Un modelo de rotación estelar antes de la secuencia principal

ilustraciones, graficas, tablas

Autores:
Vargas Durango, Mauricio Andrés
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/79906
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/79906
https://repositorio.unal.edu.co/
Palabra clave:
520 - Astronomía y ciencias afines
Estrella
Estrellas-rotación
Actividad estelar
Rotación estelar
Acreción
Conexión magnética
Momento angular
Modelo estelar
Evolución estelar
Campo magnético
Stellar rotation
Magnetic field
Accretion
Magnetic connection
Angular momentum
Stellar model
Stellar evolution
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_6316fd1a0517ba6e89cef029a287832e
oai_identifier_str oai:repositorio.unal.edu.co:unal/79906
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Un modelo de rotación estelar antes de la secuencia principal
dc.title.translated.eng.fl_str_mv A model of stelar rotation before main secuence
title Un modelo de rotación estelar antes de la secuencia principal
spellingShingle Un modelo de rotación estelar antes de la secuencia principal
520 - Astronomía y ciencias afines
Estrella
Estrellas-rotación
Actividad estelar
Rotación estelar
Acreción
Conexión magnética
Momento angular
Modelo estelar
Evolución estelar
Campo magnético
Stellar rotation
Magnetic field
Accretion
Magnetic connection
Angular momentum
Stellar model
Stellar evolution
title_short Un modelo de rotación estelar antes de la secuencia principal
title_full Un modelo de rotación estelar antes de la secuencia principal
title_fullStr Un modelo de rotación estelar antes de la secuencia principal
title_full_unstemmed Un modelo de rotación estelar antes de la secuencia principal
title_sort Un modelo de rotación estelar antes de la secuencia principal
dc.creator.fl_str_mv Vargas Durango, Mauricio Andrés
dc.contributor.advisor.none.fl_str_mv Pinzón Estrada, Giovanni
dc.contributor.author.none.fl_str_mv Vargas Durango, Mauricio Andrés
dc.contributor.researchgroup.spa.fl_str_mv Astronomía, Astrofísica y Cosmologia
dc.subject.ddc.spa.fl_str_mv 520 - Astronomía y ciencias afines
topic 520 - Astronomía y ciencias afines
Estrella
Estrellas-rotación
Actividad estelar
Rotación estelar
Acreción
Conexión magnética
Momento angular
Modelo estelar
Evolución estelar
Campo magnético
Stellar rotation
Magnetic field
Accretion
Magnetic connection
Angular momentum
Stellar model
Stellar evolution
dc.subject.lemb.none.fl_str_mv Estrella
Estrellas-rotación
Actividad estelar
dc.subject.proposal.spa.fl_str_mv Rotación estelar
Acreción
Conexión magnética
Momento angular
Modelo estelar
Evolución estelar
Campo magnético
dc.subject.proposal.eng.fl_str_mv Stellar rotation
Magnetic field
Accretion
Magnetic connection
Angular momentum
Stellar model
Stellar evolution
description ilustraciones, graficas, tablas
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-08-09T21:55:16Z
dc.date.available.none.fl_str_mv 2021-08-09T21:55:16Z
dc.date.issued.none.fl_str_mv 2021-03-15
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/79906
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/79906
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv [A. C. Cameron and Quaintrell, 1995] A. C. Cameron, C. G. C. and Quaintrell, H. (1995). Rotational evolution of magnetic t tauri stars with accretion disk. Astronomy & Astrophy- sics, 298:133–142.
[Alecian et al., 2013] Alecian, E., Wade, G. A., Catala, C., Grunhut, J. H., Landstreet, J. D., Bagnulo, S., B¨ohm, T., Folsom, C. P., Marsden, S., and Waite, I. (2013). A high-resolution spectropolarimetric survey of Herbig Ae/Be stars - I. Observations and measurements. Monthly Notices of the Royal Astronomical Society, 429(2):1001–1026.
[Alencar et al., 2003] Alencar, S. H. P., Melo, C. H. F., Dullemond, C. P., Andersen, J., Ba- talha, C., Vaz, L. P. R., and Mathieu, R. D. (2003). The pre-main sequence spectroscopic binary AK Scorpii revisited. Astronomy and Astrophysics Panel Reports, 409:1037–1053.
[Allain, 1998] Allain, S. (1998). Modelling the angular momentum evolution of low-mass stars with core-envelope decoupling. , 333:629–643.
[Allain et al., 1997] Allain, S., Queloz, D., Bouvier, J., Mermilliod, J. C., and Mayor, M. (1997). The braking of slow rotators in ZAMS clusters. Memorie della Societa Astronomica Italiana, 68:899–902.
[Arlt and Ru¨diger, 2011] Arlt, R. and Ru¨diger, G. (2011). Amplification and stability of magnetic fields and dynamo effect in young A stars. Monthly Notices of the Royal Astro- nomical Society, 412(1):107–119.
[Autores, 2010] Autores, V. (1960-2010). Xray. urlhttps://heasarc.gsfc.nasa.gov/cgi- bin/W3Browse/w3browse.pl.
[Autores, 2020] Autores, V. (2020). Estructura y composici´on del sol. urlhttps://www.astromia.com/solar/estrucsol.htm.
[Baraffe et al., 2015] Baraffe, I., Homeier, D., Allard, F., and Chabrier, G. (2015). New evolutionary models for pre-main sequence and main sequence low-mass stars down to the hydrogen-burning limit. Astronomy and Astrophysics Panel Reports, 577:A42.
[Barnes et al., 1996] Barnes, S., Pinsonneault, M., and Sofia, S. (1996). Disk-locking and the slow rotators in young star clusters. In American Astronomical Society Meeting Abstracts #188, volume 188 of American Astronomical Society Meeting Abstracts, page 18.02.
[Basri et al., 1992] Basri, G., Marcy, G. W., and Valenti, J. A. (1992). Limits on the Mag- netic Flux of Pre–Main-Sequence Stars. The Astrophysical Journal, 390:622.
[Bessolaz, 2008] Bessolaz, N.; Ferreira, J. K. R. B. J. Z. C. (2008). Accretion funnels onto weakly magnetized young stars. Astronomy & Astrophysics, 478:155–162.
[Bouvier, 1997] Bouvier, J. (1997). The surface and internal rotation of low-mass stars in young clusters. Memorie della Societa Astronomica Italiana, 68:881–893.
[Bouvier, 2013] Bouvier, J. (2013). Observational studies of stellar rotation. In Hennebelle, P. and Charbonnel, C., editors, EAS Publications Series, volume 62 of EAS Publications Series, pages 143–168.
[Bouvier et al., 1997] Bouvier, J., Forestini, M., and Allain, S. (1997). The angular momen- tum evolution of low-mass stars. Astronomy and Astrophysics Panel Reports, 326:1023– 1043.
[Bubar et al., 2007] Bubar, E. J., King, J. R., Soderblom, D. R., Deliyannis, C. P., and Boesgaard, A. M. (2007). Keck HIRES Spectroscopy of Candidate Post-T Tauri Stars. The Astrophysical Journal, 134(6):2328–2339.
[Calvet et al., 2005] Calvet, N., Bricen˜o, C., Hern´andez, J., Hoyer, S., Hartmann, L., Sicilia- Aguilar, A., Megeath, S. T., and D’Alessio, P. (2005). Disk Evolution in the Orion OB1 Association. The Astrophysical Journal, 129(2):935–946.
[Camenzind, 1990] Camenzind, M. (1990). Magnetized Disk-Winds and the Origin of Bipo- lar Outflows. Reviews in Modern Astronomy, 3:234–265.
[Cameron, 1993] Cameron, A. C. Campbell, C. G. (1993). The spin of accreting stars: dependence on magnetic coupling to the disc. Astronomy & Astrophysics, pages 274, 309.
[Chaboyer et al., 1995a] Chaboyer, B., Demarque, P., and Pinsonneault, M. H. (1995a). Ste- llar Models with Microscopic Diffusion and Rotational Mixing. I. Application to the Sun. The Astrophysical Journal, 441:865.
[Chaboyer et al., 1995b] Chaboyer, B., Demarque, P., and Pinsonneault, M. H. (1995b). Ste- llar Models with Microscopic Diffusion and Rotational Mixing. II. Application to Open Clusters. The Astrophysical Journal, 441:876.
[Chapman and Melotte, 1915] Chapman, S. and Melotte, P. J. (1915). The number of Stars of each Photographic Magnitude down to 17m0, in different Galactic Latitudes. Memoirs of the Royal Astronomical Society, 60:145. [Chavero et al., 2019] Chavero, C., de la Reza, R., Ghezzi, L., Llorente de Andr´es, F., Pe- reira, C. B., Giuppone, C., and Pinz´on, G. (2019). Emerging trends in metallicity and lithium properties of debris disc stars. Monthly Notices of the Royal Astronomical Society, 487(3):3162–3177.
[Chavero et al., 2017] Chavero, C., de la Reza, R., Ghezzi, L., Llorente de Andr´es, F., Pe- reira, C. B., and Pinz´on, G. (2017). Lithium-rotation connection in debris disk stars. In Revista Mexicana de Astronomia y Astrofisica Conference Series, volume 49 of Revista Mexicana de Astronomia y Astrofisica Conference Series, pages 85–85.
[Choi and Herbst, 1996] Choi, P. I. and Herbst, W. (1996). Rotation Periods of Stars in the Orion Nebula Cluster: The Bimodal Distribution. The Astrophysical Journal, 111:283.
[Clarke et al., 1995] Clarke, C. J., Armitage, P. J., Smith, K. W., and Pringle, J. E. (1995). Magnetically modulated accretion in T Tauri stars. Monthly Notices of the Royal Astro- nomical Society, 273(3):639–642.
[Collier Cameron and Campbell, 1993] Collier Cameron, A. and Campbell, C. G. (1993). Rotational evolution of magnetic T Tauri stars with accretion discs. Astronomy and Astrophysics Panel Reports, 274:309.
[Cranmer, 2008] Cranmer, S. R. (2008). The spin of accreting stars: dependence on magnetic coupling to the disc. The Astrophysical Journal, 689:316.
[DJAntona Francesca, 1994] DJAntona Francesca, M. I. (1994). New pre-main-sequence track for m ≥ mBu as testof opacities and convection model. The Astrophysical Journal, 90:467– 500.
[de Bruijne, ] de Bruijne, J. H. J. Structure and colour-magnitude diagrams of scorpius ob2 based on kinematic modelling of hipparcos data.
