Detección molecular y limpieza de virus en material de siembra de Solanum tuberosum y S. phureja
ilustraciones, tablas
- Autores:
-
García Torres, Andrea Stefania
- Tipo de recurso:
- Fecha de publicación:
- 2022
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/82244
- Palabra clave:
- 570 - Biología::575 - Partes específicas de y sistemas fisiológicos en plantas
630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetales
630 - Agricultura y tecnologías relacionadas::633 - Cultivos de campo y de plantación
Virología agrícola
Papa - Enfermedades y plagas
Papa - Cultivo
Cultivo in vitro
Certificación de semilla
Secuenciación de alto rendimiento
Virología vegetal
Papa (Solanum tuberosum y S. phureja)
qPCR
High-throughput sequencing
Plant virology
Seed certification
Solanaceae
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_6236a69562ffc4bd36ec19536e7b65b3 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/82244 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Detección molecular y limpieza de virus en material de siembra de Solanum tuberosum y S. phureja |
dc.title.translated.eng.fl_str_mv |
Molecular detection and characterization of viruses and development of in vitro virus removal methods in Solanum tuberosum and S. phureja |
title |
Detección molecular y limpieza de virus en material de siembra de Solanum tuberosum y S. phureja |
spellingShingle |
Detección molecular y limpieza de virus en material de siembra de Solanum tuberosum y S. phureja 570 - Biología::575 - Partes específicas de y sistemas fisiológicos en plantas 630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetales 630 - Agricultura y tecnologías relacionadas::633 - Cultivos de campo y de plantación Virología agrícola Papa - Enfermedades y plagas Papa - Cultivo Cultivo in vitro Certificación de semilla Secuenciación de alto rendimiento Virología vegetal Papa (Solanum tuberosum y S. phureja) qPCR High-throughput sequencing Plant virology Seed certification Solanaceae |
title_short |
Detección molecular y limpieza de virus en material de siembra de Solanum tuberosum y S. phureja |
title_full |
Detección molecular y limpieza de virus en material de siembra de Solanum tuberosum y S. phureja |
title_fullStr |
Detección molecular y limpieza de virus en material de siembra de Solanum tuberosum y S. phureja |
title_full_unstemmed |
Detección molecular y limpieza de virus en material de siembra de Solanum tuberosum y S. phureja |
title_sort |
Detección molecular y limpieza de virus en material de siembra de Solanum tuberosum y S. phureja |
dc.creator.fl_str_mv |
García Torres, Andrea Stefania |
dc.contributor.advisor.none.fl_str_mv |
Hoyos Sánchez, Rodrigo Alberto Gutiérrez Sánchez, Pablo Andrés |
dc.contributor.author.none.fl_str_mv |
García Torres, Andrea Stefania |
dc.contributor.educationalvalidator.none.fl_str_mv |
Marìn Montoya, Mauricio Alejandro Correa Londoño, Guillermo Antonio |
dc.contributor.researchgroup.spa.fl_str_mv |
Biotecnología Microbiana Biotecnología Vegetal Unalmed Cib |
dc.subject.ddc.spa.fl_str_mv |
570 - Biología::575 - Partes específicas de y sistemas fisiológicos en plantas 630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetales 630 - Agricultura y tecnologías relacionadas::633 - Cultivos de campo y de plantación |
topic |
570 - Biología::575 - Partes específicas de y sistemas fisiológicos en plantas 630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetales 630 - Agricultura y tecnologías relacionadas::633 - Cultivos de campo y de plantación Virología agrícola Papa - Enfermedades y plagas Papa - Cultivo Cultivo in vitro Certificación de semilla Secuenciación de alto rendimiento Virología vegetal Papa (Solanum tuberosum y S. phureja) qPCR High-throughput sequencing Plant virology Seed certification Solanaceae |
dc.subject.lemb.none.fl_str_mv |
Virología agrícola Papa - Enfermedades y plagas Papa - Cultivo Cultivo in vitro |
dc.subject.proposal.spa.fl_str_mv |
Certificación de semilla Secuenciación de alto rendimiento Virología vegetal Papa (Solanum tuberosum y S. phureja) |
dc.subject.proposal.eng.fl_str_mv |
qPCR High-throughput sequencing Plant virology Seed certification |
dc.subject.proposal.other.fl_str_mv |
Solanaceae |
description |
ilustraciones, tablas |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-09-02T21:32:26Z |
dc.date.available.none.fl_str_mv |
2022-09-02T21:32:26Z |
dc.date.issued.none.fl_str_mv |
2022-08-20 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/82244 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/82244 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Abdelnour, A. y Escalant, J. (1994). Conceptos básicos del cultivo de tejidos vegetales. Turrialba: CATIE. Adolf, B., Andrade-Piedra, J., Molina, F. B., Przetakiewicz, J., Hausladen, H., Kromann, P., Lees, A., Lindqvist-Kreuze, H., Perez, W. y Secor, G. (2020). Fungal, oomycete, and plasmodiophorid diseases of potato. Campos, H. y Ortiz, O. (Ed). The potato crop. Its agricultural, nutritional and social Contribution to Humankind. (pp. 307-350). International Potato Center. Springer. https://doi.org/10.1007/978-94-011-2340-2 Agronet. (2019). Área cosechada, producción y rendimiento de Papa, 2006-2019. Recuperado el 5 de julio de 2021 de https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1 Agronet. (2020). Cultivos de papa son más productivos en altitudes medias. Recuperado el 5 de julio de 2021 de https://www.agronet.gov.co/Noticias/Paginas/Cultivos-de-papa-son-m%C3%A1s-productivos-en-altitudes-medias.aspx Agrosavia. (2022). Minitubérculos (minis) de papa. Recuperado el 24 de abril de 2022 de https://www.agrosavia.co/productos-y-servicios/oferta-tecnologica/0496-minituberculos-minis-de-papa Aguirre, A. y Martínez, G. (2001). Obtención de plantas sanas de papa, Solanum tuberosum L. Variedad Salentuna, a través de las técnicas de termoterapia y cultivo de meristemas in vitro. Revista Facultad Nacional de Agronomía Medellín, 54,1351–1366. Alcántara, J., Castilla, M. y Sánchez, R. (2017). Importancia de los cultivos vegetales in vitro para establecer bancos de germoplasma y su uso en investigación. Biociencias, 1, 71-83. AlMaarri, K., Massa, R. y AlBiski, F. (2012). Evaluation of some therapies and meristem culture to eliminate Potato Y potyvirus from infected potato plants. Plant Biotechnology, 29, 237-243. https://doi.org/10.5511/plantbiotechnology.12.0215a Almasi, M., Jafary, H., Moradi, A., Zand, N., Ojaghkandi, M. y Aghaei, S. (2013). Detection of Coat Protein Gene of the Potato Leafroll Virus by Reverse Transcription Loop-Mediated Isothermal Amplification. Journal of Plant Pathology & Microbiology, 4, 1. https://doi.org/10.4172/2157-7471.1000156 Altschul, S. F., Gish, W., Miller, W., Myers, E. W. y Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2 Andrade, R. (2017). Agricultura - El cultivo de la patata. Infoagro. Recuperado el 15 de abril de 2020 de http://www.infoagro.com/hortalizas/patata.htm Arsenic, R., Treue, D., Lehmann, A., Hummel, M., Dietel, M., Denkert, C. y Budczies, J. (2015). Comparison of targeted next-generation sequencing and Sanger sequencing for the detection of PIK3CA mutations in breast cancer. BMC Clinical Pathology, 15, 1–9. https://doi.org/10.1186/s12907-015-0020-6. Aseel, D. G. y Hafez, E. E. (2017). The comparison of antibodies raised against PLRV with two different approaches - viral particles purification and recombinant production of CP. Journal of Plant Pathology & Microbiology, 8, 5. https://doi.org/10.4172/2157-7471.1000407 Avrahami-Moyal, L., Tam, Y., Brumin, M., Prakash, S., Leibman, D., Pearlsman, M., Bornstein, M., Sela, N., Zeidan, M., Dar, Z., Zig, U., Gal-On, A. y Gaba, V. (2017). Detection of Potato virus Y in industrial quantities of seed potatoes by TaqMan Real Time PCR. Phytoparasitica, 45, 591-598. https://doi.org/10.1007/s12600-017-0612-z. Azcón-Bieto, J. y Talón, M. (2013). Fundamentos de fisiología vegetal. (2a ed.). Barcelona. Bahner, L. Lamb, J., Mayo, M. A. y Hay R. T. (1990). Expression of the genome of potato leafroll virus: readthrough of the coat protein termination codon in vivo. Journal of General Virology, 71, 2251-2256. Bains, P. S., Bennypaul, H. S., Lynch, D. R., Kawchuk, L. M. y Schaupmeyer, C. A. (2002). Rhizoctonia disease 66 of potatoes (Rhizoctonia solani): Fungicidal efficacy and cultivar susceptibility. American Journal of Potato Research, 79, 99–106. https://doi.org/10.1007/BF0288151 Bankevich, A., Nurk, S., Antipoy, D., Gurevich, A. A., Dvorkin, M., Kulikov, A., Lesin, V., Nikolenko, S., Pham, S., Prjibelski, A., Pyshkin, A., Sirotkin, A., Vyahhi, N., Tesler, G., Alekseyev, M. A. y Pevzner, P. A. (2012). SPAdes: A new genome assembly algorithm and its applications to Single-Cell Sequencing. Journal of Computational Biology, 19(5), 455-477. https://doi.org/10.1089/cmb.2012.0021 Beemster, A. y Bokx, A. (1987). Survey of properties and symptoms. Bokx, J. A. y Want, J. (Ed). Viruses of potatoes and seed-potato production (2a ed.). (pp. 84-113). Netherland: Wageningen University. https://doi.org/10.1007/bf02357877 Benavides, I. y Pozo, M. (2008). Elaboración de una bebida alcohólica destilada (Vodka) a partir de tres variedades de papa (Solanum tuberosum) utilizando dos tipos de enzima. Universidad Técnica del Norte. http://repositorio.utn.edu.ec/handle/123456789/327 Bhat, A. I. y Rao, G.P. (2020). Characterization of Plant Viruses. Springer Protocols Handbooks. https://link.springer.com/book/10.1007/978-1-0716-0334-5 Birch, P. R. J., Bryan, G., Fenton, B., Gilroy, E. M., Hein, I., Jones, J. T., Prashar, A., Taylor, M., Torrance, L y Toth, I. (2012). Crops that feed the world 8: Potato: Are the trends of increased global production sustainable?. Food Security. 4, 477–508. https://doi.org/10.1007/s12571-012-0220-1. Blanc, S. (2008). Vector transmission of plant viruses. Mahy, B. W.y Van Regenmortel, M. H. (Ed). Desk encyclopedia of plant and fungal Virology. (pp. 35-48). New York: Academic Press. Bokelmann, G. S. y Roest, S. (1983). Plant Regeneration from Protoplasts of Potato (Solarium tuberosum cv. Bintje). Zeitschrift Für Pflanzenphysiologie, 109, 259-265. https://doi.org/10.1016/s0044-328x(83)80228-1. Boonham, N., Kreuze, J., Winter, S., van der Vlugt, R., Bergervoet, J., Tomlinson, J. y Mumford, R. (2014). Methods in virus diagnostics: From ELISA to next generation sequencing. Virus Research, 186, 20-31. https://doi.org/10.1016/j.virusres.2013.12.007 Boratyn, G., Thierry-Mieg, J., Thierry-Mieg, D., Busby, B. y Madden, T. (2019). Magic-BLAST, an accurate RNA-seq aligner for long and short reads. BMC Bioinformatics, 20. https://doi.org/10.1186/s12859-019-2996-x. Braun, C. J. y Hemenway, C. L. (1992). Expression of amino-terminal portions or full-length vira1 replicase genes in transgenic plants confers resistance to Potato Virus X infection. Plant Cell, 4, 735–44. https://doi.org/10.1105/tpc.4.6.735 Brown, J., Pirrung, M. y Mccue, L. (2017). FQC Dashboard: Integrates FastQC results into a web-based, interactive, and extensible FASTQ quality control tool. Bioinformatics, 33, 3137-3139. https://doi.org/10.1093/bioinformatics/btx373 Burlingame, B., Mouillé, B. y Charrondière, R. (2009). Nutrients, bioactive non-nutrients and anti-nutrients in potatoes. Journal of Food Composition and Analysis, 22, 494–502. https://doi.org/10.1016/j.jfca.2009.09.001 Bushmanova, E., Antipov, D., Lapidus, A. y D Prjibelski, A. (2019). rnaSPAdes: a de novo transcriptome assembler and its application to RNA-Seq data, GigaScience, 8(9), 1-13. https://doi.org/10.1093/gigascience/giz100 Camacho, C., Coulouris, G., Avagyan, Ma, N., Papadopoulos, J., Bealer, K. y Madden, T. L. (2009). BLAST+: architecture and applications. BMC Bioinformatics, 10(421). https://doi.org/10.1186/1471-2105-10-421 Campos, H. y Ortiz, O. (2020). The potato crop. Its agricultural, nutritional and social Contribution to Humankind. International Potato Center. Springer. https://doi.org/10.1007/978-94-011-2340-2 Carbajal, N. (2018). Termoterapia y cultivo in vitro de ajo (Allium sativum L.) para la eliminación del virus del enanismo amarillo de la cebolla. Tesis Maestría, Universidad Autónoma de Nuevo León. https://doi.org/10.1017/CBO9781107415324.004. Carreño, N., Vargas, A., Bernal, A. J. y Restrepo, S. (2007). Problemas fitopatológicos en especies de la familia Solanaceae causados por los géneros Phytophthora, Alternaria y Ralstonia en Colombia. Una revisión. Agronomía Colombiana, 25(2), 320-329. Casaca, A., Sierra, E., Cruz, J. y Arellano, R. (2005). El cultivo de la papa. Banco Interamericano de Desarrollo, 1–14. http://www.dicta.gob.hn/files/2005,-El-cultivo-de-la-papa,-F.pdf Castillo, A. (2004). Propagación de plantas por cultivo in vitro: una biotecnología que nos acompaña hace mucho tiempo. INIA Las Brujas. Castro, I. y Contreras, A. (2011). Manejo de plagas y enfermedades en el cultivo de la papa. Imprenta Austral.Valdivia. Charkowski, A., Sharma, K., Parker, M., Secor, G. y Elphinstone, J. (2020). Bacterial Diseases of Potato. Campos, H. y Ortiz, O. (Ed). The potato crop. Its agricultural, nutritional and social Contribution to Humankind. (pp. 351-388). International Potato Center. Springer. https://doi.org/10.1007/978-94-011-2340-2 Chaves, S. C., Rodríguez, M. C., Mideros, M. F., Lucca, F., Ñústez, C. E. y Restrepo, S. (2019). Determining whether geographic origin and potato genotypes shape the population structure of Phytophthora infestans in the central region of Colombia. Phytopathology,109(1), 145–154. https://doi.org/10.1094/PHYTO-05-18-0157-R CIP. (2015a). Cómo crecen las papas - International Potato Center. Recuperado el 15 de abril de 2020 de https://cipotato.org/es/lapapa/como-crecen-las-papas/ CIP. (2015b). Dato y cifras de la papa - International Potato Center. Recuperado el 15 de abril de 2020 de https://cipotato.org/es/potato/potato-facts-and-figures/ Cobos, R. M., Becerra–Rozo, W. M. y Castellanos, G. L. (2019). Richness and abundance of the land slugs in four crops of Pamplona, Norte de Santander, Colombia. Bistua: Revista de la Facultad de Ciencias Básicas, 17(2), 229-233. https://doi.org/10.24054/01204211.v2.n2.2019.3538. Costa, T. M., Inoue-Nagata, A. K., Vidal, A. H., Ribeiro, S. G. y Nagata, T. (2020). The recombinant isolate of cucurbit aphid-borne yellows virus form Brazil is a polerovirus transmitted by whiteflies. Plant Pathology, 69(6), 1042-1050. https://doi.org/10.1111/ppa.13186 Cox, B. A. y Jones, R. A. C. (2010). Genetic variability in the coat protein gene of Potato virus X and the current relationship between phylogenetic placement and resistance groupings, Archives of Virology, 155, 1349-1356. https://doi.org/10.1007/s00705-010-0711-3 Crosslin, J. M., Hamlin, L. L., Buchman, J. L. y Munyaneza, J. E. (2011). Transmission of Potato Purple Top Phytoplasma to Potato Tubers and Daughter Plants. American Journal of Potato Research, 88, 339-345. https://doi.org/10.1007/s12230-011-9199-y Cubero, J. (2002). Introducción a la mejora genética vegetal. MundiPrensa. Dalca, A. y Brudno, M. (2010). Genome variation discovery with high-throughput sequencing data. Briefings in bioinformatics, 11(1), 3-14. https://doi.org/10.1093/bib/bbp058 Danci, O., Erdei, L., Vidacs, L., Danci, M., Baciu, A., David, I. y Berbentea, F. (2009) Influence of ribavirin on potato plants regeneration and virus eradication. Journal of Horticulture, Forestry and Biotechnology, 13, 421-425. Duarte, Y., Pino, O., Infante, D., Sánchez, Y., Travieso, C. y Martínez, B. (2013). Efecto in vitro de aceites esenciales sobre Alternaria solani Sorauer. Revista Protección Vegetal, 28(1), 54-59. Duarte-Delgado, D., Narváez-Cuenca, C., Restrepo-Sánchez, L., Kushalappa, A. y Mosquera-Vásquez, T. (2015). Development and validation of a liquid chromatographic method to quantify sucrose, glucose, and fructose in tubers of Solanum tuberosum Group Phureja. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 975, 18-23. https://doi.org/10.1016/j.jchromb.2014.10.039. Escallón, R., Ramírez, M. y Ñústez, C. (2005). Evaluación del potencial de rendimiento y de la resistencia a Phytophthora infestans (Mont. de Bary) en la colección de papas redondas amarillas de la especie Solanum phureja (Juz. et Buk.). Agronomía Colombiana, 23(1), 35-41. Elhiti, M., Stasolla, C. y Wang, A. (2013). Molecular regulation of plant somatic embryogenesis. In Vitro Cellular and Developmental Biology – Plant, 49, 631-642. https://doi.org/10.1007/s11627-013-9547-3. Ellis, D., Salas, A., Chavez, O., Gomez, R. y Anglin, N. (2020). Ex situ conservation of potato [Solanum section Petota (Solanaceae)] genetic resources in Genebanks. Campos, H. y Ortiz, O. (Ed). The potato crop. Its agricultural, nutritional and social Contribution to Humankind. (pp. 109-138). International Potato Center. Springer. https://doi.org/10.1007/978-94-011-2340-2 Estrada, R., Tovar, P. y Dodds, J. H. (1986). Induction of in vitro tubers in a broad range of potato genotypes. Plant Cell Tissue Organ Culture, 7, 3-10. https://doi.org/10.1007/BF00043915 Ewels, P., Magnusson, M., Lundin, S. y Käller, M. (2016). MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics, 32, 3047–3048. https://doi.org/10.1093/bioinformatics/btw354. FAO. (2008a). El mundo de la papa: Producción y consumo. Recuperado el 15 de abril de 2020 de http://www.fao.org/potato-2008/es/mundo/index.html FAO. (2008b). La papa: Cultivo. Recuperado el 17 de abril de 2020 de http://www.fao.org/potato-2008/es/lapapa/cultivo.html. Fedepapa. (2017). Normatividad del Sector de la Papa. Recuperado el 12 de abril de 2020 de https://fedepapa.com/wp-content/uploads/2017/01/Normatividad-del-Sector-de-la-Papa.pdf Fedepapa. (2018). Revista Papa: Una papa bien preparada te alegra, 43:48. Recuperado el 15 de abril de 2020 de https://drive.google.com/file/d/1lcX1XrthQdV6GmAHpX3ErrY3QoJyKBVf/view Fedepapa. (2019). Revista papa: Se trazó la ruta para consolidar la rentabilidad del sector agropecuario, 48, 46–52 Recuperado el 17 de abril del 2020 de https://fedepapa.com/wp-content/uploads/2017/01/REVISTA-48-COMPLETA.pdf FERA. (2017). Potato post-harvest virus testing sample submission form. Recuperado el 20 de noviembre del 2020 de https://www.fera.co.uk/media/wysiwyg/crop_health/Crop_Health_Post-Harvest_Virus_Testing_of_Potato_Tubers_Sample_Submission-2019.pdf Filiz, E. (2020). Emerging Plant Viruses. Ennaji, M. (Ed). Emerging and reemerging viral pathogens. (pp.1041-1062). New York: Academic Press. FNFP. (2006). Informe de gestión 2006, 136. Recuperado el 21 de abril de 2020 de https://fedepapa.com/wpcontent/uploads/2017/01/INFORME-DE-GESTIO%CC%81N-FNFP-ANUAL-2016.pdf FNFP y Fedepapa. (2019a). Informe trimestral de coyuntura económica del subsector papa II trimestre – 2019. Recuperado el 15 de abril de 2020 de https://fedepapa.com/wp-content/uploads/2017/01/Informe-deCoyuntura-2do-trimestre-2019.pdf FNFP y Fedepapa. (2019b). Informe de gestión. Vigencia 2019. Recuperado el 5 de junio de 2021 de https://fedepapa.com/wp-content/uploads/2020/05/INFORME-DE-GESTIO%CC%81N-VIGENCIA-2019.pdf FNFP y Fedepapa. (2020). Boletin regional No. 05. Recuperado el 24 de abril de 2022 de https://fedepapa.com/wp-content/uploads/2021/09/NACIONAL-2020.pdf Forbes, G. A., Charkowski, A., Andrade-Piedra, J., Parker, M. L. y Schulte-Geldermann, E. (2020). Potato seed systems. Campos, H. y Ortiz, O. (Ed). The potato crop. Its agricultural, nutritional and social Contribution to Humankind. (pp. 431-450). International Potato Center. Springer. https://doi.org/10.1007/978-94-011-2340-2 Franco; L. (2006). Producción de plantas in vitro libres de virus CymMV en un híbrido comercial de Cattleya (Orchidaceae) utilizando Ribavirin. Instituto Tecnológico de Costa Rica. Franco-Lara, F., Soto, C. y Guzmán, B. (2009). Detección de los virus PVX, PVS PVY y PLRV en La colección central colombiana de papa por medio de la técnica de Inmunoimpresión (IMI). Facultad de Ciencias Básicas, 5, 130-139. https://doi.org/10.18359/rfcb.2126 Fry, W. (2008). Phytophthora infestans: The plant (and R gene) destroyer. Molecular Plant Pathology, 9, 385-402. https://doi.org/10.1111/j.1364-3703.2007.00465.x Gałązka, A. y Grządziel, J. (2016). The Molecular‐based methods used for studying bacterial diversity in soils contaminated with PAHs (The Review). Larramendy, M. y Soloneski, S. (Ed). Soil contamination – current consequences and further solutions. (pp. 85-101). Intech. http://dx.doi.org/10.5772/64772 Gallo, Y., Sierra, A., Marín, M. y Gutiérrez, P. A. (2021). Prevalencia de cinco virus de ARN en tubérculos-semilla de papa cultivados en Antioquia (Colombia). Biotecnología en el Sector Agropecuario y Agroindustrial, 19(1), 66-78. https://dx.doi.org/10.18684 García, D., Olarte, M., Gutiérrez, P. y Marín, M. (2016). Detección serológica y molecular del Potato virus X (PVX) en tubérculos-semilla de papa (Solanum tuberosum L. y Solanum phureja Juz. & Bukasov) en Antioquia, Colombia. Revista Colombiana de Biotecnología, 18(1), 104-111. https://doi.org/10.15446/rev.colomb.biote.v18n1.51389 George, E. F. (2008). Plant Tissue Culture Procedure – Background. George, E. F., Hall, M. A. y Klerk, G. de (Ed). Plant propagation by tissue culture (3a ed). (pp. 1-28). The Background. The Netherlands. George, E.F. y Debergh, P. C. (2008). Micropropagation: Uses and Methods. George, E. F., Hall, M. A. y Klerk, G. de (Ed). Plant propagation by tissue culture (3a ed.). (pp. 29-64). The Netherlands: Springer. Ghosh, S., Kanakala, S. y Lebedev, G., Kontsedalov, S., Silverman, D., Alon, T., Mor, N., Sela, N., Luria, N., Dombrovsky, A., Mawassi, M., Haviv, S., Czosnek, H. y Ghanim, M. (2019). Transmission of a new polerovirus infecting pepper by the whitefly Bemisia tabaco. Journal of Virology, 93(15), e00488- 19. https://doi.org/0.1128/JVI.00488-19 Gilchrist, E., Soler, J., Merz, U. y Reynaldi, S. (2011). Powdery scab effect on the potato Solanum tuberosum ssp. andigena growth and yield. Tropical Plant Pathology, 36(6), 350-355. https://doi.org/10.1590/s1982-56762011000600002. Giraldo, S., Sierra, A., Ospina, M., Higuita, M., Gallo, Y., Gutiérrez, P. y Marín, M. (2022). Detección y caracterización molecular del potato virus B (PVB) en papa criolla (Solanum phureja) en Antioquia. Acta Biológica Colombiana, 27(2), 258-268. https://doi.org/10.15446/abc.v27n2.89422 Gómez, T. M., López, J. B., Pineda, R., Galindo, L. F., Arango, R. y Morales, J. G. (2012). Cytogenetic characterization of five “Criolla” potato genotypes, Solanum phureja (Juz. et Buk.). Revista Facultad Nacional de Agronomía Medellín, 65(1), 6379-6387. Grabherr, M., Haas, B., Yassour, M., Levin, L., Thompson, D., Amit, I., Diconis, X., Fan, L., Raychowdhury, R., Zeng, Q., Chen, Z., Mauceli, E., Hacohen, N., Gnirke, A., Rhind, N., Di Palma, F., Birren, B., Nusbaum, C., Lindblad-Toh, K., Friedman, N. y Regev, A. (2013). Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nature Biotechnology, 29, 644-652. https://doi.org/10.1038/nbt.1883.Trinity. Green, K., Quintero-Ferrer, A., Chikh-Ali, M., Jones, R. y Karasev, A. (2020). Genetic diversity of nine non-recombinant Potato virus Y isolates from three biological strain groups: historical and geographical insights. Plant Disease, 104(9), 2317-2323. https://doi.org/10.1094/PDIS-05-20-0961-SC Gutiérrez-Sánchez, P., Alzate-Restrepo, J. y Marín-Montoya, M. (2014). Caracterización del viroma de ARN de tejido radical de Solanum phureja mediante pirosecuenciación 454 GS-FLX. Bioagro, 26(2), 89-98. Gutiérrez, P., Rivillas, A., Tejada, D., Giraldo, S., Restrepo, A., Ospina, M, Cadavid, S., Gallo, Y. y Marín, M. (2021). PVDP: A portable open source pipeline for detection of plant viruses in RNAseq data. A case study on potato viruses in Antioquia (Colombia). Physiological and Molecular Plant Pathology, 113, 101604. https://doi.org/10.1016/j.pmpp.2021.101604 Guzmán-Barney, M., Hernández, A. K. y Franco-Lara, L. (2012). Tracking Foliar Symptoms Caused by Tuber-Borne Potato Yellow Vein Virus (PYVV) in Solanum Phureja (Juz et Buk) Cultivar “Criolla Colombia.” American Journal of Potato Research, 90, 84-93. https://doi.org/10.1007/s12230-013-9303-6. Halterman, D., Charkowski, A. y Verchot, J. (2012). Potato viruses and seed certification in the USA to provide healthy propagated tubers. Pest Technology, 6(1), 1-14. Hameed, A., Iqbal, Z., Asad, S. y Mansoor, S. (2014). Detection of multiple potato viruses in the field suggests synergistic interactions among potato viruses in Pakistan. Plant Pathology Journal, 30, 407-415. https://doi.org/10.5423/PPJ.OA.05.2014.0039 Hančinsk, R., Mihálik, D., Mrkvová, M., Candresse, T. y Glasa, M. (2020). Plant Viruses Infecting Solanacea Family Members in the Cultivated and Wild Environments: A Review. Plants, 9(5), 667. https://doi.org/10.3390/plants9050667 Hawkes, J. G. (1990). The potato: Evolution, biodi- versity, and genetic resources. Washington, D.C: Belhaven Press. Hernández, A., y Diaz, H. (2019). Inducción in vitro de callo embriogénico a partir del cultivo de anteras en "papa amarilla" Solanum goniocalyx Juz. & Bukasov (Solanaceae). Arnaldoa, 26(1), 277-286. http://dx.doi.org/10.22497/arnaldoa.261.26111. Huarte, M. y Capezio, S. (2013). Cultivo de papa. Unidad Integrada Balcarce INTA-FCA UNMdP. https://inta.gob.ar/sites/default/files/script-tmp-inta-_huarte_capezio_papa2013.pdf Hull, R. (2009). Comparative Plant Virology (2a ed). New York: Academic Press. https://doi.org/10.1017/CBO9781107415324.004 Hull, R. (2014). Plant Virology (5a ed). New York: Academic Press. ICA. (2011). Manejo fitosanitario del cultivo de la papa. Bogotá. Recuperado el 10 de abril de 2020 de https://www.ica.gov.co/getattachment/b2645c33-d4b4-4d9d-84ac-197c55e7d3d0/Manejo-fitosanitario-del-cultiva-de-la-papa-nbsp;-.aspx ICA. (2015). Resolución 3168 de 2015. Recuperado el 10 de septiembre de 2020 de https://www.ica.gov.co/getattachment/4e8c3698-8fcb-4e42-80e7-a6c7acde9bf8/2015R3168.aspx. ICA. (2017). Plagas exóticas para Colombia en el cultivo de la papa. ISBN 978-9. Recuperado el 10 de septiembre de 2020 de https://www.ica.gov.co/getattachment/294bc210-2562-4ee3-a5dd-152247779f0a/Plagas-exoticas-para-Colombia-en-cultivo-de-papa.aspx ICTV. International Committee on Taxonomy of Viruses. (2014). Recuperado el 15 de abril de 2020 de http://www.ictvonline.org/. ICTV. International Committee on Taxonomy of Viruses. (2020). Recuperado el 22 de agosto de 2021 de https://talk.ictvonline.org/taxonomy/ Jatala, P. (1986). Nematodos Parásitos de la Papa. CIP. Recuperado el 15 de abril de 2020 de https://cursa.ihmc.us/rid=1JL7FNT7R-NPN9Q7-Y6D/Nematodos%20parasitos.CIP.pdf Jeevalatha, A., Kaundal, P., Shandil, R. K., Sharma, N. N., Chakrabarti, S. K., y Singh, B. P. (2013). Complete genome sequence of Potato leafroll virus isolates infecting potato in the different geographical areas of India shows low level genetic diversity. Indian Journal of Virology, 24(2), 199–204. https://doi.org/10.1007/s13337- 013-0138-z Jeffries, C. (1998). Potato FAO/IPGRI Technical guidelines for the safe movement of germplasm No 19. FAO/ IPGRI, 19. Jeong, J.J., Ju, H. J. y Noh, J. A. (2014). Review of Detection Methods for the Plant Viruses. Research in Plant Disease, 20, 173-181. https://doi.org/10.5423/rpd.2014.20.3.173. Jones, R.A.C. (2021). Global Plant Virus Disease Pandemics and Epidemics. Plants 2021, 10, 233. https://doi.org/10.3390/plants10020233 Juyó, D. K., Gerena, H. N., y Mosquera, T. (2011). Evaluación de marcadores moleculares asociados con resistencia a gota (Phytophthora infestans L.) en papas diploides y tetraploides. Revista Colombiana de Biotecnología, 13(2), 51-62. https://revistas.unal.edu.co/index.php/biotecnologia/article/view/27917 Karasev, A., Hu, X., Brown, C., Kerlan, C., Nikolaeva, O., Crosslin, J. y Gray, S. (2011). Genetic diversity of the ordinary strain of Potato virus Y (PVY) and origin of recombinant PVY Strains. Phytopathology, 101(7), 778-785. https://10.1094/PHYTO-10-10-0284 Kchouk, M., Gibrat, J. F. y Elloumi, M. (2017). Generations of sequencing technologies: from first to next generation. Biology and Medicine, 9(3), 1000395. https://doi.org/ 10.4172/0974-8369.1000395 Kerlan, C. (2008). Potato viruses. Mahy, B. W. y Van Regenmortel, M. H. (Ed). Desk encyclopedia of plant and fungal virology, Academic Press, 458-471. Kozlowska-Makulska, A., Guilley, H., Szyndel, M., Beuve, M., Lemaire, O., Herrbach, E. y Bouzoubaa, S. (2010). P0 proteins of European beet-infecting poleroviruses display variable RNA silencing suppression activity. Journal of General Virology, 91, 1082–1091. https://doi.org/10.1099/vir.0.016360-0 Kreuze, J. F., Souza-Dias, J. A. C., Jeevalatha, A., Figueira, A. R., Valkonen, J. P. T. y Jones R. A. C. (2020). Viral diseases in potato. Campos, H. y Ortiz, O. (Ed). The potato crop. Its agricultural, nutritional and social Contribution to Humankind. (pp. 389-431). International Potato Center. Springer. https://doi.org/10.1007/978-94-011-2340-2 Kumar, S., Mishra, S. y Mishra, A. P. (2009). Plant tissue culture: theory and techniques. India: Scientific Publishers. Kumar, J., Ranjan, T., Kumar, R. R., Ansar, M., Rajani, K., Kumar, M., Kumar, V., y Kumar, A. (2019a). In silico characterization and homology modelling of Potato Leaf Roll Virus (PLRV) coat protein. Current Journal of Applied Science and Technology, 33(2), 1-8. https://doi.org/10.9734/cjast/2019/v33i230054 Kumar, R., Kumar Tiwari, R., Jeevalatha, A., Kaundal, P., Sharma, S. y Chakrabarti, S. K. (2019b). Potato viruses and their diagnostic techniques: An overview. Journal of Pharmacognosy and Phytochemistry, 8(6), 1932-1944. López-Delgado, H., Mora-Herrera, M., Zavaleta-Mancera, H., Cadena-Hinojosa, M. y Scott, I. (2004). Salicylic acid enhances heat tolerance and potato virus X (PVX) elimination during thermotherapy of potato microplants. American Journal of Potato Research, 81, 171-176. https://doi.org/10.1007/BF02871746. López-Pazos, S. A. y Cerón, J. (2010). Proteínas Cry de Bacillus thuringiensis y su interacción con coleópteros. Nova, 8(14), 183 - 194. https://doi.org/10.22490/24629448.44 Lopéz, J. (2011). Primer medicamento contra la hepatitis C (13 de mayo de 2011). Infofarmacia.com. Recuperado el 10 de septiembre de 2020 de http://www.info-farmacia.com/medico-farmaceuticos/revisiones-farmaceuticas/primer-medicamento-contra-la-hepatitis-c-13-de-mayo-de-2011 MADR. (2018). La producción de papa en 2018 podría llegar 2 millones 690 mil toneladas. Recuperado el 15 de abril de 2020 de https://www.minagricultura.gov.co/noticias/Paginas/La producción de papa en 2018 podría llegar 2 millones 690 mil toneladas.aspx. MADR. (2020). Cadena de la papa. Dirección de Cadenas Agrícolas y Forestales. Junio. Recuperado el 17 de agosto de 2021 de https://sioc.minagricultura.gov.co/Papa/Documentos/2020-06-30%20Cifras%20Sectoriales.pdf Mansfield, J., Genin, S., Magori, S., Citovsky, V., Sriariyanum, M., Ronald, P., Dow, M., Verdier, V., Beer, S., Machado, M., Toth, I., Salmondm G. y Foster G. (2012). Top 10 plant pathogenic bacteria in molecular plant pathology, 13(6), 614–629. https://doi.org/10.1111/j.1364- 3703.2012.00804.x Maree, H. J., Fox, A., Al Rwahnih, M., Boonham, N.y Candresse, T. (2018). Application of HTS for routine plant virus diagnostics: state of the art and challenges. Frontiers in Plant Science, 9, 1- 4. https://doi.org/10.3389/fpls.2018.01082. Marín, M. y Gutiérrez, P. (2016). Principios de virología molecular de plantas tropicales. Mosquera: Corpoica. Martinelli, F., Scalenghe, R., Davino, S., Panno, S., Scuderi, G., Ruisi, P., Villa, P., Stroppiana, D., Boschetti, M., Boschetti, M., Goulart, L., Davis, C. y Dandekar, A. (2015). Advanced methods of plant disease detection. A review. Agronomy for Sustainable Development, 35, 1-25. https://doi.org/10.1007/s13593-014-0246-1. Martínez, W. y Cerón, J. (2002). Evaluación de la toxicidad de proteínas de Bacillus Thuringiensis Berliner hacia el gusano blanco de la papa Premnotrypes. Agronomía Colombiana, 19(1-2), 89-95. Matousek, J., Schubert, J., Ptácek, J., Kozlová, P. y Dedic, P. (2005). Complete nucleotide sequence and molecular probing of Potato virus S genome. Acta Virologica, 49, 195-205. Mesa, M., Gonzále, M., Gutiérrez, P., y Marín, M. (2016). Diagnóstico serológico y molecular del Potato leafroll virus (PLRV) en tubérculos-semilla de papa en Antioquia, Colombia. Acta Agronómica, 65(2), 204-210. https://doi.org/10.15446/acag.v65n2.50764 Muñoz, D., Gutiérrez, P. y Marín, M. (2016). Detección y caracterización molecular del Potato virus Y (PVY) en cultivos de papa (Solanum tuberosum L.) del norte de Antioquia, Colombia. Revista de Protección Vegetal, 31(1), 9-19. NAK. 2015. Details virus and bacterial diagnostics in potatoes 2016–2017. Recuperado el 10 de septiembre de 2020 de https://www.nak.nl/wp-content/uploads/archief/2012/NAK%20Services/Virus%20and%20bacterial%20diagnostics%20in%20potatoes%202017-2018.pdf. Nolte, P., Whitworth, J. L., Thornton, M. K. y McIntosh, C. S. (2004). Effect of seedborne Potato virus Y on performance of Russet burbank, Russet norkotah, and Shepody potato. Plant Disease, 88, 248-252. https://doi.org/10.1094/PDIS.2004.88.3.248 Normah, M. N., Sulong, N. y Reed, B. M. (2019). Cryopreservation of shoot tips of recalcitrant and tropical species: Advances and strategies. Cryobiology, 87, 1-14. https://doi.org/10.1016/j.cryobiol.2019.01.008. Ñustez, C. E. (2011). Variedades Colombianas de Papa. Universidad Nacional de Colombia. Bogotá. ISBN, 978-958-761-100-7. Nurk, S., Bankevich, A., Antipov, D., Gurevich, A. A., Korobeynikov, A., Lapidus, A., Prjibelski, A. D., Pyshkin, A., Sirotkin, A., Sirotkin, Y., Stepanauskas, R., Clingenpeel, S. R., Woyke, T., Mclean, J. S., Lasken, R., Tesler, G., Alekseyev, M. A. y Pevzner, P. A. (2013). Assembling single-cell genomes and mini-metagenomes from chimeric MDA products. Journal of Computational Biology, 20(10), 714-737. https://doi.org/10.1089/cmb.2013.0084. Oblitas, C. (2019). Aislamiento de protoplastos de Solanum tuberosum (variedad Única). Universidad Nacional De Huancavelica Jurados. http://repositorio.unh.edu.pe/bitstream/handle/UNH/1378/TP%20%20UNH.%20ENF.%200101.pdf?sequence=1&isAllowed=y Ocete, R. y Pérez, M. (1994). Actividad antialimentaria de extractos de Daphne gnidium L. y Anagyris foetida L. sobre Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae). Boletín de Sanidad Vegetal. Plagas, 20, 617-622. Ogawa, T., Tomitaka, Y., Nakagawa, A. y Ohshimab, K. (2008). Genetic structure of a population of Potato virus Y inducing potato tuber necrotic ringspot disease in Japan; comparison with North American and European populations. Virus Research, 131, 199-212. Orena, A. y Santos, J. (2012). Manejo de tubérculos-semillas de papa. Instituto de Investigaciones Agropecuarias. Recuperado el 16 de abril de 2020 de https://biblioteca.inia.cl/handle/123456789/4743 Ormeño, M. y Rosales, R. (2015). Control eficiente de la pulguilla de la papa (Epitrix spp.) con repelente a base de ruda (Ruta graveolens L.). INIA. Centro de Investigaciones Agrícolas del Estado Mérida, 49-51. https://doi.org/10.13140/2.1.2791.7605. Pacheco, D., González, M. y Algredo, I. (2015). De la Secuenciación a la aceleración hardware de los programas de alineación de ADN, una revisión integral. Revista Mexicana de Ingeniería Biomédica, 36, 259–277. https://doi.org/10.17488/RMIB.36.3.6 Panattoni, A., Luvisi, A. y Triolo, E. (2013). Review. Elimination of viruses in plants: Twenty years of progress. Spanish Journal of Agricultural Research, 11, 173-188. https://doi.org/10.5424/sjar/2013111-3201. Parra, Y. (2009). El cultivo de papa: siembra, riego, cosecha y más aspectos importantes. Recuperado el 21 de abril de 2020 de http://agronomaster.com/cultivo-de-papa/. Prjibelski, A., Antipov, D., Meleshko, D., Lapidus, A. y Korobeynikov. (2020). Using SPAdes De Novo Assembler. Current Protocols in Bioinformatics, 70, e102. https://doi.org/10.1002/cpbi.102 PYMERURAL. (2013). Manual de producción de semilla de papa mediante técnicas de reproducción asexual. Tegucigalpa, Honduras. Recuperado el 1 de mayol de 2022 de http://www.agronegocioshonduras.org/wp-content/uploads/2014/06/manual_de_produccion_de_semilla_de_papa. Raikhy, G. y Tripathi, D. (2017). Leading molecular aspects of plant viruses. Journal of Bacteriology & Mycology, 5(2). https://doi.org/10.15406/jbmoa.2017.05.00128 Rajamäki, M., Merits, A., Rabenstein, F., Andrejeva, J., Paulin, L., Kekarainen, T., Kreuze, J. F., Forster, R. L. S. y Valkonen, J. P. T. (1998). Biological, serological, and molecular differences among isolates of potato a potyvirus. Phytopathology, 88(4), 311-321. https://doi.org/10.1094/PHYTO.1998.88.4.311 Reuter, J., Spacek, D. y Snyder, M. (2015). High-throughput sequencing technologies. Molecular cell, 58(4), 586-597. https://doi.org/10.1016/j.molcel.2015.05.004 Rhoads, A. y Au, K. F. (2015). PacBio sequencing and its applications. Genomics Proteomics Bioinformatics, 13(5), 278-289. https://doi.org/10.1016/j.gpb.2015.08.002 Roca, W. y Mroginski, L. (1991). Cultivo de tejidos en la agricultura. Fundamentos y aplicaciones. Cali: Centro Internacional de Agricultura Tropical (CIAT). Rodríguez, L. E., Ñustez, C. E. y Estrada, N. (2009). Criolla Latina, Criolla Paisa y Criolla Colombia, nuevos cultivares de papa criolla para el departamento de Antioquia (Colombia). Agronomía Colombiana, 27(3), 289-303. Rodríguez, L. y Moreno, P. (2010). Factores y mecanismos relacionados con la dormancia en tubérculos de papa. Una revisión. Agronomía Colombiana, 28(2), 189-197. https://revistas.unal.edu.co/index.php/agrocol/article/view/18022/37678 Rodriguez-Rodriguez, M., Chikh-Ali, M., Johnson, S., Gray, S., Malseed, N., Crump, N. y Karasev, A. (2020). The Recombinant Potato virus Y (PVY) Strain, PVYNTN, identified in potato fields in Victoria, Southeastern Australia. Plant Disease, 104(12), 3110-3114. https://doi.org/10.1094/PDIS-05-20-0961-SC. Roest, S. y Bokelmann, G. S. (1976). Vegetative propagation of Solanum tuberosum L. in vitro. Potato Research, 19,173-178. https://doi.org/10.1007/BF02360421. Rozo, D. y Ramírez, L. (2011). La agroindustria de la papa criolla en Colombia. Situación actual y retos para su desarrollo. Gestión & Sociedad, 4(2), 17-30. https://doi.org/10.13140/RG.2.1.2580.9120 Salazar, L. (1995). Los virus de la papa y su control. Perú: Centro Internacional de la papa (CIP). Salazar, L. (2006). Emerging and re-emerging potato diseases in the Andes. Potato Research, 49, 43–7. https://doi.org/10.1007/s11540-006-9005-2 Salazar, L. F., Muller, G., Querci, M., Zapata, J. L. y Owens ,R. A. (2020). Potato yellow vein virus: its host range, distribution in South America and identification as a crinivirus transmitted by Trialeurodes vaporariorum. Annals of Applied Biology, 137, 7–19. https://doi.org/10.1111/j.1744-7348.2000.tb00052.x. Schirmer, M., D’Amore, R., Ijaz, U., Hall, N. y Quince, C. (2016). Illumina error profiles: resolving fine-scale variation in metagenomic sequencing data. BMC Bioinformatics, 17, 1–15. https://doi.org/10.1186/s12859-016-0976-y. Scholthof, K. B. G., Adkins, S., Czosnek, H., Palukaitis, P., Jacquot E, Hohn, T., Hohn, B., Saunders, K., Candresse, T., Ahlquist, P., Hemenway, C. y Foster, G. D. (2011). Top 10 plant viruses in molecular plant pathology. Molecular Plant Pathology, 12, 938-954. https://doi.org/10.1111/j.1364- 3703.2011.00752.x. Schumpp, O., Bréchon, A., Brodard, J., Dupuis, B., Farinelli, L., Frei, P., Otten, P.y Pellet, D. (2021). Large-Scale RT-qPCR diagnostics for seed potato certification. Potato Research. In press. https://doi.org/10.1007/s11540-021-09491-3 Sidwell, R., Huffman, J., Khare, G., Allen, L., Witkowski, J. y Robins, R. (1972). Broad spectrum antiviral activity of Virazole: 1-beta-D-ribofuranosyl-1,2,4-triazole-3-carboxamide. Science, 177(4050), 705-706. Sierra, A., Gallo, Y., Estrada, M., Gutiérrez, P. A. y Marín, M. (2020). Detección molecular de seis virus de ARN en brotes de tubérculos de papa criolla (Solanum phureja) en Antioquia, Colombia. Bioagro, 32(1), 3-14. Sierra, A., Gallo, Y., Estrada, M., Gutiérrez, P. y Marín, M. (2021). Detection of four RNA viruses in commercial and informal potato seed tubers in Antioquia (Colombia). Archives of Phytopathology and Plant Protection, 54 (5-6), 273-294. https://doi.org/10.1080/03235408.2020.1829424 Smith, R. H. (2012). Plant Tissue Culture Techniques and Experiments (3a ed.). New York: Academic Press. Spooner, D. M., Ghislain, M., Simon, R., Jansky, S. H. y Gavrilenko, T. (2014). Systematics, Diversity, Genetics, and Evolution of Wild and Cultivated Potatoes. Botanical Review, 80, 283–383. https://doi.org/10.1007/s12229-014-9146-y SQM. (2006). Guía de Manejo Nutrición Vegetal Especialidad Papa. Recuperado el 24 de abril de 2022 de http://www.sqm-vitas.com/Portals/0/pdf/cropKits/SQM-Crop_Kit_Potato_L-ES.pdf Stange, C. (2006). Interacción planta-virus durante el proceso infectivo. Ciencia e Investigación Agraria,33, 3-21. Stevens, W. A. (1983). Virology of Flowering Plants. (pp. 16-40). Tertiary Level Biology. Springer. https://doi.org/10.1007/978-1-4757-1251-3_2 Stevenson, W., Loria, R., Franc, G. y Weingartner, D. (2001). Compendium of potato diseases (2a ed.). American Phytopathological Society, St. Pau, USA: Suranthran, P., Gantait, S., Sinniah, U. R., Subramaniam, S., Alwee, S. S. R. S. y Roowi, S. H. (2012). Effect of loading and vitrification solutions on survival of cryopreserved oil palm polyembryoids. Plant Growth Regulation, 66, 101-109. https://doi.org/10.1007/s10725-011-9633-7. Thomas-Sharma, S., Abdurahman, A., Ali, S., Andrade-Piedra, J. L., Bao, S., Charkowski, A. O., Crook, D., Kadian, M., Kromann, P., Struik, P. C., Torrance, L., Garrett, K. A. y Forbes, G. A. (2016). Seed degeneration in potato: The need for an integrated seed health strategy to mitigate the problem in developing countries. Plant Pathology, 65(1), 3-16. https://doi.org/10.1111/ppa.12439 Valenzuela, V., Redondo, E. y Bujanos, R. (2003). Detección de virus por serología y plantas indicadoras en el tubérculo-semilla y plantas de cultivo de meristemos en papa (Solanum tuberosum L.) var. Alfa. Revista Mexicana de Fitopatología, 21, 176-180. Van Regenmortel, M. H. V. (2011). Virus Species. Tibayrenc, M. (Ed). Genetics and Evolution of Infectious Diseases (1a ed.). (pp. 3-19). Elsevier Inc. https://doi.org/10.1016/B978- 0-12-384890-1.00001-7 Van Regenmortel, M. H. V. (2010). Logical puzzles and scientific controversies: The nature of species, 78 viruses and living organisms. Systematic and Applied Microbiology, 33, 1–6. https://doi.org/10.1016/j.syapm.2009.11.001 Van Van Regenmortel, M. H. V. (2018). The Species Problem in Virology. Kielian, M., Mettenleiter, T. y Roossinck, M (Ed). Advances in Virus Research. (pp.1-18). Elsevier Inc. https://doi.org/10.1016/bs.aivir.2017.10.008 Vélez, P. B. (2007). Detección e identificación del Potato mop-top virus (PMTV) en áreas de producción de papa donde se encuentra Spongospora subterranea en dos departamentos de Colombia [Tesis de Maestría]. Universidad Nacional de Colombia Sede Bogotá. Villamil-Garzón, A., Cuellar, W. J. y Guzmán-Barney, M. (2014). Co-infección natural de potato yellow vein virus y potyvirus en cultivos de Solanum tuberosum en Colombia. Agronomía Colombiana, 32, 213–223. https://doi.org/10.15446/agron.colomb.v32n2.43968. Villamor, D. E. V., Ho, T., Al Rwahnih, M., Martin, R. R. y Tzanetakis, I. E. (2019). High throughput sequencing for plant virus detection and discovery. Phytopathology, 109, 716-725. https://doi.org/10.1094/PHYTO-07-18-0257-RVW Villanueva, D. F. y Saldamando, C. I. (2013). Tecia solanivora, Povolny (Lepidoptera: Gelechiidae): una revisión sobre su origen, dispersión y estrategias de control biológico. Ingeniería y Ciencia, 9, 197–214. https://doi.org/10.17230/ingciecia.9.18.11 Viralzone. (2008a). Polerovirus. Recuperado el 8 de abril de 2020 de https://viralzone.expasy.org/610?outline=all_by_species Viralzone. (2008b). Potexvirus. Recuperado el 10 de abril de 2020 de https://viralzone.expasy.org/272?outline=all_by_species Wang, Q., Laamanen, J., Uosukainen, M. y Valkonen, J. P. T. (2005). Cryopreservation of in vitro-grown shoot tips of raspberry (Rubus idaeus L.) by encapsulation-vitrification and encapsulation-dehydration. Plant Cell Reports, 24, 280-288. https://doi.org/10.1007/s00299-005-0936-x. Wang, Q. C. y Valkonen, J. P. T. (2008). Elimination of two viruses which interact synergistically from sweetpotato by shoot tip culture and cryotherapy. Journal of Virological Methods, 154,135-145. https://doi.org/10.1016/j.jviromet.2008.08.006. Wang, M., Cui, Z., Li, J., Hao, X., Zhao, L. y Wang, Q. (2018). In vitro thermotherapy-based methods for plant virus eradication. Plant Methods, 14, 1-18. https://doi.org/10.1186/s13007-018-0355-y. Xu, Y., Ju, H., Deblasio, S., Carino, E. J., Johnson, R., y Maccoss, M. J. (2018). A Stem Loop Structure in Potato Leafroll Virus Open Reading Frame 5 (ORF5) Is Essential for Readthrough Translation of the Coat Protein ORF Stop Codon 700 ases Upstream. Journal of Virology, 92(11), 1-20. https://10.1128/JVI.01544-17 Zhang, Z., Wang, Q., Spetz, C. y Blystad, D. (2019). In vitro therapies for virus elimination of potato valuable germplasm in Norway. Scientia Horticulturae, 249, 7–14. https://doi.org/10.1016/j.scienta.2019.01.027. Zuñiga, S., Morales, C. y Estrada, M. (2017). Cultivo de la papa y sus condiciones climáticas. Gestión Ingenio y Sociedad, 2(2),140–152. http://gis.unicafam.edu.co/index.php/gis/article/view/60 Agindotan, B.O., P.J. Shiel, P.H. Berger. 2007. Simultaneous detection of potato viruses, PLRV, PVA, PVX and PVY from dormant potato tubers by TaqMan real-time RT-PCR. Journal of Virological Methods 142(1-2): 1-9. https://doi: 10.1016/j.jviromet.2006.12.012 Ali, M., T. Maoka, K.T. Natsuaki. 2008. The Occurrence of potato viruses in Syria and the molecular detection and characterization of Syrian Potato virus S isolates. Potato Research 51: 151-161. https://10.1007/s11540-008-9099-9 Álvarez, D., P. Gutiérrez, M. Marín. 2016. Caracterización molecular del Potato virus V (PVV) infectando Solanum phureja mediante secuenciación de nueva generación. Acta Biológica Colombiana 21(3): 521-531. https://dx.doi.org/10.15446/abc.v21n3.54712 Álvarez, D., P. Gutiérrez-Sánchez, M. Marín-Montoya. 2017. Genome sequencing of Potato yellow vein virus (PYVV) and development of a molecular test for its detection. Bioagro 29: 3–14. Alvarez, N., H. Jaramillo, Y. Gallo, P. Gutiérrez, M. Marín. 2018. Molecular characterization of Potato virus Y (PVY) and Potato virus V (PVV) isolates naturally infecting Cape gooseberry (Physalis peruviana) in Antioquia, Colombia. Agronomía Colombiana 36(1): 13–23. https://dx.doi.org/10.15446/agron.colomb.v36n1.65051 Bertschinger, L., L. Bühler, B. Dupuis, B. Duffy, C. Gessler, G.A. Forbes, E.R. Keller, U.C. Scheidegger, P.C. Struik. 2017. Incomplete Infection of Secondarily Infected Potato Plants - an Environment Dependent Underestimated Mechanism in Plant Virology. Frontiers in plant science 8: 74. https://doi.org/10.3389/fpls.2017.00074 Bushmanova, E., D. Antipov, A. Lapidus, A.D. Prjibelski. 2019. rnaSPAdes: a de novo transcriptome assembler and its application to RNA-Seq data, GigaScience 8(9): 1-13. https://doi.org/10.1093/gigascience/giz100 SIOC. 2020. Sistema De Información De Gestión Y Desempeño De Las Organizaciones De Cadenas (SIOC). [accessed 2020 Sept 10]. https://sioc.minagricultura.gov.co/Papa. De Souza, J., G. Müller, W. Perez, W. Cuellar, J. Kreuze. 2017. Complete sequence and variability of a new subgroup B nepovirus infecting potato in central Peru. Archives of Virology 162(3): 885-889. https://10.1007/s00705-016-3147-6 Edgar, R.C., R.M. Drive, M. Valley. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32: 1792–1797. https://doi.org/10.1093/nar/gkh340. FAOSTAT. 2018. Food and agriculture data. [accessed 2020 Sept 10]. http://www.fao.org/faostat/en/#home. Fedepapa. 2019. Informe de gestión. Vigencia 2019. [accessed 2020 Oct 20]. https://fedepapa.com/wp-content/uploads/2020/05/INFORME-DE-GESTIO%CC%81N-VIGENCIA-2019.pdf. Forbes, G.A., A. Charkowski, J. Andrade-Piedra, M.L. Parker, E. Schulte-Geldermann. 2020. Potato seed systems. In: Campos H, Ortiz O, editors. The potato crop. Cham, Switzerland: Springer. Frost, K.E., R.L. Groves, A.O. Charkowski. 