S-Coherent measures pairs and Orthogonal polynomials with respect to Sobolev products. Applications

In this dissertation, the concept of s-coherence, or symmetric $(1,1)$-coherence, of pairs of quasi-definite linear functionals, and the polynomials orthogonal with respect to certain Sobolev inner product type play a preponderant role. The concept of symmetric $(1,1)-$ coherent pair is defined as f...

Full description

Autores:
Molano Molano, Luis Alejandro
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2019
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/76687
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/76687
http://bdigital.unal.edu.co/73359/
Palabra clave:
Orthogonal Polynomials
Symmetric (1,1)-coherent pairs
Sobolev Orthogonal Polynomials
Polinomios Ortogonales
Pares Simétricos (1,1)-coherentes
Polinomios Ortogonales de Sobolev
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_63ef93a4502d89dcbf7965e508096308
oai_identifier_str oai:repositorio.unal.edu.co:unal/76687
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv S-Coherent measures pairs and Orthogonal polynomials with respect to Sobolev products. Applications
title S-Coherent measures pairs and Orthogonal polynomials with respect to Sobolev products. Applications
spellingShingle S-Coherent measures pairs and Orthogonal polynomials with respect to Sobolev products. Applications
Orthogonal Polynomials
Symmetric (1,1)-coherent pairs
Sobolev Orthogonal Polynomials
Polinomios Ortogonales
Pares Simétricos (1,1)-coherentes
Polinomios Ortogonales de Sobolev
title_short S-Coherent measures pairs and Orthogonal polynomials with respect to Sobolev products. Applications
title_full S-Coherent measures pairs and Orthogonal polynomials with respect to Sobolev products. Applications
title_fullStr S-Coherent measures pairs and Orthogonal polynomials with respect to Sobolev products. Applications
title_full_unstemmed S-Coherent measures pairs and Orthogonal polynomials with respect to Sobolev products. Applications
title_sort S-Coherent measures pairs and Orthogonal polynomials with respect to Sobolev products. Applications
dc.creator.fl_str_mv Molano Molano, Luis Alejandro
dc.contributor.author.spa.fl_str_mv Molano Molano, Luis Alejandro
dc.contributor.spa.fl_str_mv Marcellán Español, Francisco José
Dueñas Ruiz, Herbert Alonso
dc.subject.proposal.spa.fl_str_mv Orthogonal Polynomials
Symmetric (1,1)-coherent pairs
Sobolev Orthogonal Polynomials
Polinomios Ortogonales
Pares Simétricos (1,1)-coherentes
Polinomios Ortogonales de Sobolev
topic Orthogonal Polynomials
Symmetric (1,1)-coherent pairs
Sobolev Orthogonal Polynomials
Polinomios Ortogonales
Pares Simétricos (1,1)-coherentes
Polinomios Ortogonales de Sobolev
description In this dissertation, the concept of s-coherence, or symmetric $(1,1)$-coherence, of pairs of quasi-definite linear functionals, and the polynomials orthogonal with respect to certain Sobolev inner product type play a preponderant role. The concept of symmetric $(1,1)-$ coherent pair is defined as follows. Let $u$ and $v$ denote two symmetric quasi-definite linear functionals and $ \left\{ P_{n}\right\} _{n\geq 0}$ and $\left\{ R_{n}\right\} _{n\geq 0}$ will denote their respective sequences of monic orthogonal polynomials, (SMOP in short). Suppose that