Evolución tectónica y metamórfica del complejo raspas (sur oeste de Ecuador)

ilustraciones, mapas, planos

Autores:
Arrieta Prieto, Mayda Catalina
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
OAI Identifier:
oai:repositorio.unal.edu.co:unal/85071
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/85071
https://repositorio.unal.edu.co/
Palabra clave:
Geotectónica
Fallas (geología)
Geology, structural
Faults (geology)
Complejo
Canal de subducción
Metamorfismo
Metamorfismo retrógrado
Eclogitas
Complex
Subduction channel
Metamorphism
Retrograde metamorphism
Eclogites
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_626a2aefad8ed2aafa24f8a63b3264d4
oai_identifier_str oai:repositorio.unal.edu.co:unal/85071
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Evolución tectónica y metamórfica del complejo raspas (sur oeste de Ecuador)
dc.title.translated.eng.fl_str_mv Metmorphic and tectonic evolution of raspas complex (southwestern Ecuador
title Evolución tectónica y metamórfica del complejo raspas (sur oeste de Ecuador)
spellingShingle Evolución tectónica y metamórfica del complejo raspas (sur oeste de Ecuador)
Geotectónica
Fallas (geología)
Geology, structural
Faults (geology)
Complejo
Canal de subducción
Metamorfismo
Metamorfismo retrógrado
Eclogitas
Complex
Subduction channel
Metamorphism
Retrograde metamorphism
Eclogites
title_short Evolución tectónica y metamórfica del complejo raspas (sur oeste de Ecuador)
title_full Evolución tectónica y metamórfica del complejo raspas (sur oeste de Ecuador)
title_fullStr Evolución tectónica y metamórfica del complejo raspas (sur oeste de Ecuador)
title_full_unstemmed Evolución tectónica y metamórfica del complejo raspas (sur oeste de Ecuador)
title_sort Evolución tectónica y metamórfica del complejo raspas (sur oeste de Ecuador)
dc.creator.fl_str_mv Arrieta Prieto, Mayda Catalina
dc.contributor.advisor.none.fl_str_mv Zuluaga Castrillón, Carlos Augusto
Ibáñez Mejía, Mauricio
dc.contributor.author.none.fl_str_mv Arrieta Prieto, Mayda Catalina
dc.subject.lemb.spa.fl_str_mv Geotectónica
Fallas (geología)
topic Geotectónica
Fallas (geología)
Geology, structural
Faults (geology)
Complejo
Canal de subducción
Metamorfismo
Metamorfismo retrógrado
Eclogitas
Complex
Subduction channel
Metamorphism
Retrograde metamorphism
Eclogites
dc.subject.lemb.eng.fl_str_mv Geology, structural
Faults (geology)
dc.subject.proposal.spa.fl_str_mv Complejo
Canal de subducción
Metamorfismo
Metamorfismo retrógrado
Eclogitas
dc.subject.proposal.eng.fl_str_mv Complex
Subduction channel
Metamorphism
Retrograde metamorphism
Eclogites
description ilustraciones, mapas, planos
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-12-12T15:49:21Z
dc.date.available.none.fl_str_mv 2023-12-12T15:49:21Z
dc.date.issued.none.fl_str_mv 2023-12
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/85071
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/85071
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.relation.references.spa.fl_str_mv Angel, R. J., Gilio, M., Mazzucchelli, M., & Alvaro, M. (2022). Garnet EoS: a critical review and synthesis. Contributions to Mineralogy and Petrology, 177(5), 1–22. https://doi.org/10.1007/s00410-022-01918-5
Angel, R. J., Mazzucchelli, M. L., Alvaro, M., & Nestola, F. (2017). EosFit-Pinc: A simple GUI for host-inclusion elastic thermobarometry. American Mineralogist, 102(9), 1957–1960. https://doi.org/10.2138/am-2017-6190
Angel, R. J., Mazzucchelli, M. L., Alvaro, M., Nimis, P., & Nestola, F. (2014). Letter. Geobarometry from host-inclusion systems: The role of elastic relaxation. American Mineralogist, 99(10), 2146–2149. https://doi.org/10.2138/am-2014-5047
Angel, R. J., Murri, M., Mihailova, B., & Alvaro, M. (2019). Stress, strain and Raman shifts. Zeitschrift Fur Kristallographie - Crystalline Materials, 234(2), 129–140. https://doi.org/10.1515/zkri-2018-2112
Arculus, R. J., Lapierre, H., & Jaillard, É. (1999). Geochemical window into subduction and accretion processes: Raspas metamorphic complex, Ecuador. Geology, 27(6), 547–550. https://doi.org/10.1130/0091-7613(1999)027<0547:GWISAA>2.3.CO;2
Aspden, J. A., Clarke, M., Jemielita, R., & Litherland, M. (1994). Geological and metal occurrence maps of the southern Cordillera Real and El Oro Metamorphic belts, Ecuador.