[De la Reza, 2004] De la Reza, R. Pinz´on, G. (2004). On the rotation of post-t tauri stars in associations. The Astrophysical Journal, 128:1812.
[de Zeeuw et al., 1999] de Zeeuw, P. T., Hoogerwerf, R., de Bruijne, J. H. J., Brown,A. G. A., and Blaauw, A. (1999). A HIPPARCOS Census of the Nearby OB Associa- tions. The Astrophysical Journal, 117(1):354–399.
[Dotter, 2016] Dotter, A. (2016). MESA Isochrones and Stellar Tracks (MIST) 0: Methods for the Construction of Stellar Isochrones. The Astrophysical Journal Supplement Series, 222(1):8.
[Dullemond et al., 2006] Dullemond, C. P., Natta, A., and Testi, L. (2006). Accretion in Protoplanetary Disks: The Imprint of Core Properties. 645(1):L69–L72. [Dyda et al., 2018] Dyda, S., Lovelace, R. V. E., Ustyugova, G. V., Koldoba, A. V., and Wasserman, I. (2018). Magnetic field amplification via protostellar disc dynamos. Monthly Notices of the Royal Astronomical Society, 477(1):127–138.
[Eddington, 1910] Eddington, A. S. (1910). Note on a Moving Cluster of Stars of the Orion type in Perseus. Monthly Notices of the Royal Astronomical Society, 71:43.
[Endal and Sofia, 1978] Endal, A. S. and Sofia, S. (1978). The evolution of rotating stars. II. Calculations with time-dependent redistribution of angular momentum for 7 and 10 M sun stars. The Astrophysical Journal, 220:279–290.
[F. Spada and Cameron, 2011] F. Spada, A. C. Lanzafame, A. F. L. S. M. and Cameron, A. C. (2011). Modelling the rotational evolution of solar-like stars: the rotational coupling timescale. Monthly Notices of the Royal Astronomical Society, 416:1ˆa€“11.
[Folsom et al., 2018] Folsom, C. P., Bouvier, J., Petit, P., L`ebre, A., Amard, L., Palacios, A., Morin, J., Donati, J. F., and Vidotto, A. A. (2018). The evolution of surface magnetic fields in young solar-type stars II: the early main sequence (250-650 Myr). Monthly Notices of the Royal Astronomical Society, 474(4):4956–4987.
[Folsom et al., 2016] Folsom, C. P., Petit, P., Bouvier, J., L`ebre, A., Amard, L., Palacios, A., Morin, J., Donati, J. F., Jeffers, S. V., Marsden, S. C., and Vidotto, A. A. (2016). The evolution of surface magnetic fields in young solar-type stars - I. The first 250 Myr. Monthly Notices of the Royal Astronomical Society, 457(1):580–607.
[Gallet and Bouvier, 2013] Gallet, F. and Bouvier, J. (2013). Improved angular momentum evolution model for solar-like stars. Astronomy and Astrophysics Panel Reports, 556:A36.
[Gallet and Bouvier, 2015] Gallet, F. and Bouvier, J. (2015). Improved angular momentum evolution model for solar-like stars. II. Exploring the mass dependence. Astronomy and Astrophysics Panel Reports, 577:A98.
[Ghosh and Lamb, 1978] Ghosh, P. and Lamb, F. K. (1978). Spin Evolution of Pulsating X-Ray Sources. In Bulletin of the American Astronomical Society, volume 10, page 507.
[Gingell et al., 1999] Gingell, J. M., Perry, J. S. A., Price, S. D., Mason, N. J., Jackman, R. B., Williams, D. E., and Williams, D. A. (1999). State Selective Reactions Of Cosmic Dust Analogues At Cryogenic Temperatures. In Combes, F. and Pineau des Forˆets, G., editors, H2 in Space, page E.59.
[Godoy-Rivera et al., 2021] Godoy-Rivera, D., Pinsonneault, M. H., and Rebull, L. M. (2021). Stellar Rotation in the Gaia Era: Revised Open Clusters Sequences. arXiv e- prints, page arXiv:2101.01183. [Gregorio-Hetem, 1992] Gregorio-Hetem, J., L. J. R. D. Q. G. R. T. C. A. O. d. L. R. R. (1992). lllll. The Astrophysical Journal, 298:549–563.
[Gregory et al., 2016] Gregory, S. G., Adams, F. C., and Davies, C. L. (2016). The influence of radiative core growth on coronal X-ray emission from pre-main-sequence stars. Monthly Notices of the Royal Astronomical Society, 457(4):3836–3858.
[Gu¨nther, 2013] Gu¨nther, H. M. (2013). Accretion, winds and outflows in young stars. As- tronomische Nachrichten, 334(1-2):67.
[Hartmann, 1998] Hartmann, L. (1998). Accretion processes in star formation. cambridge, uk ; new york : Cambridge university press. Astronomy & Astrophysics, lll:lll.
[Hartmann et al., 2016] Hartmann, L., Herczeg, G., and Calvet, N. (2016). Accretion onto Pre-Main-Sequence Stars. Annual review of astronomy and astrophysics, 54:135–180.
[Hartmann et al., 2016] Hartmann, L., Herczeg, G., and Calvet, N. (2016). Accretion onto pre-main-sequence stars. Annual Review of Astronomy and Astrophysics, 54(1):135–180.
[Hartmann et al., 1986] Hartmann, L., Hewett, R., Stahler, S., and Mathieu, R. D. (1986). Rotational and Radial Velocities of T Tauri Stars. The Astrophysical Journal, 309:275.
[Hartmann and Stauffer, 1989] Hartmann, L. and Stauffer, J. R. (1989). Additional Measu- rements of Pre-Main-Sequence Stellar Rotation. The Astrophysical Journal, 97:873.
[Heckmann and Johnson, 1956] Heckmann, O. and Johnson, H. L. (1956). A New Color- Magnitude Diagram for the Hyades Cluster. The Astrophysical Journal, 124:477.
[Hern´andez et al., 2007] Herna´ndez, J., Calvet, N., Bricen˜o, C., Hartmann, L., Vivas, A. K., Muzerolle, J., Downes, J., Allen, L., and Gutermuth, R. (2007). Spitzer Observations of the Orion OB1 Association: Disk Census in the Low-Mass Stars. The Astrophysical Journal, 671(2):1784–1799.
[Hetem et al., 1994] Hetem, A., J., Gregorio-Hetem, J. J., and L´epine, J. R. D. (1994). Mo- deling T Tauri Circumstellar Disk SED’s. In Ferlet, R. and Vidal-Madjar, A., editors, Circumstellar Dust Disks and Planet Formation, volume 10, page 369.
[J. Bouvier and Allain, 1997] J. Bouvier, M. F. and Allain, S. (1997). The angular momen- tum evolution of low-mass stars. Astronomy & Astrophysics, 326:1023–1043.
[Jeans, 1902] Jeans, J. H. (1902). The Stability of a Spherical Nebula. Philosophical Transac- tions of the Royal Society of London Series A, 199:1–53.
[Jianke and Collier Cameron, 1993] Jianke, L. and Collier Cameron, A. (1993). Rotational evolution of solar-type stars with core-envelope decoupling. Monthly Notices of the Royal Astronomical Society, 261:766–782. [Johns-Krull, 2007a] Johns-Krull, C. M. (2007a). Measurements of magnetic fields on T Tauri stars. In Bouvier, J. and Appenzeller, I., editors, Star-Disk Interaction in Young Stars, volume 243, pages 31–42.
[Johns-Krull, 2007b] Johns-Krull, C. M. (2007b). The Magnetic Fields of Classical T Tauri Stars. The Astrophysical Journal, 664(2):975–985.
[Johns-Krull, 2009] Johns-Krull, C. M. (2009). Measuring T Tauri star magnetic fields. In Strassmeier, K. G., Kosovichev, A. G., and Beckman, J. E., editors, Cosmic Magnetic Fields: From Planets, to Stars and Galaxies, volume 259 of IAU Symposium, pages 345– 356.
[Joy, 1945] Joy, A. H. (1945). T Tauri Variable Stars. The Astrophysical Journal, 102:168.
[Kar et al., 2018] Kar, A., Jang-Condell, H., Kasper, D., Findlay, J., and Kobulnicky, H. A. (2018). Optical Monitoring of Young Stellar Objects. In American Astronomical Society Meeting Abstracts #232, volume 232 of American Astronomical Society Meeting Abstracts, page 219.08.
[Kastner et al., 2010] Kastner, J. H., Hily-Blant, P., Sacco, G. G., Forveille, T., and Zucker- man, B. (2010). Detection of a Molecular Disk Orbiting the Nearby, “old,” Classical T Tauri Star MP Muscae. 723(2):L248–L251.
[Kawaler, 1987] Kawaler, S. D. (1987). Angular momentum in stars - The Kraft curve revisited. pasp, 99:1322–1228.
[Kawaler, 1988] Kawaler, S. D. (1988). Angular Momentum Loss in Low-Mass Stars. , 333:236.
[Keppens et al., 1995] Keppens, R., MacGregor, K. B., and Charbonneau, P. (1995). On the evolution of rotational velocity distributions for solar-type stars. Astronomy and Astrophysics Panel Reports, 294:469–487.
[Khanna and Camenzind, 1990] Khanna, R. and Camenzind, M. (1990). Magnetic fields in thin accretion disks. In Astronomische Gesellschaft Abstract Series, volume 5 of Astrono- mische Gesellschaft Abstract Series, page 25.
[Kim, 2005] Kim, Jinyoung Serena; Hines, D. C. (2005). Formation and evolution of plane- tary systems: Coldouter disks associated with sun-like stars. The Astrophysical Journal, 632:659–669.
[Koenigl, 1991] Koenigl, A. (1991). Disk Accretion onto Magnetic T Tauri Stars. 370:L39. [Kraft, 1967] Kraft, R. P. (1967). Studies of Stellar Rotation.IV. a Comparison of Rotatio- nal Velocities in the Alpha Persei Cluster and the Pleiades. The Astrophysical Journal, 148:129.
[Krishnamurthi et al., 1997] Krishnamurthi, A., Pinsonneault, M. H., Barnes, S., and Sofia, S. (1997). Theoretical Models of the Angular Momentum Evolution of Solar-Type Stars. The Astrophysical Journal, 480(1):303–323.
[Linsky and Saar, 1987] Linsky, J. L. and Saar, S. H. (1987). Measurements of Stellar Mag- netic Fields: Empirical Constraints on Stellar Dynamo and Rotational Evolution Theories, volume 291, pages 44–46.
