal communities in long-term copper-contaminated agricultural soil. Science of The Total Environment, 806, 151302. https://doi.org/10.1016/j.scitotenv.2021.151302Zhang, Y., Naafs, B. D. A., Huang, X., Song, Q., Xue, J., Wang, R., Zhao, M., Evershed, R. P., Pancost, R. D., & Xie, S. (2022). Variations in wetland hydrology drive rapid changes in the microbial community, carbon metabolic activity, and greenhouse gas fluxes. Geochimica et Cosmochimica Acta, 317, 269-285. https://doi.org/10.1016/j.gca.2021.11.014Zhao, M., Wang, M., Zhao, Y., Hu, N., Qin, L., Ren, Z., Wang, G., & Jiang, M. (2022). Soil microbial abundance was more affected by soil depth than the altitude in peatlands. Frontiers in Microbiology, 13, 1068540. https://doi.org/10.3389/fmicb.2022.1068540Zhao, Y., Gao, L., Zha, F., Chen, X., Zhou, X., Wang, X., Chen, Y., & Pan, X. (2021). Research on heavy metal level and co-occurrence network in typical ecological fragile area. Journal of Environmental Health Science and Engineering, 19(1), 531-540. https://doi.org/10.1007/s40201-021-00625-wZheng, L., Li, Y., Shang, W., Dong, X., Tang, Q., & Cheng, H. (2019). The inhibitory effect of cadmium and/or mercury on soil enzyme activity, basal respiration, and microbial community structure in coal mine–affected agricultural soil. Annals of Microbiology, 69(8), 849-859. https://doi.org/10.1007/s13213-019-01478-3Zhou, Q., An, X., & Wei, S. (2008). [Heavy metal pollution ecology of macro-fungi: Research advances and expectation]. Ying Yong Sheng Tai Xue Bao = The Journal of Applied Ecology, 19(8), 1848-1853.Zhu, P., Li, Y., Gao, Y., Yin, M., Wu, Y., Liu, L., Du, N., Liu, J., Yu, X., Wang, L., & Guo, W. (2021). Insight into the effect of nitrogen-rich substrates on the community structure and the co-occurrence network of thermophiles during lignocellulose-based composting. Bioresource Technology, 319, 124111. https://doi.org/10.1016/j.biortech.2020.124111Zhu, Y., Ge, X., Wang, L., You, Y., Cheng, Y., Ma, J., & Chen, F. (2022). Biochar rebuilds the network complexity of rare and abundant microbial taxa in reclaimed soil of mining areas to cooperatively avert cadmium stress. Frontiers in Microbiology, 13, 972300. https://doi.org/10.3389/fmicb.2022.972300Žifčáková, L., Větrovský, T., Howe, A., & Baldrian, P. (2016). Microbial activity in forest soil reflects the changes in ecosystem properties between summer and winter: Seasonal dynamics of a soil microbial community. Environmental Microbiology, 18(1), 288-301. https://doi.org/10.1111/1462-2920.13026Zulfiqar, U., Jiang, W., Xiukang, W., Hussain, S., Ahmad, M., Maqsood, M. F., Ali, N., Ishfaq, M., Kaleem, M., Haider, F. U., Farooq, N., Naveed, M., Kucerik, J., Brtnicky, M., & Mustafa, A. (2022). Cadmium phytotoxicity, tolerance, and advanced remediation approaches in agricultural soils; a comprehensive review. Frontiers in Plant Science, 13, 773815. https://doi.org/10.3389/fpls.2022.773815Lewis, C., Lennon, A. M., Eudoxie, G., & Umaharan, P. (2018). Genetic variation in bioaccumulation and partitioning of cadmium in Theobroma cacao L. Science of The Total Environment, 640-641, 696-703. https://doi.org/10.1016/j.scitotenv.2018.05.365Li, T., Liang, C., Han, X., & Yang, X. (2013). Mobilization of cadmium by dissolved organic matter in the rhizosphere of hyperaccumulator Sedum alfredii. Chemosphere, 91(7), 970-976. https://doi.org/10.1016/j.chemosphere.2013.01.100Libohova, Z., J.M. Martín-López, M. da