Atherton, M. P., & Edmunds, W. M. (1966). An electron microprobe study of some zoned garnets from metamorphic rocks. Earth and Planetary Science Letters, 1(4), 185–193. https://doi.org/10.1016/0012-821X(66)90066-5
Bosch, D., Gabriele, P., Lapierre, H., Malfere, J. L., & Jaillard, E. (2002). Geodynamic significance of the Raspas Metamorphic Complex (SW Ecuador): Geochemical and isotopic constraints. Tectonophysics, 345(1–4), 83–102. https://doi.org/10.1016/S0040-1951(01)00207-4
Castellanos-Alarcón, Ó. M. (2020). Caracterización del metamorfismo de alta presión para eclogitas y esquistos azules, emplazados dentro del Complejo Arquía, en el sector Pijao – Génova (Quindío), flanco oeste, Cordillera Central, Colombia. (Tesis doctoral). Universidad Nacional de Colombia, Bogotá.
Castellanos-Alarcón, O. M., Cedeño Villarreal, K. M., Toro Hernández, R. A., Ríos-Reyes, C. A., Henao-Martínez, J. A., & Zuluaga-Castrillón, C. A. (2022). Crystal-Chemical and Structural Characterization of Omphacite in High-Pressure Eclogites From the Arquía Complex on Southwestern Pijao, Central Cordillera (Colombian Andes). Frontiers in Earth Science, 10(January). https://doi.org/10.3389/feart.2022.694939
CLARK, & PAPIKE JJ. (1968). Crystal-Chemical Characterization of Omphacites. American Mineralogist, 53(5–6), 840–868.
Cloos, M. (1993). Lithospheric bouyancy and collisional orogenesis subduction of continental margins, island arcs and oceanic plateaus (abstract). Geological Society of America, 1993 Annual Meeting, Abstracts with Programms/Meeting Oct. 25 - 28/ 1993 Boston, MA, 25(6), 70–71. https://doi.org/10.1130/0016-7606(1993)105<0715
Duque, P. (1993). Duque, P. (1993). Petrology, metamorphic history and structure of El Oro Ophiolitic Complex, Ecuador. In 2nd Internat. Symp. Andean Geodyn.-ISAG, Oxford 1993 (pp.359-362). ORSTOM Publ Paris.
Essene, E. J., & Fyfe, W. S. (1967). Omphacite in Californian metamorphic rocks. Contributions to Mineralogy and Petrology, 15(1), 1–23. https://doi.org/10.1007/BF01167213
Feininger, T. (1980). Eclogite and related high-pressure regional metamorphic rocks from the andes of ecuador. Journal of Petrology, 21(1), 107–140. https://doi.org/10.1093/petrology/21.1.107
Feininger, T., & Silberman, M. L. (1982). DEPARTMENT OF THE INTERIOR K-Ar GEOCHRONOLOGY OF BASEMENT ROCKS ON THE NORTHERN FLANK OF THE HUANCABAMBA DEFLECTION , ECUADOR This report is preliminary and has not been reviewed for conformity with U . S . Geological Survey editorial standards and strati. U.S. Geological Survey, Open-File Report., 82, 206.
Fisher, G. W. (1975). Petrogenesis of metamorphic rocks. In Geochimica et Cosmochimica Acta (Vol. 39, Issue 9). https://doi.org/10.1016/0016-7037(75)90141-6
Gabriele, P., Ballèvre, M., Jaillard, E., & Hernandez, J. (2004). Garnet-chloritoid-kyanite metapelites from the Raspas Complex (SW Ecuador): a key eclogite-facies assemblage. European Journal of Mineralogy, 15(6), 977–989. https://doi.org/10.1127/0935-1221/2003/0015-0977
Gonzalez, J. P., Mazzucchelli, M. L., Angel, R. J., & Alvaro, M. (2021). Elastic Geobarometry for Anisotropic Inclusions in Anisotropic Host Minerals: Quartz-in-Zircon. Journal of Geophysical Research: Solid Earth, 126(6). https://doi.org/10.1029/2021JB022080
Green, E. C. R., White, R. W., Diener, J. F. A., Powell, R., Holland, T. J. B., & Palin, R. M. (2016). Activity–composition relations for the calculation of partial melting equilibria in metabasic rocks. Journal of Metamorphic Geology, 34(9), 845–869. https://doi.org/10.1111/jmg.12211
Grüneisen, E. (1926). Zustand des festen Körpers. Thermische Eigenschaften Der Stoffe, 1–59. https://doi.org/10.1007/978-3-642-99531-6_1
Holland, T. J. B., & Powell, R. (2011). An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. Journal of Metamorphic Geology, 29(3), 333–383. https://doi.org/10.1111/j.1525-1314.2010.00923.x
Instituto Nacional de Investigación Geológico Minero Metalúrgico. (2017). Hoja geológica Santa Rosa de El Oro, escala 1:100000. Quito.