[Lockwood et al., 1984] Lockwood, G. W., Thompson, D. T., Radick, R. R., Osborn, W. H., Baggett, W. E., Duncan, D. K., and Hartmann, L. W. (1984). The photometric varia- bility of solar-type stars. IV. Detection of rotational modulation among Hyades stars. Publications of the Astronomical Society of the Pacific, 96:714–722.
[Looper et al., 2009] Looper, D., Burgasser, A., Rayner, J., Bochanski, J., Kirkpatrick, J. D., and Mamajek, E. (2009). TWA: Case Studies in Disk Evolution, Outflows, and Binary Properties of Young Stars. In American Astronomical Society Meeting Abstracts #214, volume 214 of American Astronomical Society Meeting Abstracts, page 606.10.
[MacGregor, 1982] MacGregor, K. B. (1982). Future Prospects for the Theory of Solar- Stellar Winds. In Bulletin of the American Astronomical Society, volume 14, page 946.
[Mamajek, 2005] Mamajek, E. E. (2005). Rotational evolution of magnetic t tauri stars with accretion disk. The Astrophysical Journal, 298:1385–1394.
[Mamajek, 2010] Mamajek, E. E. (2010). Rotational evolution of magnetic t tauri stars with accretion disk. The Astrophysical Journal, 473.
[Mamajek, 2002] Mamajek, E. E., M. M. L. J. (2002). Rotational evolution of magnetic t tauri stars with accretion disk. The Astrophysical Journal, lll:1670–1694.
[Marigo et al., 2017] Marigo, P., Girardi, L., Bressan, A., Rosenfield, P., Aringer, B., Chen, Y., Dussin, M., Nanni, A., Pastorelli, G., Rodrigues, T. S., Trabucchi, M., Bladh, S., Dalcanton, J., Groenewegen, M. A. T., Montalb´an, J., and Wood, P. R. (2017). A New Generation of PARSEC-COLIBRI Stellar Isochrones Including the TP-AGB Phase. The Astrophysical Journal, 835(1):77.
[Martin et al., 1994] Martin, E. L., Rebolo, R., Magazzu, A., and Pavlenko, Y. V. (1994). Pre-main sequence lithium burning. I. Weak T Tauri stars. Astronomy and Astrophysics Panel Reports, 282:503–517. [Matt, 2010a] Matt, Sean; Pinzon, G. G. T. P. (2010a). Angular momentum loss via stellar winds. The Astrophysical Journal, 42:352.
[Matt, 2012] Matt, P. (2012). Spin evolution of accreting young stars. ii. effect of accretion- powered stellar winds. The Astrophysical Journal, 745.
[Matt, 2010b] Matt, S. P., P. G. d. l. R. R. G. T. P. (2010b). Spin evolution of accreting young stars. i. effect of magnetic star-disk coupling. The Astrophysical Journal, 14:989– 1000.
[Matt, 1995] Matt, S., P. R. E. (1995). Accretion-powered stellar winds. ii. numerical solu- tions for stellar wind torques. The Astrophysical Journal, llll:1109–1118.
[Matt, 2005a] Matt, S., P. R. E. (2005a). Accretion-powered stellar winds as a solution to the stellar angular momentum problem. The Astrophysical Journal, lll:135–138.
[Matt, 2005b] Matt, S., P. R. E. (2005b). The spin of accreting stars: dependence on magne- tic coupling to the disc. Monthly Notices of the Royal Astronomical Society, llll:167–182.
[Matt, 2005c] Matt, Sean; Pudritz, R. E. (2005c). Accretion-powered stellar winds. iii. spin- equilibrium solutions. The Astrophysical Journal, 681:391–399.
[Matt et al., 2012] Matt, S. P., Pinz´on, G., Greene, T. P., and Pudritz, R. E. (2012). Spin Evolution of Accreting Young Stars. II. Effect of Accretion-powered Stellar Winds. The Astrophysical Journal, 745(1):101.
[Melo et al., 2001] Melo, C. H. F., Pasquini, L., and De Medeiros, J. R. (2001). Accurate Vsin i measurements in M 67: The angular momentum evolution of 1.2 Msun stars. Astronomy and Astrophysics Panel Reports, 375:851–862.
[Melotte, 1915] Melotte, P. J. (1915). A Catalogue of Star Clusters shown on Franklin- Adams Chart Plates. Memoirs of the Royal Astronomical Society, 60:175.
[Messina et al., 2010] Messina, S., Desidera, S., Turatto, M., Lanzafame, A. C., and Guinan, E. F. (2010). RACE-OC project: Rotation and variability of young stellar associations within 100 pc. , 520:A15.
[Mestel et al., 1988] Mestel, L., Tayler, R. J., and Moss, D. L. (1988). The mutual interaction of magnetism, rotation and meridian circulation in stellar radiative zones. Monthly Notices of the Royal Astronomical Society, 231:873–885.
[Montmerle et al., 1993] Montmerle, T., Feigelson, E. D., Bouvier, J., and Andre, P. (1993). Magnetic Fields Activity and Circumstellar Material around Young Stellar Objects. In Levy, E. H. and Lunine, J. I., editors, Protostars and Planets III, page 689. [Moore et al., 2019] Moore, K., Scholz, A., and Jayawardhana, R. (2019). The Rotation-disk Connection in Young Brown Dwarfs: Strong Evidence for Early Rotational Braking. The Astrophysical Journal, 872(2):159.
[Moss, 1982] Moss, D. (1982). Magnetic star models with a consistent alpha-omega-effect core-dynamo and radiative envelope. Monthly Notices of the Royal Astronomical Society, 201:385–392.
[Najita, ] Najita, J.; Hollenbach, D. G. U. M. M. K. J. S. Formation and evolution of planetary systems: Upper limits to the gas mass in disks around intermediate-aged solar- type stars.
[Narvaez, 2011] Narvaez, J. (2011). Actividad electromagn´etica en estrellas jovenes (Proyec- to sin finalizar). Master’s thesis, Universidad Nacional de Colombia.
[Noyes et al., 1984] Noyes, R. W., Hartmann, L. W., Baliunas, S. L., Duncan, D. K., and Vaughan, A. H. (1984). Rotation, convection, and magnetic activity in lower main- sequence stars. A.J., 279:763–777.
[Oppenheimer and Snyder, 1982] Oppenheimer, J. R. and Snyder, H. (1982). On Continued Gravitational Contraction, page 36.
[Orlando et al., 2010] Orlando, S., Sacco, G. G., Argiroffi, C., Reale, F., Peres, G., and Maggio, A. (2010). X-ray emitting MHD accretion shocks in classical T Tauri stars. Case for moderate to high plasma-β values. Astronomy and Astrophysics Panel Reports, 510:A71.
[Ortega et al., 2004] Ortega, V. G., de la Reza, R., Jilinski, E., and Bazzanella, B. (2004). New Aspects of the Formation of the β Pictoris Moving Group. The Astrophysical Journal, 609(1):243–246.
[Ortega et al., 2017] Ortega, V. G., Jilinski, E. G., and de la Reza, R. (2017). Kinematics and Dynamics of Young Stellar Groups. In Revista Mexicana de Astronomia y Astrofisica Conference Series, volume 49 of Revista Mexicana de Astronomia y Astrofisica Conference Series, pages 93–93.
[Pantolmos et al., 2020] Pantolmos, G., Zanni, C., and Bouvier, J. (2020). Magnetic torques on T Tauri stars: Accreting versus non-accreting systems. Astronomy and Astrophysics Panel Reports, 643:A129.
[Passos, 2012] Passos, D. (2012). A simple but powerful model of the solar cycle.
[Petrie and Heard, 1970] Petrie, R. M. and Heard, J. F. (1970). The radial velocities and luminosities of 77 stars in the field of the alpha Persei cluster. Publications of the Dominion Astrophysical Observatory Victoria, 13(13):329–346. [Pichardo et al., 2005] Pichardo, B., Sparke, L. S., and Aguilar, L. A. (2005). Circumste- llar and circumbinary discs in eccentric stellar binaries. Monthly Notices of the Royal Astronomical Society, 359(2):521–530.
[Pinz´on, 2006] Pinz´on, G. (2006). Acres¸c˜ao e momento angular em estrelas jovens de baixa massa. PhD thesis, Minist´erio de Ciˆencia y Tecnologia, Observatorio Nacional.
[Restrepo, 2012] Restrepo, O. (2012). estudio de las tasas de acreci´on para una muestra de estrellas t tauri clasicas en el O´ptico. Master’s thesis, Universidad Nacional de Colombia.
[Rucinski and Krautter, 1983] Rucinski, S. M. and Krautter, J. (1983). TW Hya : a T Tauri star far from any dark cloud. Astronomy and Astrophysics Panel Reports, 121:217–225.
[Sadeghi Ardestani et al., 2017] Sadeghi Ardestani, L., Guillot, T., and Morel, P. (2017). A semi-empirical model for magnetic braking of solar-type stars. Monthly Notices of the Royal Astronomical Society, 472(3):2590–2607.
[Schatzman, 1962] Schatzman, E. (1962). A theory of the role of magnetic activity during star formation. Annales d’Astrophysique, 25:18.
[Schober et al., 2012] Schober, J., Schleicher, D., Bovino, S., and Klessen, R. S. (2012). Small-scale dynamo at low magnetic Prandtl numbers. Physical Review E, 86(6):066412.
[Scholz, 2004] Scholz, A. (2004). The rotation of very low mass objects. PhD thesis, Thue- ringer Landessternwarte, Sternwarte 5, D-07778 Tautenburg, Germany.
[Scholz et al., 2007] Scholz, A., Coffey, J., Brandeker, A., and Jayawardhana, R. (2007). Ro- tation and Activity of Pre-Main-Sequence Stars. The Astrophysical Journal, 662(2):1254– 1267.
[Shibata and Kaburaki, 1985] Shibata, S. and Kaburaki, O. (1985). A Self-Consistent Mo- del of the Magnetosphere with Centrifugal Wind - Part One. Applied Surface Science, 108(1):203–217.
[Shu et al., 1994] Shu, F., Najita, J., Ostriker, E., Wilkin, F., Ruden, S., and Lizano, S. (1994). Magnetocentrifugally Driven Flows from Young Stars and Disks. I. A Generalized Model. 429:781.
[Siess et al., 2000] Siess, L., Dufour, E., and Forestini, M. (2000). An internet server for pre- main sequence tracks of low- and intermediate-mass stars. Astronomy and Astrophysics Panel Reports, 358:593–599.