2013. Integrated control of potato pathogens through seed potato certification and provision of clean seed potatoes. Plant Disease 97(10): 1268–1280. https://10.1094/PDIS-05-13-0477-FE Gallo, Y., A. Sierra, L. Donaire, M.A. Aranda, P.A. Gutiérrez, M.A. Marín. 2019. Coinfección natural de virus de ARN en cultivos de papa (Solanum tuberosum subsp. Andigena) en Antioquia (Colombia), Acta Biológica Colombiana 24(3): 546–560. https://doi.org/10.15446/abc.v24n3.79277. Gallo, Y., M. Marín, P.A. Gutiérrez. 2020. Detection of RNA viruses in Cape gooseberry (Physalis peruviana L.) by RNAseq using total RNA and dsRNA inputs. Archives of Phytopathology and Plant Protection 53(9-10): 395-413. https://10.1080/03235408.2020.1748368 Gallo, Y., A. Sierra, M. Marín, P.A. Gutiérrez. 2021a. Prevalencia de cinco virus de ARN en tubérculos-semilla de papa cultivados en Antioquia (Colombia). Biotecnología en el Sector Agropecuario y Agroindustrial 19(1): 66-78. https://dx.doi.org/10.18684 Gallo, Y., M. Marín, P.A. Gutiérrez. 2021b. Detection of RNA viruses in Solanum quitoense by high-throughput sequencing (HTS) using total and double stranded RNA inputs. Physiological and Molecular Plant Pathology 113: 101570. https://10.1016/j.pmpp.2020.101570 García, D., M.A. Olarte, P. Gutiérrez, M.A. Marín. 2016. Detección serológica y molecular del Potato virus X (PVX) en tubérculos-semilla de papa (Solanum tuberosum L. y Solanum phureja Juz. y Bukasov) en Antioquia. Revista Colombiana de Biotecnología 18(1): 104–111. Gil, J.F., J.M. Cotes, E.P. González, M. Marín. 2011. Caracterización genotípica de aislamientos colombianos del potato mop-top virus (PMTV, Pomovirus). Actualidades Biológicas 33 (94): 69–84. Gil, J.F., I. Adams, N. Boonham, S.L. Nielsen, M. Nicolaisen. 2016. Molecular and biological characterization of Potato mop-top virus (PMTV, Pomovirus) isolates from the potato-growing regions of Colombia. Plant Pathology 65: 1210–1220. https://doi.org/10.1111/ppa.12491. Giraldo, S., A. Sierra, M. Ospina, M. Higuita, Y. Gallo, P. Gutiérrez, M. Marín. 2022. Detección y caracterización molecular del potato virus B (PVB) en papa criolla (Solanum phureja) en Antioquia. Acta Biológica Colombiana 27(2):258-268. https://doi.org/10.15446/abc.v27n2.89422 Gutiérrez, P.A., J.F. Alzate, M.A. Marín-Montoya. 2013. Complete genome sequence of a novel potato virus S strain infecting Solanum phureja in Colombia. Archives of Virology 158: 2205–2208. https://doi.org/10.1007/s00705-013-1730-7. Gutiérrez, P., H.J. Mesa, M. Marín. 2016. Genome sequence of a divergent Colombian isolate of potato virus V (PVV) infecting Solanum phureja, Acta Virologica 60(1): 49–54. https://doi.org/10.4149/av_2016_01_49. Gutiérrez, P., A. Rivillas, D. Tejada, S. Giraldo, A. Restrepo, M. Ospina, S. Cadavid, Y. Gallo, M. Marín. 2021. PVDP: A portable open source pipeline for detection of plant viruses in RNAseq data. A case study on potato viruses in Antioquia (Colombia). Physiological and Molecular Plant Pathology 113: 101604. https://doi.org/10.1016/j.pmpp.2021.101604 Guyader, S., D.G. Ducray. 2002. Sequence analysis of Potato leafroll virus isolates reveals genetic stability, major evolutionary events and differential selection pressure between overlapping reading frame products. Journal of General Virology 83(7): 1799-1807. https://10.1099/0022-1317-83-7-1799. Guzmán-Barney, M., L. Franco-Lara, D. Rodríguez, L. Vargas, J.E. Fierro. 2012. Yield losses in Solanum tuberosum Group Phureja cultivar criolla Colombia in plants with symptoms of PYVV in field trials. American Journal of Potato Research 89(6): 438–447. https://doi.org/10.1007/s12230-012-9265-0 Halterman, D., A. Charkowski, J. Verchot. 2012. Potato viruses and seed certification in the USA to provide healthy propagated tubers. Pest Technology 6(1): 1–14. Hardigan, M.A., F.P. Laimbeer, L. Newton, E. Crisovan, J.P. Hamilton, B. Vaillancourt, K. Wiegert-Rininger, J.C. Wood, D.S. Douches, E.M. Farré, R.E. Veilleux, C.R Buell. 2017. Genome diversity of tuber-bearing Solanum uncovers complex evolutionary history and targets of domestication in the cultivated potato. Proceedings of the National Academy of Sciences 114(46): 201714380. https://10.1073/pnas.1714380114 ICA. 2015. Resolución 3168 de 2015. [accessed 2020 Sept 10]. https://www.ica.gov.co/getattachment/4e8c3698-8fcb-4e42-80e7-a6c7acde9bf8/2015R3168.aspx. Imbeaud, S., E. Graudens, V. Boulanger, X. Barlet, P. Zaborski, E. Eveno, O. Mueller, A. Schroeder, C. Auffray. 2005. Towards standardization of RNA quality assessment using user-independent classifiers of microcapillary electrophoresis traces. Nucleic Acids Research 33(6): e56. https://doi: 10.1093/nar/gni054. Kreuze, J.F., J.A.C. Souza-Dias, A. Jeevalatha, A.R. Figueira, J.P.T. Valkonen, R.A.C. Jones. 2020. Viral diseases in potato. In: Campos H, Ortiz O, editors. The potato crop. Cham, Switzerland: Springer. Kumar, S., G. Stecher, M. Li, C. Knyaz, K. Tamura. 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6): 1547-1549. https://doi: 10.1093/molbev/msy096. Li, W., A. Godzik. 2006. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22(13): 1658-1659. https://10.1093/bioinformatics/btl158. Marín, M., P. Gutiérrez P. 2016. Principios de virología molecular de plantas tropicales. Bogotá: Corpoica. Martínez, H., C. Espinal, M. Salazar, C. Barrios. 2005. La cadena de la papa en Colombia: una mirada global de su estructura y dinámica 1991–2005. MADR. [accessed 2020 Sept 10]. http://bibliotecadigital.agronet.gov.co/handle/11348/6325. Medina, H.C., P.A. Gutiérrez, M.A. Marín. 2015. Detección del Potato virus Y (PVY) en tubérculos de papa mediante TAS-ELISA y qRT-PCR en Antioquia (Colombia). Bioagro. 27(2): 83–92. Medina, H., P. Gutiérrez, M. Marín. 2017. Detection and sequencing of Potato virus Y (PVY) and Potato leafroll virus (PLRV) in a volunteer plant of Solanum tuberosum L. cv. Diacol-Capiro. Acta Agronómica 66: 625–632. https://doi.org/https://doi.org/10.15446/acag.v66n4.59753. Mesa, M.E., M.I. González, P.A. Gutiérrez, M.A. Marín. 2016. Diagnóstico serológico y molecular del Potato leafroll virus (PLRV) en tubérculos-semilla de papa en Antioquia. Acta Agronómica 65(2): 204–210. https://doi.org/10.15446/acag.v65n2.50764 Mumford, R.A., K. Walsh, I. Barker, N. Boonham. 2000. Detection of Potato mop top virus and Tobacco rattle virus Using a Multiplex Real-Time Fluorescent Reverse-Transcription Polymerase Chain Reaction Assay. Phytopathology 90(5):448-53. https://10.1094/PHYTO.2000.90.5.448. Muñoz, D., P. Gutiérrez, M. Marín. 2016a. Detección y caracterización molecular del Potato virus Y (PVY) en cultivos de papa (Solanum tuberosum L.) del norte de Antioquia, Colombia. Protección Vegetal 31: 9–19. Muñoz, D., P. Gutiérrez, M. Marín. 2016b. Detection and genome characterization of Potato virus Y isolates infecting potato (Solanum tuberosum L.) in La Union Antioquia, Colombia. Agronomía Colombiana 34(3): 317-328. https://dx.doi.org/10.15446/agron.colomb.v34n3.59014 Muñoz-Baena, L., P.A. Gutiérrez-Sánchez, M. Marín-Montoya. 2016. Detección y secuenciación del genoma del Potato Virus Y (PVY) que infecta plantas de tomate en Antioquia, Colombia. Bioagro. 28(2): 69-80. Nie, X., R.P. Singh. 2001. A novel usage of random primers for multiplex RT-PCR detection of virus and viroid in aphids, leaves and tubers. Journal of Virological Methods 91: 37–49. https://doi.org/10.1016/s0166-0934(00)00242-1. Porras, P., C. Herrera. 2015. Modelo productivo de la papa variedad Diacol Capiro para el departamento de Antioquia. Mosquera (Colombia): Corpoica. 92 p. Riascos, M., P.A. Gutiérrez-Sánchez, M.A. Marín-Montoya. 2018. Identificación molecular de Potyvirus infectando cultivos de papa en el oriente de Antioquia (Colombia). Acta Biológica Colombiana 23: 39–50. https://doi.org/10.15446/abc.v23n1.65683. Robinson, J., H. Thorvaldsdóttir, W. Winckler, M. Guttman, E. Lander, G. Getz, J. Mesirov. 2011. Integrative genomics viewer. Nature Biotechnology 29: 24–26. https://doi.org/10.1038/nbt0111-24. Salazar, L.F. 1996. Potato viruses and their control. Lima: International Potato Center. Savenkov, E.I., M.Y. Sandgren, J.P.T. Valkonen. 1999. Complete sequence of RNA 1 and the presence of tRNA-like structures in all RNAs of Potato mop-top virus, genus Pomovirus. Journal of General Virology 80: 2779-2784. https://10.1099/0022-1317-80-10-2779 Sierra A., Y. Gallo, M. Estrada, P. Gutiérrez, M. Marín. 2020a. Detection of four RNA viruses in commercial and informal potato seed tubers in Antioquia (Colombia). Archives of Phytopathology and Plant Protection. In Press. https:// 10.1080/03235408.2020.1829424. Sierra, A., Y. Gallo, M. Estrada, P.A. Gutiérrez, M. Marín. 2020b. Detección molecular de seis virus de ARN en brotes de tubérculos de papa criolla (Solanum phureja) en Antioquia, Colombia. Bioagro, 32(1), 3-14. Singh, R.P., J. Kurz, G. Boiteau, G. Bernard. 1995. Detection of potato leafroll virus in single aphids by the reverse transcription polymerase chain reaction and its potencial epidemiological application. Journal of Virological Methods 1: 133–143. https://10.1016/0166-0934(95)00056-z Tamura K. 1992. Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+C-content biases. Molecular Biology and Evolution 9(4): 678-687. https://10.1093/oxfordjournals.molbev.a040752. Thiele G. 1999. Informal potato seed systems in the Andes: Why are they important and what should we do with them? World Development 27(1): 83–99. https://doi.org/10.1016/S0305-750X(98)00128-4 Thomas-Sharma, S., A. Abdurahman, S. Ali, J.L. Andrade-Piedra, S. Bao, A.O. Charkowski, D. Crook, M. Kadian, P. Kromann, P.C. Struik PC, L. Torrance, K.A. Garrett, G.A. Forbes. 2016. Seed degeneration in potato: the need for an integrated seed health strategy to mitigate the problem in developing countries. Plant Pathology 65(1): 3–16. https://doi.org/10.1111/ppa.12439 Thomas-Sharma, S., J. Andrade-Piedra, M. Carvajal, J.F. Hernandez, M.J. Jeger, R.A.C. Jones, P. Kromann, J.P. Legg, J. Yuen, G.A. Forbes, K.A. Garrett. 2017. A risk assessment framework for seed degeneration: Informing an integrated seed Health strategy for vegetatively propagated crops. Phytopathology. 107(10): 1123–1135. https://doi.org/10.1094/PHYTO-09-16-0340-R Vallejo, D., P. Gutiérrez, M. Marín. 2016. Genome characterization of a Potato virus S (PVS) variant from tuber sprouts of Solanum phureja Juz. et Buk. Agronomía Colombiana 34: 51–60. https://doi.org/10.15446/agron.colomb.v34n1.53161. Xu, H., T.L. DeHaan, S.H. De Boer. 2004. Detection and confirmation of Potato mop-top virus in potatoes produced in the United States and Canada. Plant Disease 88: 363–367. https://doi.org/10.1094/PDIS.2004.88.4.363 Yang, L., B. Nie, J. Liu, B. Song. 2014. A reexamination of the effectiveness of ribavirin on eradication of viruses in potato plantlets in vitro using ELISA and quantitative RT–PCR. American Journal of Potato Research 91(3): 304–311. https://doi.org/10.1007/s12230-013-9350-z Agindotan, B.O., P.J. Shiel, P.H. Berger. 2007. Simultaneous detection of potato viruses, PLRV, PVA, PVX and PVY from dormant potato tubers by TaqMan real-time RT-PCR. Journal of Virological Methods 142(1-2): 1-9. https://doi.org/10.1016/j.jviromet.2006.12.012. Agronet. 2021. Red de información y comunicación del sector Agropecuario Colombiano. https://www.agronet.gov.co/estadistica/Paginas/home.aspx Álvarez, D., P. Gutiérrez, M. Marín. 2016. Caracterización molecular del Potato virus V (PVV) infectando Solanum phureja mediante secuenciación de nueva generación. Acta Biológica Colombiana 21(3): 521-531. https://doi.org/10.15446/abc.v21n3.54712 Álvarez, N., Jaramillo, H., Gallo, Y., Gutiérrez, P., Marín, M. 2018. Molecular characterization of Potato virus Y (PVY) and Potato virus V (PVV) isolates naturally infecting Cape gooseberry (Physalis peruviana) in Antioquia, Colombia. Agronomía Colombiana 36(1): 13–23. https://doi.org/10.15446/agron.colomb.v36n1.65051 Boratyn, G.M., Thierry-Mieg, D., Busby, B., Madden, T.L. 2019. Magic-BLAST, an accurate DNA and RNA-seq aligner for long and short reads. BMC Bioinformatics 20: 405. https://doi.org/10.1186/s12859-019-2996-x Díaz-Cruz, G.A., Smith, C.M., Wiebe, K.F., Cassone, B.J. 2017. First complete genome sequence of Tobacco necrosis virus D isolated from soybean and from North America. Genome Announcements 5: e00781-17. https://doi.org/10.1128/genomeA.00781-17. Edgar, R.C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32(5):1792-1797. https://doi.org/10.1093/nar/gkh340 EPPO. 1999. Tobacco necrosis virus (TNV000). https://gd.eppo.int/taxon/TNV000/documents Frost, K.E., R.L. Groves, A.O. Charkowski. 2013. Integrated control of potato pathogens through seed potato certification and provision of clean seed potatoes. Plant Disease 97(10): 1268–1280. https://doi.org/10.1094/PDIS-05-13-0477-FE Gallo, Y., A. Sierra, L. Donaire, M.A. Aranda, P.A. Gutiérrez, M.A. Marín. 2019. Coinfección natural de virus de ARN en cultivos de papa (Solanum tuberosum subsp. Andigena) en Antioquia (Colombia). Acta Biológica Colombiana 24(3): 546–560. https://doi.org/10.15446/abc.v24n3.79277. Gallo, Y., M. Marín, P.A. Gutiérrez. 2021a. Detection of RNA viruses in Solanum quitoense by high-throughput sequencing (HTS) using total and double stranded RNA inputs. Physiological and Molecular Plant Pathology 113: 101570. https://doi.org/10.1016/j.pmpp.2020.101570 Gallo, Y., A. Sierra, M. Marín, P.A. Gutiérrez. 2021b. Prevalencia de cinco virus de ARN en tubérculos-semilla de papa cultivados en Antioquia (Colombia). Biotecnología en el Sector Agropecuario y Agroindustrial 19(1): 66-78. https://dx.doi.org/10.18684 García, A., M. Higuita, R. Hoyos, Y. Gallo, M. Marín, P. Gutiérrez. 2021. Prevalence of RNA viruses in certified, and informal potato seed tubers in the province of Antioquia (Colombia). Crop protection. Submitted. Gildemacher, P.R., E. Schulte-Geldermann, D. Borus, P. Demo, P. Kinyae, P. Mundia, P.C. Struik. 2011. Seed potato quality improvement through positive selection by smallholder farmers in Kenya. Potato Research 54(3):253–266. https://doi.org/10.1007/s11540-011-9190-5 Gutiérrez, P.A., Alzate, J.F., Marín-Montoya, M.A. 2013. Complete genome sequence of a novel potato virus S strain infecting Solanum phureja in Colombia. Archives of Virology 158: 2205–2208. https://doi.org/10.1007/s00705-013-1730-7. Gutiérrez, P., H.J. Mesa, M. Marín. 2016. Genome sequence of a divergent Colombian isolate of potato virus V (PVV) infecting Solanum phureja. Acta Virologica 60(1): 49–54. https://doi.org/10.4149/av_2016_01_49. Guyader, S., Ducray, D.G. 2002. Sequence analysis of Potato leafroll virus isolates reveals genetic stability, major evolutionary events and differential selection pressure between overlapping reading frame products. Journal of General Virology 83(7): 1799-1807. https://doi.org/10.1099/0022-1317-83-7-1799. Guzmán, M., V. Román, L. Franco, P. Rodríguez. 2010. Presencia de cuatro virus en algunas accesiones de la Colección Central Colombiana de papa mantenida en campo. Agronomía Colombiana 28(2):225–233. Guzmán-Barney, M., Franco-Lara, L., Rodríguez, D., Vargas, L., Fierro, J.E. 2012. Yield losses in Solanum tuberosum Group Phureja cultivar criolla Colombia in plants with symptoms of PYVV in field trials. American Journal of Potato Research 89(6): 438–447. https://doi.org/10.1007/s12230-012-9265-0 ICTV. 2021. International Committee on Taxonomy of Viruses. https://talk.ictvonline.org/ Jeffies, C.J. 1998. FAO/IPGRI Technical guidelines for the safe movement of germplasm. Potato. 19. 84p. [accessed 2022 May 10]. https://www.bioversityinternational.org/fileadmin/user_upload/Potato_booklet_reduced.pdf Kreuze, J.F., Souza-Dias, J.A.C., Jeevalatha, A., Figueira, A.R., Valkonen, J.P.T., Jones, R.A.C. 2020. Viral diseases in potato. In: Campos H, Ortiz O, editors. The potato crop. Cham, Switzerland: Springer. Kumar, R., P. Kaundal, R. Kumar, S. Siddappa, H. Kumari, K. Chandra, S. Sharma, M. Kumar. 2021. Rapid and sensitive detection of potato virus X by one-step reverse transcription-recombinase polymerase amplification method in potato leaves and dormant tubers. Molecular and Cellular Probes 58: 101743. https://doi.org/10.1016/j.mcp.2021.101743 MADR. 2019. Estrategia de ordenamiento de la producción. Cadena productiva de la papa y su industria. https://sioc.minagricultura.gov.co/Papa/Normatividad/Plan%20de%20Ordenamiento%20papa%202019-2023.pdf Medina, H.C., P.A. Gutiérrez, M.A. Marín. 2015. Detección del Potato virus Y (PVY) en tubérculos de papa mediante TAS-ELISA y qRT-PCR en Antioquia (Colombia). Bioagro. 27(2): 83-92. Mesa, M.E., M.I. González, P.A. Gutiérrez, M.A. Marín. 2016. Diagnóstico serológico y molecular del Potato leafroll virus (PLRV) en tubérculos-semilla de papa en Antioquia. Acta Agronómica 65(2): 204–210. https://10.15446/acag.v65n2.50764 Monger, W., C. Jeffries. 2018. A new virus, classifiable in the family Tombusviridae, found infecting Solanum tuberosum in the UK. Archives of Virology. 163: 1585-1594. https://doi.org/10.1007/s00705-018-3751-8 Muñoz, D., Gutiérrez, P., Marín, M. 2016. Detección y caracterización molecular del Potato virus Y (PVY) en cultivos de papa (Solanum tuberosum L.) del norte de Antioquia, Colombia. Protección Vegetal 31: 9–19. Muñoz-Baena, L., Gutiérrez-Sánchez, P.A., Marín-Montoya, M. 2016. Detección y secuenciación del genoma del Potato Virus Y (PVY) que infecta plantas de tomate en Antioquia, Colombia. Bioagro 28(2): 69-80. Price, W.C. 1938. Studies on the virus of tobacco necrosis. American Journal of Botany 25: 603. https://doi.org/10.2307/2436520. Raigond, B., A. Verma, S. Pathania, J. Sridhar, T. Kochhar, S.K. Chakrabarti. 2020. Development of a reverse transcription loop-mediated isothermal amplification for detection of potato virus a in potato and in insect vector aphids. Crop Protection 137: 105296. https://10.1016/j.cropro.2020.105296 Robinson, J.T., Thorvaldsdóttir, H., Winckler, W., Guttman, M., Lander, E.S., Getz, G., Mesirov, J.P. 2011. Integrative Genomics Viewer. Nature Biotechnology 29(1): 24-26. https://doi.org/10.1038/nbt.1754 Rodríguez, L.E., C.E. Ñustez, N. Estrada. 2009. Criolla Latina, Criolla Paisa y Criolla Colombia, nuevos cultivares de papa criolla para el departamento de Antioquia (Colombia). Agronomía Colombiana 27(3): 289-303. Saitou, N., Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4(4): 406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454 Savenkov, E.I., M.Y. Sandgren, J.P.T. Valkonen. 1999. Complete sequence of RNA 1 and the presence of tRNA-like structures in all RNAs of Potato mop-top virus, genus Pomovirus. Journal of General Virology 80: 2779-2784. https://doi.org/10.1099/0022-1317-80-10-2779 Schulte-Geldermann, E., P.R. Gildemacher, P.C. Struik PC. 2012. Improving seed health and seed performance by positive selection in three Kenyan potato varieties. American Journal of Potato Research 89(6): 429–437. https://doi.org/10.1007/s12230-012-9264-1 Schumpp, O., A. Bréchon, J. Brodard, B. Dupuis, L. Farinelli, P. Frei, P. Otten, D. Pellet 2021. Large-Scale RT-qPCR diagnostics for seed potato certification. Potato Research. In press. https://doi.org/10.1007/s11540-021-09491-3 Seminario, J.F., R. Villanueva-Guevara, M.H. Valdez-Yopla. 2018. Rendimiento de cultivares de papa (Solanum tuberosum L.) amarillos precoces del grupo Phureja. Agronomía Mesoamericana 29(3): 639-653. https://doi.org/10.15517/ma.v29i3.32623 Sierra, A., Y. Gallo, M. Estrada, P.A. Gutiérrez, M. Marín. 2020. Detección molecular de seis virus de ARN en brotes de tubérculos de papa criolla (Solanum phureja) en Antioquia, Colombia. Bioagro 32(1): 3-14. Sierra A., Y. Gallo, M. Estrada, P. Gutiérrez, M. Marín. 2021. Detection of four RNA viruses in commercial and informal potato seed tubers in Antioquia (Colombia). Archives of Phytopathology and Plant Protection 54(5-6): 273-294. https://doi.org/10.1080/03235408.2020.1829424. Singh, R.P., J. Kurz, G. Boiteau, G. Bernard. 1995. Detection of potato leafroll virus in single aphids by the reverse transcription polymerase chain reaction and its potential epidemiological application. Journal of Virological Methods 1: 133–143. https://doi.org/10.1016/0166-0934(95)00056-z Smith, K.M., Bald, J.G. 1935. A description of a necrotic virus disease affecting tobacco and other plants. Parasitology 27: 231–245. https://doi.org/10.1017/S0031182000015109. Tamura, K. 1992. Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G + C-content biases. Molecular Biology and Evolution 9: 678-687. https://doi.org/10.1093/oxfordjournals.molbev.a040752 Teakle, D.S., Gold, A.H. 1963. Further studies of Olpidium as a vector of tobacco necrosis virus. Virology 19: 310 –315. https://doi.org/10.1016/0042-6822(63)90069-2. Thomas-Sharma, S., J. Andrade-Piedra, M. Carvajal, J.F. Hernandez, M.J. Jeger, R.A.C. Jones, P. Kromann, J.P. Legg, J. Yuen, G.A. Forbes, K.A. Garrett. 2017. A risk assessment framework for seed degeneration: Informing an integrated seed Health strategy for vegetatively propagated crops. Phytopathology 107(10): 1123–1135. https://doi.org/10.1094/PHYTO-09-16-0340-R Yang, L., B. Nie, J. Liu, B. Song. 2014. A reexamination of the effectiveness of ribavirin on eradication of viruses in potato plantlets in vitro using ELISA and quantitative RT–PCR. American Journal of Potato Research 91(3): 304–311. https://10.1007/s12230-013-9350-z AGINDOTAN, B.O.; SHIEL, P.J.; BERGER, P.H. 2007. Simultaneous detection of potato viruses, PLRV, PVA, PVX and PVY from dormant potato tubers by TaqMan® real-time RT-PCR. J. Virol. Methods. 142(1–2):1–9. https://doi.org/10.1016/j.jviromet.2006.12.012 ALI, M.C.; MAOKA, T.; NATSUAKI, K.T. 2008. The occurrence of potato viruses in Syria and the molecular detection and characterization of Syrian Potato virus S isolates. Potato Res. 51:151–161. https://doi.org/10.1007/s11540-008-9099-9 ÁLVAREZ, D.; GUTIÉRREZ, P.; MARÍN, M. 2016. Caracterización molecular del Potato virus V (PVV) infectando Solanum phureja mediante secuenciación de nueva generación. Acta biol. Colomb. 21(3):521-531. ÁLVAREZ-YEPES, D.; GUTIÉRREZ-SÁNCHEZ, P.; MARÍN-MONTOYA, M. 2017. Secuenciación del genoma del Potato yellow vein virus (PYVV) y desarrollo de una prueba molecular para su detección. Bioagro. 29(1):3-14. BEEMSTER, A.; BOKX, A. 1987. Survey of properties and symptoms. En: Bokx, J. A.; Want, J. (eds). Viruses of potatoes and seed-potato production (2a ed.). Wageningen University (Netherland). p.84-113. https://doi.org/10.1007/bf02357877 BUSHMANOVA, E.; ANTIPOV, D.; LAPIDUS, A.; D PRJIBELSKI, A. 2019. rnaSPAdes: a de novo transcriptome assembler and its application to RNA-Seq data. GigaScience. 8(9):1-13. https://doi.org/10.1093/gigascience/giz100 BURLINGAME, B.; MOUILLÉ, B.; CHARRONDIÈRE, R. 2009. Nutrients, bioactive non-nutrients and anti-nutrients in potatoes. J. Food Compos. Anal. 22:494-502. https://doi.org/10.1016/j.jfca.2009.09.001 COX, B.A.; JONES, R.A.C. 2010. Genetic variability in the coat protein gene of Potato virus X and the current relationship between phylogenetic placement and resistance groupings. Arch. Virol. 155(8):1349-1356. https://doi.org/10.1007/s00705-010-0711-3 FAO. 2008. La papa - Año Internacional de la Papa 2008. Disponible desde Internet en: http://www.fao.org/potato-2008/es/mundo/europa.html (con acceso el 15/01/2020) FAOSTAT. 2018. Food and agriculture data. Disponible desde Internet en: http://www.fao.org/faostat/en/#home. (con acceso el 10/09/2020) FEDEPAPA. 2017. Plan estratégico del subsector de la papa visión 20-20. Disponible desde Internet en: https://fedepapa.com/wp-content/uploads/2017/01/Plan-sectorial.pdf (con acceso el 30/01/2020) FEDEPAPA. 2019. Informe de gestión. Vigencia 2019. Disponible desde Internet en: https://fedepapa.com/wp-content/uploads/2020/05/INFORME-DE-GESTIO%CC%81N-VIGENCIA-2019.pdf (con acceso el 15/07/2021) FORBES, G.A.; CHARKOWSKI, A.; ANDRADE-PIEDRA, J.; PARKER, M.; Schulte-Geldermann, E. 2020. Potato seed systems. En: Campos, H., Ortiz, O. (eds). The potato crop. Cham, Springer (Switzerland). FROST, K.E.; GROVES, R.L.; CHARKOWSKI, A.O. 2013. Integrated control of potato pathogens through seed potato certification and provision of clean seed potatoes. Plant Dis. 97(10):1268-1280. https://doi.org/10.1094/PDIS-05-13-0477-FE GALLO, Y.; SIERRA, A.; DONAIRE, L.; ARANDA, M.; GUTIÉRREZ, P.; MARÍN, M. 2019. Natural coinfection of RNA viruses in potato (Solanum tuberosum subsp. andigena) crops in Antioquia (Colombia). Acta biol. Colomb. 