Janoušek, V., Farrow, C. M., & Erban, V. (2006). Interpretation of whole-rock geochemical data in igneous geochemistry: Introducing Geochemical Data Toolkit (GCDkit). Journal of Petrology, 47(6), 1255–1259. https://doi.org/10.1093/petrology/egl013
John, T., Scherer, E. E., Schenk, V., Herms, P., Halama, R., & Garbe-Schönberg, D. (2010). Subducted seamounts in an eclogite-facies ophiolite sequence: The Andean Raspas Complex, SW Ecuador. Contributions to Mineralogy and Petrology, 159(2), 265–284. https://doi.org/10.1007/s00410-009-0427-0
Kapp, P., Manning, C. E., & Tropper, P. (2009). Phase-equilibrium constraints on titanite and rutile activities in mafic epidote amphibolites and geobarometry using titanite-rutile equilibria. Journal of Metamorphic Geology, 27(7), 509–521. https://doi.org/10.1111/j.1525-1314.2009.00836.x
Klemd, R. (2013). Metasomatism during high-pressure metamorphism: Eclogites and blueschist-facies rocks. In Lecture Notes in Earth System Sciences (Vol. 0, Issue 9783642283932). https://doi.org/10.1007/978-3-642-28394-9_10
Kovács, G., Radovics, B. G., & Tóth, T. M. (2016). Petrologic comparison of the Gyód and Helesfa serpentinite bodies (Tisia Mega Unit, SW Hungary). Journal of Geosciences (Czech Republic), 61(3), 255–263. https://doi.org/10.3190/jgeosci.218
Kronbichler, M., Heister, T., & Bangerth, W. (2012). High accuracy mantle convection simulation through modern numerical methods. Geophysical Journal International, 191(1), 12–29. https://doi.org/10.1111/j.1365-246X.2012.05609.x
Leake, B. E., Woolley, A. R., Birch, W. D., Hawthorne, F. C., Kato, A., Kisch, H. J., Krivovichev, V. G., Petersburg, S., Linthout, R. K., & LAmD, J. (1994). Nomenclature of Amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. Mineralogical Magazine, 61(December 1994), 295–321.
Lifshin, E., & Gauvin, R. (2001). Minimizing Errors in Electron Microprobe Analysis. Microscopy and Microanalysis, 7(2), 168–177. https://doi.org/10.1007/s100050010084
Linghao, Z., Lingsen, Z., Li-e, G. A. O., Mingyue, H. U., & Dongyang, S. U. N. (2005). Rutile to titanite transformation in eclogites and its geochemical consequences : An example from the Sumdo eclogite , Tibet. https://doi.org/10.1111/1755-6724.14919
Mazzucchelli, M. L., Angel, R. J., & Alvaro, M. (2021). EntraPT: An online platform for elastic geothermobarometry. American Mineralogist, 106(5), 830–837. https://doi.org/10.2138/am-2021-7693CCBYNCND
McDonough, W. F., & Sun, S. s. (1995). The composition of the Earth. Chemical Geology, 120(3–4), 223–253. https://doi.org/10.1016/0009-2541(94)00140-4
Morimoto, N. (1989). Nomenclature of pyroxenes. Mineralogical Journal, 14(5), 198-221.
Murri, M., Mazzucchelli, M. L., Campomenosi, N., Korsakov, A. V., Prencipe, M., Mihailova, B. D., Scambelluri, M., Angel, R. J., & Alvaro, M. (2018). Raman elastic geobarometry for anisotropic mineral inclusions. American Mineralogist, 103(11), 1869–1872. https://doi.org/10.2138/am-2018-6625CCBY
Nur, A., Jones, D., & Cox, A. (2016). Continental Accretion : From Oceanic Plateaus to Allochthonous Terranes Author ( s ): Z . Ben-Avraham , A . Nur , D . Jones and A . Cox Published by : American Association for the Advancement of Science Stable URL : http://www.jstor.org/stable/1687004 JST. 213(4503), 47–54.