Silva, C. Lagoueyte, J. Cruz, P. Drohan, S. Maximova, M. Guiltinan, M.G. Ferruzzi, D. Guarín, P. Reich, C. Kome, Y.P. Zapata, G. Gallego-Sánchez, C. Quintero, C. Botero, N.P. Winters, and M. Robotham. (2020). Soil and cacao genomics survey of Sierra Nevada de Santa Marta Region, Colombia. United States Department of Agriculture, Natural Resources Conservation Service; International Center for Tropical Agriculture (CIAT); and Pennsylvania State UniversityLiu, H., Wang, H., Ma, Y., Wang, H., & Shi, Y. (2016). Role of transpiration and metabolism in translocation and accumulation of cadmium in tobacco plants (Nicotiana tabacum L.). Chemosphere, 144, 1960-1965. https://doi.org/10.1016/j.chemosphere.2015.10.093Liu, Y., Alessi, D. S., Flynn, S. L., Alam, Md. S., Hao, W., Gingras, M., Zhao, H., & Konhauser, K. O. (2018). Acid-base properties of kaolinite, montmorillonite and illite at marine ionic strength. Chemical Geology, 483, 191-200. https://doi.org/10.1016/j.chemgeo.2018.01.018Liu, Y., Xiao, T., Ning, Z., Li, H., Tang, J., & Zhou, G. (2013). High cadmium concentration in soil in the Three Gorges region: Geogenic source and potential bioavailability. Applied Geochemistry, 37, 149-156. https://doi.org/10.1016/j.apgeochem.2013.07.022Llatance, W. O., Gonza Saavedra, C. J., Guzmán Castillo, W., & Pariente Mondragón, E. (2018). Bioacumulación de cadmio en el cacao (Theobroma cacao) en la Comunidad.Revista Forestal del Perú, 33(1), 63. https://doi.org/10.21704/rfp.v33i1.1156Mahar, A., Wang, P., Ali, A., Awasthi, M. K., Lahori, A. H., Wang, Q., Li, R., & Zhang, Z. (2016). Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review. Ecotoxicology and Environmental Safety, 126, 111-121. https://doi.org/10.1016/j.ecoenv.2015.12.023Mary Ugwu, I., & Anthony Igbokwe, O. (2019). Sorption of heavy metals on clay minerals and oxides: A review. En S. Edebali (Ed.), Advanced Sorption Process Applications. IntechOpen. https://doi.org/10.5772/intechopen.80989McLaughlin, M. J., Smolders, E., Zhao, F. J., Grant, C., & Montalvo, D. (2021). Managing cadmium in agricultural systems. En Advances in Agronomy (Vol. 166, pp. 1-129). Elsevier. https://doi.org/10.1016/bs.agron.2020.10.004Mendoza, O. H., Portilla, K. A., Pérez, A., Castellanos, F. y Orejuela, C,J., (2020). Cadmio-(Cd) En: Atlas Geoquímico de Colombia, versión 2020, Bogotá: Servicio Geológico Colombiano.Meter, A., Atkinson, R. J., & Laliberte, B. (2019). Cadmium in Cacao From Latin America and The Caribbean. A Review of Research and Potential Mitigation Solutions. Caracas: CAF. Retrieved from http://scioteca.caf.com/handle/123456789/1506Meunier, N., Blais, J.-F., & Tyagi, R. D. (2004). Removal of heavy metals from acid soil leachate using cocoa shells in a batch counter-current sorption process. Hydrometallurgy, 73(3-4), 225-235. https://doi.org/10.1016/j.hydromet.2003.10.011Minasny, B., & McBratney, A. B. (2006). A conditioned Latin hypercube method for sampling in the presence of ancillary information. Computers & Geosciences, 32(9), 1378-1388. https://doi.org/10.1016/j.cageo.2005.12.009Ministerio de Agricultura (MINAGRICULTURA). (2021). CADENA DE CACAO Dirección de Cadenas Agrícolas y Forestales Marzo 2021. Url: https://sioc.minagricultura.gov.co/Cacao/Documentos/2021-03-31%20Cifras%20Sectoriales.pdf. Consulta: Diciembre, 2022.Morais, F. (1985). Sistema de Producao do cacaueiro na Amazonia brasileira. Belém, Pará, Bra.: CEPLAC.Naeem, A., Zafar, M., Khalid, H., Zia-ur-Rehman, M., Ahmad, Z., Ayub, M. A., & Farooq Qayyum, M. (2019). Cadmium-induced imbalance in nutrient and water uptake by plants. En Cadmium Toxicity and Tolerance