[Siess and Forestini, 1996] Siess, L. and Forestini, M. (1996). Physics of accretion onto young stars. I. Parametric models. , 308:472–480.
[Skumanich, 1972] Skumanich, A. (1972). Time Scales for Ca II Emission Decay, Rotational Braking, and Lithium Depletion. The Astrophysical Journal, 171:565.
[Smith and Terrile, 1984] Smith, B. A. and Terrile, R. J. (1984). A Circumstellar Disk around β Pictoris. Science, 226(4681):1421–1424.
[Society, 1832] Society, T. R. (1832). Actas de la royal society. urlhttps://royalsocietypublishing.org/journal/rspa.
[Soderblom, 1982a] Soderblom, D. R. (1982a). Rotation in G and K dwarfs. SAO Special Report, 392:197–198.
[Soderblom, 1982b] Soderblom, D. R. (1982b). Rotational studies of late-type stars. I. Ro- tational velocities of solar-type stars. The Astrophysical Journal, 263:239–251.
[Soderblom et al., 1995] Soderblom, D. R., Jones, B. F., Stauffer, J. R., and Chaboyer, B. (1995). The Evolution of the Lithium Abundances of Solar-Type Stars.V. K Dwarfs in the Hyades. The Astrophysical Journal, 110:729.
[Soderblom et al., 1983] Soderblom, D. R., Jones, B. F., and Walker, M. F. (1983). Rapid rotation among Pleiades K dwarfs. 274:L37–L41.
[Spada, 2010] Spada, F.; Lanzafame, A. C. L. A. F. (2010). A semi-analytic approach to angular momentum transport in stellar radiative interiors. Monthly Notices of the Royal Astronomical Society, 404:641–660.
[Stahler, 1980] Stahler, S. W. (1980). Protostars: Their structure and evolution. [Stahler and Palla, 2004] Stahler, S. W. and Palla, F. (2004). The Formation of Stars.
[Stauffer and Hartmann, 1987] Stauffer, J. R. and Hartmann, L. W. (1987). The Distri- bution of Rotational Velocities for Low-Mass Stars in the Pleiades. The Astrophysical Journal, 318:337.
[Stauffer et al., 1987] Stauffer, J. R., Hartmann, L. W., and Latham, D. W. (1987). Rota- tional Velocities of Low-Mass Stars in the Hyades. 320:L51.
[Sung, 1974] Sung, C.-H. (1974). Asymptotic Formulation of a Differentially Rotating Star with Small Dissipation. Applied Surface Science, 26(2):305–317.
[Tambovtseva, 2018] Tambovtseva, L. (2018). Revealing the Circumstellar Environment of the Herbig Be Star VB Ser by Emission Line Modelling. In Take a Closer Look, page 111.
[Tassoul and Tassoul, 1995] Tassoul, M. and Tassoul, J.-L. (1995). Meridional Circulation in Rotating Stars. XI. Single-Cell Pattern versus Double-Cell Pattern. The Astrophysical Journal, 440:789. [Tomczyk et al., 1996] Tomczyk, S., Schou, J., and Thompson, M. J. (1996). Measurement of the Rotation Rate in the Deep Solar Interior. In American Astronomical Society Meeting Abstracts #188, volume 188 of American Astronomical Society Meeting Abstracts, page 69.03.
[Torres et al., 2003] Torres, C. A. O., Quast, G. R., de La Reza, R., da Silva, L., Melo, C. H. F., and Sterzik, M. (2003). SACY - a Search for Associations Containing Young stars, volume 299, page 83.
[Tout and Pringle, 1992] Tout, C. A. and Pringle, J. E. (1992). Accretion disc viscosity: a simple model for a magnetic dynamo. Monthly Notices of the Royal Astronomical Society, 259:604–612.
[van Leeuwen et al., 1991] van Leeuwen, F., Penston, M., Evans, D. W., and Ramamani, N. (1991). HIPPARCOS produces first parallaxes. GEMINI Newsletter Royal Greenwich Observatory, 31:6–7.
[Venuti, 2020] Venuti, L. (2020). Dynamics of star-disk interaction processes in young, low- mass stars as seen from space. In Neiner, C., Weiss, W. W., Baade, D., Griffin, R. E., Lovekin, C. C., and Moffat, A. F. J., editors, Stars and their Variability Observed from Space, pages 409–414.
[Vidotto, 2014] Vidotto, A. A. (2014). Incorporating magnetic field observations in wind models of low-mass stars. ASTRA Proceedings, 1(1):19–22.
[Vogel and Kuhi, 1981] Vogel, S. N. and Kuhi, L. V. (1981). Rotational velocities of pre- main-sequence stars. The Astrophysical Journal, 245:960–976.
[Weber and Davis, 1970] Weber, E. J. and Davis, L., J. (1970). The effect of viscosity and anisotropy in the pressure on the azimuthal motion of the solar wind. Journal of Geophy- sical Research, 75(13):2419.
[Weber and Davis, 1967] Weber, E. J. and Davis, Leverett, J. (1967). The Angular Momen- tum of the Solar Wind. The Astrophysical Journal, 148:217–227.
[Williams et al., 1999] Williams, D., Clary, D. C., Farebrother, A., Fisher, A., Gingell, J. M., Jackman, R., Mason, N., Meijer, A., Perry, J., Price, S. D., Rawlings, J. M. C., and Williams, D. E. (1999). The energetics and efficiency of H 2 formation on surfaces of interstellar grain mimics. In Combes, F. and Pineau des Forˆets, G., editors, H2 in Space, page E.13.
[Woitke et al., 2019] Woitke, P., Kamp, I., Antonellini, S., Anthonioz, F., Baldovin- Saveedra, C., Carmona, A., Dionatos, O., Dominik, C., Greaves, J., Gu¨del, M., Ilee, J. D., Liebhardt, A., Menard, F., Min, M., Pinte, C., Rab, C., Rigon, L., Thi, W. F., Thureau, N., and Waters, L. B. F. M. (2019). Consistent Dust and Gas Models for Protoplanetary Disks. III. Models for Selected Objects from the FP7 DIANA Project. pasp, 131(1000):064301.
[Wolff et al., 2004] Wolff, S. C., Strom, S. E., and Hillenbrand, L. A. (2004). The Angular Momentum Evolution of 0.1-10 Msolar Stars from the Birth Line to the Main Sequence. The Astrophysical Journal, 601(2):979–999.
[Xing, ] Xing, L.-F.; Xing, Q.-F. Lithium abundances of nearby young solar-type stars based on opticalhigh-resolution spectroscopy.
[Xing, 2012a] Xing, Li-Feng; Zhao, S.-Y. Z. X.-D. (2012a). Lithium abundances of 21 solar- type stars near the sun. Astronomy & Astrophysics, 537:1–6.
[Xing, 2012b] Xing, L.; Zhao, S. Z.-X. (2012b). Lithium abundances of 21 solar-type stars near the sun. 17:537–541.
[Yi, 1994] Yi, I. (1994). Magnetic Braking in Spin Evolution of Magnetized T Tauri Stars. The Astrophysical Journal, 428:760.
[Zahn et al., 1997] Zahn, J. P., Talon, S., and Matias, J. (1997). Angular momentum trans- port by internal waves in the solar interior. Astronomy and Astrophysics Panel Reports, 322:320–328.
[Zhan et al., 1996] Zhan, Q., Manson, A. H., and Meek, C. E. (1996). The impact of gaps and spectral methods on the spectral slope of the middle atmospheric wind. Journal of Atmospheric and Terrestrial Physics, 58:1329–1336.
[Zolcinski et al., 1982a] Zolcinski, M. C., Kay, L., Antiochos, S., Stern, R., and Walker, A. B. C. (1982a). Progress report of an IUE survey of the Hyades star cluster. In Kondo, Y., editor, NASA Conference Publication, volume 2238 of NASA Conference Publication, pages 239–242.
[Zolcinski et al., 1982b] Zolcinski, M. C. S., Antiochos, S. K., Stern, R. A., and Walker, A. B. C. (1982b). International Ultraviolet Explorer observations of hyades stars. The Astrophysical Journal, 258:177–185.
[Zuckerman and Song, 2004] Zuckerman, B. and Song, I. (2004). Young Stars Near the Sun. Annual review of astronomy and astrophysics, 42(1):685–721.
[Zuckerman et al., 2001] Zuckerman, B., Song, I., Bessell, M. S., and Webb, R. A. (2001). The β Pictoris Moving Group. 562(1):L87–L90.
[Zuckerman and Webb, 2000] Zuckerman, B. and Webb, R. A. (2000). Identification of a Nearby Stellar Association in theHipparcos Catalog: Implications for Recent, Local Star Formation. The Astrophysical Journal, 535(2):959–964.