Pearce, J. A. (2008). Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos, 100(1–4), 14–48. https://doi.org/10.1016/j.lithos.2007.06.016
Powell, R., Holland, T., & Worley, B. (1998). Calculating phase diagrams involving solid solutions via non-linear equations, with examples using THERMOCALC. Journal of Metamorphic Geology, 16(4), 577–588. https://doi.org/10.1111/j.1525-1314.1998.00157.x
Quinquis, M. T. (2014). A numerical study of subduction zone dynamics using linear viscous to thermo-mechanical model setups including (de) hydration processes.
Reed, S. J. B. (2000). Quantitative trace analysis by wavelength-dispersive EPMA. Mikrochimica Acta, 132(2–4), 145–151. https://doi.org/10.1007/s006040050055
Riel, N., Guillot, S., Jaillard, E., Martelat, J. E., Paquette, J. L., Schwartz, S., Goncalves, P., Duclaux, G., Thebaud, N., Lanari, P., Janots, E., & Yuquilema, J. (2013). Metamorphic and geochronogical study of the Triassic El Oro metamorphic complex, Ecuador: Implications for high-temperature metamorphism in a forearc zone. Lithos, 156–159, 41–68. https://doi.org/10.1016/j.lithos.2012.10.005
Riel, Nicolas, Mercier, J., & Weinberg, R. (2016). Convection in a partially molten metasedimentary crust? Insights from the El Oro complex (Ecuador). Geology, 44(1), 31–34. https://doi.org/10.1130/G37208.1
Rollinson, H., & Pease, V. (2021). Using Geochemical Data. Cambridge University Press. https://doi.org/10.1017/9781108777834
Schmidt, C., & Ziemann, M. A. (2000). In-situ Raman spectroscopy of quartz: A pressure sensor for hydrothermal diamond-anvil cell experiments at elevated temperatures. American Mineralogist, 85(11–12), 1725–1734. https://doi.org/10.2138/am-2000-11-1216
Stern, R. J. (2002). Subduction zones. Reviews of Geophysics, 40(4), 3-1-3–38. https://doi.org/10.1029/2001RG000108
Sun, S. S., & McDonough, W. F. (1989). Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society Special Publication, 42(1), 313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
Thomas, J. B., & Spear, F. S. (2018). Experimental study of quartz inclusions in garnet at pressures up to 3.0 GPa: evaluating validity of the quartz-in-garnet inclusion elastic thermobarometer. Contributions to Mineralogy and Petrology, 173(5), 1–14. https://doi.org/10.1007/s00410-018-1469-y
Tomkins, H. S., Powell, R., & Ellis, D. J. (2007). The pressure dependence of the zirconium-in-rutile thermometer. Journal of Metamorphic Geology, 25(6), 703–713. https://doi.org/10.1111/j.1525-1314.2007.00724.x
Turcotte, D., & Schubert, G. (2014). Geodynamics. Cambridge University Press. https://doi.org/10.1017/CBO9780511843877
White, R. W., Powell, R., Holland, T. J. B., Johnson, T. E., & Green, E. C. R. (2014). New mineral activity-composition relations for thermodynamic calculations in metapelitic systems. Journal of Metamorphic Geology, 32(3), 261–286. https://doi.org/10.1111/jmg.12071
Whitney, D. L., & Evans, B. W. (2010). Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1), 185–187. https://doi.org/10.2138/am.2010.3371
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 123 página
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.country.none.fl_str_mv Ecuador
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Geología
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/85071/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/85071/4/1032475459.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/85071/5/1032475459.2023.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
908ffa078b104a9b41b8c43e1a7f11e0
bbdd7d1f111781cd87df1d0a04f178c4
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089443959635968