in Plants (pp. 299-326). Elsevier. https://doi.org/10.1016/B978-0-12-814864-8.00012-7Nagajyoti, P. C., Lee, K. D., & Sreekanth, T. V. M. (2010). Heavy metals, occurrence and toxicity for plants: A review. Environmental Chemistry Letters, 8(3), 199-216. https://doi.org/10.1007/s10311-010-0297-8Ogunlade, M. O., Oluyole, K. A., & Aikpokpodion, P. O. (2009). An evaluation of the level of fertilizer utilization for cocoa production in nigeria. Journal of Human Ecology, 25(3), 175-178. https://doi.org/10.1080/09709274.2009.11906152Oliva, M., Rubio, K., Epquin, M., Marlo, G., & Leiva, S. (2020). Cadmium uptake in native cacao trees in agricultural lands of bagua, peru. Agronomy, 10(10), 1551. https://doi.org/10.3390/agronomy10101551Oliveira, B. R. M., de Almeida, A.-A. F., Santos, N. de A., & Pirovani, C. P. (2022). Tolerance strategies and factors that influence the cadmium uptake by cacao tree. Scientia Horticulturae, 293, 110733. https://doi.org/10.1016/j.scienta.2021.110733Pabón, M., & Pabón, M. (2016). Caracterizacion socio-económica y productiva del cultivo de cacao en el departamento de santander (Colombia). https://doi.org/10.22004/AG.ECON.239289Pichtel, J., Kuroiwa, K., & Sawyerr, H. T. (2000). Distribution of Pb, Cd and Ba in soils and plants of two contaminated sites. Environmental Pollution, 110(1), 171-178. https://doi.org/10.1016/S0269-7491(99)00272-9Liaquat, F., Munis, M. F. H., Haroon, U., Arif, S., Saqib, S., Zaman, W., Khan, A. R., Shi, J., Che, S., & Liu, Q. (2020). Evaluation of metal tolerance of fungal strains isolated from contaminated mining soil of nanjing, china. Biology, 9(12), 469. https://doi.org/10.3390/biology9120469Lin, H., & Peddada, S. D. (2020). Analysis of microbial compositions: A review of normalization and differential abundance analysis. Npj Biofilms and Microbiomes, 6(1), 60. https://doi.org/10.1038/s41522-020-00160-wLiu, C., Cui, Y., Li, X., & Yao, M. (2021). microeco: An r package for data mining in microbial community ecology. FEMS Microbiology Ecology, 97(2), fiaa255. https://doi.org/10.1093/femsec/fiaa255Liu, H., Wang, C., Xie, Y., Luo, Y., Sheng, M., Xu, F., & Xu, H. (2020). Ecological responses of soil microbial abundance and diversity to cadmium and soil properties in farmland around an enterprise-intensive region. Journal of Hazardous Materials, 392, 122478. https://doi.org/10.1016/j.jhazmat.2020.122478Lombard, N., Prestat, E., van Elsas, J. D., & Simonet, P. (2011). Soil-specific limitations for access and analysis of soil microbial communities by metagenomics: Limitations in soil metagenomics. FEMS Microbiology Ecology, 78(1), 31-49. https://doi.org/10.1111/j.1574-6941.2011.01140.xLorenz, M. G., & Wackernagel, W. (1994). Bacterial gene transfer by natural genetic transformation in the environment. Microbiological Reviews, 58(3), 563-602. https://doi.org/10.1128/mr.58.3.563-602.1994Lourenço, K. S., Suleiman, A. K. A., Pijl, A., Cantarella, H., & Kuramae, E. E. (2020). Dynamics and resilience of soil mycobiome under multiple organic and inorganic pulse disturbances. Science of The Total Environment, 733, 139173. https://doi.org/10.1016/j.scitotenv.2020.139173McMurdie, P. J., & Holmes, S. (2013). Phyloseq: An r package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE, 8(4), e61217. https://doi.org/10.1371/journal.pone.0061217Menolli, N., & Sánchez-García, M. (2020). Brazilian fungal diversity represented by DNA markers generated over 20 years. Brazilian Journal of Microbiology, 51(2), 