dc.rights.spa.fl_str_mv Derechos reservados al autor, 2021
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
Derechos reservados al autor, 2021
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 132 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Astronomía
dc.publisher.department.spa.fl_str_mv Observatorio Astronómico Nacional
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/79906/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/79906/2/Un%20modelo%20de%20rotaci%c3%b3n%20antes%20de%20la%20secuencia%20principal.pdf
https://repositorio.unal.edu.co/bitstream/unal/79906/3/license_rdf
https://repositorio.unal.edu.co/bitstream/unal/79906/4/Un%20modelo%20de%20rotaci%c3%b3n%20antes%20de%20la%20secuencia%20principal.pdf.jpg
bitstream.checksum.fl_str_mv cccfe52f796b7c63423298c2d3365fc6
ecbd0801396bdcd0153b6dc91d9d3aba
4460e5956bc1d1639be9ae6146a50347
626ae5a0f2176ac908a248f6a10fc6f9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089295046115328
spelling Atribución-NoComercial-SinDerivadas 4.0 InternacionalDerechos reservados al autor, 2021http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Pinzón Estrada, Giovanni6129f02ee3660d3d23bf2fb6ee1c4046Vargas Durango, Mauricio Andrés5899e190a166a0dc10ce52e087e5c667Astronomía, Astrofísica y Cosmologia2021-08-09T21:55:16Z2021-08-09T21:55:16Z2021-03-15https://repositorio.unal.edu.co/handle/unal/79906Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, graficas, tablasEn este trabajo se presentan los resultados de un completo estudio sobre la evolución rotacional de las estrellas de baja masa en su etapa evolutiva previa a la secuencia principal. Para el estudio se realiza una extensión del modelo rotacional de Matt [Matt et al., 2012], el cual predice la velocidad ecuatorial de rotación para una estrella del tipo solar durante los primeros tres millones de años, época en la cual la estrella experimenta torques de acreción y de viento estelar estimulado por la acreción. El modelo incorpora cambios en el momento de inercia de la estrella, en la intensidad del campo magnético, pérdida de momento angular por vientos estelares estimulados por acreción y una disminución exponencial de la tasa de acreción. Se asume que la acreción estelar decae exponencialmente con el tiempo y que el disco es permeado por un campo magnético estelar dipolar y con intensidad constante. La extensión del modelo, se realiza hasta la edad del Sol, incluyendo efectos de pérdida de momento angular a través de vientos magnetizados de tipo Kawaler [Kawaler, 1988] una vez la estrella se ubica en la secuencia principal. La calibración de la evolución rotacional se realiza en términos de la rotación solar hoy y a través del análisis de una muestra representativa de estrellas jóvenes con velocidad rotacional reportada en la literatura. Esta muestra consiste en 231 estrellas pertenecientes a 8 asociaciones estelares con edades entre 8Myr y 600Myr. Para altos rotadores (V > 150km/s) se encuentra que la constante Kw que de fine la intensidad del torque de viento magnetizado es igual a 6,018X10^47 gr^{3/2} cm^{1/2} s^{-1} mientras que para bajos rotadores (V < 10km=s) la constante Kw es igual a 5.988X10^47 gr^{3/2} cm^{1/2} s^{-1}. Finalmente, se concluye que la escala de tiempo característica para el decaimiento exponencial de la acreción que mejor ajusta la muestra observada es t_a = 8Myr para un tiempo de vida de disco t_D = 4Myr para un campo magnético de 2kG y un tiempo de vida de disco t_D = 2Myr para un campo magnético de 0.5kG. (Texto tomado de la fuente)This paper presents the results of a complete study on the rotational evolution of low-mass stars in their evolutionary stage prior to the main sequence in the color-magnitude diagram. For the study, an extension of the rotational model of Matt [Matt et al., 2012] is carried out, which predicts the equatorial speed of rotation for a star of the solar type during the rest three million years, when the star experiences accretion torques and stellar wind stimulated by accretion. The model incorporates changes in the star's moment of inertia, in the intensity of the magnetic eld, loss of angular momentum by accretion-stimulated stellar winds, and an exponential decrease in the accretion rate. It is assumed that stellar accretion decays exponentially with time and that the disk is permeated by a constant intensity dipole stellar magnetic eld. The extension of the model is carried out until the age of the Sun, including the e ects of loss of angular momentum through magnetized winds of the Kawaler type [Kawaler, 1988] once the star is located in the main sequence. The calibration of the rotational evolution is carried out in terms of the solar rotation today and through the analysis of a representative sample of young stars with rotational speed reported in the literature. This sample consists of 231 stars belonging to 8 stellar associations with ages between 8Myr and 600Myr. For high rotators (V > 150km=s) it is found that the constant Kw that de nes the intensity of the magnetized wind torque is equal to 6.018X10^47 gr^{3/2} cm^{1/2} s^{-1} while for low rotators (V < 10km=s) the constant Kw is equal to 5.988X10^47 gr^{3/2} cm^{1/2} s^{-1}. Finally, it's concluded that the character 'i stic time scale for the exponential decay of the accretion o n that best ts the observed sample is ta = 8Myr for a disk lifetime tD = 4Myr for a magnetic eld of 2kG and a disk lifetime of tD = 2Myr for a magnetic eld of 0.5kG. (Text taken from source)MaestríaMagíster en Ciencias - AstronomíaAstrofísica Estelar132 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - AstronomíaObservatorio Astronómico NacionalFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá520 - Astronomía y ciencias afinesEstrellaEstrellas-rotaciónActividad estelarRotación estelarAcreciónConexión magnéticaMomento angularModelo estelarEvolución estelarCampo magnéticoStellar rotationMagnetic fieldAccretionMagnetic connectionAngular momentumStellar modelStellar evolutionUn modelo de rotación estelar antes de la secuencia principalA model of stelar rotation before main secuenceTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TM[A. C. Cameron and Quaintrell, 1995] A. C. Cameron, C. G. C. and Quaintrell, H. (1995). Rotational evolution of magnetic t tauri stars with accretion disk. Astronomy & Astrophy- sics, 298:133–142.[Alecian et al., 2013] Alecian, E., Wade, G. A., Catala, C., Grunhut, J. H., Landstreet, J. D., Bagnulo, S., B¨ohm, T., Folsom, C. P., Marsden, S., and Waite, I. (2013). A high-resolution spectropolarimetric survey of Herbig Ae/Be stars - I. Observations and measurements. Monthly Notices of the Royal Astronomical Society, 429(2):1001–1026.[Alencar et al., 2003] Alencar, S. H. P., Melo, C. H. F., Dullemond, C. P., Andersen, J., Ba- talha, C., Vaz, L. P. R., and Mathieu, R. D. (2003). The pre-main sequence spectroscopic binary AK Scorpii revisited. Astronomy and Astrophysics Panel Reports, 409:1037–1053.[Allain, 1998] Allain, S. (1998). Modelling the angular momentum evolution of low-mass stars with core-envelope decoupling. , 333:629–643.[Allain et al., 1997] Allain, S., Queloz, D., Bouvier, J., Mermilliod, J. C., and Mayor, M. (1997). The braking of slow rotators in ZAMS clusters. Memorie della Societa Astronomica Italiana, 68:899–902.[Arlt and Ru¨diger, 2011] Arlt, R. and Ru¨diger, G. (2011). Amplification and stability of magnetic fields and dynamo effect in young A stars. Monthly Notices of the Royal Astro- nomical Society, 412(1):107–119.[Autores, 2010] Autores, V. (1960-2010). Xray. urlhttps://heasarc.gsfc.nasa.gov/cgi- bin/W3Browse/w3browse.pl.[Autores, 2020] Autores, V. (2020). Estructura y composici´on del sol. urlhttps://www.astromia.com/solar/estrucsol.htm.[Baraffe et al., 2015] Baraffe, I., Homeier, D., Allard, F., and Chabrier, G. (2015). New evolutionary models for pre-main sequence and main sequence low-mass stars down to the hydrogen-burning limit. Astronomy and Astrophysics Panel Reports, 577:A42.[Barnes et al., 1996] Barnes, S., Pinsonneault, M., and Sofia, S. (1996). Disk-locking and the slow rotators in young star clusters. In American Astronomical Society Meeting Abstracts #188, volume 188 of American Astronomical Society Meeting Abstracts, page 18.02.[Basri et al., 1992] Basri, G., Marcy, G. W., and Valenti, J. A. (1992). Limits on the Mag- netic Flux of Pre–Main-Sequence Stars. The Astrophysical Journal, 390:622.[Bessolaz, 2008] Bessolaz, N.; Ferreira, J. K. R. B. J. Z. C. (2008). Accretion funnels onto weakly magnetized young stars. Astronomy & Astrophysics, 478:155–162.[Bouvier, 1997] Bouvier, J. (1997). The surface and internal rotation of low-mass stars in young clusters. Memorie della Societa Astronomica Italiana, 68:881–893.[Bouvier, 2013] Bouvier, J. (2013). Observational studies of stellar rotation. In Hennebelle, P. and Charbonnel, C., editors, EAS Publications Series, volume 62 of EAS Publications Series, pages 143–168.[Bouvier et al., 1997] Bouvier, J., Forestini, M., and Allain, S. (1997). The angular momen- tum evolution of low-mass stars. Astronomy and Astrophysics Panel Reports, 326:1023– 1043.[Bubar et al., 2007] Bubar, E. J., King, J. R., Soderblom, D. R., Deliyannis, C. P., and Boesgaard, A. M. (2007). Keck HIRES Spectroscopy of Candidate Post-T Tauri Stars. The Astrophysical Journal, 134(6):2328–2339.[Calvet et al., 2005] Calvet, N., Bricen˜o, C., Hern´andez, J., Hoyer, S., Hartmann, L., Sicilia- Aguilar, A., Megeath, S. T., and D’Alessio, P. (2005). Disk Evolution in the Orion OB1 Association. The Astrophysical Journal, 129(2):935–946.