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Zuluaga Castrillón, Carlos Augusto65d23eccf59d670f845fff00d89e174fIbáñez Mejía, Mauricio6853d871d85449bbb80dc179f9d1d8daArrieta Prieto, Mayda Catalinac145bf8c012eca9d1f9e49ce5deea3882023-12-12T15:49:21Z2023-12-12T15:49:21Z2023-12https://repositorio.unal.edu.co/handle/unal/85071Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, mapas, planosLos complejos de alta Presión que se encuentran a lo largo de la superficie terrestre proporcionan evidencia de los procesos involucrados tanto en la cristalización de las rocas en el canal de subducción como en su exhumación. Dichos procesos son clave para comprender la dinámica y la evolución de las zonas de subducción (por ejemplo, a través de la reconstrucción de trayectorias P-T). El complejo Raspas (suroeste de Ecuador) contiene rocas de alta Presión como eclogitas y esquistos anfibólicos con las asociaciones minerales estables correspondientes a glaucofana + granate + epidota + onfacita + mica blanca + rutilo ± cuarzo ± apatita ± pirita ± calcita. Este complejo se ha relacionado genéticamente con los procesos de acreción y subducción de los montes submarinos, que ocurrieron en América del Sur durante el Jurásico Superior - Cretácico Inferior, y la exhumación del complejo probablemente estuvo relacionada con la dinámica dentro de los canales de subducción. Este trabajo muestra una combinación de nuevas observaciones petrográficas, datos de química de rocas completas y datos de química mineral utilizados para determinar las condiciones metamórficas máximas para las rocas de alta Presión del complejo y para reconstruir las trayectorias P-T. El modelado termodinámico muestra que después del pico de metamorfismo en la facies eclogita (ca. 15.5-21 Kbar y 630 - 700°C) algunas de las rocas del Complejo registraron un evento retrógrado probablemente causado por su exhumación. La interpretación del proceso retrógrado es consistente con los resultados de termometría de zircón en rutilo, barometría elástica de inclusiones cuarzo en granate, modelado PT con múltiples reacciones y la presencia de microestructuras retrógradas como anfíbol reemplazando piroxeno, cloritización de granate, cristalización de plagioclasa y reemplazo de rutilo por titanita. (Texto tomado de la fuente)High-pressure complexes along the Earth's surface provide evidence of the processes involved in both the crystallization of rocks in the subduction channel and its exhumation. Such processes are key to understand the dynamics and evolution of subduction zones (e.g., through reconstruction of P-T trajectories). The Raspas complex (southwestern Ecuador) contains high pressure rocks such as eclogites and amphibolic schists with the mineral assemblages glaucophane + garnet + epidote + omphacite + white mica + rutile ± quartz ± apatite ± pyrite ± calcite stabilized. This complex has been genetically related to accretion and subduction processes of seamounts, which occurred in South America during Late Jurassic - Early Cretaceous, and the exhumation of the complex was probably related to dynamics within subduction channels. This work shows a combination of new petrographic observations, whole-rock chemistry data, and mineral chemistry data used to determine peak metamorphic conditions for the high-pressure rocks of the complex and to reconstruct P-T trajectories. Thermodynamic modelling shows that after peak metamorphism in eclogite facies (ca. 15.5- 21 Kbar and 630 - 700°C) some of the rocks from the Complex recorded a retrograde event probably caused by its exhumation. The interpretation of the retrograde process is consistent with results from zircon in rutile thermometry, quartz in garnet elastic barometry, PT modeling with multiple reactions and the presence of retrograde microstructures such as amphibole replacing pyroxene, garnet chloritization, plagioclase crystallization and rutile replacement by titanite.MaestríaGeoquímica y petrología metamórfica123 páginaapplication/pdfUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - GeologíaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede BogotáEvolución tectónica y metamórfica del complejo raspas (sur oeste de Ecuador)Metmorphic and tectonic evolution of raspas complex (southwestern EcuadorTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMEcuadorAngel, R. J., Gilio, M., Mazzucchelli, M., & Alvaro, M. (2022). Garnet EoS: a critical review and synthesis. Contributions to Mineralogy and Petrology, 177(5), 