729-749. https://doi.org/10.1007/s42770-019-00206-yMenzies, N. W., Donn, M. J., & Kopittke, P. M. (2007). Evaluation of extractants for estimation of the phytoavailable trace metals in soils. Environmental Pollution, 145(1), 121-130. https://doi.org/10.1016/j.envpol.2006.03.021Mohammadian, E., Babai Ahari, A., Arzanlou, M., Oustan, S., & Khazaei, S. H. (2017). Tolerance to heavy metals in filamentous fungi isolated from contaminated mining soils in the Zanjan Province, Iran. Chemosphere, 185, 290-296. https://doi.org/10.1016/j.chemosphere.2017.07.022Mohammadian Fazli, M., Soleimani, N., Mehrasbi, M., Darabian, S., Mohammadi, J., & Ramazani, A. (2015). Highly cadmium tolerant fungi: Their tolerance and removal potential. Journal of Environmental Health Science and Engineering, 13(1), 19. https://doi.org/10.1186/s40201-015-0176-0Nearing, J. T., Douglas, G. M., Hayes, M. G., MacDonald, J., Desai, D. K., Allward, N., Jones, C. M. A., Wright, R. J., Dhanani, A. S., Comeau, A. M., & Langille, M. G. I. (2022). Microbiome differential abundance methods produce different results across 38 datasets. Nature Communications, 13(1), 342. https://doi.org/10.1038/s41467-022-28034-zNgu, M., Moya, E., & Magan, N. (1998). Tolerance and uptake of cadmium, arsenic and lead by Fusarium pathogens of cereals. International Biodeterioration & Biodegradation, 42(1), 55-62. https://doi.org/10.1016/S0964-8305(98)00047-XNicaise, V., Chereau, S., Pinson-Gadais, L., Verdal-Bonnin, M.-N., Ducos, C., Jimenez, M., Coriou, C., Bussière, S., Robert, T., Nguyen, C., Richard-Forget, F., & Cornu, J.-Y. (2022). Interaction between the accumulation of cadmium and deoxynivalenol mycotoxin produced by fusarium graminearum in durum wheat grains. Journal of Agricultural and Food Chemistry, 70(26), 8085-8096. https://doi.org/10.1021/acs.jafc.2c01673Nilsson, R. H., Anslan, S., Bahram, M., Wurzbacher, C., Baldrian, P., & Tedersoo, L. (2019). Mycobiome diversity: High-throughput sequencing and identification of fungi. Nature Reviews Microbiology, 17(2), 95-109. https://doi.org/10.1038/s41579-018-0116-yNilsson, R. H., Larsson, K.-H., Taylor, A. F. S., Bengtsson-Palme, J., Jeppesen, T. S., Schigel, D., Kennedy, P., Picard, K., Glöckner, F. O., Tedersoo, L., Saar, I., Kõljalg, U., & Abarenkov, K. (2019). The UNITE database for molecular identification of fungi: Handling dark taxa and parallel taxonomic classifications. Nucleic Acids Research, 47(D1), D259-D264. https://doi.org/10.1093/nar/gky1022Nyika, J. M. (2021). Tolerance of microorganisms to heavy metals: En S. Dey & B. Acharya (Eds.), Advances in Environmental Engineering and Green Technologies (pp. 19-35). IGI Global. https://doi.org/10.4018/978-1-7998-4888-2.ch002Passarini, M. R. Z., Ottoni, J. R., Costa, P. E. dos S., Hissa, D. C., Falcão, R. M., Melo, V. M. M., Balbino, V. Q., Mendonça, L. A. R., Lima, M. G. de S., Coutinho, H. D. M., & Verde, L. C. L. (2022). Fungal community diversity of heavy metal contaminated soils revealed by metagenomics. Archives of Microbiology, 204(5), 255. https://doi.org/10.1007/s00203-022-02860-7Phukhamsakda, C., Nilsson, R. H., Bhunjun, C. S., de Farias, A. R. G., Sun, Y.-R., Wijesinghe, S. N., Raza, M., Bao, D.-F., Lu, L., Tibpromma, S., Dong, W., Tennakoon, D. S., Tian, X.-G., Xiong, Y.-R., Karunarathna, S. C., Cai, L., Luo, Z.