[Camenzind, 1990] Camenzind, M. (1990). Magnetized Disk-Winds and the Origin of Bipo- lar Outflows. Reviews in Modern Astronomy, 3:234–265.[Cameron, 1993] Cameron, A. C. Campbell, C. G. (1993). The spin of accreting stars: dependence on magnetic coupling to the disc. Astronomy & Astrophysics, pages 274, 309.[Chaboyer et al., 1995a] Chaboyer, B., Demarque, P., and Pinsonneault, M. H. (1995a). Ste- llar Models with Microscopic Diffusion and Rotational Mixing. I. Application to the Sun. The Astrophysical Journal, 441:865.[Chaboyer et al., 1995b] Chaboyer, B., Demarque, P., and Pinsonneault, M. H. (1995b). Ste- llar Models with Microscopic Diffusion and Rotational Mixing. II. Application to Open Clusters. The Astrophysical Journal, 441:876.[Chapman and Melotte, 1915] Chapman, S. and Melotte, P. J. (1915). The number of Stars of each Photographic Magnitude down to 17m0, in different Galactic Latitudes. Memoirs of the Royal Astronomical Society, 60:145. [Chavero et al., 2019] Chavero, C., de la Reza, R., Ghezzi, L., Llorente de Andr´es, F., Pe- reira, C. B., Giuppone, C., and Pinz´on, G. (2019). Emerging trends in metallicity and lithium properties of debris disc stars. Monthly Notices of the Royal Astronomical Society, 487(3):3162–3177.[Chavero et al., 2017] Chavero, C., de la Reza, R., Ghezzi, L., Llorente de Andr´es, F., Pe- reira, C. B., and Pinz´on, G. (2017). Lithium-rotation connection in debris disk stars. In Revista Mexicana de Astronomia y Astrofisica Conference Series, volume 49 of Revista Mexicana de Astronomia y Astrofisica Conference Series, pages 85–85.[Choi and Herbst, 1996] Choi, P. I. and Herbst, W. (1996). Rotation Periods of Stars in the Orion Nebula Cluster: The Bimodal Distribution. The Astrophysical Journal, 111:283.[Clarke et al., 1995] Clarke, C. J., Armitage, P. J., Smith, K. W., and Pringle, J. E. (1995). Magnetically modulated accretion in T Tauri stars. Monthly Notices of the Royal Astro- nomical Society, 273(3):639–642.[Collier Cameron and Campbell, 1993] Collier Cameron, A. and Campbell, C. G. (1993). Rotational evolution of magnetic T Tauri stars with accretion discs. Astronomy and Astrophysics Panel Reports, 274:309.[Cranmer, 2008] Cranmer, S. R. (2008). The spin of accreting stars: dependence on magnetic coupling to the disc. The Astrophysical Journal, 689:316.[DJAntona Francesca, 1994] DJAntona Francesca, M. I. (1994). New pre-main-sequence track for m ≥ mBu as testof opacities and convection model. The Astrophysical Journal, 90:467– 500.[de Bruijne, ] de Bruijne, J. H. J. Structure and colour-magnitude diagrams of scorpius ob2 based on kinematic modelling of hipparcos data.[De la Reza, 2004] De la Reza, R. Pinz´on, G. (2004). On the rotation of post-t tauri stars in associations. The Astrophysical Journal, 128:1812.[de Zeeuw et al., 1999] de Zeeuw, P. T., Hoogerwerf, R., de Bruijne, J. H. J., Brown,A. G. A., and Blaauw, A. (1999). A HIPPARCOS Census of the Nearby OB Associa- tions. The Astrophysical Journal, 117(1):354–399.[Dotter, 2016] Dotter, A. (2016). MESA Isochrones and Stellar Tracks (MIST) 0: Methods for the Construction of Stellar Isochrones. The Astrophysical Journal Supplement Series, 222(1):8.[Dullemond et al., 2006] Dullemond, C. P., Natta, A., and Testi, L. (2006). Accretion in Protoplanetary Disks: The Imprint of Core Properties. 645(1):L69–L72. [Dyda et al., 2018] Dyda, S., Lovelace, R. V. E., Ustyugova, G. V., Koldoba, A. V., and Wasserman, I. (2018). Magnetic field amplification via protostellar disc dynamos. Monthly Notices of the Royal Astronomical Society, 477(1):127–138.[Eddington, 1910] Eddington, A. S. (1910). Note on a Moving Cluster of Stars of the Orion type in Perseus. Monthly Notices of the Royal Astronomical Society, 71:43.[Endal and Sofia, 1978] Endal, A. S. and Sofia, S. (1978). The evolution of rotating stars. II. Calculations with time-dependent redistribution of angular momentum for 7 and 10 M sun stars. The Astrophysical Journal, 220:279–290.[F. Spada and Cameron, 2011] F. Spada, A. C. Lanzafame, A. F. L. S. M. and Cameron, A. C. (2011). Modelling the rotational evolution of solar-like stars: the rotational coupling timescale. Monthly Notices of the Royal Astronomical Society, 416:1ˆa€“11.[Folsom et al., 2018] Folsom, C. P., Bouvier, J., Petit, P., L`ebre, A., Amard, L., Palacios, A., Morin, J., Donati, J. F., and Vidotto, A. A. (2018). The evolution of surface magnetic fields in young solar-type stars II: the early main sequence (250-650 Myr). Monthly Notices of the Royal Astronomical Society, 474(4):4956–4987.[Folsom et al., 2016] Folsom, C. P., Petit, P., Bouvier, J., L`ebre, A., Amard, L., Palacios, A., Morin, J., Donati, J. F., Jeffers, S. V., Marsden, S. C., and Vidotto, A. A. (2016). The evolution of surface magnetic fields in young solar-type stars - I. The first 250 Myr. Monthly Notices of the Royal Astronomical Society, 457(1):580–607.[Gallet and Bouvier, 2013] Gallet, F. and Bouvier, J. (2013). Improved angular momentum evolution model for solar-like stars. Astronomy and Astrophysics Panel Reports, 556:A36.[Gallet and Bouvier, 2015] Gallet, F. and Bouvier, J. (2015). Improved angular momentum evolution model for solar-like stars. II. Exploring the mass dependence. Astronomy and Astrophysics Panel Reports, 577:A98.[Ghosh and Lamb, 1978] Ghosh, P. and Lamb, F. K. (1978). Spin Evolution of Pulsating X-Ray Sources. In Bulletin of the American Astronomical Society, volume 10, page 507.[Gingell et al., 1999] Gingell, J. M., Perry, J. S. A., Price, S. D., Mason, N. J., Jackman, R. B., Williams, D. E., and Williams, D. A. (1999). State Selective Reactions Of Cosmic Dust Analogues At Cryogenic Temperatures. In Combes, F. and Pineau des Forˆets, G., editors, H2 in Space, page E.59.[Godoy-Rivera et al., 2021] Godoy-Rivera, D., Pinsonneault, M. H., and Rebull, L. M. (2021). Stellar Rotation in the Gaia Era: Revised Open Clusters Sequences. arXiv e- prints, page arXiv:2101.01183. [Gregorio-Hetem, 1992] Gregorio-Hetem, J., L. J. R. D. Q. G. R. T. C. A. O. d. L. R. R. (1992). lllll. The Astrophysical Journal, 298:549–563.[Gregory et al., 2016] Gregory, S. G., Adams, F. C., and Davies, C. L. (2016). The influence of radiative core growth on coronal X-ray emission from pre-main-sequence stars. Monthly Notices of the Royal Astronomical Society, 457(4):3836–3858.[Gu¨nther, 2013] Gu¨nther, H. M. (2013). Accretion, winds and outflows in young stars. As- tronomische Nachrichten, 334(1-2):67.[Hartmann, 1998] Hartmann, L. (1998). Accretion processes in star formation. cambridge, uk ; new york : Cambridge university press. Astronomy & Astrophysics, lll:lll.[Hartmann et al., 2016] Hartmann, L., Herczeg, G., and Calvet, N. (2016). Accretion onto Pre-Main-Sequence Stars. Annual review of astronomy and astrophysics, 54:135–180.[Hartmann et al., 2016] Hartmann, L., Herczeg, G., and Calvet, N. (2016). Accretion onto pre-main-sequence stars. Annual Review of Astronomy and Astrophysics, 54(1):135–180.[Hartmann et al., 1986] Hartmann, L., Hewett, R., Stahler, S., and Mathieu, R. D. (1986). Rotational and Radial Velocities of T Tauri Stars. The Astrophysical Journal, 309:275.[Hartmann and Stauffer, 1989] Hartmann, L. and Stauffer, J. R. (1989). Additional Measu- rements of Pre-Main-Sequence Stellar Rotation. The Astrophysical Journal, 97:873.[Heckmann and Johnson, 1956] Heckmann, O. and Johnson, H. L. (1956). A New Color- Magnitude Diagram for the Hyades Cluster. The Astrophysical Journal, 124:477.[Hern´andez et al., 2007] Herna´ndez, J., Calvet, N., Bricen˜o, C., Hartmann, L., Vivas, A. K., Muzerolle, J., Downes, J., Allen, L., and Gutermuth, R. (2007). Spitzer Observations of the Orion OB1 Association: Disk Census in the Low-Mass Stars. The Astrophysical Journal, 671(2):1784–1799.[Hetem et al., 1994] Hetem, A., J., Gregorio-Hetem, J. J., and L´epine, J. R. D. (1994). Mo- deling T Tauri Circumstellar Disk SED’s. In Ferlet, R. and Vidal-Madjar, A., editors, Circumstellar Dust Disks and Planet Formation, volume 10, page 369.[J. Bouvier and Allain, 1997] J. Bouvier, M. F. and Allain, S. (1997). The angular momen- tum evolution of low-mass stars. Astronomy & Astrophysics, 326:1023–1043.[Jeans, 1902] Jeans, J. H. (1902). The Stability of a Spherical Nebula. Philosophical Transac- tions of the Royal Society of London Series A, 199:1–53.[Jianke and Collier Cameron, 1993] Jianke, L. and Collier Cameron, A. (1993). Rotational evolution of solar-type stars with core-envelope decoupling. Monthly Notices of the Royal Astronomical Society, 261:766–782. [Johns-Krull, 2007a] Johns-Krull, C. M. (2007a). Measurements of magnetic fields on T Tauri stars. In Bouvier, J. and Appenzeller, I., editors, Star-Disk Interaction in Young Stars, volume 243, pages 31–42.[Johns-Krull, 2007b] Johns-Krull, C. M. (2007b). The Magnetic Fields of Classical T Tauri Stars. The Astrophysical Journal, 664(2):975–985.[Johns-Krull, 2009] Johns-Krull, C. M. (2009). Measuring T Tauri star magnetic fields. In Strassmeier, K. G., Kosovichev, A. G., and Beckman, J. E., editors, Cosmic Magnetic Fields: From Planets, to Stars and Galaxies, volume 259 of IAU Symposium, pages 345– 356.[Joy, 1945] Joy, A. H. (1945). T Tauri Variable Stars. The Astrophysical Journal, 102:168.