1–22. https://doi.org/10.1007/s00410-022-01918-5Angel, R. J., Mazzucchelli, M. L., Alvaro, M., & Nestola, F. (2017). EosFit-Pinc: A simple GUI for host-inclusion elastic thermobarometry. American Mineralogist, 102(9), 1957–1960. https://doi.org/10.2138/am-2017-6190Angel, R. J., Mazzucchelli, M. L., Alvaro, M., Nimis, P., & Nestola, F. (2014). Letter. Geobarometry from host-inclusion systems: The role of elastic relaxation. American Mineralogist, 99(10), 2146–2149. https://doi.org/10.2138/am-2014-5047Angel, R. J., Murri, M., Mihailova, B., & Alvaro, M. (2019). Stress, strain and Raman shifts. Zeitschrift Fur Kristallographie - Crystalline Materials, 234(2), 129–140. https://doi.org/10.1515/zkri-2018-2112Arculus, R. J., Lapierre, H., & Jaillard, É. (1999). Geochemical window into subduction and accretion processes: Raspas metamorphic complex, Ecuador. Geology, 27(6), 547–550. https://doi.org/10.1130/0091-7613(1999)027<0547:GWISAA>2.3.CO;2Aspden, J. A., Clarke, M., Jemielita, R., & Litherland, M. (1994). Geological and metal occurrence maps of the southern Cordillera Real and El Oro Metamorphic belts, Ecuador.Atherton, M. P., & Edmunds, W. M. (1966). An electron microprobe study of some zoned garnets from metamorphic rocks. Earth and Planetary Science Letters, 1(4), 185–193. https://doi.org/10.1016/0012-821X(66)90066-5Bosch, D., Gabriele, P., Lapierre, H., Malfere, J. L., & Jaillard, E. (2002). Geodynamic significance of the Raspas Metamorphic Complex (SW Ecuador): Geochemical and isotopic constraints. Tectonophysics, 345(1–4), 83–102. https://doi.org/10.1016/S0040-1951(01)00207-4Castellanos-Alarcón, Ó. M. (2020). Caracterización del metamorfismo de alta presión para eclogitas y esquistos azules, emplazados dentro del Complejo Arquía, en el sector Pijao – Génova (Quindío), flanco oeste, Cordillera Central, Colombia. (Tesis doctoral). Universidad Nacional de Colombia, Bogotá.Castellanos-Alarcón, O. M., Cedeño Villarreal, K. M., Toro Hernández, R. A., Ríos-Reyes, C. A., Henao-Martínez, J. A., & Zuluaga-Castrillón, C. A. (2022). Crystal-Chemical and Structural Characterization of Omphacite in High-Pressure Eclogites From the Arquía Complex on Southwestern Pijao, Central Cordillera (Colombian Andes). Frontiers in Earth Science, 10(January). https://doi.org/10.3389/feart.2022.694939CLARK, & PAPIKE JJ. (1968). Crystal-Chemical Characterization of Omphacites. American Mineralogist, 53(5–6), 840–868.Cloos, M. (1993). Lithospheric bouyancy and collisional orogenesis subduction of continental margins, island arcs and oceanic plateaus (abstract). Geological Society of America, 1993 Annual Meeting, Abstracts with Programms/Meeting Oct. 25 - 28/ 1993 Boston, MA, 25(6), 70–71. https://doi.org/10.1130/0016-7606(1993)105<0715Duque, P. (1993). Duque, P. (1993). Petrology, metamorphic history and structure of El Oro Ophiolitic Complex, Ecuador. In 2nd Internat. Symp. Andean Geodyn.-ISAG, Oxford 1993 (pp.359-362). ORSTOM Publ Paris.Essene, E. J., & Fyfe, W. S. (1967). Omphacite in Californian metamorphic rocks. Contributions to Mineralogy and Petrology, 15(1), 1–23. https://doi.org/10.1007/BF01167213Feininger, T. (1980). Eclogite and related high-pressure regional metamorphic rocks from the andes of ecuador. Journal of Petrology, 21(1), 107–140. https://doi.org/10.1093/petrology/21.1.107Feininger, T., & Silberman, M. L. (1982). DEPARTMENT OF THE INTERIOR K-Ar GEOCHRONOLOGY OF BASEMENT ROCKS ON THE NORTHERN FLANK OF THE HUANCABAMBA DEFLECTION , ECUADOR This report is preliminary and has not been reviewed for conformity with U . S . Geological Survey editorial standards and strati. U.S. Geological Survey, Open-File Report., 82, 206.Fisher, G. W. (1975). Petrogenesis of metamorphic rocks. In Geochimica et Cosmochimica Acta (Vol. 39, Issue 9). https://doi.org/10.1016/0016-7037(75)90141-6Gabriele, P., Ballèvre, M., Jaillard, E., & Hernandez, J. (2004). Garnet-chloritoid-kyanite metapelites from the Raspas Complex (SW Ecuador): a key eclogite-facies assemblage. European Journal of Mineralogy, 15(6), 977–989. https://doi.org/10.1127/0935-1221/2003/0015-0977Gonzalez, J. P., Mazzucchelli, M. L., Angel, R. J., & Alvaro, M. (2021). Elastic Geobarometry for Anisotropic Inclusions in Anisotropic Host Minerals: Quartz-in-Zircon. Journal of Geophysical Research: Solid Earth, 126(6). https://doi.org/10.1029/2021JB022080Green, E. C. R., White, R. W., Diener, J. F. A., Powell, R., Holland, T. J. B., & Palin, R. M. (2016). Activity–composition relations for the calculation of partial melting equilibria in metabasic rocks. Journal of Metamorphic Geology, 34(9), 845–869. https://doi.org/10.1111/jmg.12211Grüneisen, E. (1926). Zustand des festen Körpers. Thermische Eigenschaften Der Stoffe, 1–59. https://doi.org/10.1007/978-3-642-99531-6_1Holland, T. J. B., & Powell, R. (2011). An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. Journal of Metamorphic Geology, 29(3), 333–383. https://doi.org/10.1111/j.1525-1314.2010.00923.xInstituto Nacional de Investigación Geológico Minero Metalúrgico. (2017). Hoja geológica Santa Rosa de El Oro, escala 1:100000. Quito.Janoušek, V., Farrow, C. M., & Erban, V. (2006). Interpretation of whole-rock geochemical data in igneous geochemistry: Introducing Geochemical Data Toolkit (GCDkit). Journal of Petrology, 47(6), 1255–1259. https://doi.org/10.1093/petrology/egl013John, T., Scherer, E. E., Schenk, V., Herms, P., Halama, R., & Garbe-Schönberg, D. (2010). Subducted seamounts in an eclogite-facies ophiolite sequence: The Andean Raspas Complex, SW Ecuador. Contributions to Mineralogy and Petrology, 159(2), 265–284. https://doi.org/10.1007/s00410-009-0427-0Kapp, P., Manning, C. E., & Tropper, P. (2009). Phase-equilibrium constraints on titanite and rutile activities in mafic epidote amphibolites and geobarometry using titanite-rutile equilibria. Journal of Metamorphic Geology, 27(7), 509–521. https://doi.org/10.1111/j.1525-1314.2009.00836.xKlemd, R. (2013). Metasomatism during high-pressure metamorphism: Eclogites and blueschist-facies rocks. In Lecture Notes in Earth System Sciences (Vol. 0, Issue 9783642283932). https://doi.org/10.1007/978-3-642-28394-9_10Kovács, G., Radovics, B. G., & Tóth, T. M. (2016). Petrologic comparison of the Gyód and Helesfa serpentinite bodies (Tisia Mega Unit, SW Hungary). Journal of Geosciences (Czech Republic), 61(3), 255–263. https://doi.org/10.3190/jgeosci.218Kronbichler, M., Heister, T., & Bangerth, W. (2012). High accuracy mantle convection simulation through modern numerical methods. Geophysical Journal International, 191(1), 12–29. https://doi.org/10.1111/j.1365-246X.2012.05609.xLeake, B. E., Woolley, A. R., Birch, W. D., Hawthorne, F. C., Kato, A., Kisch, H. J., Krivovichev, V. G., Petersburg, S., Linthout, R. K., & LAmD, J. (1994). Nomenclature of Amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. Mineralogical Magazine, 61(December 1994), 295–321.Lifshin, E., & Gauvin, R. (2001). Minimizing Errors in Electron Microprobe Analysis. Microscopy and Microanalysis, 7(2), 168–177. https://doi.org/10.1007/s100050010084Linghao, Z., Lingsen, Z., Li-e, G. A. O., Mingyue, H. U., & Dongyang, S. U. N. (2005). Rutile to titanite transformation in eclogites and its geochemical consequences : An example from the Sumdo eclogite , Tibet. https://doi.org/10.1111/1755-6724.14919Mazzucchelli, M. L., Angel, R. J., & Alvaro, M. (2021). EntraPT: An online platform for elastic geothermobarometry. American Mineralogist, 106(5), 830–837. https://doi.org/10.2138/am-2021-7693CCBYNCNDMcDonough, W. F., & Sun, S. s. (1995). The composition of the Earth. Chemical Geology, 120(3–4), 223–253. https://doi.org/10.1016/0009-2541(94)00140-4Morimoto, N. (1989). Nomenclature of pyroxenes. Mineralogical Journal, 14(5), 198-221.Murri, M., Mazzucchelli, M. L., Campomenosi, N., Korsakov, A. V., Prencipe, M., Mihailova, B. D., Scambelluri, M., Angel, R. J., & Alvaro, M. (2018). Raman elastic geobarometry for anisotropic mineral inclusions. American Mineralogist, 103(11), 1869–1872. https://doi.org/10.2138/am-2018-6625CCBYNur, A., Jones, D., & Cox, A. (2016). Continental Accretion : From Oceanic Plateaus to Allochthonous Terranes Author ( s ): Z . Ben-Avraham , A . Nur , D . Jones and A . Cox Published by : American Association for the Advancement of Science Stable URL : http://www.jstor.org/stable/1687004 JST. 213(4503), 47–54.Pearce, J. A. (2008). Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos, 100(1–4), 14–48. https://doi.org/10.1016/j.lithos.2007.06.016Powell, R., Holland, T., & Worley, B. (1998). Calculating phase diagrams involving solid solutions via non-linear equations, with examples using THERMOCALC. Journal of Metamorphic Geology, 16(4), 577–588. https://doi.org/10.1111/j.1525-1314.1998.00157.xQuinquis, M. T. (2014). A numerical study of subduction zone dynamics using linear viscous to thermo-mechanical model setups including (de) hydration processes.Reed, S. J. B. (2000). Quantitative trace analysis by wavelength-dispersive EPMA. Mikrochimica Acta, 132(2–4), 145–151. https://doi.org/10.1007/s006040050055Riel, N., Guillot, S., Jaillard, E., Martelat, J. E., Paquette, J. L., Schwartz, S., Goncalves, P., Duclaux, G., Thebaud, N., Lanari, P., Janots, E., & Yuquilema, J. (2013). Metamorphic and geochronogical study of the Triassic El Oro metamorphic complex, Ecuador: Implications for high-temperature metamorphism in a forearc zone. Lithos, 156–159, 41–68. https://doi.org/10.1016/j.lithos.2012.10.005Riel, Nicolas, Mercier, J., & Weinberg, R. (2016). Convection in a partially molten metasedimentary crust? Insights from the El Oro complex (Ecuador). Geology, 44(1), 31–34. https://doi.org/10.1130/G37208.1Rollinson, H., & Pease, V. (2021). Using Geochemical Data. Cambridge University Press. https://doi.org/10.1017/9781108777834Schmidt, C., & Ziemann, M. A. (2000). In-situ Raman spectroscopy of quartz: A pressure sensor for hydrothermal diamond-anvil cell experiments at elevated temperatures. American Mineralogist, 85(11–12), 1725–1734. https://doi.org/10.2138/am-2000-11-1216Stern, R. J. (2002). Subduction zones. Reviews of Geophysics, 40(4), 3-1-3–38. https://doi.org/10.1029/2001RG000108Sun, S. S., & McDonough, W. F. (1989). Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society Special Publication, 42(1), 313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19Thomas, J. B., & Spear, F. S. (2018). Experimental study of quartz inclusions in garnet at pressures up to 3.0 GPa: evaluating validity of the quartz-in-garnet inclusion elastic thermobarometer. Contributions to Mineralogy and Petrology, 173(5), 1–14. https://doi.org/10.1007/s00410-018-1469-yTomkins, H. S., Powell, R., & Ellis, D. J. (2007). The pressure dependence of the zirconium-in-rutile thermometer. Journal of Metamorphic Geology, 25(6), 703–713. https://doi.org/10.1111/j.1525-1314.2007.00724.xTurcotte, D., & Schubert, G. (2014). Geodynamics. Cambridge University Press. https://doi.org/10.1017/CBO9780511843877White, R. W., Powell, R., Holland, T. J. B., Johnson, T. E., & Green, E. C. R. (2014). New mineral activity-composition relations for thermodynamic calculations in metapelitic systems. Journal of Metamorphic Geology, 32(3), 261–286. https://doi.org/10.1111/jmg.12071Whitney, D. L., & Evans, B. W. (2010). Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1), 185–187. https://doi.org/10.2138/am.2010.3371GeotectónicaFallas (geología)Geology, structuralFaults (geology)ComplejoCanal de subducciónMetamorfismoMetamorfismo retrógradoEclogitasComplexSubduction channelMetamorphismRetrograde metamorphismEclogitesLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85071/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1032475459.2023.pdf1032475459.2023.pdfTesis de Maestría en Ciencias - Geologíaapplication/pdf14214682https://repositorio.unal.edu.co/bitstream/unal/85071/4/1032475459.2023.pdf908ffa078b104a9b41b8c43e1a7f11e0MD54THUMBNAIL1032475459.2023.pdf.jpg1032475459.2023.pdf.jpgGenerated Thumbnailimage/jpeg4473https://repositorio.unal.edu.co/bitstream/unal/85071/5/1032475459.2023.pdf.jpgbbdd7d1f111781cd87df1d0a04f178c4MD55unal/85071oai:repositorio.unal.edu.co:unal/850712023-12-12 23:03:56.153Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=