PNN-based Rockburst Prediction Model and Its Applications

Rock burst is one of main engineering geological problems significantly threatening the safety of construction. Prediction of rock burst is always an important issue concerning the safety of workers and equipment in tunnels. In this paper, a novel PNN-based rock burst prediction model is proposed to...

Full description

Autores:
Zhou, Yu
Wang, Tingling
Tipo de recurso:
Article of journal
Fecha de publicación:
2017
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/63577
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/63577
http://bdigital.unal.edu.co/64023/
Palabra clave:
55 Ciencias de la tierra / Earth sciences and geology
Probabilistic neural network (PNN)
Rockburst
Prediction
Red Neuronal Probabilística
fracturamiento de rocas
predicción
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_62d2593a0713a50bdbf8a0b8b192d64c
oai_identifier_str oai:repositorio.unal.edu.co:unal/63577
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv PNN-based Rockburst Prediction Model and Its Applications
title PNN-based Rockburst Prediction Model and Its Applications
spellingShingle PNN-based Rockburst Prediction Model and Its Applications
55 Ciencias de la tierra / Earth sciences and geology
Probabilistic neural network (PNN)
Rockburst
Prediction
Red Neuronal Probabilística
fracturamiento de rocas
predicción
title_short PNN-based Rockburst Prediction Model and Its Applications
title_full PNN-based Rockburst Prediction Model and Its Applications
title_fullStr PNN-based Rockburst Prediction Model and Its Applications
title_full_unstemmed PNN-based Rockburst Prediction Model and Its Applications
title_sort PNN-based Rockburst Prediction Model and Its Applications
dc.creator.fl_str_mv Zhou, Yu
Wang, Tingling
dc.contributor.author.spa.fl_str_mv Zhou, Yu
Wang, Tingling
dc.subject.ddc.spa.fl_str_mv 55 Ciencias de la tierra / Earth sciences and geology
topic 55 Ciencias de la tierra / Earth sciences and geology
Probabilistic neural network (PNN)
Rockburst
Prediction
Red Neuronal Probabilística
fracturamiento de rocas
predicción
dc.subject.proposal.spa.fl_str_mv Probabilistic neural network (PNN)
Rockburst
Prediction
Red Neuronal Probabilística
fracturamiento de rocas
predicción
description Rock burst is one of main engineering geological problems significantly threatening the safety of construction. Prediction of rock burst is always an important issue concerning the safety of workers and equipment in tunnels. In this paper, a novel PNN-based rock burst prediction model is proposed to determine whether rock burst will happen in the underground rock projects and how much the intensity of rock burst is. The probabilistic neural network (PNN) is developed based on Bayesian criteria of multivariate pattern classification. Because PNN has the advantages of low training complexity, high stability, quick convergence, and simple construction, it can be well applied in the prediction of rock burst. Some main control factors, such as rocks’ maximum tangential stress, rocks’ uniaxial compressive strength, rocks’ uniaxial tensile strength, and elastic energy index of rock are chosen as the characteristic vector of PNN. PNN model is obtained through training data sets of rock burst samples which come from underground rock project in domestic and abroad. Other samples are tested with the model. The testing results agree with the practical records. At the same time, two real-world applications are used to verify the proposed method. The results of prediction are same as the results of existing methods, just same as what happened in the scene, which verifies the effectiveness and applicability of our proposed work.
publishDate 2017
dc.date.issued.spa.fl_str_mv 2017-07-01
dc.date.accessioned.spa.fl_str_mv 2019-07-02T21:55:04Z
dc.date.available.spa.fl_str_mv 2019-07-02T21:55:04Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv ISSN: 2339-3459
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/63577
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/64023/
identifier_str_mv ISSN: 2339-3459
url https://repositorio.unal.edu.co/handle/unal/63577
http://bdigital.unal.edu.co/64023/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.spa.fl_str_mv https://revistas.unal.edu.co/index.php/esrj/article/view/65216
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Revistas electrónicas UN Earth Sciences Research Journal
Earth Sciences Research Journal
dc.relation.references.spa.fl_str_mv Zhou, Yu and Wang, Tingling (2017) PNN-based Rockburst Prediction Model and Its Applications. Earth Sciences Research Journal, 21 (3). pp. 141-146. ISSN 2339-3459
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Geociencia
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/63577/1/65216-352569-2-PB.pdf
https://repositorio.unal.edu.co/bitstream/unal/63577/2/65216-352569-2-PB.pdf.jpg
bitstream.checksum.fl_str_mv 46d1c1aeb6f403e78b9cc22f86e564bd
62172f49d1304ddf588c5c17fa287994
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089582858207232
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Zhou, Yu31a5f365-f011-44f5-b096-0ae5906683f4300Wang, Tingling52f69429-6707-40b3-a890-75a1c337e93c3002019-07-02T21:55:04Z2019-07-02T21:55:04Z2017-07-01ISSN: 2339-3459https://repositorio.unal.edu.co/handle/unal/63577http://bdigital.unal.edu.co/64023/Rock burst is one of main engineering geological problems significantly threatening the safety of construction. Prediction of rock burst is always an important issue concerning the safety of workers and equipment in tunnels. In this paper, a novel PNN-based rock burst prediction model is proposed to determine whether rock burst will happen in the underground rock projects and how much the intensity of rock burst is. The probabilistic neural network (PNN) is developed based on Bayesian criteria of multivariate pattern classification. Because PNN has the advantages of low training complexity, high stability, quick convergence, and simple construction, it can be well applied in the prediction of rock burst. Some main control factors, such as rocks’ maximum tangential stress, rocks’ uniaxial compressive strength, rocks’ uniaxial tensile strength, and elastic energy index of rock are chosen as the characteristic vector of PNN. PNN model is obtained through training data sets of rock burst samples which come from underground rock project in domestic and abroad. Other samples are tested with the model. The testing results agree with the practical records. At the same time, two real-world applications are used to verify the proposed method. The results of prediction are same as the results of existing methods, just same as what happened in the scene, which verifies the effectiveness and applicability of our proposed work.El fracturamiento o explosión de rocas es uno de los principales problemas en ingeniería geológica que amenaza significativamente la seguridad de una construcción. La predicción del fracturamiento de rocas es importante para la seguridad de los trabajadores y el equipamiento en túneles. En este artículo se propone un nuevo modelo de predicción de fracturamiento de rocas basado en una red neuronal probabilística (PNN por sus siglas en inglés) para determinar la posible ocurrencia e intensidad de uno de estos eventos en proyectos subterráneos. La PNN se desarrolló con base en un criterio Bayesiano para la clasificación multivariada de patrones. Debido a que la PNN tiene las ventajas de una menor complejidad de adiestramiento, estabilidad, rápida convergencia y simplicidad en su construcción, se puede adecuar en la predicción del fracturamiento de rocas. Algunos factores principales de control, como la fuerza máxima tangencial de rocas, la resistencia de compresión uniaxial, la fuerza de tensión uniaxial, y el índice de energía elástica de las rocas fueron escogidos como los vectores característicos de la PNN. El modelo se obtuvo a través del adiestramiento de datos sobre fracturamiento de rocas en proyectos subterráneos en diferentes localidades. Otras datos también se analizaron con el modelo. Los resultados de la evaluación se ajustan a los registros observados. Simultáneamente, se utilizaron dos aplicaciones prácticas para verificar el método propuesto. Los resultados de la predicción son similares a los de métodos existentes, un factor que además se presentó en las pruebas de campo, lo que demuestra la efectividad y la aplicabilidad de la metodología propuesta.application/pdfspaUniversidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Geocienciahttps://revistas.unal.edu.co/index.php/esrj/article/view/65216Universidad Nacional de Colombia Revistas electrónicas UN Earth Sciences Research JournalEarth Sciences Research JournalZhou, Yu and Wang, Tingling (2017) PNN-based Rockburst Prediction Model and Its Applications. Earth Sciences Research Journal, 21 (3). pp. 141-146. ISSN 2339-345955 Ciencias de la tierra / Earth sciences and geologyProbabilistic neural network (PNN)RockburstPredictionRed Neuronal Probabilísticafracturamiento de rocaspredicciónPNN-based Rockburst Prediction Model and Its ApplicationsArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTORIGINAL65216-352569-2-PB.pdfapplication/pdf1066626https://repositorio.unal.edu.co/bitstream/unal/63577/1/65216-352569-2-PB.pdf46d1c1aeb6f403e78b9cc22f86e564bdMD51THUMBNAIL65216-352569-2-PB.pdf.jpg65216-352569-2-PB.pdf.jpgGenerated Thumbnailimage/jpeg7418https://repositorio.unal.edu.co/bitstream/unal/63577/2/65216-352569-2-PB.pdf.jpg62172f49d1304ddf588c5c17fa287994MD52unal/63577oai:repositorio.unal.edu.co:unal/635772024-04-29 23:11:16.413Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co