[Kar et al., 2018] Kar, A., Jang-Condell, H., Kasper, D., Findlay, J., and Kobulnicky, H. A. (2018). Optical Monitoring of Young Stellar Objects. In American Astronomical Society Meeting Abstracts #232, volume 232 of American Astronomical Society Meeting Abstracts, page 219.08.[Kastner et al., 2010] Kastner, J. H., Hily-Blant, P., Sacco, G. G., Forveille, T., and Zucker- man, B. (2010). Detection of a Molecular Disk Orbiting the Nearby, “old,” Classical T Tauri Star MP Muscae. 723(2):L248–L251.[Kawaler, 1987] Kawaler, S. D. (1987). Angular momentum in stars - The Kraft curve revisited. pasp, 99:1322–1228.[Kawaler, 1988] Kawaler, S. D. (1988). Angular Momentum Loss in Low-Mass Stars. , 333:236.[Keppens et al., 1995] Keppens, R., MacGregor, K. B., and Charbonneau, P. (1995). On the evolution of rotational velocity distributions for solar-type stars. Astronomy and Astrophysics Panel Reports, 294:469–487.[Khanna and Camenzind, 1990] Khanna, R. and Camenzind, M. (1990). Magnetic fields in thin accretion disks. In Astronomische Gesellschaft Abstract Series, volume 5 of Astrono- mische Gesellschaft Abstract Series, page 25.[Kim, 2005] Kim, Jinyoung Serena; Hines, D. C. (2005). Formation and evolution of plane- tary systems: Coldouter disks associated with sun-like stars. The Astrophysical Journal, 632:659–669.[Koenigl, 1991] Koenigl, A. (1991). Disk Accretion onto Magnetic T Tauri Stars. 370:L39. [Kraft, 1967] Kraft, R. P. (1967). Studies of Stellar Rotation.IV. a Comparison of Rotatio- nal Velocities in the Alpha Persei Cluster and the Pleiades. The Astrophysical Journal, 148:129.[Krishnamurthi et al., 1997] Krishnamurthi, A., Pinsonneault, M. H., Barnes, S., and Sofia, S. (1997). Theoretical Models of the Angular Momentum Evolution of Solar-Type Stars. The Astrophysical Journal, 480(1):303–323.[Linsky and Saar, 1987] Linsky, J. L. and Saar, S. H. (1987). Measurements of Stellar Mag- netic Fields: Empirical Constraints on Stellar Dynamo and Rotational Evolution Theories, volume 291, pages 44–46.[Lockwood et al., 1984] Lockwood, G. W., Thompson, D. T., Radick, R. R., Osborn, W. H., Baggett, W. E., Duncan, D. K., and Hartmann, L. W. (1984). The photometric varia- bility of solar-type stars. IV. Detection of rotational modulation among Hyades stars. Publications of the Astronomical Society of the Pacific, 96:714–722.[Looper et al., 2009] Looper, D., Burgasser, A., Rayner, J., Bochanski, J., Kirkpatrick, J. D., and Mamajek, E. (2009). TWA: Case Studies in Disk Evolution, Outflows, and Binary Properties of Young Stars. In American Astronomical Society Meeting Abstracts #214, volume 214 of American Astronomical Society Meeting Abstracts, page 606.10.[MacGregor, 1982] MacGregor, K. B. (1982). Future Prospects for the Theory of Solar- Stellar Winds. In Bulletin of the American Astronomical Society, volume 14, page 946.[Mamajek, 2005] Mamajek, E. E. (2005). Rotational evolution of magnetic t tauri stars with accretion disk. The Astrophysical Journal, 298:1385–1394.[Mamajek, 2010] Mamajek, E. E. (2010). Rotational evolution of magnetic t tauri stars with accretion disk. The Astrophysical Journal, 473.[Mamajek, 2002] Mamajek, E. E., M. M. L. J. (2002). Rotational evolution of magnetic t tauri stars with accretion disk. The Astrophysical Journal, lll:1670–1694.[Marigo et al., 2017] Marigo, P., Girardi, L., Bressan, A., Rosenfield, P., Aringer, B., Chen, Y., Dussin, M., Nanni, A., Pastorelli, G., Rodrigues, T. S., Trabucchi, M., Bladh, S., Dalcanton, J., Groenewegen, M. A. T., Montalb´an, J., and Wood, P. R. (2017). A New Generation of PARSEC-COLIBRI Stellar Isochrones Including the TP-AGB Phase. The Astrophysical Journal, 835(1):77.[Martin et al., 1994] Martin, E. L., Rebolo, R., Magazzu, A., and Pavlenko, Y. V. (1994). Pre-main sequence lithium burning. I. Weak T Tauri stars. Astronomy and Astrophysics Panel Reports, 282:503–517. [Matt, 2010a] Matt, Sean; Pinzon, G. G. T. P. (2010a). Angular momentum loss via stellar winds. The Astrophysical Journal, 42:352.[Matt, 2012] Matt, P. (2012). Spin evolution of accreting young stars. ii. effect of accretion- powered stellar winds. The Astrophysical Journal, 745.[Matt, 2010b] Matt, S. P., P. G. d. l. R. R. G. T. P. (2010b). Spin evolution of accreting young stars. i. effect of magnetic star-disk coupling. The Astrophysical Journal, 14:989– 1000.[Matt, 1995] Matt, S., P. R. E. (1995). Accretion-powered stellar winds. ii. numerical solu- tions for stellar wind torques. The Astrophysical Journal, llll:1109–1118.[Matt, 2005a] Matt, S., P. R. E. (2005a). Accretion-powered stellar winds as a solution to the stellar angular momentum problem. The Astrophysical Journal, lll:135–138.[Matt, 2005b] Matt, S., P. R. E. (2005b). The spin of accreting stars: dependence on magne- tic coupling to the disc. Monthly Notices of the Royal Astronomical Society, llll:167–182.[Matt, 2005c] Matt, Sean; Pudritz, R. E. (2005c). Accretion-powered stellar winds. iii. spin- equilibrium solutions. The Astrophysical Journal, 681:391–399.[Matt et al., 2012] Matt, S. P., Pinz´on, G., Greene, T. P., and Pudritz, R. E. (2012). Spin Evolution of Accreting Young Stars. II. Effect of Accretion-powered Stellar Winds. The Astrophysical Journal, 745(1):101.[Melo et al., 2001] Melo, C. H. F., Pasquini, L., and De Medeiros, J. R. (2001). Accurate Vsin i measurements in M 67: The angular momentum evolution of 1.2 Msun stars. Astronomy and Astrophysics Panel Reports, 375:851–862.[Melotte, 1915] Melotte, P. J. (1915). A Catalogue of Star Clusters shown on Franklin- Adams Chart Plates. Memoirs of the Royal Astronomical Society, 60:175.[Messina et al., 2010] Messina, S., Desidera, S., Turatto, M., Lanzafame, A. C., and Guinan, E. F. (2010). RACE-OC project: Rotation and variability of young stellar associations within 100 pc. , 520:A15.[Mestel et al., 1988] Mestel, L., Tayler, R. J., and Moss, D. L. (1988). The mutual interaction of magnetism, rotation and meridian circulation in stellar radiative zones. Monthly Notices of the Royal Astronomical Society, 231:873–885.[Montmerle et al., 1993] Montmerle, T., Feigelson, E. D., Bouvier, J., and Andre, P. (1993). Magnetic Fields Activity and Circumstellar Material around Young Stellar Objects. In Levy, E. H. and Lunine, J. I., editors, Protostars and Planets III, page 689. [Moore et al., 2019] Moore, K., Scholz, A., and Jayawardhana, R. (2019). The Rotation-disk Connection in Young Brown Dwarfs: Strong Evidence for Early Rotational Braking. The Astrophysical Journal, 872(2):159.[Moss, 1982] Moss, D. (1982). Magnetic star models with a consistent alpha-omega-effect core-dynamo and radiative envelope. Monthly Notices of the Royal Astronomical Society, 201:385–392.[Najita, ] Najita, J.; Hollenbach, D. G. U. M. M. K. J. S. Formation and evolution of planetary systems: Upper limits to the gas mass in disks around intermediate-aged solar- type stars.[Narvaez, 2011] Narvaez, J. (2011). Actividad electromagn´etica en estrellas jovenes (Proyec- to sin finalizar). Master’s thesis, Universidad Nacional de Colombia.[Noyes et al., 1984] Noyes, R. W., Hartmann, L. W., Baliunas, S. L., Duncan, D. K., and Vaughan, A. H. (1984). Rotation, convection, and magnetic activity in lower main- sequence stars. A.J., 279:763–777.[Oppenheimer and Snyder, 1982] Oppenheimer, J. R. and Snyder, H. (1982). On Continued Gravitational Contraction, page 36.[Orlando et al., 2010] Orlando, S., Sacco, G. G., Argiroffi, C., Reale, F., Peres, G., and Maggio, A. (2010). X-ray emitting MHD accretion shocks in classical T Tauri stars. Case for moderate to high plasma-β values. Astronomy and Astrophysics Panel Reports, 510:A71.[Ortega et al., 2004] Ortega, V. G., de la Reza, R., Jilinski, E., and Bazzanella, B. (2004). New Aspects of the Formation of the β Pictoris Moving Group. The Astrophysical Journal, 609(1):243–246.[Ortega et al., 2017] Ortega, V. G., Jilinski, E. G., and de la Reza, R. (2017). Kinematics and Dynamics of Young Stellar Groups. In Revista Mexicana de Astronomia y Astrofisica Conference Series, volume 49 of Revista Mexicana de Astronomia y Astrofisica Conference Series, pages 93–93.[Pantolmos et al., 2020] Pantolmos, G., Zanni, C., and Bouvier, J. (2020). Magnetic torques on T Tauri stars: Accreting versus non-accreting systems. Astronomy and Astrophysics Panel Reports, 643:A129.[Passos, 2012] Passos, D. (2012). A simple but powerful model of the solar cycle.[Petrie and Heard, 1970] Petrie, R. M. and Heard, J. F. (1970). The radial velocities and luminosities of 77 stars in the field of the alpha Persei cluster. Publications of the Dominion Astrophysical Observatory Victoria, 13(13):329–346. [Pichardo et al., 2005] Pichardo, B., Sparke, L. S., and Aguilar, L. A. (2005). Circumste- llar and circumbinary discs in eccentric stellar binaries. Monthly Notices of the Royal Astronomical Society, 359(2):521–530.[Pinz´on, 2006] Pinz´on, G. (2006). Acres¸c˜ao e momento angular em estrelas jovens de baixa massa. PhD thesis, Minist´erio de Ciˆencia y Tecnologia, Observatorio Nacional.[Restrepo, 2012] Restrepo, O. (2012). estudio de las tasas de acreci´on para una muestra de estrellas t tauri clasicas en el O´ptico. Master’s thesis, Universidad Nacional de Colombia.[Rucinski and Krautter, 1983] Rucinski, S. M. and Krautter, J. (1983). TW Hya : a T Tauri star far from any dark cloud. Astronomy and Astrophysics Panel Reports, 121:217–225.[Sadeghi Ardestani et al., 2017] Sadeghi Ardestani, L., Guillot, T., and Morel, P. (2017). A semi-empirical model for magnetic braking of solar-type stars. Monthly Notices of the Royal Astronomical Society, 472(3):2590–2607.