24(3):546-560. https://doi.org/10.15446/abc.v24n3.79277 GALLO-GARCÍA, Y.; SIERRA-MEJIA, A.; GUTIÉRREZ, P.A.; MARÍN-MONTOYA, M. 2021. Prevalencia de cinco virus de ARN en tubérculos-semilla de papa cultivados en Antioquia (Colombia). Biotecnol. sector agropecuario agroind. 19(1):66-78. https://doi.org/10.18684/bsaa(19)66-78 GARCÍA, A.; HIGUITA, M.; HOYOS, R.; GALLO, Y.; MARÍN, M.; GUTIÉRREZ, P. 2021. Prevalence of RNA viruses in certified, and informal potato seed tubers in the province of Antioquia (Colombia). Crop Prot; código del registro: No.: CROPRO-D-21-01027. GIL, J.F.; COTES, J.M.; MARÍN, M. (2011). Incidencia de Potyvirus y caracterización molecular de PVY en regiones productoras de papa (Solanum tuberosum L) de Colombia. Rev. colomb. biotecnol. 85-93. GILDEMACHER, P.R.; SCHULTE-GELDERMANN, E.; BORUS, D.; DEMO, P.; KINYAE, P.; MUNDIA, P.; STRUIK, P.C. 2011. Seed potato quality improvement through positive selection by smallholder farmers in Kenya. Potato Res. 54(3):253–266. https://doi.org/10.1007/s11540-011-9190-5 GLAIS, L.; TRIBODET, M.; KERLAN, C. 2005. Specific detection of the PVYN-W variant of Potato virus Y. J. Virol. Methods. 125(2):131-136. https://doi.org/10.1016/j.jviromet.2005.01.007 GUTIÉRREZ, P.; RIVILLAS, A.; TEJADA, D.; GIRALDO, S.; RESTREPO, A.; OSPINA, M.; CADAVID, S.; GALLO, Y.; MARÍN, M. 2021. PVDP: A portable open source pipeline for detection of plant viruses in RNAseq data. A case study on potato viruses in Antioquia (Colombia). Physiol. Mol. Plant Path. 113:101604. https://doi.org/10.1016/j.pmpp.2021.101604 GUZMÁN-BARNEY, M.; HERNÁNDEZ, A.K.; FRANCO-LARA, L. 2012. Tracking Foliar Symptoms Caused by Tuber-Borne Potato yellow vein virus (PYVV) in Solanum Phureja (Juz et Buk) Cultivar “Criolla Colombia”. Am. J. Potato Res. 90:84-93. https://doi.org/10.1007/s12230-013-9303-6. HALTERMAN, D.; CHARKOWSKI, A.; VERCHOT, J. 2012. Potato viruses and seed certification in the USA to provide healthy propagated tubers. Pest Tech. 6(1):1-14. HAMEED, A.; IQBAL, Z.; ASAD, S.; MANSOOR, S. 2014. Detection of multiple potato viruses in the field suggests synergistic interactions among potato viruses in Pakistan. Plant Pathol. J. 30:407-415. https://doi.org/10.5423/PPJ.OA.05.2014.0039 HENAO-DÍAZ, E.; GUTIÉRREZ-SÁNCHEZ, P.; MARÍN-MONTOYA, M. 2013. Análisis filogenético de aislamientos del Potato virus Y (PVY) obtenidos en cultivos de papa (Solanum Tuberosum) y tomate de árbol (Solanum Betaceum) en Colombia. Actu. biol. 35:219-232. ICA. 2015. Resolución 3168 de 2015. Disponible desde Internet en: https://www.ica.gov.co/getattachment/4e8c3698-8fcb-4e42-80e7-a6c7acde9bf8/2015R3168.aspx (con acceso el 10/09/2020) KERLAN, C. 2008. Potato viruses. En: Mahy, B.W.; Van Regenmortel, M.H. (eds). Desk encyclopedia of plant and fungal virology. Academic Press. p.458-471. KREUZE, J.F.; SOUZA-DIAS, J.A.C.; JEEVALATHA, A.; FIGUEIRA, A.R.; VALKONEN, J.P.T.; JONES, R.A.C. 2020. Viral diseases in potato En: Campos, H.; Ortiz, O. (eds). The potato crop. Its agricultural, nutritional and social Contribution to Humankind. International Potato Center. p.389-431. https://doi.org/10.1007/978-94-011-2340-2 KUMAR, S.; STECHER, G.; LI, M.; KNYAZ, C.; TAMURA, K. 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35(6):1547-1549. https://doi: 10.1093/molbev/msy096. MADR. 2020. Cadena de la papa. Dirección de Cadenas Agrícolas y Forestales. Junio. Disponible desde Internet en: https://sioc.minagricultura.gov.co/Papa/Documentos/2020-06-30%20Cifras%20Sectoriales.pdf (con acceso el 17/08/2021) MARÍN, M.; GUTIÉRREZ, P. 2016. Principios de virología molecular de plantas tropicales. Colombia: Corpoica. MEDINA, H., GUTIÉRREZ, P., MARÍN, M. 2017. Detection and sequencing of Potato virus Y (PVY) and Potato leafroll virus (PLRV) in a volunteer plant of Solanum tuberosum L. cv. Diacol-Capiro. Acta Agron. 66(4):625-632. https://doi.org/10.15446/acag.v66n4.59753 MILNE, I.; BAYER, M.; CARDLE, L.; SHAW, P.; STEPHEN, G.; WRIGHT, F.; MARSHALL, D. 2010. Tablet - Next Generation Sequence Assembly Visualization. Bioinformatics (Oxford, England). 26(3):401-402. https://doi.org/10.1093/bioinformatics/btp666 MUMFORD, R.A.; WALSH, K.; BARKER, I.; BOONHAM, N. 2000. Detection of Potato mop top virus and Tobacco rattle virus using a multiplex real-time fluorescent reverse-transcription polymerase chain reaction assay. Phytopathology. 90(5): 448-453. https://doi.org/10.1094/PHYTO.2000.90.5.448 NIE, X.; SINGH, R. 2001. A novel usage of random primers for multiplex RT-PCR detection of virus and viroid in aphids, leaves, and tubers. J. Virol. Methods. 91(1):37-49. https://doi.org/10.1016/S0166-0934(00)00242-1 NOLTE, P.; WHITWORTH, J.L.; THORNTON, M.K.; MCINTOSH, C.S. 2004. Effect of seedborne Potato virus Y on performance of russet burbank, russet norkotah, and shepody potato. Plant Dis. 88:248-252. https://doi.org/10.1094/PDIS.2004.88.3.248 ÑUSTEZ, C.E. 2011. Variedades Colombianas de Papa. Bogotá: Universidad Nacional de Colombia. p.46. PORRAS, P.; HERRERA, C. 2015. Modelo productivo de la papa variedad Diacol Capiro para el departamento de Antioquia. Mosquera (Colombia): Corpoica. p.92. RAIGOND, B.; VERMA, A.; PATHANIA, S.; SRIDHAR, J.; KOCHHAR, T.; CHAKRABARTI, S.K. 2020. Development of a reverse transcription loop-mediated isothermal amplification for detection of potato virus a in potato and in insect vector aphids. Crop Prot. 137:105296. https://10.1016/j.cropro.2020.105296 RIASCOS, M.; GUTIÉRREZ SÁNCHEZ, P.; MARÍN MONTOYA, M. 2018. Identificación molecular de Potyvirus infectando cultivos de papa en el oriente de Antioquia (Colombia). Acta biol. Colomb. 23(1):39-50. http://dx.doi.org/10.15446/abc.v23n1.65683 SALAZAR, L. 2006. Emerging and re-emerging potato diseases in the Andes. Potato Res. 49:43-47. https://doi.org/10.1007/s11540-006-9005-2 SAVENKOV, E.I.; SANDGREN, M.; VALKONEN, J.P.T. 1999. Complete sequence of RNA 1 and the presence of tRNA like structures in all RNAs of Potato mop-top virus, genus Pomovirus. J. Gen. Virol. 80(10):2779-2784. https://doi.org/10.1099/0022-1317-80-10-2779 SIERRA, A.; GALLO, Y.; ESTRADA, M.; GUTIÉRREZ, P.; MARÍN, M. 2021. Detection of four RNA viruses in commercial and informal potato seed tubers in Antioquia (Colombia). Arch. Phytopathol. Pflanzenschutz. 54(5-6):273-294. https:// 10.1080/03235408.2020.1829424. SINGH, R.P.; KURZ, J.; BOITEAU, G.; BERNARD, G. 1995. Detection of Potato leafroll virus in single aphids by the reverse transcription polymerase chain reaction and its potential epidemiological application. J. Virol. Methods. 55:133-143. SCHULTE-GELDERMANN, E.; GILDEMACHER, P.R; STRUIK, P.C. 2012. Improving seed health and seed performance by positive selection in three Kenyan potato varieties. Am. J. Potato Res. 89(6):429–437. https://doi.org/10.1007/s12230-012-9264-1 SCHUMPP, O.; BRÉCHON, A.; BRODARD, J.; DUPUIS, B.; FARINELLI, L.; FREI, P.; OTTEN, P.; PELLET, D. 2021. Large-Scale RT-qPCR diagnostics for seed potato certification. Potato Res. In press. https://doi.org/10.1007/s11540-021-09491-3 THOMAS-SHARMA, S.; ABDURAHMAN, A.; ALI, S.; ANDRADE-PIEDRA, J.L.; BAO, S.; CHARKOWSKI, A.O.; CROOK, D.; KADIAN, M.; KROMANN, P.; STRUIK, P.C.; TORRANCE, L.; GARRETT, K.A.; FORBES, G.A. 2016. Seed degeneration in potato: The need for an integrated seed health strategy to mitigate the problem in developing countries. Plant Pathol. 65(1):3-16. https://doi.org/10.1111/ppa.12439 XU, H.; DEHAAN, T.L.; DE BOER, S.H. 2004. Detection and confirmation of Potato mop-top virus in potatoes produced in the United States and Canada. Plant Dis. 88(4):363–367. https://doi.org/10.1094/PDIS.2004.88.4.363 YANG, L.; NIE, B.; LIU, J.; SONG, B. 2014. A reexamination of the effectiveness of ribavirin on eradication of viruses in potato plantlets in vitro using Elisa and quantitative RT-PCR. Am. J. Potato Res. 91(3):304-311. https://doi.org/10.1007/s12230-013-9350-z Agindotan, B.O., P.J. Shiel, P.H. Berger. 2007. Simultaneous detection of potato viruses, PLRV, PVA, PVX and PVY from dormant potato tubers by TaqMan real-time RT-PCR. Journal of Virological Methods 142(1-2): 1-9. https://doi: 10.1016/j.jviromet.2006.12.012. Avrahami-Moyal, L., Y. Tam, M. Brumin, S. Prakash, D. Leibman, M. Pearlsman, M. Bornstein, N. Sela, M. Zeidan, Z. Dar, U. Zig, A. Gal-On, V. Gaba. 2017. Detection of Potato virus Y in industrial quantities of seed potatoes by TaqMan Real Time PCR. Phytoparasitica 45: 591–598. https:// 10.1007/s12600-017-0612-z Cox, B.A., R.A.C. Jones. 2012. Effects of tissue sampling position, primary and secondary infection, cultivar, and storage temperature and duration on the detection, concentration and distribution of three viruses within infected potato tubers. Australasian Plant Pathology 41: 197–210. https://10.1007/s13313-011-0108-0 FERA. 2017. Potato post-harvest virus testing sample submission form. [accessed 2020 Nov 20]. https://www.fera.co.uk/media/wysiwyg/crop_health/Crop_Health_Post-Harvest_Virus_Testing_of_Potato_Tubers_Sample_Submission-2019.pdf Fox, A., F. Evans, I. Browning. 2005. Direct tuber testing for Potato Y potyvirus by real-time RT-PCR and ELISA: reliable options for post-harvest testing? EPPO Bulletin 35: 93–97. https:// 10.1111/j.1365-2338.2005.00805.x Gallo, Y., A. Sierra, M. Marín, P.A. Gutiérrez. 2021. Prevalencia de cinco virus de ARN en tubérculos-semilla de papa cultivados en Antioquia (Colombia). Biotecnología en el Sector Agropecuario y Agroindustrial 19(1): 66-78. https://dx.doi.org/10.18684 Ghislain, M., D. Andrade, F. Rodríguez, R.J. Hijmans, D.M. Spooner. 2006. Genetic analysis of the cultivated potato Solanum tuberosum L. Phureja Group using RAPDs and nuclear SSRs. Theoretical and Applied Genetics 113(8): 1515-1527. https://10.1007/s00122-006-0399-7 Giraldo, S., A. Sierra, M. Ospina, M. Higuita, Y. Gallo, P. Gutiérrez, M. Marín. 2022. Detección y caracterización molecular del potato virus B (PVB) en papa criolla (Solanum phureja) en Antioquia. Acta Biológica Colombiana 27(2): 258-268. https://doi.org/10.15446/abc.v27n2.89422 Herrera, A.O., L.E. Rodríguez. 2011. Tecnologías de Producción y Transformación de Papa Criolla. Universidad Nacional de Colombia. Bogotá. ISBN : 978-958-761-110-6 Kumar, R., P. Kaundal, R. Kumar, S. Siddappa, H. Kumari, K. Chandra, S. Sharma, M. Kumar. 2021. Rapid and sensitive detection of potato virus X by one-step reverse transcription-recombinase polymerase amplification method in potato leaves and dormant tubers. Molecular and Cellular Probes 58: 101743. https:// 10.1016/j.mcp.2021.101743 Mortimer-Jones, S.M., M.G. Jones, R.A. Jones, G. Thomson, G.I. Dwyer. 2009. A single tube, quantitative real-time RT-PCR assay that detects four potato viruses simultaneously. Journal of Virological Methods 161: 289–296. https://10.1016/j.jviromet.2009.06.027 NAK. 2015. Details virus and bacterial diagnostics in potatoes 2016–2017. [accessed 2020 Sept 10]. https://www.nak.nl/wpcontent/uploads/archief/2012/NAK%20Services/Virus%20and%20bacterial%20diagnostics%20in%20potatoes%202017-2018.pdf. Ñustez, C.E. 2011. Variedades Colombianas de Papa. Bogotá: Universidad Nacional de Colombia. 46 p. Seminario, J.F., R. Villanueva-Guevara, M.H. Valdez-Yopla. 2018. Rendimiento de cultivares de papa (Solanum tuberosum L.) amarillos precoces del grupo Phureja. Agronomía Mesoamericana 29(3): 639-653. https://10.15517/ma.v29i3.32623 Sierra A., Y. Gallo, M. Estrada, P. Gutiérrez, M. Marín. 2021. Detection of four RNA viruses in commercial and informal potato seed tubers in Antioquia (Colombia). Archives of Phytopathology and Plant Protection 54(5-6): 273-294. https:// 10.1080/03235408.2020.1829424. Singh, R.P., J. Kurz, G. Boiteau, G. Bernard. 1995. Detection of potato leafroll virus in single aphids by the reverse transcription polymerase chain reaction and its potential epidemiological application. Journal of Virological Methods 1: 133–143. https://10.1016/0166-0934(95)00056-z Singh M, Singh RP, Fageria MS, Nie X, Coffin R, Hawkins G. 2013. Optimization of a Real-Time RT-PCR assay and its comparison with ELISA, conventional RT-PCR and the grow-out test for large scale diagnosis of Potato virus Y in dormant potato tubers. American Journal of Potato Research 90(1):43–50. https://doi.org/10.1007/s12230-012-9274-z Stammler, J., A. Oberneder, A. Kellermann, J. Hadersdorfer. 2018. Detecting potato viruses using direct reverse transcription quantitative PCR (DiRT-qPCR) without RNA purification: an alternative to DAS-ELISA. European Journal of Plant Pathology 152: 237–248. https:// 10.1007/s10658-018-1468-x Whitworth, J.L., P.B. Hamm, P. Nolte. 2012. Distribution of Potato virus Y strains in tubers during the postharvest period. American Journal of Potato Research 89(2): 136–141. https:// 10.1007/s12230-012-9235-6 Whitworth, J.L., S.M. Gray, J.T. Ingram, D.G. Hall. 2021. Foliar and tuber symptoms of U.S. potato varieties to multiple strains and isolates of potato virus Y. American Journal of Potato Research 98: 93–103. https://10.1007/s12230-020-09820-1 Agindotan, B. O., Shiel, P. J. y Berger, P. H. (2007). Simultaneous detection of potato viruses, PLRV, PVA, PVX and PVY from dormant potato tubers by TaqMan® real-time RT-PCR. Journal of Virological Methods, 142(1–2), 1–9. https://doi.org/10.1016/j.jviromet.2006.12.012 Álvarez, D., Gutiérrez, P. y Marín, M. (2016). Caracterización molecular del Potato virus V (PVV) infectando Solanum phureja mediante secuenciación de nueva generación. Acta Biológica Colombiana, 21(3), 521-531. https://doi.org/10.15446/abc.v21n3.54712 Álvarez-Yepes, D., Gutiérrez-Sánchez, P. y Marín-Montoya, M. (2017). Secuenciación del genoma del Potato yellow vein virus (PYVV) y desarrollo de una prueba molecular para su detección. Bioagro, 29(1), 3-14. Antonova, O., Apalikova, O., Ukhatova, Y., Krylova, E., Shuvalov, O., Shuvalova, A. R. y Gavrilenko, T. A. (2017). Eradication of viruses in microplants of three cultivated potato species (Solanum tuberosum L., S. Phureja Juz. & Buk., S. stenotomum Juz. & Buk.) using combined thermo-chemotherapy method. Sel'skokhozyaistvennaya Biologiya, 52, 95-104. https://doi.org/10.15389/agrobiology.2017.1.95eng. Bamberg, J., Martin, M., Abad, J., Jenderek, M., Tanner, J., Donnelly, D., Nassar, A., Veilleux, R. y Novy, R. (2016). In vitro technology at the US potato Genebank. In Vitro Cellular and Developmental Biology - Plant, 52, 213-225. https://doi.org/10.1007/s11627-016-9753-x Bettoni, J. C., Mathew, L., Pathirana, R., Wiedow, C., Hunter, D., McLachlan, A., Khan, S., Tang, J. y Nadarajan, J. (2022). Eradication of Potato Virus S, Potato Virus A, and Potato Virus M From Infected in vitro-grown potato shoots using in vitro therapies. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.878733 Chavez-Barrantes, N. y Gutiérrez-Soto, M. (2017). Respuestas al estrés por calor en los cultivos. II. Tolerancia y tratamiento agronómico. Agronomía Mesoamericana, 28(1), 255 - 271. https://doi.org/10.15517/am.v28i1.21904 Daurov, D., Daurova, A., Karimov, A., Tolegenova, D., Volkov, D., Raimbek, D., Zhambakin, K. y Shamekova, M. (2020). Determining Effective Methods of Obtaining Virus-Free Potato for Cultivation in Kazakhstan. American Journal of Potato Research, 97, 367–375. https://doi.org/10.1007/s12230-020-09787-z Dawson, W. O. y Lozoya, S. H. (1984). Examination of the mode of action of ribavirin against tobacco mosaic virus. Intervirology., 22(2), 77–84. https://doi.org/10.1159/000149537 Ehsanpour, A. y Jones, M. (2001). Plant regeneration from mesophyll protoplasts of potato (Solanum tuberosum L.) cultivar delaware using silver thiosulfate (STS). Journal of sciences, 12, 103-110. Faccioli, G. y Colalongo, M. (2002). Eradication of potato virus Y and potato leafroll virus by chemotherapy of infected potato stem cuttings. Phytopathologia Mediterranea, 41, 76-78. FAOSTAT. (2018). Food and agriculture data. Recuperado el 10 de septiembre de 2020 de http://www.fao.org/faostat/en/#home Gallo, Y., Sierra, A., Marín, M. y Gutiérrez, P. A. (2021). Prevalencia de cinco virus de ARN en tubérculos-semilla de papa cultivados en Antioquia (Colombi9a). Biotecnología en el Sector Agropecuario y Agroindustrial, 19(1), 66-78. https://dx.doi.org/10.18684 García, A.; Higuita, M.; Hoyos, R.; Gallo, Y.; Marín, M. y Gutiérrez, P. (2021). Prevalence of RNA viruses in certified, and informal potato seed tubers in the province of Antioquia (Colombia). Crop Prot; código del registro: No.: CROPRO-D-21-01027. Guzmán, M., Román, V., Franco, X. y Rodríguez, P. (2010). Presencia de cuatro virus en algunas accesiones de la Colección Central Colombiana de papa mantenida en campo. Agronomía Colombiana, 28(2), 225–233. Hoque, M. (2010). In Vitro Regeneration Potentiality of Potato under Different Hormonal Combination. World Journal of Agricultural Sciences, 6(6), 660-663. http://www.idosi.org/wjas/wjas6(6)/5.pdf Kaiser, W. (1980). Use of Thermotherapy to Free Potato Tubers of Alfalfa mosaic, Potato leaf roll, and Tomato black ring viruses. Phytopathology, 70(11), 1119. https://doi.org/10.1094/phyto-70-1119 Mumford, R. A., Walsh, K., Barker, I. y Boonham, N. (2000). Detection of Potato mop top virus and Tobacco rattle virus using a multiplex real-time fluorescent reverse-transcription polymerase chain reaction assay. Phytopathology, 90(5), 448-453. https://doi.org/10.1094/PHYTO.2000.90.5.448 Murashige, T. y Skoog, F. (1962). A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum, 15, 474-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x Muthoni, J., Shimelis, H. y Melis, R. (2013). Potato production in Kenya: Farming systems and production constraints. The Journal of Agricultural Science, 5(5), 182-197. https://doi.org/10.5539/jas.v5n5p182 Nasir, I., Tabassum, B., Latif, Z., Javed M., Haider, M. Javed, M. y Husnain, T. (2010). Strategies to control Potato virus Y under in vitro conditions. Pakistan Journal of Phytopathology, 22(1), 63-70. Salazar, L. F. (1996). Potato viruses and their control. Lima: International Potato Center. Savenkov, E. I., Sandgren, M. y Valkonen, J. P. T. (1999). Complete sequence of RNA 1 and the presence of tRNA like structures in all RNAs of Potato mop-top virus, genus Pomovirus. Journal of General Virology, 80(10), 2779-2784. https://doi.org/10.1099/0022-1317-80-10-2779 Sherwood, J. L. (1994). Virus free-plants. Dixon, R. A. y Gonzales R. A. (Ed). Plant Cell Culture. A practical approach. (2a ed). IRL Press. UK. (pp. 135-138). Shoala, T., Eid, Kh. E. y El-fiki, I. A. I. (2019). Impact of chemotherapy and thermotherapy treatments on the presence of potato viruses PVY, PVX and PLRV in tissue-cultured shoot tip meristem. Journal of Plant Protection and Pathology, 10(12), 581-585. Simpkins, I.; Walkey, D. G. A. y Neely, H. A. (1981). Chemical suppression of virus in cultured plant tissues. Annals Applied Biology, 99(2), 161–169.https://doi.org/10.1111/j.1744-7348.1981.tb05143.x Singh, R. P., Kurz, J., Boiteau, G. y Bernard, G. (1995). Detection of Potato leafroll virus in single aphids by the reverse transcription polymerase chain reaction and its potencial epidemiological application. Journal of Virological Methods, 1, 133–143. https://10.1016/0166-0934(95)00056-z Wagoire, W. W., Kakuhenzire, R., Kashaija, I. N., Lemaga, B., Demo, P. y Kimmone, G. (2005). Seed potato production in Uganda: Current status and future prospects. African Crop Science Conference Proceedings, 7, 739-743. Waswa, M.; Kakuhenzire, R. y Ochwo-Ssemakula, M. (2017). Effect of thermotherapy duration, virus type and cultivar interactions on elimination of potato viruses X and S in infected seed stocks. African Journal of Plant Science. 11(3):61-70. https://doi.org/10.5897/AJPS2016.1497 Yang, L., Nie, B., Liu, J. y Song, B. (2014). A Reexamination of the effectiveness of ribavirin on eradication of viruses in potato plantlets in vitro using ELISA and quantitative RT-PCR. American Journal of Potato Research, 91(3), 304-311. https://doi.org/10.1007/s12230-013-9350 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xxiii, 325 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Medellín - Ciencias - Maestría en Ciencias - Biotecnología |
dc.publisher.department.spa.fl_str_mv |
Escuela de biociencias |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Medellín, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/82244/2/1152195206.2022.pdf https://repositorio.unal.edu.co/bitstream/unal/82244/8/license.txt https://repositorio.unal.edu.co/bitstream/unal/82244/9/Garc%c3%ada%20Torres%2c%20Andrea%20Stefania%20Licencia%20%20capitulo%201.pdf https://repositorio.unal.edu.co/bitstream/unal/82244/10/Garc%c3%ada%20Torres%2c%20Andrea%20Stefania%20Licencia%20%20capitulo%202.pdf https://repositorio.unal.edu.co/bitstream/unal/82244/11/Garc%c3%ada%20Torres%2c%20Andrea%20Stefania%20Licencia%20%20capitulo%203.pdf https://repositorio.unal.edu.co/bitstream/unal/82244/12/Garc%c3%ada%20Torres%2c%20Andrea%20Stefania%20Licencia%20%20capitulo%20%204.pdf https://repositorio.unal.edu.co/bitstream/unal/82244/13/Garc%c3%ada%20Torres%2c%20Andrea%20Stefania%20Licencia%20%20capitulo%205.pdf https://repositorio.unal.edu.co/bitstream/unal/82244/14/1152195206.2022.pdf.jpg |
bitstream.checksum.fl_str_mv |