there exist sequences of non-zero real numbers $\left\{ a_{n}\right\} _{n\geq 0}$ and $\left\{b_{n}\right\} _{n\geq 0},$ with $a_{n}b_{n}\neq 0,$ such that \begin{equation} \frac{P_{n+3}^{\prime }(x)}{n+3}+a_{n}\frac{P_{n+1}^{\prime }(x)}{n+1}=R_{n+2}(x)+b_{n}R_{n}(x),\text{ \ \ }n\geq 0, \label{simm} \end{equation} holds. Then the pair $\left\{ u,v\right\} $ is said to be a \textit{ Symmetric }$(1,1)-$\textit{Coherent Pair}. This concept is a natural extension of the concept of symmetric coherent pairs of quasi-definite linear functionals. The structure of this work is as follows. First, a classification of symmetric $(1,1)-$coherent pairs is stated by using a symmetrization process. In addition, we study how from (\ref{simm}), and using the symmetrization process, we can arrive to a non-coherence algebraic relation. Then, the corresponding inverse problem is analyzed exhaustively. After this, we consider the Sobolev inner product \begin{equation} \left\langle p,q\right\rangle _{S}=\int_{ \mathbb{R} }p(x)q(x)d\mu _{0}(x)+\lambda \int_{ \mathbb{R} }p^{\prime }(x)q^{\prime }(x)d\mu _{1}(x),\text{ \ }\lambda 0, \label{innersobolev44} \end{equation} where we assume that $u$ and $v$ are positive-definite, with $\mu _{0}$ and $\mu _{1}$ as the respective positive Borel measures and $\left\{ S_{n}^{\lambda }\right\} _{n\geq 0}$ as the Sobolev orthogonal polynomials associated with (\ref{innersobolev44}). So, the algebraic relation \begin{equation} S_{n+3}^{\lambda }(x)+\eta _{n}(\lambda )S_{n+1}^{\lambda }(x)=P_{n+3}(x)+% \widetilde{a}_{n}P_{n+1}(x), \end{equation} is considered, where special attention is placed on the so called \textit{Sobolev coefficients} $\left\{ \eta _{n}(\lambda ) \right\} _{n\geq 0}$. Then, their recurrence properties as well as those of the corresponding Sobolev norms $\left\{ \left\Vert S_{n}^{\lambda }\right\Vert _{S}^{2}\right\} _{n\geq 0}$ are studied. On the other hand, the particular symmetric $(1,1)-$coherent pair $\left\{ \mu _{0},\mu _{1}\right\} ,$ $d\mu _{0}=e^{-x^{2}}dx,$ $d\mu _{1}=\frac{x^{2}+a}{x^{2}+b}e^{-x^{2}}dx,$ is taken into account. In this way, limit behavior of Soboleb coefficients and the asymptotic properties of Sobolev polynomials are deeply studied. Finally, we exhibit an algorithm to compute Fourier coefficients in expansions of functions that belong to the Sobolev space $W_{2}^{1}\left[ \mathbb{R} ,\mu _{0},\mu _{1}\right] $ by using Sobolev polynomials.
publishDate 2019
dc.date.issued.spa.fl_str_mv 2019-08-25
dc.date.accessioned.spa.fl_str_mv 2020-03-30T06:26:12Z
dc.date.available.spa.fl_str_mv 2020-03-30T06:26:12Z
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/76687
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/73359/
url https://repositorio.unal.edu.co/handle/unal/76687
http://bdigital.unal.edu.co/73359/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Sede Bogotá Facultad de Ciencias Departamento de Matemáticas
Departamento de Matemáticas
dc.relation.haspart.spa.fl_str_mv 5 Ciencias naturales y matemáticas / Science
51 Matemáticas / Mathematics
dc.relation.references.spa.fl_str_mv Molano Molano, Luis Alejandro (2019) S-Coherent measures pairs and Orthogonal polynomials with respect to Sobolev products. Applications. Doctorado thesis, Universidad Nacional de Colombia - Sede Bogotá.
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/76687/1/1056928185.2019.pdf
https://repositorio.unal.edu.co/bitstream/unal/76687/2/1056928185.2019.pdf.jpg
bitstream.checksum.fl_str_mv 56a7d760454f962653024305663ffb29
c80b5bd2b163f8492f756e499bf24169
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1806886416383213568
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Marcellán Español, Francisco JoséDueñas Ruiz, Herbert AlonsoMolano Molano, Luis Alejandrof2db4bf0-2a70-4be2-a207-492ea8a10cee3002020-03-30T06:26:12Z2020-03-30T06:26:12Z2019-08-25https://repositorio.unal.edu.co/handle/unal/76687http://bdigital.unal.edu.co/73359/In this dissertation, the concept of s-coherence, or symmetric $(1,1)$-coherence, of pairs of quasi-definite linear functionals, and the polynomials orthogonal with respect to certain Sobolev inner product type play a preponderant role. The concept of symmetric $(1,1)-$ coherent pair is defined as follows. Let $u$ and $v$ denote two symmetric quasi-definite linear functionals and $ \left\{ P_{n}\right\} _{n\geq 0}$ and $\left\{ R_{n}\right\} _{n\geq 0}$ will denote their respective sequences of monic orthogonal polynomials, (SMOP in short). Suppose that there exist sequences of non-zero real numbers $\left\{ a_{n}\right\} _{n\geq 0}$ and $\left\{b_{n}\right\} _{n\geq 0},$ with $a_{n}b_{n}\neq 0,$ such that \begin{equation} \frac{P_{n+3}^{\prime }(x)}{n+3}+a_{n}\frac{P_{n+1}^{\prime }(x)}{n+1}=R_{n+2}(x)+b_{n}R_{n}(x),\text{ \ \ }n\geq 0, \label{simm} \end{equation} holds. Then the pair $\left\{ u,v\right\} $ is said to be a \textit{ Symmetric }$(1,1)-$\textit{Coherent Pair}. This concept is a natural extension of the concept of symmetric coherent pairs of quasi-definite linear functionals. The structure of this work is as follows. First, a classification of symmetric $(1,1)-$coherent pairs is stated by using a symmetrization process. In addition, we study how from (\ref{simm}), and using the symmetrization process, we can arrive to a non-coherence algebraic relation. Then, the corresponding inverse problem is analyzed exhaustively. After this, we consider the Sobolev inner product \begin{equation} \left\langle p,q\right\rangle _{S}=\int_{ \mathbb{R} }p(x)q(x)d\mu _{0}(x)+\lambda \int_{ \mathbb{R} }p^{\prime }(x)q^{\prime }(x)d\mu _{1}(x),\text{ \ }\lambda 0, \label{innersobolev44} \end{equation} where we assume that $u$ and $v$ are positive-definite, with $\mu _{0}$ and $\mu _{1}$ as the respective positive Borel measures and $\left\{ S_{n}^{\lambda }\right\} _{n\geq 0}$ as the Sobolev orthogonal polynomials associated with (\ref{innersobolev44}). So, the algebraic relation \begin{equation} S_{n+3}^{\lambda }(x)+\eta _{n}(\lambda )S_{n+1}^{\lambda }(x)=P_{n+3}(x)+% \widetilde{a}_{n}P_{n+1}(x), \end{equation} is considered, where special attention is placed on the so called \textit{Sobolev coefficients} $\left\{ \eta _{n}(\lambda ) \right\} _{n\geq 0}$. Then, their recurrence properties as well as those of the corresponding Sobolev norms $\left\{ \left\Vert S_{n}^{\lambda }\right\Vert _{S}^{2}\right\} _{n\geq 0}$ are studied. On the other hand, the particular symmetric $(1,1)-$coherent pair $\left\{ \mu _{0},\mu _{1}\right\} ,$ $d\mu _{0}=e^{-x^{2}}dx,$ $d\mu _{1}=\frac{x^{2}+a}{x^{2}+b}e^{-x^{2}}dx,$ is taken into account. In this way, limit behavior of Soboleb coefficients and the asymptotic properties of Sobolev polynomials are deeply studied. Finally, we exhibit an algorithm to compute Fourier coefficients in expansions of functions that belong to the Sobolev space $W_{2}^{1}\left[ \mathbb{R} ,\mu _{0},\mu _{1}\right] $ by using Sobolev polynomials.En esta disertación, el concepto de s−coherencia, o (1, 1)−coherencia simétrica, de pares de funcionales lineales regulares y los polinomios ortogonales con respecto a cierto producto interno de tipo Sobolev, juegan un papel preponderante. El concepto de par simétrico (1, 1)− coherente es definido de la siguiente forma. Sean u y v dos funcionales lineales, simétricos y regulares, donde {Pn}n≥0 y {Rn}n≥0 representan sus respectivas sucesiones de polinomios ortogonales mónicos, (para ser breves escribiremos SPOM). Supongamos que existen sucesiones no nulas de números reales {an}n≥0 y {bn}n≥0 , with anbn 6= 0, tales que P 0 n+3(x) n + 3 + an P 0 n+1(x) n + 1 = Rn+2(x) + bnRn(x), n ≥ 0, es satisfecha. Entonces el par {u, v} se denomina par sim´etrico (1, 1)−Coherente. Este concepto es introducido en [34] como una extensión natural del concepto de par simétrico coherente estudiado en [55]. La estructura de este trabajo es la siguiente. Primero, una clasificación de pares simétricos (1, 1)−coherentes es establecida usando cierto proceso de simetrización. Adicionalmente estudiamos cómo de (1), y usando el proceso de simetrizaci´on, podemos llegar a una interesante relación algebraica no coherente. El problema inverso asociado a esta relación es analizado exhaustivamente. Luego, consideramos el producto interno de tipo Sobolev hp, qiS = Z R p(x)q(x)dµ0(x) + λ Z R p 0 (x)q 0 (x)dµ1(x), λ 0, donde asumimos que u y v son definidos positivos con µ0 y µ1 como las respectivas medidas de Borel y S λ n n≥0 como la SPOM asociada con (2). Entonces la relación algebraica S λ n+3(x) + ηn(λ)S λ n+1(x) = Pn+3(x) + eanPn+1(x), es considerada, donde especial atención es puesta en los llamados coeficientes de Sobolev {ηn(λ)}n≥0 . Entonces, sus propiedades de recurrencia como las de las respectivas normas de Sobolev n S λ n 2 S o n≥0 son estudiadas. De otro lado, el caso particular del par simétrico (1, 1)−coherente {µ0, µ1} , dµ0 = e −x 2 dx, dµ1 = x 2+a x2+b e −x 2 dx, es tenido en cuenta. Así, el comportamiento límite de los coeficientes de Sobolev y propiedades asintóticas de los polinomios de Sobolev son estudiados exhaustivamente. Finalmente exhibimos un algoritmo para calcular los coeficientes de Fourier en expansiones de funciones en el espacio de Sobolev W1 2 [R, µ0, µ1] a través de polinomios de Sobolev. Para este fin seguimos las ideas planteadas en [55].Doctoradoapplication/pdfspaUniversidad Nacional de Colombia Sede Bogotá Facultad de Ciencias Departamento de MatemáticasDepartamento de Matemáticas5 Ciencias naturales y matemáticas / Science51 Matemáticas / MathematicsMolano Molano, Luis Alejandro (2019) S-Coherent measures pairs and Orthogonal polynomials with respect to Sobolev products. Applications. Doctorado thesis, Universidad Nacional de Colombia - Sede Bogotá.S-Coherent measures pairs and Orthogonal polynomials with respect to Sobolev products. ApplicationsTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDOrthogonal PolynomialsSymmetric (1,1)-coherent pairsSobolev Orthogonal PolynomialsPolinomios OrtogonalesPares Simétricos (1,1)-coherentesPolinomios Ortogonales de SobolevORIGINAL1056928185.2019.pdfapplication/pdf1154452https://repositorio.unal.edu.co/bitstream/unal/76687/1/1056928185.2019.pdf56a7d760454f962653024305663ffb29MD51THUMBNAIL1056928185.2019.pdf.jpg1056928185.2019.pdf.jpgGenerated Thumbnailimage/jpeg4777https://repositorio.unal.edu.co/bitstream/unal/76687/2/1056928185.2019.pdf.jpgc80b5bd2b163f8492f756e499bf24169MD52unal/76687oai:repositorio.unal.edu.co:unal/766872023-07-15 23:03:47.603Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co