-L., Wang, Y., Manawasinghe, I. S., … Hyde, K. D. (2022). The numbers of fungi: Contributions from traditional taxonomic studies and challenges of metabarcoding. Fungal Diversity, 114(1), 327-386. https://doi.org/10.1007/s13225-022-00502-3Lehmann, A., Zheng, W., Ryo, M., Soutschek, K., Roy, J., Rongstock, R., Maaß, S., & Rillig, M. C. (2020). Fungal traits important for soil aggregation. Frontiers in Microbiology, 10, 2904. https://doi.org/10.3389/fmicb.2019.02904Li, F., Jin, Z., Wang, Z., Liao, Y., Yu, L., & Li, X. (2022). Host plant selection imprints structure and assembly of fungal community along the soil-root continuum. MSystems, 7(4), e00361-22. https://doi.org/10.1128/msystems.00361-22Li, B., Xu, R., Sun, X., Han, F., Xiao, E., Chen, L., Qiu, L., & Sun, W. (2021). Microbiome–environment interactions in antimony-contaminated rice paddies and the correlation of core microbiome with arsenic and antimony contamination. Chemosphere, 263, 128227. https://doi.org/10.1016/j.chemosphere.2020.128227Li, Y., Li, Z., Arafat, Y., & Lin, W. (2020). Studies on fungal communities and functional guilds shift in tea continuous cropping soils by high-throughput sequencing. Annals of Microbiology, 70(1), 7. https://doi.org/10.1186/s13213-020-01555-yLin, Y., Xiao, W., Ye, Y., Wu, C., Hu, Y., & Shi, H. (2020). Adaptation of soil fungi to heavy metal contamination in paddy fields—A case study in eastern China. Environmental Science and Pollution Research, 27(22), 27819-27830. https://doi.org/10.1007/s11356-020-09049-9Lladó, S., López-Mondéjar, R., & Baldrian, P. (2018). Drivers of microbial community structure in forest soils. Applied Microbiology and Biotechnology, 102(10), 4331-4338. https://doi.org/10.1007/s00253-018-8950-4Lorena, B.-B., Javiera, O., & Jean Franco, C. (2021). Facultative fungal endophytes and their potential for the development of sustainable agriculture. En Microbial Management of Plant Stresses (pp. 1-12). Elsevier. https://doi.org/10.1016/B978-0-323-85193-0.00014-0Ma, A., Zhuang, X., Wu, J., Cui, M., Lv, D., Liu, C., & Zhuang, G. (2013). Ascomycota members dominate fungal communities during straw residue decomposition in arable soil. PLoS ONE, 8(6), e66146. https://doi.org/10.1371/journal.pone.0066146Malik, A. A., Chowdhury, S., Schlager, V., Oliver, A., Puissant, J., Vazquez, P. G. M., Jehmlich, N., von Bergen, M., Griffiths, R. I., & Gleixner, G. (2016). Soil fungal:bacterial ratios are linked to altered carbon cycling. Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.01247Memić, M., Vrtačnik, M., Boh, B., Pohleven, F., & Mahmutović, O. (2020). Biodegradation of pahs by ligninolytic fungi hypoxylon fragiforme and coniophora puteana. Polycyclic Aromatic Compounds, 40(2), 206-213. https://doi.org/10.1080/10406638.2017.1392326Mantzoukas, S., Lagogiannis, I., Mpousia, D., Ntoukas, A., Karmakolia, K., Eliopoulos, P. A., & Poulas, K. (2021). Beauveria bassiana endophytic strain as plant growth promoter: The case of the grape vine vitis vinifera. Journal of Fungi, 7(2), 142. https://doi.org/10.3390/jof7020142Matchado, M. S., Lauber, M., Reitmeier, S., Kacprowski, T., Baumbach, J., Haller, D., & List, M. (2021). Network analysis methods for studying microbial communities: A mini review. Computational and Structural Biotechnology Journal, 19, 2687-2698. https://doi.org/10.1016/j.csbj.2021.05.001Mhete, M., Eze, P. N., Rahube, T. O., & Akinyemi, F. O. (2020). Soil properties influence bacterial abundance and diversity under different land-use regimes in semi-arid environments. Scientific African, 7, e00246. https://doi.org/10.1016/j.sciaf.2019.e00246Moreira-Morrillo, A. A., Cedeño-Moreira, Á. V., Canchignia-Martínez, F., & Garcés-Fiallos, F. R. (2021). Lasiodiplodiatheobromae(Pat.) Griffon & Maubl [(Syn.) Botryodiplodia theobromae