53d15a4fc0261f321efcd25f90b8f05d 8a4605be74aa9ea9d79846c1fba20a33 21c5920746951794ade8cc839a7a4619 afdd5da5ecc9d2b8fb5cf1e88569f2f3 042a06b5fedc5b6fe7c3af5fcb49a109 6647dab1d3baa47803ca2f3ac9774563 af6365f4a12ed17e79b0c27519c28804 8e0830233a62a9cd2c199a91732b5ba1 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090136204345344 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Hoyos Sánchez, Rodrigo Alberto6ddb39f31a5436d96ecc1e671ae2131e600Gutiérrez Sánchez, Pablo Andrés03fa1cb1dfa744c01ad629ca741ddd94García Torres, Andrea Stefania2ce89275edf36b2b46e291a75276129aMarìn Montoya, Mauricio AlejandroCorrea Londoño, Guillermo AntonioBiotecnología MicrobianaBiotecnología Vegetal Unalmed Cib2022-09-02T21:32:26Z2022-09-02T21:32:26Z2022-08-20https://repositorio.unal.edu.co/handle/unal/82244Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, tablasEn Colombia, el cultivo de papa (Solanum tuberosum y S. phureja) es uno de los renglones agrícolas más importantes para la zona Andina. Con el fin de aportar nuevos elementos al conocimiento de la situación virológica de la papa en el país, y especialmente en Antioquia, en este proyecto se utilizaron diversas técnicas moleculares (RT-PCR, qPCR, secuenciación Sanger y HTS) para el diagnóstico, identificación, y caracterización genómica de los virus presentes en el material de siembra certificado y no certificado de los cultivares Diacol Capiro y Criolla Colombia, comercializados en Antioquia y en menor proporción en la sabana Cundiboyacense. Los resultados indicaron la presencia de los virus de RNA: virus Y de la papa (Potato virus Y - PVY), virus S de la papa (Potato virus S - PVS), virus X de la papa (Potato virus X - PVX), virus del amarillamiento de las venas de la papa (Potato yellow vein virus - PYVV), virus del enrollamiento de la hoja de papa (Potato leafroll virus - PLRV), virus mop-top de la papa (Potato mop-top virus - PMTV), virus V de la papa (Potato virus V- PVV) y virus B de la papa (Potato virus B - PVB), en ambos cultivares de papa y en ambos tipos de material de siembra. En las evaluaciones directas sobre tubérculos obtenidos en la sabana Cundiboyacense, se detectaron siete (PVY, PVX, PVS, PLRV, PYVV, PMTV y PVB) de los ocho virus en material de siembra certificado de cv. Diacol Capiro, mientras que, en los tubérculos no certificados, se encontraron seis de los virus (PVY, PVX, PVS, PYVV, PLRV y PMTV). Para el caso de Antioquia, las evaluaciones se dividieron en las zonas del oriente y norte del departamento. En el oriente, se detectaron los ocho virus en ambos cultivares; en cuánto al norte, se encontraron siete de los virus (PVY, PVS, PVX, PLRV, PYVV, PMTV y PVB) en el cv. Diacol Capiro. Para el material del cv. Criolla Colombia, no fue posible obtener material certificado en la zona del norte, pero si se detectaron los ocho virus en los tubérculos no certificados. Utilizando la secuenciación masiva de alto rendimiento, se aumentó el número de secuencias disponibles de genomas de los virus PVY, PVV, PVX, PVS, PMTV y PVB, además se realizó el primer reporte de una secuencia de PVV infectando el cv. Diacol Capiro en Colombia y el primer registro del virus D de la necrosis del tabaco (Tobacco necrosis virus D - TNV-D) en el país. Adicionalmente, se realizó un ensayo piloto sobre la distribución viral en brotes de diferentes tubérculos pertenecientes a un mismo lote de semilla, encontrándose que para alcanzar una precisión del 90% en la detección viral, es necesario evaluar de manera independiente al menos tres tubérculos por lote y de dos a tres brotes por tubérculo. Por último, se evaluó el efecto de terapias in vitro para la eliminación viral en plántulas ambos cultivares, evidenciándose una reducción en la proporción de infección en vitroplantas sometidas a quimioterapia por 45 días con respeto a los tratamientos control, de los virus PVY, PVS, PVX, PLRV y PYVV en todas las dosis de ribavirina (50, 75 y 100 ppm); asimismo en las evaluaciones de termoterapia se registraron disminuciones en los virus PVY, PYVV y PMTV en las plántulas sometidas a 35°C, PVV, PVS, PYVV, PMTV y PVX en 36°C, PVS, PVX, PMTV y PYVV en 37°C, y PVS y PLRV en vitroplantas a 38°C por dos semanas. Se espera que los resultados obtenidos en esta tesis se constituyan en un aporte importante para el apoyo de los programas de manejo integrado de las enfermedades virales en papa. (Texto tomado de la fuente)In Colombia, potato (Solanum tuberosum y S. phureja) is one of the most important staple food crops in the Andean region. This work was designed to update our current knowledge of the potato virome in Colombia using a wide range of molecular tools (RT-PCR, qPCR, Sanger and HTS) for the diagnostics, identification and genomic characterization of the viruses present in certified and uncertified planting material used by potato farmers in the province of Antioquia, and some regions of Cundinamarca and Boyacá. The results presented here, reveal a high prevalence of the RNA viruses Potato virus Y (PVY), Potato virus S (PVS), Potato virus X (PVX), Potato yellow vein virus (PYVV), Potato leafroll virus (PLRV), Potato mop-top virus (PMTV), Potato virus V (PVV) and Potato virus B (PVB) in planting material from both cultivars. Direct testing on seed-tubers produced in the highlands of Boyacá and Cundinamarca revealed widespread infection with PVY, PVX, PVS, PLRV, PYVV, PMTV, and PVB in certified cv. Diacol Capiro seeds, and PVY, PVX, PVS, PYVV, PLRV, and PMTV, in uncertified ones. In eastern Antioquia, this investigation detected all eight viruses infecting both cultivars. As for northern Antioquia, seven viruses (PVY, PVS, PVX, PLRV, PYVV, PMTV y PVB) were found in cv. Diacol Capiro. All eight viruses under study were identified in uncertified Criolla Colombia seeds, unfortunately, certified seeds for this cultivar were not available in northern Antioquia at the time of study. HTS allowed either the partial or complete genome characterization of new PVY, PVV, PVX, PVS, PMTV and PVB isolates, in addition to the first PVV isolate infecting S. tuberosum in Colombia, and the first report for Tobacco necrosis virus D - TNV-D. A pilot study on the distribution of viruses across sprouts within the same tuber was performed revealing that to achieve 90% accuracy it is necessary to test a minimum of two or three sprouts from three different tubers per lot. Finally, this work also tested the effect of chemotherapy with ribavirin at 50, 75, and 100 ppm for 45 days; and thermotherapy at 35, 36, 37 and 38°C for 15 days, in reducing the proportion of vitroplants infected with PVY, PVV, PVS, PVX, PYVV, PLRV and PMTV in potato cultivars Diacol Capiro and Criolla Colombia. Chemotherapy proved to be effective in reducing the proportion of PVY, PVS, PVX, PLRV y PYVV at all ribavirin concentrations (50, 75 and 100 ppm). Additionally, thermotherapy reduced the proportion of vitroplants infected with PVY, PYVV and PMTV at 35°C, PVV, PVS, PYVV, PMTV and PVX at 36°C, PVS, PVX, PMTV and PYVV at 37°C, and PVS and PLRV at 38°C. These results are expected to be an important contribution in support of viral disease management programs of potato in Colombia.Esta tesis fue financiada por el Fondo de Ciencia, Tecnología e Innovación del Sistema General de Regalías del Departamento de Antioquia (Colombia) (Convenio No. 4600007658–779), a través del Proyecto: "Desarrollo de una plataforma molecular y bioinformática para el diagnóstico de virus en cultivos y material de siembra de papa (Solanum tuberosum y S. phureja) en Antioquia" (Código: 1101-805-62787), ejecutado por la Universidad Nacional de Colombia sede Medellín, Universidad CES y Fedepapa. El proyecto fue supervisado por la Secretaria de Agricultura y Desarrollo Rural de Antioquia y por el Ministerio de Ciencia, Tecnología e Innovación de Colombia. Las muestras vegetales fueron colectadas bajo el Permiso marco de la Universidad Nacional de Colombia y el permiso RGE152-27 del Ministerio del Medio Ambiente y Desarrollo Sostenible (Resolución 0208, 9/03/2020).MaestríaMagíster en Ciencias - BiotecnologíaFitopatologíaÁrea curricular Biotecnologíaxxiii, 325 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Ciencias - Maestría en Ciencias - BiotecnologíaEscuela de biocienciasFacultad de CienciasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín570 - Biología::575 - Partes específicas de y sistemas fisiológicos en plantas630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetales630 - Agricultura y tecnologías relacionadas::633 - Cultivos de campo y de plantaciónVirología agrícolaPapa - Enfermedades y plagasPapa - CultivoCultivo in vitroCertificación de semillaSecuenciación de alto rendimientoVirología vegetalPapa (Solanum tuberosum y S. phureja)qPCRHigh-throughput sequencingPlant virologySeed certificationSolanaceaeDetección molecular y limpieza de virus en material de siembra de Solanum tuberosum y S. phurejaMolecular detection and characterization of viruses and development of in vitro virus removal methods in Solanum tuberosum and S. phurejaTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAbdelnour, A. y Escalant, J. (1994). Conceptos básicos del cultivo de tejidos vegetales. Turrialba: CATIE.Adolf, B., Andrade-Piedra, J., Molina, F. B., Przetakiewicz, J., Hausladen, H., Kromann, P., Lees, A., Lindqvist-Kreuze, H., Perez, W. y Secor, G. (2020). Fungal, oomycete, and plasmodiophorid diseases of potato. Campos, H. y Ortiz, O. (Ed). The potato crop. Its agricultural, nutritional and social Contribution to Humankind. (pp. 307-350). International Potato Center. Springer. https://doi.org/10.1007/978-94-011-2340-2Agronet. (2019). Área cosechada, producción y rendimiento de Papa, 2006-2019. Recuperado el 5 de julio de 2021 de https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1Agronet. (2020). Cultivos de papa son más productivos en altitudes medias. Recuperado el 5 de julio de 2021 de https://www.agronet.gov.co/Noticias/Paginas/Cultivos-de-papa-son-m%C3%A1s-productivos-en-altitudes-medias.aspxAgrosavia. (2022). Minitubérculos (minis) de papa. Recuperado el 24 de abril de 2022 de https://www.agrosavia.co/productos-y-servicios/oferta-tecnologica/0496-minituberculos-minis-de-papaAguirre, A. y Martínez, G. (2001). Obtención de plantas sanas de papa, Solanum tuberosum L. Variedad Salentuna, a través de las técnicas de termoterapia y cultivo de meristemas in vitro. Revista Facultad Nacional de Agronomía Medellín, 54,1351–1366.Alcántara, J., Castilla, M. y Sánchez, R. (2017). Importancia de los cultivos vegetales in vitro para establecer bancos de germoplasma y su uso en investigación. Biociencias, 1, 71-83.AlMaarri, K., Massa, R. y AlBiski, F. (2012). Evaluation of some therapies and meristem culture to eliminate Potato Y potyvirus from infected potato plants. Plant Biotechnology, 29, 237-243. https://doi.org/10.5511/plantbiotechnology.12.0215aAlmasi, M., Jafary, H., Moradi, A., Zand, N., Ojaghkandi, M. y Aghaei, S. (2013). Detection of Coat Protein Gene of the Potato Leafroll Virus by Reverse Transcription Loop-Mediated Isothermal Amplification. Journal of Plant Pathology & Microbiology, 4, 1. https://doi.org/10.4172/2157-7471.1000156Altschul, S. F., Gish, W., Miller, W., Myers, E. W. y Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2Andrade, R. (2017). Agricultura - El cultivo de la patata. Infoagro. Recuperado el 15 de abril de 2020 de http://www.infoagro.com/hortalizas/patata.htmArsenic, R., Treue, D., Lehmann, A., Hummel, M., Dietel, M., Denkert, C. y Budczies, J. (2015). Comparison of targeted next-generation sequencing and Sanger sequencing for the detection of PIK3CA mutations in breast cancer. BMC Clinical Pathology, 15, 1–9. https://doi.org/10.1186/s12907-015-0020-6.Aseel, D. G. y Hafez, E. E. (2017). The comparison of antibodies raised against PLRV with two different approaches - viral particles purification and recombinant production of CP. Journal of Plant Pathology & Microbiology, 8, 5. https://doi.org/10.4172/2157-7471.1000407Avrahami-Moyal, L., Tam, Y., Brumin, M., Prakash, S., Leibman, D., Pearlsman, M., Bornstein, M., Sela, N., Zeidan, M., Dar, Z., Zig, U., Gal-On, A. y Gaba, V. (2017). Detection of Potato virus Y in industrial quantities of seed potatoes by TaqMan Real Time PCR. Phytoparasitica, 45, 591-598. https://doi.org/10.1007/s12600-017-0612-z.Azcón-Bieto, J. y Talón, M. (2013). Fundamentos de fisiología vegetal. (2a ed.). Barcelona.Bahner, L. Lamb, J., Mayo, M. A. y Hay R. T. (1990). Expression of the genome of potato leafroll virus: readthrough of the coat protein termination codon in vivo. Journal of General Virology, 71, 2251-2256.Bains, P. S., Bennypaul, H. S., Lynch, D. R., Kawchuk, L. M. y Schaupmeyer, C. A. (2002). Rhizoctonia disease 66 of potatoes (Rhizoctonia solani): Fungicidal efficacy and cultivar susceptibility. American Journal of Potato Research, 79, 99–106. https://doi.org/10.1007/BF0288151Bankevich, A., Nurk, S., Antipoy, D., Gurevich, A. A., Dvorkin, M., Kulikov, A., Lesin, V., Nikolenko, S., Pham, S., Prjibelski, A., Pyshkin, A., Sirotkin, A., Vyahhi, N., Tesler, G., Alekseyev, M. A. y Pevzner, P. A. (2012). SPAdes: A new genome assembly algorithm and its applications to Single-Cell Sequencing. Journal of Computational Biology, 19(5), 455-477. https://doi.org/10.1089/cmb.2012.0021Beemster, A. y Bokx, A. (1987). Survey of properties and symptoms. Bokx, J. A. y Want, J. (Ed). Viruses of potatoes and seed-potato production (2a ed.). (pp. 84-113). Netherland: Wageningen University. https://doi.org/10.1007/bf02357877Benavides, I. y Pozo, M. (2008). Elaboración de una bebida alcohólica destilada (Vodka) a partir de tres variedades de papa (Solanum tuberosum) utilizando dos tipos de enzima. Universidad Técnica del Norte. http://repositorio.utn.edu.ec/handle/123456789/327Bhat, A. I. y Rao, G.P. (2020). Characterization of Plant Viruses. Springer Protocols Handbooks. https://link.springer.com/book/10.1007/978-1-0716-0334-5Birch, P. R. J., Bryan, G., Fenton, B., Gilroy, E. M., Hein, I., Jones, J. T., Prashar, A., Taylor, M., Torrance, L y Toth, I. (2012). Crops that feed the world 8: Potato: Are the trends of increased global production sustainable?. Food Security. 4, 477–508. https://doi.org/10.1007/s12571-012-0220-1.Blanc, S. (2008). Vector transmission of plant viruses. Mahy, B. W.y Van Regenmortel, M. H. (Ed). Desk encyclopedia of plant and fungal Virology. (pp. 35-48). New York: Academic Press.Bokelmann, G. S. y Roest, S. (1983). Plant Regeneration from Protoplasts of Potato (Solarium tuberosum cv. Bintje). Zeitschrift Für Pflanzenphysiologie, 109, 259-265. https://doi.org/10.1016/s0044-328x(83)80228-1.Boonham, N., Kreuze, J., Winter, S., van der Vlugt, R., Bergervoet, J., Tomlinson, J. y Mumford, R. (2014). Methods in virus diagnostics: From ELISA to next generation sequencing. Virus Research, 186, 20-31. https://doi.org/10.1016/j.virusres.2013.12.007Boratyn, G., Thierry-Mieg, J., Thierry-Mieg, D., Busby, B. y Madden, T. (2019). Magic-BLAST, an accurate RNA-seq aligner for long and short reads. BMC Bioinformatics, 20. https://doi.org/10.1186/s12859-019-2996-x.Braun, C. J. y Hemenway, C. L. (1992). Expression of amino-terminal portions or full-length vira1 replicase genes in transgenic plants confers resistance to Potato Virus X infection. Plant Cell, 4, 735–44. https://doi.org/10.1105/tpc.4.6.735Brown, J., Pirrung, M. y Mccue, L. (2017). FQC Dashboard: Integrates FastQC results into a web-based, interactive, and extensible FASTQ quality control tool. Bioinformatics, 33, 3137-3139. https://doi.org/10.1093/bioinformatics/btx373Burlingame, B., Mouillé, B. y Charrondière, R. (2009). Nutrients, bioactive non-nutrients and anti-nutrients in potatoes. Journal of Food Composition and Analysis, 22, 494–502. https://doi.org/10.1016/j.jfca.2009.09.001Bushmanova, E., Antipov, D., Lapidus, A. y D Prjibelski, A. (2019). rnaSPAdes: a de novo transcriptome assembler and its application to RNA-Seq data, GigaScience, 8(9), 1-13. https://doi.org/10.1093/gigascience/giz100Camacho, C., Coulouris, G., Avagyan, Ma, N., Papadopoulos, J., Bealer, K. y Madden, T. L. (2009). BLAST+: architecture and applications. BMC Bioinformatics, 10(421). https://doi.org/10.1186/1471-2105-10-421Campos, H. y Ortiz, O. (2020). The potato crop. Its agricultural, nutritional and social Contribution to Humankind. International Potato Center. Springer. https://doi.org/10.1007/978-94-011-2340-2Carbajal, N. (2018). Termoterapia y cultivo in vitro de ajo (Allium sativum L.) para la eliminación del virus del enanismo amarillo de la cebolla. Tesis Maestría, Universidad Autónoma de Nuevo León. https://doi.org/10.1017/CBO9781107415324.004.Carreño, N., Vargas, A., Bernal, A. J. y Restrepo, S. (2007). Problemas fitopatológicos en especies de la familia Solanaceae causados por los géneros Phytophthora, Alternaria y Ralstonia en Colombia. Una revisión. Agronomía Colombiana, 25(2), 320-329.Casaca, A., Sierra, E., Cruz, J. y Arellano, R. (2005). El cultivo de la papa. Banco Interamericano de Desarrollo, 1–14. http://www.dicta.gob.hn/files/2005,-El-cultivo-de-la-papa,-F.pdfCastillo, A. (2004). Propagación de plantas por cultivo in vitro: una biotecnología que nos acompaña hace mucho tiempo. INIA Las Brujas.Castro, I. y Contreras, A. (2011). Manejo de plagas y enfermedades en el cultivo de la papa. Imprenta Austral.Valdivia.Charkowski, A., Sharma, K., Parker, M., Secor, G. y Elphinstone, J. (2020). Bacterial Diseases of Potato. Campos, H. y Ortiz, O. (Ed). The potato crop. Its agricultural, nutritional and social Contribution to Humankind. (pp. 351-388). International Potato Center. Springer. https://doi.org/10.1007/978-94-011-2340-2Chaves, S. C., Rodríguez, M. C., Mideros, M. F., Lucca, F., Ñústez, C. E. y Restrepo, S. (2019). Determining whether geographic origin and potato genotypes shape the population structure of Phytophthora infestans in the central region of Colombia. Phytopathology,109(1), 145–154. https://doi.org/10.1094/PHYTO-05-18-0157-RCIP. (2015a). Cómo crecen las papas - International Potato Center. Recuperado el 15 de abril de 2020 de https://cipotato.org/es/lapapa/como-crecen-las-papas/CIP. (2015b). Dato y cifras de la papa - International Potato Center. Recuperado el 15 de abril de 2020 de https://cipotato.org/es/potato/potato-facts-and-figures/Cobos, R. M., Becerra–Rozo, W. M. y Castellanos, G. L. (2019). Richness and abundance of the land slugs in four crops of Pamplona, Norte de Santander, Colombia. Bistua: Revista de la Facultad de Ciencias Básicas, 17(2), 229-233. https://doi.org/10.24054/01204211.v2.n2.2019.3538.Costa, T. M., Inoue-Nagata, A. K., Vidal, A. H., Ribeiro, S. G. y Nagata, T. (2020). The recombinant isolate of cucurbit aphid-borne yellows virus form Brazil is a polerovirus transmitted by whiteflies. Plant Pathology, 69(6), 1042-1050. https://doi.org/10.1111/ppa.13186Cox, B. A. y Jones, R. A. C. (2010). Genetic variability in the coat protein gene of Potato virus X and the current relationship between phylogenetic placement and resistance groupings, Archives of Virology, 155, 1349-1356. https://doi.org/10.1007/s00705-010-0711-3Crosslin, J. M., Hamlin, L. L., Buchman, J. L. y Munyaneza, J. E. (2011). Transmission of Potato Purple Top Phytoplasma to Potato Tubers and Daughter Plants. American Journal of Potato Research, 88, 339-345. https://doi.org/10.1007/s12230-011-9199-yCubero, J. (2002). Introducción a la mejora genética vegetal. MundiPrensa.Dalca, A. y Brudno, M. (2010). Genome variation discovery with high-throughput sequencing data. Briefings in bioinformatics, 11(1), 3-14. https://doi.org/10.1093/bib/bbp058Danci, O., Erdei, L., Vidacs, L., Danci, M., Baciu, A., David, I. y Berbentea, F. (2009) Influence of ribavirin on potato plants regeneration and virus eradication. Journal of Horticulture, Forestry and Biotechnology, 13, 421-425.Duarte, Y., Pino, O., Infante, D., Sánchez, Y., Travieso, C. y Martínez, B. (2013). Efecto in vitro de aceites esenciales sobre Alternaria solani Sorauer. Revista Protección Vegetal, 28(1), 54-59.Duarte-Delgado, D., Narváez-Cuenca, C., Restrepo-Sánchez, L., Kushalappa, A. y Mosquera-Vásquez, T. (2015). Development and validation of a liquid chromatographic method to quantify sucrose, glucose, and fructose in tubers of Solanum tuberosum Group Phureja. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 975, 18-23. https://doi.org/10.1016/j.jchromb.2014.10.039.Escallón, R., Ramírez, M. y Ñústez, C. (2005). Evaluación del potencial de rendimiento y de la resistencia a Phytophthora infestans (Mont. de Bary) en la colección de papas redondas amarillas de la especie Solanum phureja (Juz. et Buk.). Agronomía Colombiana, 23(1), 35-41.Elhiti, M., Stasolla, C. y Wang, A. (2013). Molecular regulation of plant somatic embryogenesis. In Vitro Cellular and Developmental Biology – Plant, 49, 631-642. https://doi.org/10.1007/s11627-013-9547-3.Ellis, D., Salas, A., Chavez, O., Gomez, R. y Anglin, N. (2020). Ex situ conservation of potato [Solanum section Petota (Solanaceae)] genetic resources in Genebanks. Campos, H. y Ortiz, O. (Ed). The potato crop. Its agricultural, nutritional and social Contribution to Humankind. (pp. 109-138). International Potato Center. Springer. https://doi.org/10.1007/978-94-011-2340-2Estrada, R., Tovar, P. y Dodds, J. H. (1986). Induction of in vitro tubers in a broad range of potato genotypes. Plant Cell Tissue Organ Culture, 7, 3-10. https://doi.org/10.1007/BF00043915Ewels, P., Magnusson, M., Lundin, S. y Käller, M. (2016). MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics, 32, 3047–3048. https://doi.org/10.1093/bioinformatics/btw354.FAO. (2008a). El mundo de la papa: Producción y consumo. Recuperado el 15 de abril de 2020 de http://www.fao.org/potato-2008/es/mundo/index.htmlFAO. (2008b). La papa: Cultivo. Recuperado el 17 de abril de 2020 de http://www.fao.org/potato-2008/es/lapapa/cultivo.html.Fedepapa. (2017). Normatividad del Sector de la Papa. Recuperado el 12 de abril de 2020 de https://fedepapa.com/wp-content/uploads/2017/01/Normatividad-del-Sector-de-la-Papa.pdfFedepapa. (2018). Revista Papa: Una papa bien preparada te alegra, 43:48. Recuperado el 15 de abril de 2020 de https://drive.google.com/file/d/1lcX1XrthQdV6GmAHpX3ErrY3QoJyKBVf/viewFedepapa. (2019). Revista papa: Se trazó la ruta para consolidar la rentabilidad del sector agropecuario, 48, 46–52 Recuperado el 17 de abril del 2020 de https://fedepapa.com/wp-content/uploads/2017/01/REVISTA-48-COMPLETA.pdfFERA. (2017). Potato post-harvest virus testing sample submission form. Recuperado el 20 de noviembre del 2020 de https://www.fera.co.uk/media/wysiwyg/crop_health/Crop_Health_Post-Harvest_Virus_Testing_of_Potato_Tubers_Sample_Submission-2019.pdfFiliz, E. (2020). Emerging Plant Viruses. Ennaji, M. (Ed). Emerging and reemerging viral pathogens. (pp.1041-1062). New York: Academic Press.FNFP. (2006). Informe de gestión 2006, 136. Recuperado el 21 de abril de 2020 de https://fedepapa.com/wpcontent/uploads/2017/01/INFORME-DE-GESTIO%CC%81N-FNFP-ANUAL-2016.pdfFNFP y Fedepapa. (2019a). Informe trimestral de coyuntura económica del subsector papa II trimestre – 2019. Recuperado el 15 de abril de 2020 de https://fedepapa.com/wp-content/uploads/2017/01/Informe-deCoyuntura-2do-trimestre-2019.pdfFNFP y Fedepapa. (2019b). Informe de gestión. Vigencia 2019. Recuperado el 5 de junio de 2021 de https://fedepapa.com/wp-content/uploads/2020/05/INFORME-DE-GESTIO%CC%81N-VIGENCIA-2019.pdfFNFP y Fedepapa. (2020). Boletin regional No. 05. Recuperado el 24 de abril de 2022 de https://fedepapa.com/wp-content/uploads/2021/09/NACIONAL-2020.pdfForbes, G. A., Charkowski, A., Andrade-Piedra, J., Parker, M. L. y Schulte-Geldermann, E. (2020). Potato seed systems. Campos, H. y Ortiz, O. (Ed). The potato crop. Its agricultural, nutritional and social Contribution to Humankind. (pp. 431-450). International Potato Center. Springer. https://doi.org/10.1007/978-94-011-2340-2Franco; L. (2006). Producción de plantas in vitro libres de virus CymMV en un híbrido comercial de Cattleya (Orchidaceae) utilizando Ribavirin. Instituto Tecnológico de Costa Rica.Franco-Lara, F., Soto, C. y Guzmán, B. (2009). Detección de los virus PVX, PVS PVY y PLRV en La colección central colombiana de papa por medio de la técnica de Inmunoimpresión (IMI). Facultad de Ciencias Básicas, 5, 130-139. https://doi.org/10.18359/rfcb.2126Fry, W. (2008). Phytophthora infestans: The plant (and R gene) destroyer. Molecular Plant Pathology, 9, 385-402. https://doi.org/10.1111/j.1364-3703.2007.00465.xGałązka, A. y Grządziel, J. (2016). The Molecular‐based methods used for studying bacterial diversity in soils contaminated with PAHs (The Review). Larramendy, M. y Soloneski, S. (Ed). Soil contamination – current consequences and further solutions. (pp. 85-101). Intech. http://dx.doi.org/10.5772/64772Gallo, Y., Sierra, A., Marín, M. y Gutiérrez, P. A. (2021). Prevalencia de cinco virus de ARN en tubérculos-semilla de papa cultivados en Antioquia (Colombia). Biotecnología en el Sector Agropecuario y Agroindustrial, 19(1), 66-78. https://dx.doi.org/10.18684García, D., Olarte, M., Gutiérrez, P. y Marín, M. (2016). Detección serológica y molecular del Potato virus X (PVX) en tubérculos-semilla de papa (Solanum tuberosum L. y Solanum phureja Juz. & Bukasov) en Antioquia, Colombia. Revista Colombiana de Biotecnología, 18(1), 104-111. https://doi.org/10.15446/rev.colomb.biote.v18n1.51389George, E. F. (2008). Plant Tissue Culture Procedure – Background. George, E. F., Hall, M. A. y Klerk, G. de (Ed). Plant propagation by tissue culture (3a ed). (pp. 1-28). The Background. The Netherlands.George, E.F. y Debergh, P. C. (2008). Micropropagation: Uses and Methods. George, E. F., Hall, M. A. y Klerk, G. de (Ed). Plant propagation by tissue culture (3a ed.). (pp. 29-64). The Netherlands: Springer.Ghosh, S., Kanakala, S. y Lebedev, G., Kontsedalov, S., Silverman, D., Alon, T., Mor, N., Sela, N., Luria, N., Dombrovsky, A., Mawassi, M., Haviv, S., Czosnek, H. y Ghanim, M. (2019). Transmission of a new polerovirus infecting pepper by the whitefly Bemisia tabaco. Journal of Virology, 93(15), e00488- 19. https://doi.org/0.1128/JVI.00488-19Gilchrist, E., Soler, J., Merz, U. y Reynaldi, S. (2011). Powdery scab effect on the potato Solanum tuberosum ssp. andigena growth and yield. Tropical Plant Pathology, 36(6), 350-355. https://doi.org/10.1590/s1982-56762011000600002.Giraldo, S., Sierra, A., Ospina, M., Higuita, M., Gallo, Y., Gutiérrez, P. y Marín, M. (2022). Detección y caracterización molecular del potato virus B (PVB) en papa criolla (Solanum phureja) en Antioquia. Acta Biológica Colombiana, 27(2), 258-268. https://doi.org/10.15446/abc.v27n2.89422Gómez, T. M., López, J. B., Pineda, R., Galindo, L. F., Arango, R. y Morales, J. G. (2012). Cytogenetic characterization of five “Criolla” potato genotypes, Solanum phureja (Juz. et Buk.). Revista Facultad Nacional de Agronomía Medellín, 65(1), 6379-6387.Grabherr, M., Haas, B., Yassour, M., Levin, L., Thompson, D., Amit, I., Diconis, X., Fan, L., Raychowdhury, R., Zeng, Q., Chen, Z., Mauceli, E., Hacohen, N., Gnirke, A., Rhind, N., Di Palma, F., Birren, B., Nusbaum, C., Lindblad-Toh, K., Friedman, N. y Regev, A. (2013). Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nature Biotechnology, 29, 644-652. https://doi.org/10.1038/nbt.1883.Trinity.Green, K., Quintero-Ferrer, A., Chikh-Ali, M., Jones, R. y Karasev, A. (2020). Genetic diversity of nine non-recombinant Potato virus Y isolates from three biological strain groups: historical and geographical insights. Plant Disease, 104(9), 2317-2323. https://doi.org/10.1094/PDIS-05-20-0961-SCGutiérrez-Sánchez, P., Alzate-Restrepo, J. y Marín-Montoya, M. (2014). Caracterización del viroma de ARN de tejido radical de Solanum phureja mediante pirosecuenciación 454 GS-FLX. Bioagro, 26(2), 89-98.Gutiérrez, P., Rivillas, A., Tejada, D., Giraldo, S., Restrepo, A., Ospina, M, Cadavid, S., Gallo, Y. y Marín, M. (2021). PVDP: A portable open source pipeline for detection of plant viruses in RNAseq data. A case study on potato viruses in Antioquia (Colombia). Physiological and Molecular Plant Pathology, 113, 101604. https://doi.org/10.1016/j.pmpp.2021.101604Guzmán-Barney, M., Hernández, A. K. y Franco-Lara, L. (2012). Tracking Foliar Symptoms Caused by Tuber-Borne Potato Yellow Vein Virus (PYVV) in Solanum Phureja (Juz et Buk) Cultivar “Criolla Colombia.” American Journal of Potato Research, 90, 84-93. https://doi.org/10.1007/s12230-013-9303-6.Halterman, D., Charkowski, A. y Verchot, J. (2012). Potato viruses and seed certification in the USA to provide healthy propagated tubers. Pest Technology, 6(1), 1-14.Hameed, A., Iqbal, Z., Asad, S. y Mansoor, S. (2014). Detection of multiple potato viruses in the field suggests synergistic interactions among potato viruses in Pakistan. Plant Pathology Journal, 30, 407-415. https://doi.org/10.5423/PPJ.OA.05.2014.0039Hančinsk, R., Mihálik, D., Mrkvová, M., Candresse, T. y Glasa, M. (2020). Plant Viruses Infecting Solanacea Family Members in the Cultivated and Wild Environments: A Review. Plants, 9(5), 667. https://doi.org/10.3390/plants9050667Hawkes, J. G. (1990). The potato: Evolution, biodi- versity, and genetic resources. Washington, D.C: Belhaven Press.Hernández, A., y Diaz, H. (2019). Inducción in vitro de callo embriogénico a partir del cultivo de anteras en "papa amarilla" Solanum goniocalyx Juz. & Bukasov (Solanaceae). Arnaldoa, 26(1), 277-286. http://dx.doi.org/10.22497/arnaldoa.261.26111.Huarte, M. y Capezio, S. (2013). Cultivo de papa. Unidad Integrada Balcarce INTA-FCA UNMdP. https://inta.gob.ar/sites/default/files/script-tmp-inta-_huarte_capezio_papa2013.pdfHull, R. (2009). Comparative Plant Virology (2a ed). New York: Academic Press. https://doi.org/10.1017/CBO9781107415324.004Hull, R. (2014). Plant Virology (5a ed). New York: Academic Press.ICA. (2011). Manejo fitosanitario del cultivo de la papa. Bogotá. Recuperado el 10 de abril de 2020 de https://www.ica.gov.co/getattachment/b2645c33-d4b4-4d9d-84ac-197c55e7d3d0/Manejo-fitosanitario-del-cultiva-de-la-papa-nbsp;-.aspxICA. (2015). Resolución 3168 de 2015. Recuperado el 10 de septiembre de 2020 de https://www.ica.gov.co/getattachment/4e8c3698-8fcb-4e42-80e7-a6c7acde9bf8/2015R3168.aspx.ICA. (2017). Plagas exóticas para Colombia en el cultivo de la papa. ISBN 978-9. Recuperado el 10 de septiembre de 2020 de https://www.ica.gov.co/getattachment/294bc210-2562-4ee3-a5dd-152247779f0a/Plagas-exoticas-para-Colombia-en-cultivo-de-papa.aspxICTV. International Committee on Taxonomy of Viruses. (2014). Recuperado el 15 de abril de 2020 de http://www.ictvonline.org/.ICTV. International Committee on Taxonomy of Viruses. (2020). Recuperado el 22 de agosto de 2021 de https://talk.ictvonline.org/taxonomy/Jatala, P. (1986). Nematodos Parásitos de la Papa. CIP. Recuperado el 15 de abril de 2020 de https://cursa.ihmc.us/rid=1JL7FNT7R-NPN9Q7-Y6D/Nematodos%20parasitos.CIP.pdfJeevalatha, A., Kaundal, P., Shandil, R. K., Sharma, N. N., Chakrabarti, S. K., y Singh, B. P. (2013). Complete genome sequence of Potato leafroll virus isolates infecting potato in the different geographical areas of India shows low level genetic diversity. Indian Journal of Virology, 24(2), 199–204. https://doi.org/10.1007/s13337- 013-0138-zJeffries, C. (1998). Potato FAO/IPGRI Technical guidelines for the safe movement of germplasm No 19. FAO/ IPGRI, 19.Jeong, J.J., Ju, H. J. y Noh, J. A. (2014). Review of Detection Methods for the Plant Viruses. Research in Plant Disease, 20, 173-181. https://doi.org/10.5423/rpd.2014.20.3.173.Jones, R.A.C. (2021). Global Plant Virus Disease Pandemics and Epidemics. Plants 2021, 10, 233. https://doi.org/10.3390/plants10020233Juyó, D. K., Gerena, H. N., y Mosquera, T. (2011). Evaluación de marcadores moleculares asociados con resistencia a gota (Phytophthora infestans L.) en papas diploides y tetraploides. Revista Colombiana de Biotecnología, 13(2), 51-62. https://revistas.unal.edu.co/index.php/biotecnologia/article/view/27917Karasev, A., Hu, X., Brown, C., Kerlan, C., Nikolaeva, O., Crosslin, J. y Gray, S. (2011). Genetic diversity of the ordinary strain of Potato virus Y (PVY) and origin of recombinant PVY Strains. Phytopathology, 101(7), 778-785. https://10.1094/PHYTO-10-10-0284Kchouk, M., Gibrat, J. F. y Elloumi, M. (2017). Generations of sequencing technologies: from first to next generation. Biology and Medicine, 9(3), 1000395. https://doi.org/ 10.4172/0974-8369.1000395Kerlan, C. (2008). Potato viruses. Mahy, B. W. y Van Regenmortel, M. H. (Ed). Desk encyclopedia of plant and fungal virology, Academic Press, 458-471.Kozlowska-Makulska, A., Guilley, H., Szyndel, M., Beuve, M., Lemaire, O., Herrbach, E. y Bouzoubaa, S. (2010). P0 proteins of European beet-infecting poleroviruses display variable RNA silencing suppression activity. Journal of General Virology, 91, 1082–1091. https://doi.org/10.1099/vir.0.016360-0Kreuze, J. F., Souza-Dias, J. A. C., Jeevalatha, A., Figueira, A. R., Valkonen, J. P. T. y Jones R. A. C. (2020). Viral diseases in potato. Campos, H. y Ortiz, O. (Ed). The potato crop. Its agricultural, nutritional and social Contribution to Humankind. (pp. 389-431). International Potato Center. Springer. https://doi.org/10.1007/978-94-011-2340-2Kumar, S., Mishra, S. y Mishra, A. P. (2009). Plant tissue culture: theory and techniques. India: Scientific Publishers.Kumar, J., Ranjan, T., Kumar, R. R., Ansar, M., Rajani, K., Kumar, M., Kumar, V., y Kumar, A. (2019a). In silico characterization and homology modelling of Potato Leaf Roll Virus (PLRV) coat protein. Current Journal of Applied Science and Technology, 33(2), 1-8. https://doi.org/10.9734/cjast/2019/v33i230054Kumar, R., Kumar Tiwari, R., Jeevalatha, A., Kaundal, P., Sharma, S. y Chakrabarti, S. K. (2019b). Potato viruses and their diagnostic techniques: An overview. Journal of Pharmacognosy and Phytochemistry, 8(6), 1932-1944.López-Delgado, H., Mora-Herrera, M., Zavaleta-Mancera, H., Cadena-Hinojosa, M. y Scott, I. (2004). Salicylic acid enhances heat tolerance and potato virus X (PVX) elimination during thermotherapy of potato microplants. American Journal of Potato Research, 81, 171-176. https://doi.org/10.1007/BF02871746.López-Pazos, S. A. y Cerón, J. (2010). Proteínas Cry de Bacillus thuringiensis y su interacción con coleópteros. Nova, 8(14), 183 - 194. https://doi.org/10.22490/24629448.44Lopéz, J. (2011). Primer medicamento contra la hepatitis C (13 de mayo de 2011).Infofarmacia.com. Recuperado el 10 de septiembre de 2020 de http://www.info-farmacia.com/medico-farmaceuticos/revisiones-farmaceuticas/primer-medicamento-contra-la-hepatitis-c-13-de-mayo-de-2011MADR. (2018). La producción de papa en 2018 podría llegar 2 millones 690 mil toneladas. Recuperado el 15 de abril de 2020 de https://www.minagricultura.gov.co/noticias/Paginas/La producción de papa en 2018 podría llegar 2 millones 690 mil toneladas.aspx.MADR. (2020). Cadena de la papa. Dirección de Cadenas Agrícolas y Forestales. Junio. Recuperado el 17 de agosto de 2021 de https://sioc.minagricultura.gov.co/Papa/Documentos/2020-06-30%20Cifras%20Sectoriales.pdfMansfield, J., Genin, S., Magori, S., Citovsky, V., Sriariyanum, M., Ronald, P., Dow, M., Verdier, V., Beer, S., Machado, M., Toth, I., Salmondm G. y Foster G. (2012). Top 10 plant pathogenic bacteria in molecular plant pathology, 13(6), 614–629. https://doi.org/10.1111/j.1364- 3703.2012.00804.xMaree, H. J., Fox, A., Al Rwahnih, M., Boonham, N.y Candresse, T. (2018). Application of HTS for routine plant virus diagnostics: state of the art and challenges. Frontiers in Plant Science, 9, 1- 4. https://doi.org/10.3389/fpls.2018.01082.Marín, M. y Gutiérrez, P. (2016). Principios de virología molecular de plantas tropicales. Mosquera: Corpoica.Martinelli, F., Scalenghe, R., Davino, S., Panno, S., Scuderi, G., Ruisi, P., Villa, P., Stroppiana, D., Boschetti, M., Boschetti, M., Goulart, L., Davis, C. y Dandekar, A. (2015). Advanced methods of plant disease detection. A review. Agronomy for Sustainable Development, 35, 1-25. https://doi.org/10.1007/s13593-014-0246-1.Martínez, W. y Cerón, J. (2002). Evaluación de la toxicidad de proteínas de Bacillus Thuringiensis Berliner hacia el gusano blanco de la papa Premnotrypes. Agronomía Colombiana, 19(1-2), 89-95.Matousek, J., Schubert, J., Ptácek, J., Kozlová, P. y Dedic, P. (2005). Complete nucleotide sequence and molecular probing of Potato virus S genome. Acta Virologica, 49, 195-205.Mesa, M., Gonzále, M., Gutiérrez, P., y Marín, M. (2016). Diagnóstico serológico y molecular del Potato leafroll virus (PLRV) en tubérculos-semilla de papa en Antioquia, Colombia. Acta Agronómica, 65(2), 204-210. https://doi.org/10.15446/acag.v65n2.50764Muñoz, D., Gutiérrez, P. y Marín, M. (2016). Detección y caracterización molecular del Potato virus Y (PVY) en cultivos de papa (Solanum tuberosum L.) del norte de Antioquia, Colombia. Revista de Protección Vegetal, 31(1), 9-19.NAK. 2015. Details virus and bacterial diagnostics in potatoes 2016–2017. Recuperado el 10 de septiembre de 2020 de https://www.nak.nl/wp-content/uploads/archief/2012/NAK%20Services/Virus%20and%20bacterial%20diagnostics%20in%20potatoes%202017-2018.pdf.Nolte, P., Whitworth, J. L., Thornton, M. K. y McIntosh, C. S. (2004). Effect of seedborne Potato virus Y on performance of Russet burbank, Russet norkotah, and Shepody potato. Plant Disease, 88, 248-252. https://doi.org/10.1094/PDIS.2004.88.3.248Normah, M. N., Sulong, N. y Reed, B. M. (2019). Cryopreservation of shoot tips of recalcitrant and tropical species: Advances and strategies. Cryobiology, 87, 1-14. https://doi.org/10.1016/j.cryobiol.2019.01.008.Ñustez, C. E. (2011). Variedades Colombianas de Papa. Universidad Nacional de Colombia. Bogotá. ISBN, 978-958-761-100-7.Nurk, S., Bankevich, A., Antipov, D., Gurevich, A. A., Korobeynikov, A., Lapidus, A., Prjibelski, A. D., Pyshkin, A., Sirotkin, A., Sirotkin, Y., Stepanauskas, R., Clingenpeel, S. R., Woyke, T., Mclean, J. S., Lasken, R., Tesler, G., Alekseyev, M. A. y Pevzner, P. A. (2013). Assembling single-cell genomes and mini-metagenomes from chimeric MDA products. Journal of Computational Biology, 20(10), 714-737. https://doi.org/10.1089/cmb.2013.0084.Oblitas, C. (2019). Aislamiento de protoplastos de Solanum tuberosum (variedad Única). Universidad Nacional De Huancavelica Jurados. http://repositorio.unh.edu.pe/bitstream/handle/UNH/1378/TP%20%20UNH.%20ENF.%200101.pdf?sequence=1&isAllowed=yOcete, R. y Pérez, M. (1994). Actividad antialimentaria de extractos de Daphne gnidium L. y Anagyris foetida L. sobre Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae). Boletín de Sanidad Vegetal. Plagas, 20, 617-622.Ogawa, T., Tomitaka, Y., Nakagawa, A. y Ohshimab, K. (2008). Genetic structure of a population of Potato virus Y inducing potato tuber necrotic ringspot disease in Japan; comparison with North American and European populations. Virus Research, 131, 199-212.Orena, A. y Santos, J. (2012). Manejo de tubérculos-semillas de papa. Instituto de Investigaciones Agropecuarias. Recuperado el 16 de abril de 2020 de https://biblioteca.inia.cl/handle/123456789/4743Ormeño, M. y Rosales, R. (2015). Control eficiente de la pulguilla de la papa (Epitrix spp.) con repelente a base de ruda (Ruta graveolens L.). INIA. Centro de Investigaciones Agrícolas del Estado Mérida, 49-51. https://doi.org/10.13140/2.1.2791.7605.Pacheco, D., González, M. y Algredo, I. (2015). De la Secuenciación a la aceleración hardware de los programas de alineación de ADN, una revisión integral. Revista Mexicana de Ingeniería Biomédica, 36, 259–277. https://doi.org/10.17488/RMIB.36.3.6Panattoni, A., Luvisi, A. y Triolo, E. (2013). Review. Elimination of viruses in plants: Twenty years of progress. Spanish Journal of Agricultural Research, 11, 173-188. https://doi.org/10.5424/sjar/2013111-3201.Parra, Y. (2009). El cultivo de papa: siembra, riego, cosecha y más aspectos importantes. Recuperado el 21 de abril de 2020 de http://agronomaster.com/cultivo-de-papa/.Prjibelski, A., Antipov, D., Meleshko, D., Lapidus, A. y Korobeynikov. (2020). Using SPAdes De Novo Assembler. Current Protocols in Bioinformatics, 70, e102. https://doi.org/10.1002/cpbi.102PYMERURAL. (2013). Manual de producción de semilla de papa mediante técnicas de reproducción asexual. Tegucigalpa, Honduras. Recuperado el 1 de mayol de 2022 de http://www.agronegocioshonduras.org/wp-content/uploads/2014/06/manual_de_produccion_de_semilla_de_papa.Raikhy, G. y Tripathi, D. (2017). Leading molecular aspects of plant viruses. Journal of Bacteriology & Mycology, 5(2). https://doi.org/10.15406/jbmoa.2017.05.00128Rajamäki, M., Merits, A., Rabenstein, F., Andrejeva, J., Paulin, L., Kekarainen, T., Kreuze, J. F., Forster, R. L. S. y Valkonen, J. P. T. (1998). Biological, serological, and molecular differences among isolates of potato a potyvirus. Phytopathology, 88(4), 311-321. https://doi.org/10.1094/PHYTO.1998.88.4.311Reuter, J., Spacek, D. y Snyder, M. (2015). High-throughput sequencing technologies. Molecular cell, 58(4), 586-597. https://doi.org/10.1016/j.molcel.2015.05.004Rhoads, A. y Au, K. F. (2015). PacBio sequencing and its applications. Genomics Proteomics Bioinformatics, 13(5), 278-289. https://doi.org/10.1016/j.gpb.2015.08.002Roca, W. y Mroginski, L. (1991). Cultivo de tejidos en la agricultura. Fundamentos y aplicaciones. Cali: Centro Internacional de Agricultura Tropical (CIAT).Rodríguez, L. E., Ñustez, C. E. y Estrada, N. (2009). Criolla Latina, Criolla Paisa y Criolla Colombia, nuevos cultivares de papa criolla para el departamento de Antioquia (Colombia). Agronomía Colombiana, 27(3), 289-303.Rodríguez, L. y Moreno, P. (2010). Factores y mecanismos relacionados con la dormancia en tubérculos de papa. Una revisión. Agronomía Colombiana, 28(2), 189-197. https://revistas.unal.edu.co/index.php/agrocol/article/view/18022/37678Rodriguez-Rodriguez, M., Chikh-Ali, M., Johnson, S., Gray, S., Malseed, N., Crump, N. y Karasev, A. (2020). The Recombinant Potato virus Y (PVY) Strain, PVYNTN, identified in potato fields in Victoria, Southeastern Australia. Plant Disease, 104(12), 3110-3114. https://doi.org/10.1094/PDIS-05-20-0961-SC.Roest, S. y Bokelmann, G. S. (1976). Vegetative propagation of Solanum tuberosum L. in vitro. Potato Research, 19,173-178. https://doi.org/10.1007/BF02360421.Rozo, D. y Ramírez, L. (2011). La agroindustria de la papa criolla en Colombia. Situación actual y retos para su desarrollo. Gestión & Sociedad, 4(2), 17-30. https://doi.org/10.13140/RG.2.1.2580.9120Salazar, L. (1995). Los virus de la papa y su control. Perú: Centro Internacional de la papa (CIP).Salazar, L. (2006). Emerging and re-emerging potato diseases in the Andes. Potato Research, 49, 43–7. https://doi.org/10.1007/s11540-006-9005-2Salazar, L. F., Muller, G., Querci, M., Zapata, J. L. y Owens ,R. A. (2020). Potato yellow vein virus: its host range, distribution in South America and identification as a crinivirus transmitted by Trialeurodes vaporariorum. Annals of Applied Biology, 137, 7–19. https://doi.org/10.1111/j.1744-7348.2000.tb00052.x.Schirmer, M., D’Amore, R., Ijaz, U., Hall, N. y Quince, C. (2016). Illumina error profiles: resolving fine-scale variation in metagenomic sequencing data. BMC Bioinformatics, 17, 1–15. https://doi.org/10.1186/s12859-016-0976-y.Scholthof, K. B. G., Adkins, S., Czosnek, H., Palukaitis, P., Jacquot E, Hohn, T., Hohn, B., Saunders, K., Candresse, T., Ahlquist, P., Hemenway, C. y Foster, G. D. (2011). Top 10 plant viruses in molecular plant pathology. Molecular Plant Pathology, 12, 938-954. https://doi.org/10.1111/j.1364- 3703.2011.00752.x.Schumpp, O., Bréchon, A., Brodard, J., Dupuis, B., Farinelli, L., Frei, P., Otten, P.y Pellet, D. (2021). Large-Scale RT-qPCR diagnostics for seed potato certification. Potato Research. In press. https://doi.org/10.1007/s11540-021-09491-3Sidwell, R., Huffman, J., Khare, G., Allen, L., Witkowski, J. y Robins, R. (1972). Broad spectrum antiviral activity of Virazole: 1-beta-D-ribofuranosyl-1,2,4-triazole-3-carboxamide. Science, 177(4050), 705-706.Sierra, A., Gallo, Y., Estrada, M., Gutiérrez, P. A. y Marín, M. (2020). Detección molecular de seis virus de ARN en brotes de tubérculos de papa criolla (Solanum phureja) en Antioquia, Colombia. Bioagro, 32(1), 3-14.Sierra, A., Gallo, Y., Estrada, M., Gutiérrez, P. y Marín, M. (2021). Detection of four RNA viruses in commercial and informal potato seed tubers in Antioquia (Colombia). Archives of Phytopathology and Plant Protection, 54 (5-6), 273-294. https://doi.org/10.1080/03235408.2020.1829424Smith, R. H. (2012). Plant Tissue Culture Techniques and Experiments (3a ed.). New York: Academic Press.Spooner, D. M., Ghislain, M., Simon, R., Jansky, S. H. y Gavrilenko, T. (2014). Systematics, Diversity, Genetics, and Evolution of Wild and Cultivated Potatoes. Botanical Review, 80, 283–383. https://doi.org/10.1007/s12229-014-9146-ySQM. (2006). Guía de Manejo Nutrición Vegetal Especialidad Papa. Recuperado el 24 de abril de 2022 de http://www.sqm-vitas.com/Portals/0/pdf/cropKits/SQM-Crop_Kit_Potato_L-ES.pdfStange, C. (2006). Interacción planta-virus durante el proceso infectivo. Ciencia e Investigación Agraria,33, 3-21.Stevens, W. A. (1983). Virology of Flowering Plants. (pp. 16-40). Tertiary Level Biology. Springer. https://doi.org/10.1007/978-1-4757-1251-3_2Stevenson, W., Loria, R., Franc, G. y Weingartner, D. (2001). Compendium of potato diseases (2a ed.). American Phytopathological Society, St. Pau, USA:Suranthran, P., Gantait, S., Sinniah, U. R., Subramaniam, S., Alwee, S. S. R. S. y Roowi, S. H. (2012). Effect of loading and vitrification solutions on survival of cryopreserved oil palm polyembryoids. Plant Growth Regulation, 66, 101-109. https://doi.org/10.1007/s10725-011-9633-7.Thomas-Sharma, S., Abdurahman, A., Ali, S., Andrade-Piedra, J. L., Bao, S., Charkowski, A. O., Crook, D., Kadian, M., Kromann, P., Struik, P. C., Torrance, L., Garrett, K. A. y Forbes, G. A. (2016). Seed degeneration in potato: The need for an integrated seed health strategy to mitigate the problem in developing countries. Plant Pathology, 65(1), 3-16. https://doi.org/10.1111/ppa.12439Valenzuela, V., Redondo, E. y Bujanos, R. (2003). Detección de virus por serología y plantas indicadoras en el tubérculo-semilla y plantas de cultivo de meristemos en papa (Solanum tuberosum L.) var. Alfa. Revista Mexicana de Fitopatología, 21, 176-180.Van Regenmortel, M. H. V. (2011). Virus Species. Tibayrenc, M. (Ed). Genetics and Evolution of Infectious Diseases (1a ed.). (pp. 3-19). Elsevier Inc. https://doi.org/10.1016/B978- 0-12-384890-1.00001-7Van Regenmortel, M. H. V. (2010). Logical puzzles and scientific controversies: The nature of species, 78 viruses and living organisms. Systematic and Applied Microbiology, 33, 1–6. https://doi.org/10.1016/j.syapm.2009.11.001 VanVan Regenmortel, M. H. V. (2018). The Species Problem in Virology. Kielian, M., Mettenleiter, T. y Roossinck, M (Ed). Advances in Virus Research. (pp.1-18). Elsevier Inc. https://doi.org/10.1016/bs.aivir.2017.10.008Vélez, P. B. (2007). Detección e identificación del Potato mop-top virus (PMTV) en áreas de producción de papa donde se encuentra Spongospora subterranea en dos departamentos de Colombia [Tesis de Maestría]. Universidad Nacional de Colombia Sede Bogotá.Villamil-Garzón, A., Cuellar, W. J. y Guzmán-Barney, M. (2014). Co-infección natural de potato yellow vein virus y potyvirus en cultivos de Solanum tuberosum en Colombia. Agronomía Colombiana, 32, 213–223. https://doi.org/10.15446/agron.colomb.v32n2.43968.Villamor, D. E. V., Ho, T., Al Rwahnih, M., Martin, R. R. y Tzanetakis, I. E. (2019). High throughput sequencing for plant virus detection and discovery. Phytopathology, 109, 716-725. https://doi.org/10.1094/PHYTO-07-18-0257-RVWVillanueva, D. F. y Saldamando, C. I. (2013). Tecia solanivora, Povolny (Lepidoptera: Gelechiidae): una revisión sobre su origen, dispersión y estrategias de control biológico. Ingeniería y Ciencia, 9, 197–214. https://doi.org/10.17230/ingciecia.9.18.11Viralzone. (2008a). Polerovirus. Recuperado el 8 de abril de 2020 de https://viralzone.expasy.org/610?outline=all_by_speciesViralzone. (2008b). Potexvirus. Recuperado el 10 de abril de 2020 de https://viralzone.expasy.org/272?outline=all_by_speciesWang, Q., Laamanen, J., Uosukainen, M. y Valkonen, J. P. T. (2005). Cryopreservation of in vitro-grown shoot tips of raspberry (Rubus idaeus L.) by encapsulation-vitrification and encapsulation-dehydration. Plant Cell Reports, 24, 280-288. https://doi.org/10.1007/s00299-005-0936-x.Wang, Q. C. y Valkonen, J. P. T. (2008). Elimination of two viruses which interact synergistically from sweetpotato by shoot tip culture and cryotherapy. Journal of Virological Methods, 154,135-145. https://doi.org/10.1016/j.jviromet.2008.08.006.Wang, M., Cui, Z., Li, J., Hao, X., Zhao, L. y Wang, Q. (2018). In vitro thermotherapy-based methods for plant virus eradication. Plant Methods, 14, 1-18. https://doi.org/10.1186/s13007-018-0355-y.Xu, Y., Ju, H., Deblasio, S., Carino, E. J., Johnson, R., y Maccoss, M. J. (2018). A Stem Loop Structure in Potato Leafroll Virus Open Reading Frame 5 (ORF5) Is Essential for Readthrough Translation of the Coat Protein ORF Stop Codon 700 ases Upstream. Journal of Virology, 92(11), 1-20. https://10.1128/JVI.01544-17Zhang, Z., Wang, Q., Spetz, C. y Blystad, D. (2019). In vitro therapies for virus elimination of potato valuable germplasm in Norway. Scientia Horticulturae, 249, 7–14. https://doi.org/10.1016/j.scienta.2019.01.027.Zuñiga, S., Morales, C. y Estrada, M. (2017). Cultivo de la papa y sus condiciones climáticas. Gestión Ingenio y Sociedad, 2(2),140–152. http://gis.unicafam.edu.co/index.php/gis/article/view/60Agindotan, B.O., P.J. Shiel, P.H. Berger. 2007. Simultaneous detection of potato viruses, PLRV, PVA, PVX and PVY from dormant potato tubers by TaqMan real-time RT-PCR. Journal of Virological Methods 142(1-2): 1-9. https://doi: 10.1016/j.jviromet.2006.12.012Ali, M., T. Maoka, K.T. Natsuaki. 2008. The Occurrence of potato viruses in Syria and the molecular detection and characterization of Syrian Potato virus S isolates. Potato Research 51: 151-161. https://10.1007/s11540-008-9099-9Álvarez, D., P. Gutiérrez, M. Marín. 2016. Caracterización molecular del Potato virus V (PVV) infectando Solanum phureja mediante secuenciación de nueva generación. Acta Biológica Colombiana 21(3): 521-531. https://dx.doi.org/10.15446/abc.v21n3.54712Álvarez, D., P. Gutiérrez-Sánchez, M. Marín-Montoya. 2017. Genome sequencing of Potato yellow vein virus (PYVV) and development of a molecular test for its detection. Bioagro 29: 3–14.Alvarez, N., H. Jaramillo, Y. Gallo, P. Gutiérrez, M. Marín. 2018. Molecular characterization of Potato virus Y (PVY) and Potato virus V (PVV) isolates naturally infecting Cape gooseberry (Physalis peruviana) in Antioquia, Colombia. Agronomía Colombiana 36(1): 13–23. https://dx.doi.org/10.15446/agron.colomb.v36n1.65051Bertschinger, L., L. Bühler, B. Dupuis, B. Duffy, C. Gessler, G.A. Forbes, E.R. Keller, U.C. Scheidegger, P.C. Struik. 