[Schatzman, 1962] Schatzman, E. (1962). A theory of the role of magnetic activity during star formation. Annales d’Astrophysique, 25:18.[Schober et al., 2012] Schober, J., Schleicher, D., Bovino, S., and Klessen, R. S. (2012). Small-scale dynamo at low magnetic Prandtl numbers. Physical Review E, 86(6):066412.[Scholz, 2004] Scholz, A. (2004). The rotation of very low mass objects. PhD thesis, Thue- ringer Landessternwarte, Sternwarte 5, D-07778 Tautenburg, Germany.[Scholz et al., 2007] Scholz, A., Coffey, J., Brandeker, A., and Jayawardhana, R. (2007). Ro- tation and Activity of Pre-Main-Sequence Stars. The Astrophysical Journal, 662(2):1254– 1267.[Shibata and Kaburaki, 1985] Shibata, S. and Kaburaki, O. (1985). A Self-Consistent Mo- del of the Magnetosphere with Centrifugal Wind - Part One. Applied Surface Science, 108(1):203–217.[Shu et al., 1994] Shu, F., Najita, J., Ostriker, E., Wilkin, F., Ruden, S., and Lizano, S. (1994). Magnetocentrifugally Driven Flows from Young Stars and Disks. I. A Generalized Model. 429:781.[Siess et al., 2000] Siess, L., Dufour, E., and Forestini, M. (2000). An internet server for pre- main sequence tracks of low- and intermediate-mass stars. Astronomy and Astrophysics Panel Reports, 358:593–599.[Siess and Forestini, 1996] Siess, L. and Forestini, M. (1996). Physics of accretion onto young stars. I. Parametric models. , 308:472–480.[Skumanich, 1972] Skumanich, A. (1972). Time Scales for Ca II Emission Decay, Rotational Braking, and Lithium Depletion. The Astrophysical Journal, 171:565.[Smith and Terrile, 1984] Smith, B. A. and Terrile, R. J. (1984). A Circumstellar Disk around β Pictoris. Science, 226(4681):1421–1424.[Society, 1832] Society, T. R. (1832). Actas de la royal society. urlhttps://royalsocietypublishing.org/journal/rspa.[Soderblom, 1982a] Soderblom, D. R. (1982a). Rotation in G and K dwarfs. SAO Special Report, 392:197–198.[Soderblom, 1982b] Soderblom, D. R. (1982b). Rotational studies of late-type stars. I. Ro- tational velocities of solar-type stars. The Astrophysical Journal, 263:239–251.[Soderblom et al., 1995] Soderblom, D. R., Jones, B. F., Stauffer, J. R., and Chaboyer, B. (1995). The Evolution of the Lithium Abundances of Solar-Type Stars.V. K Dwarfs in the Hyades. The Astrophysical Journal, 110:729.[Soderblom et al., 1983] Soderblom, D. R., Jones, B. F., and Walker, M. F. (1983). Rapid rotation among Pleiades K dwarfs. 274:L37–L41.[Spada, 2010] Spada, F.; Lanzafame, A. C. L. A. F. (2010). A semi-analytic approach to angular momentum transport in stellar radiative interiors. Monthly Notices of the Royal Astronomical Society, 404:641–660.[Stahler, 1980] Stahler, S. W. (1980). Protostars: Their structure and evolution. [Stahler and Palla, 2004] Stahler, S. W. and Palla, F. (2004). The Formation of Stars.[Stauffer and Hartmann, 1987] Stauffer, J. R. and Hartmann, L. W. (1987). The Distri- bution of Rotational Velocities for Low-Mass Stars in the Pleiades. The Astrophysical Journal, 318:337.[Stauffer et al., 1987] Stauffer, J. R., Hartmann, L. W., and Latham, D. W. (1987). Rota- tional Velocities of Low-Mass Stars in the Hyades. 320:L51.[Sung, 1974] Sung, C.-H. (1974). Asymptotic Formulation of a Differentially Rotating Star with Small Dissipation. Applied Surface Science, 26(2):305–317.[Tambovtseva, 2018] Tambovtseva, L. (2018). Revealing the Circumstellar Environment of the Herbig Be Star VB Ser by Emission Line Modelling. In Take a Closer Look, page 111.[Tassoul and Tassoul, 1995] Tassoul, M. and Tassoul, J.-L. (1995). Meridional Circulation in Rotating Stars. XI. Single-Cell Pattern versus Double-Cell Pattern. The Astrophysical Journal, 440:789. [Tomczyk et al., 1996] Tomczyk, S., Schou, J., and Thompson, M. J. (1996). Measurement of the Rotation Rate in the Deep Solar Interior. In American Astronomical Society Meeting Abstracts #188, volume 188 of American Astronomical Society Meeting Abstracts, page 69.03.[Torres et al., 2003] Torres, C. A. O., Quast, G. R., de La Reza, R., da Silva, L., Melo, C. H. F., and Sterzik, M. (2003). SACY - a Search for Associations Containing Young stars, volume 299, page 83.[Tout and Pringle, 1992] Tout, C. A. and Pringle, J. E. (1992). Accretion disc viscosity: a simple model for a magnetic dynamo. Monthly Notices of the Royal Astronomical Society, 259:604–612.[van Leeuwen et al., 1991] van Leeuwen, F., Penston, M., Evans, D. W., and Ramamani, N. (1991). HIPPARCOS produces first parallaxes. GEMINI Newsletter Royal Greenwich Observatory, 31:6–7.[Venuti, 2020] Venuti, L. (2020). Dynamics of star-disk interaction processes in young, low- mass stars as seen from space. In Neiner, C., Weiss, W. W., Baade, D., Griffin, R. E., Lovekin, C. C., and Moffat, A. F. J., editors, Stars and their Variability Observed from Space, pages 409–414.[Vidotto, 2014] Vidotto, A. A. (2014). Incorporating magnetic field observations in wind models of low-mass stars. ASTRA Proceedings, 1(1):19–22.[Vogel and Kuhi, 1981] Vogel, S. N. and Kuhi, L. V. (1981). Rotational velocities of pre- main-sequence stars. The Astrophysical Journal, 245:960–976.[Weber and Davis, 1970] Weber, E. J. and Davis, L., J. (1970). The effect of viscosity and anisotropy in the pressure on the azimuthal motion of the solar wind. Journal of Geophy- sical Research, 75(13):2419.[Weber and Davis, 1967] Weber, E. J. and Davis, Leverett, J. (1967). The Angular Momen- tum of the Solar Wind. The Astrophysical Journal, 148:217–227.[Williams et al., 1999] Williams, D., Clary, D. C., Farebrother, A., Fisher, A., Gingell, J. M., Jackman, R., Mason, N., Meijer, A., Perry, J., Price, S. D., Rawlings, J. M. C., and Williams, D. E. (1999). The energetics and efficiency of H 2 formation on surfaces of interstellar grain mimics. In Combes, F. and Pineau des Forˆets, G., editors, H2 in Space, page E.13.[Woitke et al., 2019] Woitke, P., Kamp, I., Antonellini, S., Anthonioz, F., Baldovin- Saveedra, C., Carmona, A., Dionatos, O., Dominik, C., Greaves, J., Gu¨del, M., Ilee, J. D., Liebhardt, A., Menard, F., Min, M., Pinte, C., Rab, C., Rigon, L., Thi, W. F., Thureau, N., and Waters, L. B. F. M. (2019). Consistent Dust and Gas Models for Protoplanetary Disks. III. Models for Selected Objects from the FP7 DIANA Project. pasp, 131(1000):064301.[Wolff et al., 2004] Wolff, S. C., Strom, S. E., and Hillenbrand, L. A. (2004). The Angular Momentum Evolution of 0.1-10 Msolar Stars from the Birth Line to the Main Sequence. The Astrophysical Journal, 601(2):979–999.[Xing, ] Xing, L.-F.; Xing, Q.-F. Lithium abundances of nearby young solar-type stars based on opticalhigh-resolution spectroscopy.[Xing, 2012a] Xing, Li-Feng; Zhao, S.-Y. Z. X.-D. (2012a). Lithium abundances of 21 solar- type stars near the sun. Astronomy & Astrophysics, 537:1–6.[Xing, 2012b] Xing, L.; Zhao, S. Z.-X. (2012b). Lithium abundances of 21 solar-type stars near the sun. 17:537–541.[Yi, 1994] Yi, I. (1994). Magnetic Braking in Spin Evolution of Magnetized T Tauri Stars. The Astrophysical Journal, 428:760.[Zahn et al., 1997] Zahn, J. P., Talon, S., and Matias, J. (1997). Angular momentum trans- port by internal waves in the solar interior. Astronomy and Astrophysics Panel Reports, 322:320–328.[Zhan et al., 1996] Zhan, Q., Manson, A. H., and Meek, C. E. (1996). The impact of gaps and spectral methods on the spectral slope of the middle atmospheric wind. Journal of Atmospheric and Terrestrial Physics, 58:1329–1336.[Zolcinski et al., 1982a] Zolcinski, M. C., Kay, L., Antiochos, S., Stern, R., and Walker, A. B. C. (1982a). Progress report of an IUE survey of the Hyades star cluster. In Kondo, Y., editor, NASA Conference Publication, volume 2238 of NASA Conference Publication, pages 239–242.[Zolcinski et al., 1982b] Zolcinski, M. C. S., Antiochos, S. K., Stern, R. A., and Walker, A. B. C. (1982b). International Ultraviolet Explorer observations of hyades stars. The Astrophysical Journal, 258:177–185.[Zuckerman and Song, 2004] Zuckerman, B. and Song, I. (2004). Young Stars Near the Sun. Annual review of astronomy and astrophysics, 42(1):685–721.[Zuckerman et al., 2001] Zuckerman, B., Song, I., Bessell, M. S., and Webb, R. A. (2001). The β Pictoris Moving Group. 562(1):L87–L90.[Zuckerman and Webb, 2000] Zuckerman, B. and Webb, R. A. (2000). Identification of a Nearby Stellar Association in theHipparcos Catalog: Implications for Recent, Local Star Formation. The Astrophysical Journal, 535(2):959–964.EspecializadaLICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79906/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51ORIGINALUn modelo de rotación antes de la secuencia principal.pdfUn modelo de rotación antes de la secuencia principal.pdfTesis de Maestría en Astronomíaapplication/pdf8774266https://repositorio.unal.edu.co/bitstream/unal/79906/2/Un%20modelo%20de%20rotaci%c3%b3n%20antes%20de%20la%20secuencia%20principal.pdfecbd0801396bdcd0153b6dc91d9d3abaMD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.unal.edu.co/bitstream/unal/79906/3/license_rdf4460e5956bc1d1639be9ae6146a50347MD53THUMBNAILUn modelo de rotación antes de la secuencia principal.pdf.jpgUn modelo de rotación antes de la secuencia principal.pdf.jpgGenerated Thumbnailimage/jpeg4064https://repositorio.unal.edu.co/bitstream/unal/79906/4/Un%20modelo%20de%20rotaci%c3%b3n%20antes%20de%20la%20secuencia%20principal.pdf.jpg626ae5a0f2176ac908a248f6a10fc6f9MD54unal/79906oai:repositorio.unal.edu.co:unal/799062023-07-25 23:03:34.423Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==