Pat] in the cocoa crop: Symptoms, biological cycle,and strategies management. Scientia Agropecuaria, 12(4), 653-662. https://doi.org/10.17268/sci.agropecu.2021.068Muneer, M. A., Huang, X., Hou, W., Zhang, Y., Cai, Y., Munir, M. Z., Wu, L., & Zheng, C. (2021). Response of fungal diversity, community composition, and functions to nutrients management in red soil. Journal of Fungi, 7(7), 554. https://doi.org/10.3390/jof7070554Naveed, M., Herath, L., Moldrup, P., Arthur, E., Nicolaisen, M., Norgaard, T., Ferré, T. P. A., & de Jonge, L. W. (2016). Spatial variability of microbial richness and diversity and relationships with soil organic carbon, texture and structure across an agricultural field. Applied Soil Ecology, 103, 44-55. https://doi.org/10.1016/j.apsoil.2016.03.004Naylor, D., McClure, R., & Jansson, J. (2022). Trends in microbial community composition and function by soil depth. Microorganisms, 10(3), 540. https://doi.org/10.3390/microorganisms10030540Nicolitch, O., Feucherolles, M., Churin, J.-L., Fauchery, L., Turpault, M.-P., & Uroz, S. (2019). A microcosm approach highlights the response of soil mineral weathering bacterial communities to an increase of K and Mg availability. Scientific Reports, 9(1), 14403. https://doi.org/10.1038/s41598-019-50730-yNishiyama, M., Sugita, R., Otsuka, S., & Senoo, K. (2012). Community structure of bacteria on different types of mineral particles in a sandy soil. Soil Science and Plant Nutrition, 58(5), 562-567. https://doi.org/10.1080/00380768.2012.729226Nongmaithem, N., Roy, A., & Bhattacharya, P. M. (2016). Screening of Trichoderma isolates for their potential of biosorption of nickel and cadmium. Brazilian Journal of Microbiology, 47(2), 305-313. https://doi.org/10.1016/j.bjm.2016.01.008Obayomi, O., Seyoum, M. M., Ghazaryan, L., Tebbe, C. C., Murase, J., Bernstein, N., & Gillor, O. (2021). Soil texture and properties rather than irrigation water type shape the diversity and composition of soil microbial communities. Applied Soil Ecology, 161, 103834. https://doi.org/10.1016/j.apsoil.2020.103834Oueriaghli, N., Castro, D. J., Llamas, I., Béjar, V., & Martínez-Checa, F. (2018). Study of bacterial community composition and correlation of environmental variables in rambla salada, a hypersaline environment in south-eastern spain. Frontiers in Microbiology, 9, 1377. https://doi.org/10.3389/fmicb.2018.01377Pečiulytė, D., & Dirginčiutė-Volodkienė, V. (2012). Effect of zinc and copper on cultivable populations of soil fungi with special reference to entomopathogenic fungi. Ekologija, 58(2). https://doi.org/10.6001/ekologija.v58i2.2524Poll, C., Brune, T., Begerow, D., & Kandeler, E. (2010). Small-scale diversity and succession of fungi in the detritusphere of rye residues. Microbial Ecology, 59(1), 130-140. https://doi.org/10.1007/s00248-009-9541-9Proulx, S., Promislow, D., & Phillips, P. (2005). Network thinking in ecology and evolution. Trends in Ecology & Evolution, 20(6), 345-353. https://doi.org/10.1016/j.tree.2005.04.004Li, H., Dong, X., da Silva, E. B., de Oliveira, L. M., Chen, Y., & Ma, L. Q. (2017). Mechanisms of metal sorption by biochars: Biochar characteristics and modifications. Chemosphere, 178, 466-478. https://doi.org/10.1016/j.chemosphere.2017.03.072Liang, G., Gong, W., Li, B., Zuo, J., Pan, L., & Liu, X. (2019). Analysis of heavy metals in foodstuffs and an assessment of the health risks to the general public via consumption in beijing, china. International Journal of Environmental Research and Public Health, 16(6), 909. https://doi.org/10.3390/ijerph16060909Liao, M., Luo, Y., Zhao, X., & Huang, C. (2005). Toxicity of cadmium to soil microbial biomass and its activity: Effect of incubation time on Cd ecological dose in a paddy soil. Journal of Zhejiang University-SCIENCE B, 6(5), 324-330. https://doi.org/10.1631/jzus.2005.B0324Lin, Y.