Automorfismos de polinomios cuánticos torcidos
En este trabajo estudiamos los automorfismos de extensiones PBW torcidas y polinomios cuánticos torcidos. Usando el trabajo de Artamonov como referencia se obtiene el resultado principal sobre automorfismos para extensiones PBW torcidas genéricas y polinomios cuánticos torcidos genéricos. En general...
- Autores:
-
Venegas Ramírez, César Fernando
- Tipo de recurso:
- Fecha de publicación:
- 2013
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/21923
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/21923
http://bdigital.unal.edu.co/12929/
- Palabra clave:
- 51 Matemáticas / Mathematics
53 Física / Physics
Extensión PBW torcida
Polinomios cuánticos torcidos
Polinomios torcidos iterados
Localización, dominio de Ore
Filltración-graduación
Automorfismos
Endomorfismos
Skew PBW extensions
Skew quantum polynomials
Iterated skew poly-nomials
Localization
Ore domains
Filtered-graded rings
Automorphisms
Endomorp-hisms
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_63149ad8b5114882d440719a94a3bd77 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/21923 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Lezama Serrano, José OswaldoVenegas Ramírez, César Fernando554701bf-718a-4e11-b587-35c05268357a3002019-06-25T19:56:14Z2019-06-25T19:56:14Z2013https://repositorio.unal.edu.co/handle/unal/21923http://bdigital.unal.edu.co/12929/En este trabajo estudiamos los automorfismos de extensiones PBW torcidas y polinomios cuánticos torcidos. Usando el trabajo de Artamonov como referencia se obtiene el resultado principal sobre automorfismos para extensiones PBW torcidas genéricas y polinomios cuánticos torcidos genéricos. En general, si tenemos un endomorphismo sobre una extensión PBW torcida genérica y existen [Fórmula matemática] tal que, el endomorfismo no es cero para estos elementos, y el coeficiente principal es invertible, entonces el endomorfismo actúa sobre cada [Fórmula matemática] como [Fórmula matemática] para algún ai en el anillo de coeficientes. Por supuesto, este resultado es valido para anillos de polinomios cuánticos , con r = 0, tal como muestra Artamonov en su trabajo. Usamos este resultado para dar algunos resultados mas generales para extensiones PBW torcidas usando técnicas de graduación-filtración. Finalmente, usamos localización para caracterizar algunas clase de endomorfismos y automorfismos para extensiones PBW torcidas y polinomios cuánticos torcidos sobre dominios de Ore.Abstract. In this work we study the automorphisms of skew PBW extensions and skew quantum polynomials. We use Artamonov's work as reference for getting the principal results about automorphisms for generic skew PBW extensions and generic skew quantum polynomials. In general, if we have an endomorphism on a generic skew PBW extension and there are some [Mathematical Formula] such that the endomorphism is not zero on this elements and the principal coeficients are invertible, then endomorphism act over [Mathematical Formula] for some ai in the ring of coeficients. Of course, this result is valid for quantum polynomials rings, with r = 0, as such Artamonov shows in his work. We use this for giving some more general results for skew PBW extensions using filtered-graded techniques. Finally, we use localization for characterize some class the endomorphisms and automorphisms for skew PBW extensions and skew quantum polynomials over Ore domains.Maestríaapplication/pdfspaUniversidad Nacional de Colombia Sede Bogotá Facultad de Ciencias Departamento de MatemáticasDepartamento de MatemáticasVenegas Ramírez, César Fernando (2013) Automorfismos de polinomios cuánticos torcidos. Maestría thesis, Universidad Nacional de Colombia.51 Matemáticas / Mathematics53 Física / PhysicsExtensión PBW torcidaPolinomios cuánticos torcidosPolinomios torcidos iteradosLocalización, dominio de OreFilltración-graduaciónAutomorfismosEndomorfismosSkew PBW extensionsSkew quantum polynomialsIterated skew poly-nomialsLocalizationOre domainsFiltered-graded ringsAutomorphismsEndomorp-hismsAutomorfismos de polinomios cuánticos torcidosTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMORIGINALcesarfernandovanegas.2013.pdfapplication/pdf514049https://repositorio.unal.edu.co/bitstream/unal/21923/1/cesarfernandovanegas.2013.pdf582677fcc38544058f62797ac60c8f7bMD51THUMBNAILcesarfernandovanegas.2013.pdf.jpgcesarfernandovanegas.2013.pdf.jpgGenerated Thumbnailimage/jpeg4306https://repositorio.unal.edu.co/bitstream/unal/21923/2/cesarfernandovanegas.2013.pdf.jpg8af2104b0c1730893cf57b4404839712MD52unal/21923oai:repositorio.unal.edu.co:unal/219232022-12-06 19:19:20.659Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |
dc.title.spa.fl_str_mv |
Automorfismos de polinomios cuánticos torcidos |
title |
Automorfismos de polinomios cuánticos torcidos |
spellingShingle |
Automorfismos de polinomios cuánticos torcidos 51 Matemáticas / Mathematics 53 Física / Physics Extensión PBW torcida Polinomios cuánticos torcidos Polinomios torcidos iterados Localización, dominio de Ore Filltración-graduación Automorfismos Endomorfismos Skew PBW extensions Skew quantum polynomials Iterated skew poly-nomials Localization Ore domains Filtered-graded rings Automorphisms Endomorp-hisms |
title_short |
Automorfismos de polinomios cuánticos torcidos |
title_full |
Automorfismos de polinomios cuánticos torcidos |
title_fullStr |
Automorfismos de polinomios cuánticos torcidos |
title_full_unstemmed |
Automorfismos de polinomios cuánticos torcidos |
title_sort |
Automorfismos de polinomios cuánticos torcidos |
dc.creator.fl_str_mv |
Venegas Ramírez, César Fernando |
dc.contributor.author.spa.fl_str_mv |
Venegas Ramírez, César Fernando |
dc.contributor.spa.fl_str_mv |
Lezama Serrano, José Oswaldo |
dc.subject.ddc.spa.fl_str_mv |
51 Matemáticas / Mathematics 53 Física / Physics |
topic |
51 Matemáticas / Mathematics 53 Física / Physics Extensión PBW torcida Polinomios cuánticos torcidos Polinomios torcidos iterados Localización, dominio de Ore Filltración-graduación Automorfismos Endomorfismos Skew PBW extensions Skew quantum polynomials Iterated skew poly-nomials Localization Ore domains Filtered-graded rings Automorphisms Endomorp-hisms |
dc.subject.proposal.spa.fl_str_mv |
Extensión PBW torcida Polinomios cuánticos torcidos Polinomios torcidos iterados Localización, dominio de Ore Filltración-graduación Automorfismos Endomorfismos Skew PBW extensions Skew quantum polynomials Iterated skew poly-nomials Localization Ore domains Filtered-graded rings Automorphisms Endomorp-hisms |
description |
En este trabajo estudiamos los automorfismos de extensiones PBW torcidas y polinomios cuánticos torcidos. Usando el trabajo de Artamonov como referencia se obtiene el resultado principal sobre automorfismos para extensiones PBW torcidas genéricas y polinomios cuánticos torcidos genéricos. En general, si tenemos un endomorphismo sobre una extensión PBW torcida genérica y existen [Fórmula matemática] tal que, el endomorfismo no es cero para estos elementos, y el coeficiente principal es invertible, entonces el endomorfismo actúa sobre cada [Fórmula matemática] como [Fórmula matemática] para algún ai en el anillo de coeficientes. Por supuesto, este resultado es valido para anillos de polinomios cuánticos , con r = 0, tal como muestra Artamonov en su trabajo. Usamos este resultado para dar algunos resultados mas generales para extensiones PBW torcidas usando técnicas de graduación-filtración. Finalmente, usamos localización para caracterizar algunas clase de endomorfismos y automorfismos para extensiones PBW torcidas y polinomios cuánticos torcidos sobre dominios de Ore. |
publishDate |
2013 |
dc.date.issued.spa.fl_str_mv |
2013 |
dc.date.accessioned.spa.fl_str_mv |
2019-06-25T19:56:14Z |
dc.date.available.spa.fl_str_mv |
2019-06-25T19:56:14Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/21923 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/12929/ |
url |
https://repositorio.unal.edu.co/handle/unal/21923 http://bdigital.unal.edu.co/12929/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Sede Bogotá Facultad de Ciencias Departamento de Matemáticas Departamento de Matemáticas |
dc.relation.references.spa.fl_str_mv |
Venegas Ramírez, César Fernando (2013) Automorfismos de polinomios cuánticos torcidos. Maestría thesis, Universidad Nacional de Colombia. |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/21923/1/cesarfernandovanegas.2013.pdf https://repositorio.unal.edu.co/bitstream/unal/21923/2/cesarfernandovanegas.2013.pdf.jpg |
bitstream.checksum.fl_str_mv |
582677fcc38544058f62797ac60c8f7b 8af2104b0c1730893cf57b4404839712 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089532265463808 |