2017. Incomplete Infection of Secondarily Infected Potato Plants - an Environment Dependent Underestimated Mechanism in Plant Virology. Frontiers in plant science 8: 74. https://doi.org/10.3389/fpls.2017.00074Bushmanova, E., D. Antipov, A. Lapidus, A.D. Prjibelski. 2019. rnaSPAdes: a de novo transcriptome assembler and its application to RNA-Seq data, GigaScience 8(9): 1-13. https://doi.org/10.1093/gigascience/giz100SIOC. 2020. Sistema De Información De Gestión Y Desempeño De Las Organizaciones De Cadenas (SIOC). [accessed 2020 Sept 10]. https://sioc.minagricultura.gov.co/Papa.De Souza, J., G. Müller, W. Perez, W. Cuellar, J. Kreuze. 2017. Complete sequence and variability of a new subgroup B nepovirus infecting potato in central Peru. Archives of Virology 162(3): 885-889. https://10.1007/s00705-016-3147-6Edgar, R.C., R.M. Drive, M. Valley. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32: 1792–1797. https://doi.org/10.1093/nar/gkh340.FAOSTAT. 2018. Food and agriculture data. [accessed 2020 Sept 10]. http://www.fao.org/faostat/en/#home.Fedepapa. 2019. Informe de gestión. Vigencia 2019. [accessed 2020 Oct 20]. https://fedepapa.com/wp-content/uploads/2020/05/INFORME-DE-GESTIO%CC%81N-VIGENCIA-2019.pdf.Forbes, G.A., A. Charkowski, J. Andrade-Piedra, M.L. Parker, E. Schulte-Geldermann. 2020. Potato seed systems. In: Campos H, Ortiz O, editors. The potato crop. Cham, Switzerland: Springer.Frost, K.E., R.L. Groves, A.O. Charkowski. 2013. Integrated control of potato pathogens through seed potato certification and provision of clean seed potatoes. Plant Disease 97(10): 1268–1280. https://10.1094/PDIS-05-13-0477-FEGallo, Y., A. Sierra, L. Donaire, M.A. Aranda, P.A. Gutiérrez, M.A. Marín. 2019. Coinfección natural de virus de ARN en cultivos de papa (Solanum tuberosum subsp. Andigena) en Antioquia (Colombia), Acta Biológica Colombiana 24(3): 546–560. https://doi.org/10.15446/abc.v24n3.79277.Gallo, Y., M. Marín, P.A. Gutiérrez. 2020. Detection of RNA viruses in Cape gooseberry (Physalis peruviana L.) by RNAseq using total RNA and dsRNA inputs. Archives of Phytopathology and Plant Protection 53(9-10): 395-413. https://10.1080/03235408.2020.1748368Gallo, Y., A. Sierra, M. Marín, P.A. Gutiérrez. 2021a. Prevalencia de cinco virus de ARN en tubérculos-semilla de papa cultivados en Antioquia (Colombia). Biotecnología en el Sector Agropecuario y Agroindustrial 19(1): 66-78. https://dx.doi.org/10.18684Gallo, Y., M. Marín, P.A. Gutiérrez. 2021b. Detection of RNA viruses in Solanum quitoense by high-throughput sequencing (HTS) using total and double stranded RNA inputs. Physiological and Molecular Plant Pathology 113: 101570. https://10.1016/j.pmpp.2020.101570García, D., M.A. Olarte, P. Gutiérrez, M.A. Marín. 2016. Detección serológica y molecular del Potato virus X (PVX) en tubérculos-semilla de papa (Solanum tuberosum L. y Solanum phureja Juz. y Bukasov) en Antioquia. Revista Colombiana de Biotecnología 18(1): 104–111.Gil, J.F., J.M. Cotes, E.P. González, M. Marín. 2011. Caracterización genotípica de aislamientos colombianos del potato mop-top virus (PMTV, Pomovirus). Actualidades Biológicas 33 (94): 69–84.Gil, J.F., I. Adams, N. Boonham, S.L. Nielsen, M. Nicolaisen. 2016. Molecular and biological characterization of Potato mop-top virus (PMTV, Pomovirus) isolates from the potato-growing regions of Colombia. Plant Pathology 65: 1210–1220. https://doi.org/10.1111/ppa.12491.Giraldo, S., A. Sierra, M. Ospina, M. Higuita, Y. Gallo, P. Gutiérrez, M. Marín. 2022. Detección y caracterización molecular del potato virus B (PVB) en papa criolla (Solanum phureja) en Antioquia. Acta Biológica Colombiana 27(2):258-268. https://doi.org/10.15446/abc.v27n2.89422Gutiérrez, P.A., J.F. Alzate, M.A. Marín-Montoya. 2013. Complete genome sequence of a novel potato virus S strain infecting Solanum phureja in Colombia. Archives of Virology 158: 2205–2208. https://doi.org/10.1007/s00705-013-1730-7.Gutiérrez, P., H.J. Mesa, M. Marín. 2016. Genome sequence of a divergent Colombian isolate of potato virus V (PVV) infecting Solanum phureja, Acta Virologica 60(1): 49–54. https://doi.org/10.4149/av_2016_01_49.Gutiérrez, P., A. Rivillas, D. Tejada, S. Giraldo, A. Restrepo, M. Ospina, S. Cadavid, Y. Gallo, M. Marín. 2021. PVDP: A portable open source pipeline for detection of plant viruses in RNAseq data. A case study on potato viruses in Antioquia (Colombia). Physiological and Molecular Plant Pathology 113: 101604. https://doi.org/10.1016/j.pmpp.2021.101604Guyader, S., D.G. Ducray. 2002. Sequence analysis of Potato leafroll virus isolates reveals genetic stability, major evolutionary events and differential selection pressure between overlapping reading frame products. Journal of General Virology 83(7): 1799-1807. https://10.1099/0022-1317-83-7-1799.Guzmán-Barney, M., L. Franco-Lara, D. Rodríguez, L. Vargas, J.E. Fierro. 2012. Yield losses in Solanum tuberosum Group Phureja cultivar criolla Colombia in plants with symptoms of PYVV in field trials. American Journal of Potato Research 89(6): 438–447. https://doi.org/10.1007/s12230-012-9265-0Halterman, D., A. Charkowski, J. Verchot. 2012. Potato viruses and seed certification in the USA to provide healthy propagated tubers. Pest Technology 6(1): 1–14.Hardigan, M.A., F.P. Laimbeer, L. Newton, E. Crisovan, J.P. Hamilton, B. Vaillancourt, K. Wiegert-Rininger, J.C. Wood, D.S. Douches, E.M. Farré, R.E. Veilleux, C.R Buell. 2017. Genome diversity of tuber-bearing Solanum uncovers complex evolutionary history and targets of domestication in the cultivated potato. Proceedings of the National Academy of Sciences 114(46): 201714380. https://10.1073/pnas.1714380114ICA. 2015. Resolución 3168 de 2015. [accessed 2020 Sept 10]. https://www.ica.gov.co/getattachment/4e8c3698-8fcb-4e42-80e7-a6c7acde9bf8/2015R3168.aspx.Imbeaud, S., E. Graudens, V. Boulanger, X. Barlet, P. Zaborski, E. Eveno, O. Mueller, A. Schroeder, C. Auffray. 2005. Towards standardization of RNA quality assessment using user-independent classifiers of microcapillary electrophoresis traces. Nucleic Acids Research 33(6): e56. https://doi: 10.1093/nar/gni054.Kreuze, J.F., J.A.C. Souza-Dias, A. Jeevalatha, A.R. Figueira, J.P.T. Valkonen, R.A.C. Jones. 2020. Viral diseases in potato. In: Campos H, Ortiz O, editors. The potato crop. Cham, Switzerland: Springer.Kumar, S., G. Stecher, M. Li, C. Knyaz, K. Tamura. 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6): 1547-1549. https://doi: 10.1093/molbev/msy096.Li, W., A. Godzik. 2006. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22(13): 1658-1659. https://10.1093/bioinformatics/btl158.Marín, M., P. Gutiérrez P. 2016. Principios de virología molecular de plantas tropicales. Bogotá: Corpoica.Martínez, H., C. Espinal, M. Salazar, C. Barrios. 2005. La cadena de la papa en Colombia: una mirada global de su estructura y dinámica 1991–2005. MADR. [accessed 2020 Sept 10]. http://bibliotecadigital.agronet.gov.co/handle/11348/6325.Medina, H.C., P.A. Gutiérrez, M.A. Marín. 2015. Detección del Potato virus Y (PVY) en tubérculos de papa mediante TAS-ELISA y qRT-PCR en Antioquia (Colombia). Bioagro. 27(2): 83–92.Medina, H., P. Gutiérrez, M. Marín. 2017. Detection and sequencing of Potato virus Y (PVY) and Potato leafroll virus (PLRV) in a volunteer plant of Solanum tuberosum L. cv. Diacol-Capiro. Acta Agronómica 66: 625–632. https://doi.org/https://doi.org/10.15446/acag.v66n4.59753.Mesa, M.E., M.I. González, P.A. Gutiérrez, M.A. Marín. 2016. Diagnóstico serológico y molecular del Potato leafroll virus (PLRV) en tubérculos-semilla de papa en Antioquia. Acta Agronómica 65(2): 204–210. https://doi.org/10.15446/acag.v65n2.50764Mumford, R.A., K. Walsh, I. Barker, N. Boonham. 2000. Detection of Potato mop top virus and Tobacco rattle virus Using a Multiplex Real-Time Fluorescent Reverse-Transcription Polymerase Chain Reaction Assay. Phytopathology 90(5):448-53. https://10.1094/PHYTO.2000.90.5.448.Muñoz, D., P. Gutiérrez, M. Marín. 2016a. Detección y caracterización molecular del Potato virus Y (PVY) en cultivos de papa (Solanum tuberosum L.) del norte de Antioquia, Colombia. Protección Vegetal 31: 9–19.Muñoz, D., P. Gutiérrez, M. Marín. 2016b. Detection and genome characterization of Potato virus Y isolates infecting potato (Solanum tuberosum L.) in La Union Antioquia, Colombia. Agronomía Colombiana 34(3): 317-328. https://dx.doi.org/10.15446/agron.colomb.v34n3.59014Muñoz-Baena, L., P.A. Gutiérrez-Sánchez, M. Marín-Montoya. 2016. Detección y secuenciación del genoma del Potato Virus Y (PVY) que infecta plantas de tomate en Antioquia, Colombia. Bioagro. 28(2): 69-80.Nie, X., R.P. Singh. 2001. A novel usage of random primers for multiplex RT-PCR detection of virus and viroid in aphids, leaves and tubers. Journal of Virological Methods 91: 37–49. https://doi.org/10.1016/s0166-0934(00)00242-1.Porras, P., C. Herrera. 2015. Modelo productivo de la papa variedad Diacol Capiro para el departamento de Antioquia. Mosquera (Colombia): Corpoica. 92 p.Riascos, M., P.A. Gutiérrez-Sánchez, M.A. Marín-Montoya. 2018. Identificación molecular de Potyvirus infectando cultivos de papa en el oriente de Antioquia (Colombia). Acta Biológica Colombiana 23: 39–50. https://doi.org/10.15446/abc.v23n1.65683.Robinson, J., H. Thorvaldsdóttir, W. Winckler, M. Guttman, E. Lander, G. Getz, J. Mesirov. 2011. Integrative genomics viewer. Nature Biotechnology 29: 24–26. https://doi.org/10.1038/nbt0111-24.Salazar, L.F. 1996. Potato viruses and their control. Lima: International Potato Center.Savenkov, E.I., M.Y. Sandgren, J.P.T. Valkonen. 1999. Complete sequence of RNA 1 and the presence of tRNA-like structures in all RNAs of Potato mop-top virus, genus Pomovirus. Journal of General Virology 80: 2779-2784. https://10.1099/0022-1317-80-10-2779Sierra A., Y. Gallo, M. Estrada, P. Gutiérrez, M. Marín. 2020a. Detection of four RNA viruses in commercial and informal potato seed tubers in Antioquia (Colombia). Archives of Phytopathology and Plant Protection. In Press. https:// 10.1080/03235408.2020.1829424.Sierra, A., Y. Gallo, M. Estrada, P.A. Gutiérrez, M. Marín. 2020b. Detección molecular de seis virus de ARN en brotes de tubérculos de papa criolla (Solanum phureja) en Antioquia, Colombia. Bioagro, 32(1), 3-14.Singh, R.P., J. Kurz, G. Boiteau, G. Bernard. 1995. Detection of potato leafroll virus in single aphids by the reverse transcription polymerase chain reaction and its potencial epidemiological application. Journal of Virological Methods 1: 133–143. https://10.1016/0166-0934(95)00056-zTamura K. 1992. Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+C-content biases. Molecular Biology and Evolution 9(4): 678-687. https://10.1093/oxfordjournals.molbev.a040752.Thiele G. 1999. Informal potato seed systems in the Andes: Why are they important and what should we do with them? World Development 27(1): 83–99. https://doi.org/10.1016/S0305-750X(98)00128-4Thomas-Sharma, S., A. Abdurahman, S. Ali, J.L. Andrade-Piedra, S. Bao, A.O. Charkowski, D. Crook, M. Kadian, P. Kromann, P.C. Struik PC, L. Torrance, K.A. Garrett, G.A. Forbes. 2016. Seed degeneration in potato: the need for an integrated seed health strategy to mitigate the problem in developing countries. Plant Pathology 65(1): 3–16. https://doi.org/10.1111/ppa.12439Thomas-Sharma, S., J. Andrade-Piedra, M. Carvajal, J.F. Hernandez, M.J. Jeger, R.A.C. Jones, P. Kromann, J.P. Legg, J. Yuen, G.A. Forbes, K.A. Garrett. 2017. A risk assessment framework for seed degeneration: Informing an integrated seed Health strategy for vegetatively propagated crops. Phytopathology. 107(10): 1123–1135. https://doi.org/10.1094/PHYTO-09-16-0340-RVallejo, D., P. Gutiérrez, M. Marín. 2016. Genome characterization of a Potato virus S (PVS) variant from tuber sprouts of Solanum phureja Juz. et Buk. Agronomía Colombiana 34: 51–60. https://doi.org/10.15446/agron.colomb.v34n1.53161.Xu, H., T.L. DeHaan, S.H. De Boer. 2004. Detection and confirmation of Potato mop-top virus in potatoes produced in the United States and Canada. Plant Disease 88: 363–367. https://doi.org/10.1094/PDIS.2004.88.4.363Yang, L., B. Nie, J. Liu, B. Song. 2014. A reexamination of the effectiveness of ribavirin on eradication of viruses in potato plantlets in vitro using ELISA and quantitative RT–PCR. American Journal of Potato Research 91(3): 304–311. https://doi.org/10.1007/s12230-013-9350-zAgindotan, B.O., P.J. Shiel, P.H. Berger. 2007. Simultaneous detection of potato viruses, PLRV, PVA, PVX and PVY from dormant potato tubers by TaqMan real-time RT-PCR. Journal of Virological Methods 142(1-2): 1-9. https://doi.org/10.1016/j.jviromet.2006.12.012.Agronet. 2021. Red de información y comunicación del sector Agropecuario Colombiano. https://www.agronet.gov.co/estadistica/Paginas/home.aspxÁlvarez, D., P. Gutiérrez, M. Marín. 2016. Caracterización molecular del Potato virus V (PVV) infectando Solanum phureja mediante secuenciación de nueva generación. Acta Biológica Colombiana 21(3): 521-531. https://doi.org/10.15446/abc.v21n3.54712Álvarez, N., Jaramillo, H., Gallo, Y., Gutiérrez, P., Marín, M. 2018. Molecular characterization of Potato virus Y (PVY) and Potato virus V (PVV) isolates naturally infecting Cape gooseberry (Physalis peruviana) in Antioquia, Colombia. Agronomía Colombiana 36(1): 13–23. https://doi.org/10.15446/agron.colomb.v36n1.65051Boratyn, G.M., Thierry-Mieg, D., Busby, B., Madden, T.L. 2019. Magic-BLAST, an accurate DNA and RNA-seq aligner for long and short reads. BMC Bioinformatics 20: 405. https://doi.org/10.1186/s12859-019-2996-xDíaz-Cruz, G.A., Smith, C.M., Wiebe, K.F., Cassone, B.J. 2017. First complete genome sequence of Tobacco necrosis virus D isolated from soybean and from North America. Genome Announcements 5: e00781-17. https://doi.org/10.1128/genomeA.00781-17.Edgar, R.C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32(5):1792-1797. https://doi.org/10.1093/nar/gkh340EPPO. 1999. Tobacco necrosis virus (TNV000). https://gd.eppo.int/taxon/TNV000/documentsFrost, K.E., R.L. Groves, A.O. Charkowski. 2013. Integrated control of potato pathogens through seed potato certification and provision of clean seed potatoes. Plant Disease 97(10): 1268–1280. https://doi.org/10.1094/PDIS-05-13-0477-FEGallo, Y., A. Sierra, L. Donaire, M.A. Aranda, P.A. Gutiérrez, M.A. Marín. 2019. Coinfección natural de virus de ARN en cultivos de papa (Solanum tuberosum subsp. Andigena) en Antioquia (Colombia). Acta Biológica Colombiana 24(3): 546–560. https://doi.org/10.15446/abc.v24n3.79277.Gallo, Y., M. Marín, P.A. Gutiérrez. 2021a. Detection of RNA viruses in Solanum quitoense by high-throughput sequencing (HTS) using total and double stranded RNA inputs. Physiological and Molecular Plant Pathology 113: 101570. https://doi.org/10.1016/j.pmpp.2020.101570Gallo, Y., A. Sierra, M. Marín, P.A. Gutiérrez. 2021b. Prevalencia de cinco virus de ARN en tubérculos-semilla de papa cultivados en Antioquia (Colombia). Biotecnología en el Sector Agropecuario y Agroindustrial 19(1): 66-78. https://dx.doi.org/10.18684García, A., M. Higuita, R. Hoyos, Y. Gallo, M. Marín, P. Gutiérrez. 2021. Prevalence of RNA viruses in certified, and informal potato seed tubers in the province of Antioquia (Colombia). Crop protection. Submitted.Gildemacher, P.R., E. Schulte-Geldermann, D. Borus, P. Demo, P. Kinyae, P. Mundia, P.C. Struik. 2011. Seed potato quality improvement through positive selection by smallholder farmers in Kenya. Potato Research 54(3):253–266. https://doi.org/10.1007/s11540-011-9190-5Gutiérrez, P.A., Alzate, J.F., Marín-Montoya, M.A. 2013. Complete genome sequence of a novel potato virus S strain infecting Solanum phureja in Colombia. Archives of Virology 158: 2205–2208. https://doi.org/10.1007/s00705-013-1730-7.Gutiérrez, P., H.J. Mesa, M. Marín. 2016. Genome sequence of a divergent Colombian isolate of potato virus V (PVV) infecting Solanum phureja. Acta Virologica 60(1): 49–54. https://doi.org/10.4149/av_2016_01_49.Guyader, S., Ducray, D.G. 2002. Sequence analysis of Potato leafroll virus isolates reveals genetic stability, major evolutionary events and differential selection pressure between overlapping reading frame products. Journal of General Virology 83(7): 1799-1807. https://doi.org/10.1099/0022-1317-83-7-1799.Guzmán, M., V. Román, L. Franco, P. Rodríguez. 2010. Presencia de cuatro virus en algunas accesiones de la Colección Central Colombiana de papa mantenida en campo. Agronomía Colombiana 28(2):225–233.Guzmán-Barney, M., Franco-Lara, L., Rodríguez, D., Vargas, L., Fierro, J.E. 2012. Yield losses in Solanum tuberosum Group Phureja cultivar criolla Colombia in plants with symptoms of PYVV in field trials. American Journal of Potato Research 89(6): 438–447. https://doi.org/10.1007/s12230-012-9265-0ICTV. 2021. International Committee on Taxonomy of Viruses. https://talk.ictvonline.org/Jeffies, C.J. 1998. FAO/IPGRI Technical guidelines for the safe movement of germplasm. Potato. 19. 84p. [accessed 2022 May 10]. https://www.bioversityinternational.org/fileadmin/user_upload/Potato_booklet_reduced.pdfKreuze, J.F., Souza-Dias, J.A.C., Jeevalatha, A., Figueira, A.R., Valkonen, J.P.T., Jones, R.A.C. 2020. Viral diseases in potato. In: Campos H, Ortiz O, editors. The potato crop. Cham, Switzerland: Springer.Kumar, R., P. Kaundal, R. Kumar, S. Siddappa, H. Kumari, K. Chandra, S. Sharma, M. Kumar. 2021. Rapid and sensitive detection of potato virus X by one-step reverse transcription-recombinase polymerase amplification method in potato leaves and dormant tubers. Molecular and Cellular Probes 58: 101743. https://doi.org/10.1016/j.mcp.2021.101743MADR. 2019. Estrategia de ordenamiento de la producción. Cadena productiva de la papa y su industria. https://sioc.minagricultura.gov.co/Papa/Normatividad/Plan%20de%20Ordenamiento%20papa%202019-2023.pdfMedina, H.C., P.A. Gutiérrez, M.A. Marín. 2015. Detección del Potato virus Y (PVY) en tubérculos de papa mediante TAS-ELISA y qRT-PCR en Antioquia (Colombia). Bioagro. 27(2): 83-92.Mesa, M.E., M.I. González, P.A. Gutiérrez, M.A. Marín. 2016. Diagnóstico serológico y molecular del Potato leafroll virus (PLRV) en tubérculos-semilla de papa en Antioquia. Acta Agronómica 65(2): 204–210. https://10.15446/acag.v65n2.50764Monger, W., C. Jeffries. 2018. A new virus, classifiable in the family Tombusviridae, found infecting Solanum tuberosum in the UK. Archives of Virology. 163: 1585-1594. https://doi.org/10.1007/s00705-018-3751-8Muñoz, D., Gutiérrez, P., Marín, M. 2016. Detección y caracterización molecular del Potato virus Y (PVY) en cultivos de papa (Solanum tuberosum L.) del norte de Antioquia, Colombia. Protección Vegetal 31: 9–19.Muñoz-Baena, L., Gutiérrez-Sánchez, P.A., Marín-Montoya, M. 2016. Detección y secuenciación del genoma del Potato Virus Y (PVY) que infecta plantas de tomate en Antioquia, Colombia. Bioagro 28(2): 69-80.Price, W.C. 1938. Studies on the virus of tobacco necrosis. American Journal of Botany 25: 603. https://doi.org/10.2307/2436520.Raigond, B., A. Verma, S. Pathania, J. Sridhar, T. Kochhar, S.K. Chakrabarti. 2020. Development of a reverse transcription loop-mediated isothermal amplification for detection of potato virus a in potato and in insect vector aphids. Crop Protection 137: 105296. https://10.1016/j.cropro.2020.105296Robinson, J.T., Thorvaldsdóttir, H., Winckler, W., Guttman, M., Lander, E.S., Getz, G., Mesirov, J.P. 2011. Integrative Genomics Viewer. Nature Biotechnology 29(1): 24-26. https://doi.org/10.1038/nbt.1754Rodríguez, L.E., C.E. Ñustez, N. Estrada. 2009. Criolla Latina, Criolla Paisa y Criolla Colombia, nuevos cultivares de papa criolla para el departamento de Antioquia (Colombia). Agronomía Colombiana 27(3): 289-303.Saitou, N., Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4(4): 406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454Savenkov, E.I., M.Y. Sandgren, J.P.T. Valkonen. 1999. Complete sequence of RNA 1 and the presence of tRNA-like structures in all RNAs of Potato mop-top virus, genus Pomovirus. Journal of General Virology 80: 2779-2784. https://doi.org/10.1099/0022-1317-80-10-2779Schulte-Geldermann, E., P.R. Gildemacher, P.C. Struik PC. 2012. Improving seed health and seed performance by positive selection in three Kenyan potato varieties. American Journal of Potato Research 89(6): 429–437. https://doi.org/10.1007/s12230-012-9264-1Schumpp, O., A. Bréchon, J. Brodard, B. Dupuis, L. Farinelli, P. Frei, P. Otten, D. Pellet 2021. Large-Scale RT-qPCR diagnostics for seed potato certification. Potato Research. In press. https://doi.org/10.1007/s11540-021-09491-3Seminario, J.F., R. Villanueva-Guevara, M.H. Valdez-Yopla. 2018. Rendimiento de cultivares de papa (Solanum tuberosum L.) amarillos precoces del grupo Phureja. Agronomía Mesoamericana 29(3): 639-653. https://doi.org/10.15517/ma.v29i3.32623Sierra, A., Y. Gallo, M. Estrada, P.A. Gutiérrez, M. Marín. 2020. Detección molecular de seis virus de ARN en brotes de tubérculos de papa criolla (Solanum phureja) en Antioquia, Colombia. Bioagro 32(1): 3-14.Sierra A., Y. Gallo, M. Estrada, P. Gutiérrez, M. Marín. 2021. Detection of four RNA viruses in commercial and informal potato seed tubers in Antioquia (Colombia). Archives of Phytopathology and Plant Protection 54(5-6): 273-294. https://doi.org/10.1080/03235408.2020.1829424.Singh, R.P., J. Kurz, G. Boiteau, G. Bernard. 1995. Detection of potato leafroll virus in single aphids by the reverse transcription polymerase chain reaction and its potential epidemiological application. Journal of Virological Methods 1: 133–143. https://doi.org/10.1016/0166-0934(95)00056-zSmith, K.M., Bald, J.G. 1935. A description of a necrotic virus disease affecting tobacco and other plants. Parasitology 27: 231–245. https://doi.org/10.1017/S0031182000015109.Tamura, K. 1992. Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G + C-content biases. Molecular Biology and Evolution 9: 678-687. https://doi.org/10.1093/oxfordjournals.molbev.a040752Teakle, D.S., Gold, A.H. 1963. Further studies of Olpidium as a vector of tobacco necrosis virus. Virology 19: 310 –315. https://doi.org/10.1016/0042-6822(63)90069-2.Thomas-Sharma, S., J. Andrade-Piedra, M. Carvajal, J.F. Hernandez, M.J. Jeger, R.A.C. Jones, P. Kromann, J.P. Legg, J. Yuen, G.A. Forbes, K.A. Garrett. 2017. A risk assessment framework for seed degeneration: Informing an integrated seed Health strategy for vegetatively propagated crops. Phytopathology 107(10): 1123–1135. https://doi.org/10.1094/PHYTO-09-16-0340-RYang, L., B. Nie, J. Liu, B. Song. 2014. A reexamination of the effectiveness of ribavirin on eradication of viruses in potato plantlets in vitro using ELISA and quantitative RT–PCR. American Journal of Potato Research 91(3): 304–311. https://10.1007/s12230-013-9350-zAGINDOTAN, B.O.; SHIEL, P.J.; BERGER, P.H. 2007. Simultaneous detection of potato viruses, PLRV, PVA, PVX and PVY from dormant potato tubers by TaqMan® real-time RT-PCR. J. Virol. Methods. 142(1–2):1–9. https://doi.org/10.1016/j.jviromet.2006.12.012ALI, M.C.; MAOKA, T.; NATSUAKI, K.T. 2008. The occurrence of potato viruses in Syria and the molecular detection and characterization of Syrian Potato virus S isolates. Potato Res. 51:151–161. https://doi.org/10.1007/s11540-008-9099-9ÁLVAREZ, D.; GUTIÉRREZ, P.; MARÍN, M. 2016. Caracterización molecular del Potato virus V (PVV) infectando Solanum phureja mediante secuenciación de nueva generación. Acta biol. Colomb. 21(3):521-531.ÁLVAREZ-YEPES, D.; GUTIÉRREZ-SÁNCHEZ, P.; MARÍN-MONTOYA, M. 2017. Secuenciación del genoma del Potato yellow vein virus (PYVV) y desarrollo de una prueba molecular para su detección. Bioagro. 29(1):3-14.BEEMSTER, A.; BOKX, A. 1987. Survey of properties and symptoms. En: Bokx, J. A.; Want, J. (eds). Viruses of potatoes and seed-potato production (2a ed.). Wageningen University (Netherland). p.84-113. https://doi.org/10.1007/bf02357877BUSHMANOVA, E.; ANTIPOV, D.; LAPIDUS, A.; D PRJIBELSKI, A. 2019. rnaSPAdes: a de novo transcriptome assembler and its application to RNA-Seq data. GigaScience. 