-F., & Aarts, M. G. M. (2012). The molecular mechanism of zinc and cadmium stress response in plants. Cellular and Molecular Life Sciences, 69(19), 3187-3206. https://doi.org/10.1007/s00018-012-1089-zLuo, J.-S., & Zhang, Z. (2021). Mechanisms of cadmium phytoremediation and detoxification in plants. The Crop Journal, 9(3), 521-529. https://doi.org/10.1016/j.cj.2021.02.001Luo, J., Xiao, X., & Luo, sheng-lian. (2010). Biosorption of cadmium(Ii) from aqueous solutions by industrial fungus Rhizopus cohnii. Transactions of Nonferrous Metals Society of China, 20(6), 1104-1111. https://doi.org/10.1016/S1003-6326(09)60264-8Lux, A., Martinka, M., Vaculik, M., & White, P. J. (2011). Root responses to cadmium in the rhizosphere: A review. Journal of Experimental Botany, 62(1), 21-37. https://doi.org/10.1093/jxb/erq281Malik, A. (2004). Metal bioremediation through growing cells. Environment International, 30(2), 261-278. https://doi.org/10.1016/j.envint.2003.08.001Manguilimotan, L. C., & Bitacura, J. G. (2018). Biosorption of cadmium by filamentous fungi isolated from coastal water and sediments. Journal of Toxicology, 2018, 1-6. https://doi.org/10.1155/2018/7170510Manzotti, A., Bergna, A., Burow, M., Jørgensen, H. J. L., Cernava, T., Berg, G., Collinge, D. B., & Jensen, B. (2020). Insights into the community structure and lifestyle of the fungal root endophytes of tomato by combining amplicon sequencing and isolation approaches with phytohormone profiling. FEMS Microbiology Ecology, 96(5), fiaa052. https://doi.org/10.1093/femsec/fiaa052Marchetti, C. (2013). Role of calcium channels in heavy metal toxicity. ISRN Toxicology, 2013, 1-9. https://doi.org/10.1155/2013/184360Mathivanan, K., Chandirika, J. U., Vinothkanna, A., Yin, H., Liu, X., & Meng, D. (2021). Bacterial adaptive strategies to cope with metal toxicity in the contaminated environment – A review. Ecotoxicology and Environmental Safety, 226, 112863. https://doi.org/10.1016/j.ecoenv.2021.112863Mengistu, D. A. (2021). Public health implications of heavy metals in foods and drinking water in Ethiopia (2016 to 2020): Systematic review. BMC Public Health, 21(1), 2114. https://doi.org/10.1186/s12889-021-12189-3Meter, A., Atkinson, R. J., & Laliberte, B. (2019). Cadmium in cacao from latin america and the caribbean. A review of research and potential mitigation solutions. CAF. https://cafscioteca.azurewebsites.net/handle/123456789/1506Muszyńska, E., & Hanus-Fajerska, E. (2015). Why are heavy metal hyperaccumulating plants so amazing? BioTechnologia, 4, 265-271. https://doi.org/10.5114/bta.2015.57730Nagy, Z., Montigny, C., Leverrier, P., Yeh, S., Goffeau, A., Garrigos, M., & Falson, P. (2006). Role of the yeast ABC transporter Yor1p in cadmium detoxification. Biochimie, 88(11), 1665-1671. https://doi.org/10.1016/j.biochi.2006.05.014Osmolovskaya, N. G., Dung, V. V., Kudryashova, Z. K., Kuchaeva, L. N., & Popova, N. F. (2018). Effect of cadmium on distribution of potassium, calcium, magnesium, and oxalate accumulation in amaranthus cruentus l. Plants. Russian Journal of Plant Physiology, 65(4), 553-562. https://doi.org/10.1134/S1021443718040076Ott, T., Fritz, E., Polle, A., & Schützendübel, A. (2002). Characterisation of antioxidative systems in the ectomycorrhiza-building basidiomycete Paxillus involutus (Bartsch) Fr. And its reaction to cadmium. FEMS Microbiology Ecology, 42(3), 359-366. https://doi.org/10.1111/j.1574-6941.2002.tb01025.xPage, V., & Feller, U. (2015). Heavy metals in crop plants: Transport and redistribution processes on the whole plant level. Agronomy, 5(3), 447-463. https://doi.org/10.3390/agronomy5030447Pambuka, G. T., Kinge, T. R., Ghosh, S., Cason, E. D., Nyaga, M. M., & Gryzenhout, M. (2022). Plant and soil core mycobiomes in a two-year sorghum–legume intercropping system of underutilized crops in south africa. Microorganisms, 10(10), 2079. https://doi.org/10.3390/microorganisms10102079Pereira de Araújo, R., Furtado de Almeida, A.-A., Silva Pereira, L., Mangabeira, P. A. O., Olimpio Souza, J., Pirovani, C. P., Ahnert, D., & Baligar, V. C. (2017). Photosynthetic, antioxidative, molecular and ultrastructural responses of young cacao plants to Cd toxicity in the soil. Ecotoxicology and Environmental Safety, 144, 148-157. https://doi.org/10.1016/j.ecoenv.2017.06.006Peršoh, D. (2015). Plant-associated fungal communities in the light of meta’omics. Fungal Diversity, 75(1), 1-25. https://doi.org/10.1007/s13225-015-0334-9Praveen, R., & Nagalakshmi, R. (2022). Review on bioremediation and phytoremediation techniques of heavy metals in contaminated soil from dump site. Materials Today: Proceedings, 68, 1562-1567. https://doi.org/10.1016/j.matpr.2022.07.190Prifti, E., & Zucker, J.-D. (2015). The new science of metagenomics and the challenges of its use in both developed and developing countries. En S. Morand, J.-P. Dujardin, R. Lefait-Robin, & C. Apiwathnasorn (Eds.), Socio-Ecological Dimensions of Infectious Diseases in Southeast Asia (pp. 191-216). Springer Singapore. https://doi.org/10.1007/978-981-287-527-3_12Priyadarshini, E., Priyadarshini, S. S., Cousins, B. G., & Pradhan, N. (2021). Metal-Fungus interaction: Review on cellular processes underlying heavy metal detoxification and synthesis of metal nanoparticles. Chemosphere, 274, 129976. https://doi.org/10.1016/j.chemosphere.2021.129976Qadir, S., Jamshieed, S., Rasool, S., Ashraf, M., Akram, N. A., & Ahmad, P. (2014). Modulation of plant growth and metabolism in cadmium-enriched environments. En D. M. Whitacre (Ed.), Reviews of Environmental Contamination and Toxicology (Vol. 229, pp. 51-88). Springer International Publishing. https://doi.org/10.1007/978-3-319-03777-6_4Rodríguez Eugenio, N., McLaughlin, M. J., & Pennock, D. J. (2018). Soil pollution: A hidden reality. Food and Agriculture Organization of the United Nations.Caracterización estructural y predicción funcional de la comunidad microbiana presente en suelos con diferentes niveles de cadmio en fincas cacaoteras del Municipio de Yacopí-CundinamarcaUniversidad Nacional de ColombiaEstudiantesInvestigadoresMaestrosPúblico generalORIGINAL1032466943.2023.pdf1032466943.2023.pdfTesis de Maestría en Ciencias Agrariasapplication/pdf5431005https://repositorio.unal.edu.co/bitstream/unal/84379/2/1032466943.2023.pdf1caac842ce17f4034dba4b059b67e25dMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84379/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53THUMBNAIL1032466943.2023.pdf.jpg1032466943.2023.pdf.jpgGenerated Thumbnailimage/jpeg5090https://repositorio.unal.edu.co/bitstream/unal/84379/4/1032466943.2023.pdf.jpg715d375a27d1d89de9748a06f3689dc0MD54unal/84379oai:repositorio.unal.edu.co:unal/843792023-08-12 23:04:08.018Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=