8(9):1-13. https://doi.org/10.1093/gigascience/giz100BURLINGAME, B.; MOUILLÉ, B.; CHARRONDIÈRE, R. 2009. Nutrients, bioactive non-nutrients and anti-nutrients in potatoes. J. Food Compos. Anal. 22:494-502. https://doi.org/10.1016/j.jfca.2009.09.001COX, B.A.; JONES, R.A.C. 2010. Genetic variability in the coat protein gene of Potato virus X and the current relationship between phylogenetic placement and resistance groupings. Arch. Virol. 155(8):1349-1356. https://doi.org/10.1007/s00705-010-0711-3FAO. 2008. La papa - Año Internacional de la Papa 2008. Disponible desde Internet en: http://www.fao.org/potato-2008/es/mundo/europa.html (con acceso el 15/01/2020)FAOSTAT. 2018. Food and agriculture data. Disponible desde Internet en: http://www.fao.org/faostat/en/#home. (con acceso el 10/09/2020)FEDEPAPA. 2017. Plan estratégico del subsector de la papa visión 20-20. Disponible desde Internet en: https://fedepapa.com/wp-content/uploads/2017/01/Plan-sectorial.pdf (con acceso el 30/01/2020)FEDEPAPA. 2019. Informe de gestión. Vigencia 2019. Disponible desde Internet en: https://fedepapa.com/wp-content/uploads/2020/05/INFORME-DE-GESTIO%CC%81N-VIGENCIA-2019.pdf (con acceso el 15/07/2021)FORBES, G.A.; CHARKOWSKI, A.; ANDRADE-PIEDRA, J.; PARKER, M.; Schulte-Geldermann, E. 2020. Potato seed systems. En: Campos, H., Ortiz, O. (eds). The potato crop. Cham, Springer (Switzerland).FROST, K.E.; GROVES, R.L.; CHARKOWSKI, A.O. 2013. Integrated control of potato pathogens through seed potato certification and provision of clean seed potatoes. Plant Dis. 97(10):1268-1280. https://doi.org/10.1094/PDIS-05-13-0477-FEGALLO, Y.; SIERRA, A.; DONAIRE, L.; ARANDA, M.; GUTIÉRREZ, P.; MARÍN, M. 2019. Natural coinfection of RNA viruses in potato (Solanum tuberosum subsp. andigena) crops in Antioquia (Colombia). Acta biol. Colomb. 24(3):546-560. https://doi.org/10.15446/abc.v24n3.79277GALLO-GARCÍA, Y.; SIERRA-MEJIA, A.; GUTIÉRREZ, P.A.; MARÍN-MONTOYA, M. 2021. Prevalencia de cinco virus de ARN en tubérculos-semilla de papa cultivados en Antioquia (Colombia). Biotecnol. sector agropecuario agroind. 19(1):66-78. https://doi.org/10.18684/bsaa(19)66-78GARCÍA, A.; HIGUITA, M.; HOYOS, R.; GALLO, Y.; MARÍN, M.; GUTIÉRREZ, P. 2021. Prevalence of RNA viruses in certified, and informal potato seed tubers in the province of Antioquia (Colombia). Crop Prot; código del registro: No.: CROPRO-D-21-01027.GIL, J.F.; COTES, J.M.; MARÍN, M. (2011). Incidencia de Potyvirus y caracterización molecular de PVY en regiones productoras de papa (Solanum tuberosum L) de Colombia. Rev. colomb. biotecnol. 85-93.GILDEMACHER, P.R.; SCHULTE-GELDERMANN, E.; BORUS, D.; DEMO, P.; KINYAE, P.; MUNDIA, P.; STRUIK, P.C. 2011. Seed potato quality improvement through positive selection by smallholder farmers in Kenya. Potato Res. 54(3):253–266. https://doi.org/10.1007/s11540-011-9190-5GLAIS, L.; TRIBODET, M.; KERLAN, C. 2005. Specific detection of the PVYN-W variant of Potato virus Y. J. Virol. Methods. 125(2):131-136. https://doi.org/10.1016/j.jviromet.2005.01.007GUTIÉRREZ, P.; RIVILLAS, A.; TEJADA, D.; GIRALDO, S.; RESTREPO, A.; OSPINA, M.; CADAVID, S.; GALLO, Y.; MARÍN, M. 2021. PVDP: A portable open source pipeline for detection of plant viruses in RNAseq data. A case study on potato viruses in Antioquia (Colombia). Physiol. Mol. Plant Path. 113:101604. https://doi.org/10.1016/j.pmpp.2021.101604GUZMÁN-BARNEY, M.; HERNÁNDEZ, A.K.; FRANCO-LARA, L. 2012. Tracking Foliar Symptoms Caused by Tuber-Borne Potato yellow vein virus (PYVV) in Solanum Phureja (Juz et Buk) Cultivar “Criolla Colombia”. Am. J. Potato Res. 90:84-93. https://doi.org/10.1007/s12230-013-9303-6.HALTERMAN, D.; CHARKOWSKI, A.; VERCHOT, J. 2012. Potato viruses and seed certification in the USA to provide healthy propagated tubers. Pest Tech. 6(1):1-14.HAMEED, A.; IQBAL, Z.; ASAD, S.; MANSOOR, S. 2014. Detection of multiple potato viruses in the field suggests synergistic interactions among potato viruses in Pakistan. Plant Pathol. J. 30:407-415. https://doi.org/10.5423/PPJ.OA.05.2014.0039HENAO-DÍAZ, E.; GUTIÉRREZ-SÁNCHEZ, P.; MARÍN-MONTOYA, M. 2013. Análisis filogenético de aislamientos del Potato virus Y (PVY) obtenidos en cultivos de papa (Solanum Tuberosum) y tomate de árbol (Solanum Betaceum) en Colombia. Actu. biol. 35:219-232.ICA. 2015. Resolución 3168 de 2015. Disponible desde Internet en: https://www.ica.gov.co/getattachment/4e8c3698-8fcb-4e42-80e7-a6c7acde9bf8/2015R3168.aspx (con acceso el 10/09/2020)KERLAN, C. 2008. Potato viruses. En: Mahy, B.W.; Van Regenmortel, M.H. (eds). Desk encyclopedia of plant and fungal virology. Academic Press. p.458-471.KREUZE, J.F.; SOUZA-DIAS, J.A.C.; JEEVALATHA, A.; FIGUEIRA, A.R.; VALKONEN, J.P.T.; JONES, R.A.C. 2020. Viral diseases in potato En: Campos, H.; Ortiz, O. (eds). The potato crop. Its agricultural, nutritional and social Contribution to Humankind. International Potato Center. p.389-431. https://doi.org/10.1007/978-94-011-2340-2KUMAR, S.; STECHER, G.; LI, M.; KNYAZ, C.; TAMURA, K. 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35(6):1547-1549. https://doi: 10.1093/molbev/msy096.MADR. 2020. Cadena de la papa. Dirección de Cadenas Agrícolas y Forestales. Junio. Disponible desde Internet en: https://sioc.minagricultura.gov.co/Papa/Documentos/2020-06-30%20Cifras%20Sectoriales.pdf (con acceso el 17/08/2021)MARÍN, M.; GUTIÉRREZ, P. 2016. Principios de virología molecular de plantas tropicales. Colombia: Corpoica.MEDINA, H., GUTIÉRREZ, P., MARÍN, M. 2017. Detection and sequencing of Potato virus Y (PVY) and Potato leafroll virus (PLRV) in a volunteer plant of Solanum tuberosum L. cv. Diacol-Capiro. Acta Agron. 66(4):625-632. https://doi.org/10.15446/acag.v66n4.59753MILNE, I.; BAYER, M.; CARDLE, L.; SHAW, P.; STEPHEN, G.; WRIGHT, F.; MARSHALL, D. 2010. Tablet - Next Generation Sequence Assembly Visualization. Bioinformatics (Oxford, England). 26(3):401-402. https://doi.org/10.1093/bioinformatics/btp666MUMFORD, R.A.; WALSH, K.; BARKER, I.; BOONHAM, N. 2000. Detection of Potato mop top virus and Tobacco rattle virus using a multiplex real-time fluorescent reverse-transcription polymerase chain reaction assay. Phytopathology. 90(5): 448-453. https://doi.org/10.1094/PHYTO.2000.90.5.448NIE, X.; SINGH, R. 2001. A novel usage of random primers for multiplex RT-PCR detection of virus and viroid in aphids, leaves, and tubers. J. Virol. Methods. 91(1):37-49. https://doi.org/10.1016/S0166-0934(00)00242-1NOLTE, P.; WHITWORTH, J.L.; THORNTON, M.K.; MCINTOSH, C.S. 2004. Effect of seedborne Potato virus Y on performance of russet burbank, russet norkotah, and shepody potato. Plant Dis. 88:248-252. https://doi.org/10.1094/PDIS.2004.88.3.248ÑUSTEZ, C.E. 2011. Variedades Colombianas de Papa. Bogotá: Universidad Nacional de Colombia. p.46.PORRAS, P.; HERRERA, C. 2015. Modelo productivo de la papa variedad Diacol Capiro para el departamento de Antioquia. Mosquera (Colombia): Corpoica. p.92.RAIGOND, B.; VERMA, A.; PATHANIA, S.; SRIDHAR, J.; KOCHHAR, T.; CHAKRABARTI, S.K. 2020. Development of a reverse transcription loop-mediated isothermal amplification for detection of potato virus a in potato and in insect vector aphids. Crop Prot. 137:105296. https://10.1016/j.cropro.2020.105296RIASCOS, M.; GUTIÉRREZ SÁNCHEZ, P.; MARÍN MONTOYA, M. 2018. Identificación molecular de Potyvirus infectando cultivos de papa en el oriente de Antioquia (Colombia). Acta biol. Colomb. 23(1):39-50. http://dx.doi.org/10.15446/abc.v23n1.65683SALAZAR, L. 2006. Emerging and re-emerging potato diseases in the Andes. Potato Res. 49:43-47. https://doi.org/10.1007/s11540-006-9005-2SAVENKOV, E.I.; SANDGREN, M.; VALKONEN, J.P.T. 1999. Complete sequence of RNA 1 and the presence of tRNA like structures in all RNAs of Potato mop-top virus, genus Pomovirus. J. Gen. Virol. 80(10):2779-2784. https://doi.org/10.1099/0022-1317-80-10-2779SIERRA, A.; GALLO, Y.; ESTRADA, M.; GUTIÉRREZ, P.; MARÍN, M. 2021. Detection of four RNA viruses in commercial and informal potato seed tubers in Antioquia (Colombia). Arch. Phytopathol. Pflanzenschutz. 54(5-6):273-294. https:// 10.1080/03235408.2020.1829424.SINGH, R.P.; KURZ, J.; BOITEAU, G.; BERNARD, G. 1995. Detection of Potato leafroll virus in single aphids by the reverse transcription polymerase chain reaction and its potential epidemiological application. J. Virol. Methods. 55:133-143.SCHULTE-GELDERMANN, E.; GILDEMACHER, P.R; STRUIK, P.C. 2012. Improving seed health and seed performance by positive selection in three Kenyan potato varieties. Am. J. Potato Res. 89(6):429–437. https://doi.org/10.1007/s12230-012-9264-1SCHUMPP, O.; BRÉCHON, A.; BRODARD, J.; DUPUIS, B.; FARINELLI, L.; FREI, P.; OTTEN, P.; PELLET, D. 2021. Large-Scale RT-qPCR diagnostics for seed potato certification. Potato Res. In press. https://doi.org/10.1007/s11540-021-09491-3THOMAS-SHARMA, S.; ABDURAHMAN, A.; ALI, S.; ANDRADE-PIEDRA, J.L.; BAO, S.; CHARKOWSKI, A.O.; CROOK, D.; KADIAN, M.; KROMANN, P.; STRUIK, P.C.; TORRANCE, L.; GARRETT, K.A.; FORBES, G.A. 2016. Seed degeneration in potato: The need for an integrated seed health strategy to mitigate the problem in developing countries. Plant Pathol. 65(1):3-16. https://doi.org/10.1111/ppa.12439XU, H.; DEHAAN, T.L.; DE BOER, S.H. 2004. Detection and confirmation of Potato mop-top virus in potatoes produced in the United States and Canada. Plant Dis. 88(4):363–367. https://doi.org/10.1094/PDIS.2004.88.4.363YANG, L.; NIE, B.; LIU, J.; SONG, B. 2014. A reexamination of the effectiveness of ribavirin on eradication of viruses in potato plantlets in vitro using Elisa and quantitative RT-PCR. Am. J. Potato Res. 91(3):304-311. https://doi.org/10.1007/s12230-013-9350-zAgindotan, B.O., P.J. Shiel, P.H. Berger. 2007. Simultaneous detection of potato viruses, PLRV, PVA, PVX and PVY from dormant potato tubers by TaqMan real-time RT-PCR. Journal of Virological Methods 142(1-2): 1-9. https://doi: 10.1016/j.jviromet.2006.12.012.Avrahami-Moyal, L., Y. Tam, M. Brumin, S. Prakash, D. Leibman, M. Pearlsman, M. Bornstein, N. Sela, M. Zeidan, Z. Dar, U. Zig, A. Gal-On, V. Gaba. 2017. Detection of Potato virus Y in industrial quantities of seed potatoes by TaqMan Real Time PCR. Phytoparasitica 45: 591–598. https:// 10.1007/s12600-017-0612-zCox, B.A., R.A.C. Jones. 2012. Effects of tissue sampling position, primary and secondary infection, cultivar, and storage temperature and duration on the detection, concentration and distribution of three viruses within infected potato tubers. Australasian Plant Pathology 41: 197–210. https://10.1007/s13313-011-0108-0FERA. 2017. Potato post-harvest virus testing sample submission form. [accessed 2020 Nov 20]. https://www.fera.co.uk/media/wysiwyg/crop_health/Crop_Health_Post-Harvest_Virus_Testing_of_Potato_Tubers_Sample_Submission-2019.pdfFox, A., F. Evans, I. Browning. 2005. Direct tuber testing for Potato Y potyvirus by real-time RT-PCR and ELISA: reliable options for post-harvest testing? EPPO Bulletin 35: 93–97. https:// 10.1111/j.1365-2338.2005.00805.xGallo, Y., A. Sierra, M. Marín, P.A. Gutiérrez. 2021. Prevalencia de cinco virus de ARN en tubérculos-semilla de papa cultivados en Antioquia (Colombia). Biotecnología en el Sector Agropecuario y Agroindustrial 19(1): 66-78. https://dx.doi.org/10.18684Ghislain, M., D. Andrade, F. Rodríguez, R.J. Hijmans, D.M. Spooner. 2006. Genetic analysis of the cultivated potato Solanum tuberosum L. Phureja Group using RAPDs and nuclear SSRs. Theoretical and Applied Genetics 113(8): 1515-1527. https://10.1007/s00122-006-0399-7Giraldo, S., A. Sierra, M. Ospina, M. Higuita, Y. Gallo, P. Gutiérrez, M. Marín. 2022. Detección y caracterización molecular del potato virus B (PVB) en papa criolla (Solanum phureja) en Antioquia. Acta Biológica Colombiana 27(2): 258-268. https://doi.org/10.15446/abc.v27n2.89422Herrera, A.O., L.E. Rodríguez. 2011. Tecnologías de Producción y Transformación de Papa Criolla. Universidad Nacional de Colombia. Bogotá. ISBN : 978-958-761-110-6Kumar, R., P. Kaundal, R. Kumar, S. Siddappa, H. Kumari, K. Chandra, S. Sharma, M. Kumar. 2021. Rapid and sensitive detection of potato virus X by one-step reverse transcription-recombinase polymerase amplification method in potato leaves and dormant tubers. Molecular and Cellular Probes 58: 101743. https:// 10.1016/j.mcp.2021.101743Mortimer-Jones, S.M., M.G. Jones, R.A. Jones, G. Thomson, G.I. Dwyer. 2009. A single tube, quantitative real-time RT-PCR assay that detects four potato viruses simultaneously. Journal of Virological Methods 161: 289–296. https://10.1016/j.jviromet.2009.06.027NAK. 2015. Details virus and bacterial diagnostics in potatoes 2016–2017. [accessed 2020 Sept 10]. https://www.nak.nl/wpcontent/uploads/archief/2012/NAK%20Services/Virus%20and%20bacterial%20diagnostics%20in%20potatoes%202017-2018.pdf.Ñustez, C.E. 2011. Variedades Colombianas de Papa. Bogotá: Universidad Nacional de Colombia. 46 p.Seminario, J.F., R. Villanueva-Guevara, M.H. Valdez-Yopla. 2018. Rendimiento de cultivares de papa (Solanum tuberosum L.) amarillos precoces del grupo Phureja. Agronomía Mesoamericana 29(3): 639-653. https://10.15517/ma.v29i3.32623Sierra A., Y. Gallo, M. Estrada, P. Gutiérrez, M. Marín. 2021. Detection of four RNA viruses in commercial and informal potato seed tubers in Antioquia (Colombia). Archives of Phytopathology and Plant Protection 54(5-6): 273-294. https:// 10.1080/03235408.2020.1829424.Singh, R.P., J. Kurz, G. Boiteau, G. Bernard. 1995. Detection of potato leafroll virus in single aphids by the reverse transcription polymerase chain reaction and its potential epidemiological application. Journal of Virological Methods 1: 133–143. https://10.1016/0166-0934(95)00056-zSingh M, Singh RP, Fageria MS, Nie X, Coffin R, Hawkins G. 2013. Optimization of a Real-Time RT-PCR assay and its comparison with ELISA, conventional RT-PCR and the grow-out test for large scale diagnosis of Potato virus Y in dormant potato tubers. American Journal of Potato Research 90(1):43–50. https://doi.org/10.1007/s12230-012-9274-zStammler, J., A. Oberneder, A. Kellermann, J. Hadersdorfer. 2018. Detecting potato viruses using direct reverse transcription quantitative PCR (DiRT-qPCR) without RNA purification: an alternative to DAS-ELISA. European Journal of Plant Pathology 152: 237–248. https:// 10.1007/s10658-018-1468-xWhitworth, J.L., P.B. Hamm, P. Nolte. 2012. Distribution of Potato virus Y strains in tubers during the postharvest period. American Journal of Potato Research 89(2): 136–141. https:// 10.1007/s12230-012-9235-6Whitworth, J.L., S.M. Gray, J.T. Ingram, D.G. Hall. 2021. Foliar and tuber symptoms of U.S. potato varieties to multiple strains and isolates of potato virus Y. American Journal of Potato Research 98: 93–103. https://10.1007/s12230-020-09820-1Agindotan, B. O., Shiel, P. J. y Berger, P. H. (2007). Simultaneous detection of potato viruses, PLRV, PVA, PVX and PVY from dormant potato tubers by TaqMan® real-time RT-PCR. Journal of Virological Methods, 142(1–2), 1–9. https://doi.org/10.1016/j.jviromet.2006.12.012Álvarez, D., Gutiérrez, P. y Marín, M. (2016). Caracterización molecular del Potato virus V (PVV) infectando Solanum phureja mediante secuenciación de nueva generación. Acta Biológica Colombiana, 21(3), 521-531. https://doi.org/10.15446/abc.v21n3.54712Álvarez-Yepes, D., Gutiérrez-Sánchez, P. y Marín-Montoya, M. (2017). Secuenciación del genoma del Potato yellow vein virus (PYVV) y desarrollo de una prueba molecular para su detección. Bioagro, 29(1), 3-14.Antonova, O., Apalikova, O., Ukhatova, Y., Krylova, E., Shuvalov, O., Shuvalova, A. R. y Gavrilenko, T. A. (2017). Eradication of viruses in microplants of three cultivated potato species (Solanum tuberosum L., S. Phureja Juz. & Buk., S. stenotomum Juz. & Buk.) using combined thermo-chemotherapy method. Sel'skokhozyaistvennaya Biologiya, 52, 95-104. https://doi.org/10.15389/agrobiology.2017.1.95eng.Bamberg, J., Martin, M., Abad, J., Jenderek, M., Tanner, J., Donnelly, D., Nassar, A., Veilleux, R. y Novy, R. (2016). In vitro technology at the US potato Genebank. In Vitro Cellular and Developmental Biology - Plant, 52, 213-225. https://doi.org/10.1007/s11627-016-9753-xBettoni, J. C., Mathew, L., Pathirana, R., Wiedow, C., Hunter, D., McLachlan, A., Khan, S., Tang, J. y Nadarajan, J. (2022). Eradication of Potato Virus S, Potato Virus A, and Potato Virus M From Infected in vitro-grown potato shoots using in vitro therapies. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.878733Chavez-Barrantes, N. y Gutiérrez-Soto, M. (2017). Respuestas al estrés por calor en los cultivos. II. Tolerancia y tratamiento agronómico. Agronomía Mesoamericana, 28(1), 255 - 271. https://doi.org/10.15517/am.v28i1.21904Daurov, D., Daurova, A., Karimov, A., Tolegenova, D., Volkov, D., Raimbek, D., Zhambakin, K. y Shamekova, M. (2020). Determining Effective Methods of Obtaining Virus-Free Potato for Cultivation in Kazakhstan. American Journal of Potato Research, 97, 367–375. https://doi.org/10.1007/s12230-020-09787-zDawson, W. O. y Lozoya, S. H. (1984). Examination of the mode of action of ribavirin against tobacco mosaic virus. Intervirology., 22(2), 77–84. https://doi.org/10.1159/000149537Ehsanpour, A. y Jones, M. (2001). Plant regeneration from mesophyll protoplasts of potato (Solanum tuberosum L.) cultivar delaware using silver thiosulfate (STS). Journal of sciences, 12, 103-110.Faccioli, G. y Colalongo, M. (2002). Eradication of potato virus Y and potato leafroll virus by chemotherapy of infected potato stem cuttings. Phytopathologia Mediterranea, 41, 76-78.FAOSTAT. (2018). Food and agriculture data. Recuperado el 10 de septiembre de 2020 de http://www.fao.org/faostat/en/#homeGallo, Y., Sierra, A., Marín, M. y Gutiérrez, P. A. (2021). Prevalencia de cinco virus de ARN en tubérculos-semilla de papa cultivados en Antioquia (Colombi9a). Biotecnología en el Sector Agropecuario y Agroindustrial, 19(1), 66-78. https://dx.doi.org/10.18684García, A.; Higuita, M.; Hoyos, R.; Gallo, Y.; Marín, M. y Gutiérrez, P. (2021). Prevalence of RNA viruses in certified, and informal potato seed tubers in the province of Antioquia (Colombia). Crop Prot; código del registro: No.: CROPRO-D-21-01027.Guzmán, M., Román, V., Franco, X. y Rodríguez, P. (2010). Presencia de cuatro virus en algunas accesiones de la Colección Central Colombiana de papa mantenida en campo. Agronomía Colombiana, 28(2), 225–233.Hoque, M. (2010). In Vitro Regeneration Potentiality of Potato under Different Hormonal Combination. World Journal of Agricultural Sciences, 6(6), 660-663. http://www.idosi.org/wjas/wjas6(6)/5.pdfKaiser, W. (1980). Use of Thermotherapy to Free Potato Tubers of Alfalfa mosaic, Potato leaf roll, and Tomato black ring viruses. Phytopathology, 70(11), 1119. https://doi.org/10.1094/phyto-70-1119Mumford, R. A., Walsh, K., Barker, I. y Boonham, N. (2000). Detection of Potato mop top virus and Tobacco rattle virus using a multiplex real-time fluorescent reverse-transcription polymerase chain reaction assay. Phytopathology, 90(5), 448-453. https://doi.org/10.1094/PHYTO.2000.90.5.448Murashige, T. y Skoog, F. (1962). A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum, 15, 474-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.xMuthoni, J., Shimelis, H. y Melis, R. (2013). Potato production in Kenya: Farming systems and production constraints. The Journal of Agricultural Science, 5(5), 182-197. https://doi.org/10.5539/jas.v5n5p182Nasir, I., Tabassum, B., Latif, Z., Javed M., Haider, M. Javed, M. y Husnain, T. (2010). Strategies to control Potato virus Y under in vitro conditions. Pakistan Journal of Phytopathology, 22(1), 63-70.Salazar, L. F. (1996). Potato viruses and their control. Lima: International Potato Center.Savenkov, E. I., Sandgren, M. y Valkonen, J. P. T. (1999). Complete sequence of RNA 1 and the presence of tRNA like structures in all RNAs of Potato mop-top virus, genus Pomovirus. Journal of General Virology, 80(10), 2779-2784. https://doi.org/10.1099/0022-1317-80-10-2779Sherwood, J. L. (1994). Virus free-plants. Dixon, R. A. y Gonzales R. A. (Ed). Plant Cell Culture. A practical approach. (2a ed). IRL Press. UK. (pp. 135-138).Shoala, T., Eid, Kh. E. y El-fiki, I. A. I. (2019). Impact of chemotherapy and thermotherapy treatments on the presence of potato viruses PVY, PVX and PLRV in tissue-cultured shoot tip meristem. Journal of Plant Protection and Pathology, 10(12), 581-585.Simpkins, I.; Walkey, D. G. A. y Neely, H. A. (1981). Chemical suppression of virus in cultured plant tissues. Annals Applied Biology, 99(2), 161–169.https://doi.org/10.1111/j.1744-7348.1981.tb05143.xSingh, R. P., Kurz, J., Boiteau, G. y Bernard, G. (1995). Detection of Potato leafroll virus in single aphids by the reverse transcription polymerase chain reaction and its potencial epidemiological application. Journal of Virological Methods, 1, 133–143. https://10.1016/0166-0934(95)00056-zWagoire, W. W., Kakuhenzire, R., Kashaija, I. N., Lemaga, B., Demo, P. y Kimmone, G. (2005). Seed potato production in Uganda: Current status and future prospects. African Crop Science Conference Proceedings, 7, 739-743.Waswa, M.; Kakuhenzire, R. y Ochwo-Ssemakula, M. (2017). Effect of thermotherapy duration, virus type and cultivar interactions on elimination of potato viruses X and S in infected seed stocks. African Journal of Plant Science. 11(3):61-70. https://doi.org/10.5897/AJPS2016.1497Yang, L., Nie, B., Liu, J. y Song, B. (2014). A Reexamination of the effectiveness of ribavirin on eradication of viruses in potato plantlets in vitro using ELISA and quantitative RT-PCR. American Journal of Potato Research, 91(3), 304-311. https://doi.org/10.1007/s12230-013-9350código 1101-805-62787 "Desarrollo de una plataforma molecular y bioinformática para el diagnóstico de virus en cultivos y material de siembra de papa (Solanum tuberosum y S. phureja) en Antioquia"Fondo de Ciencia, Tecnología e Innovación del Sistema General de Regalías del Departamento de Antioquia (Colombia) (Convenio No. 4600007658–779)EstudiantesInvestigadoresMaestrosPúblico generalORIGINAL1152195206.2022.pdf1152195206.2022.pdfTesis de Maestría en Biotecnologíaapplication/pdf13655434https://repositorio.unal.edu.co/bitstream/unal/82244/2/1152195206.2022.pdf53d15a4fc0261f321efcd25f90b8f05dMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.unal.edu.co/bitstream/unal/82244/8/license.txt8a4605be74aa9ea9d79846c1fba20a33MD58CC-LICENSEGarcía Torres, Andrea Stefania Licencia capitulo 1.pdfGarcía Torres, Andrea Stefania Licencia capitulo 1.pdfLicencia capitulo 1application/pdf261642https://repositorio.unal.edu.co/bitstream/unal/82244/9/Garc%c3%ada%20Torres%2c%20Andrea%20Stefania%20Licencia%20%20capitulo%201.pdf21c5920746951794ade8cc839a7a4619MD59García Torres, Andrea Stefania Licencia capitulo 2.pdfGarcía Torres, Andrea Stefania Licencia capitulo 2.pdfLicencia capitulo 2application/pdf281559https://repositorio.unal.edu.co/bitstream/unal/82244/10/Garc%c3%ada%20Torres%2c%20Andrea%20Stefania%20Licencia%20%20capitulo%202.pdfafdd5da5ecc9d2b8fb5cf1e88569f2f3MD510García Torres, Andrea Stefania Licencia capitulo 3.pdfGarcía Torres, Andrea Stefania Licencia capitulo 3.pdfLicencia capitulo 3application/pdf276783https://repositorio.unal.edu.co/bitstream/unal/82244/11/Garc%c3%ada%20Torres%2c%20Andrea%20Stefania%20Licencia%20%20capitulo%203.pdf042a06b5fedc5b6fe7c3af5fcb49a109MD511García Torres, Andrea Stefania Licencia capitulo 4.pdfGarcía Torres, Andrea Stefania Licencia capitulo 4.pdfLicencia capitulo 4application/pdf278287https://repositorio.unal.edu.co/bitstream/unal/82244/12/Garc%c3%ada%20Torres%2c%20Andrea%20Stefania%20Licencia%20%20capitulo%20%204.pdf6647dab1d3baa47803ca2f3ac9774563MD512García Torres, Andrea Stefania Licencia capitulo 5.pdfGarcía Torres, Andrea Stefania Licencia capitulo 5.pdfLicencia capitulo 5application/pdf278870https://repositorio.unal.edu.co/bitstream/unal/82244/13/Garc%c3%ada%20Torres%2c%20Andrea%20Stefania%20Licencia%20%20capitulo%205.pdfaf6365f4a12ed17e79b0c27519c28804MD513THUMBNAIL1152195206.2022.pdf.jpg1152195206.2022.pdf.jpgGenerated Thumbnailimage/jpeg4903https://repositorio.unal.edu.co/bitstream/unal/82244/14/1152195206.2022.pdf.jpg8e0830233a62a9cd2c199a91732b5ba1MD514unal/82244oai:repositorio.unal.edu.co:unal/822442024-08-09 23:19:47.748Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |