Interacción hidromecánica en un macizo rocoso alrededor de un túnel

ilustraciones, diagramas

Autores:
Valbuena Cerinza, Jefersson
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/86218
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/86218
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Interacción hidromecánica
Modelo estructural
Discontinuidad
Hydromechanical interaction
Structural model
Discontinuity
Roca
Ingeniería geológica
Modelo de simulación
Rocks
Engineering geology
Simulation models
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_621ff22ebdefe48ef833a1f9a11168ff
oai_identifier_str oai:repositorio.unal.edu.co:unal/86218
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Interacción hidromecánica en un macizo rocoso alrededor de un túnel
dc.title.translated.eng.fl_str_mv Hydromechanical interaction in a rock mass around a tunnel
title Interacción hidromecánica en un macizo rocoso alrededor de un túnel
spellingShingle Interacción hidromecánica en un macizo rocoso alrededor de un túnel
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Interacción hidromecánica
Modelo estructural
Discontinuidad
Hydromechanical interaction
Structural model
Discontinuity
Roca
Ingeniería geológica
Modelo de simulación
Rocks
Engineering geology
Simulation models
title_short Interacción hidromecánica en un macizo rocoso alrededor de un túnel
title_full Interacción hidromecánica en un macizo rocoso alrededor de un túnel
title_fullStr Interacción hidromecánica en un macizo rocoso alrededor de un túnel
title_full_unstemmed Interacción hidromecánica en un macizo rocoso alrededor de un túnel
title_sort Interacción hidromecánica en un macizo rocoso alrededor de un túnel
dc.creator.fl_str_mv Valbuena Cerinza, Jefersson
dc.contributor.advisor.spa.fl_str_mv Rodríguez Pineda, Carlos Eduardo
dc.contributor.author.spa.fl_str_mv Valbuena Cerinza, Jefersson
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
topic 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Interacción hidromecánica
Modelo estructural
Discontinuidad
Hydromechanical interaction
Structural model
Discontinuity
Roca
Ingeniería geológica
Modelo de simulación
Rocks
Engineering geology
Simulation models
dc.subject.proposal.spa.fl_str_mv Interacción hidromecánica
Modelo estructural
Discontinuidad
dc.subject.proposal.eng.fl_str_mv Hydromechanical interaction
Structural model
Discontinuity
dc.subject.unesco.spa.fl_str_mv Roca
Ingeniería geológica
Modelo de simulación
dc.subject.unesco.eng.fl_str_mv Rocks
Engineering geology
Simulation models
description ilustraciones, diagramas
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-06-07T20:29:15Z
dc.date.available.none.fl_str_mv 2024-06-07T20:29:15Z
dc.date.issued.none.fl_str_mv 2024
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/86218
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/86218
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Barton, N. R. (1972). A model study of rock-joint deformation. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 9(5), 579–582. https://doi.org/10.1016/0148-9062(72)90010-1
Bentley (2021a). Material Models Manual. Plaxis 2D.
Bentley (2021b). PLAXIS 2D-Reference Manual.
Bentley (2022). Modelling rock discontinuities with Jointed Rock vs Discontinuity elements. Plaxis 2D.
Chapman, D., Metje, N. y Stärk, A. (2018). Introduction to tunnel construction (Second edition). Applied geotechnics. CRC Press, Taylor & Francis Group.
Fu, J., Yang, J., Klapperich, H. y Wang, S. (2016). Analytical Prediction of Ground Movements due to a Nonuniform Deforming Tunnel. International Journal of Geomechanics, 16(4), Artículo 04015089. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000580
Gercek, H. (2007). Poisson's ratio values for rocks. International Journal of Rock Mechanics and Mining Sciences, 44(1), 1–13. https://doi.org/10.1016/j.ijrmms.2006.04.011
Golpasand, M.-R. B. ;Do. (2018). Effect of the lateral earth pressure coefficient on settlements during mechanized tunneling. Geomechanics and Engineering. https://doi.org/10.12989/gae.2018.16.6.643
González de Vallejo, L. I. (D.L. 2012). Ingeniería geológica. Pearson Educación.
González y Sagaseta (2001). Patterns of soil deformations around tunnels. Application to the extension of Madrid Metro. Computers and Geotechnics, 28(6-7), 445–468. https://doi.org/10.1016/S0266-352X(01)00007-6
Hakami, E. (1995). Aperture distribution of rock fractures (tech. rep.). Royal Inst. of Tech.
Hoek. (2006). Practical Rock Engineering.
Hudson y Harrison. (1997). Engineering Rock Mechanics: an introduction to the principles. ELSEVIER SCIENCE Ltd.
Islam et al. (2013). Experimentally Evaluating Shale Dilation Behavior. The American Association of Petroleum Geologists.
Karimi-Khajelangi, B. y Noorian-Bidgoli, M. (2022). Numerical study of the effect of rock anisotropy on stresses around an opening located in the fractured rock mass. Journal of Petroleum Science and Engineering, 208, 109593. https://doi.org/10.1016/j.petrol.2021.109593
Kolymbas. (2005). Tunnelling and Tunnel Mechanics: A Rational Approach to Tunnelling. Springer.
Krishna, S. S. y Lokhande, R. D. (2022). Study on the Effect of Surface Subsidence Due to Tunneling Under Various Loading Conditions. Geotechnical and Geological Engineering, 40(2), 923–943. https://doi.org/10.1007/s10706-021-01936-3
Kutter et al. (2000). Hydromechanical Behaviour of Rock Joints: The Effect of recessed Flow Channels in Smooth - and Roughwalled Fractures. International Society for Rock Mechanics.
Lee, J., Lee, D. y Park, D. (2014). Experimental Investigation on the Coefficient of Lateral Earth Pressure at Rest of Silty Sands: Effect of Fines. Geotechnical Testing Journal, 37(6), 20130204. https://doi.org/10.1520/GTJ20130204
Ma, S. y Gutierrez, M. (2021). Determination of the poroelasticity of shale. Acta Geotechnica, 16(2), 581–594. https://doi.org/10.1007/s11440-020-01062-z
Mabe Fogang, P., Liu, Y., Zhao, J.‑L., Ka, T. A. y Xu, S. (2023). Analytical Prediction of Tunnel Deformation Beneath an Inclined Plane: Complex Potential Analysis. Applied Sciences, 13(5), 3252. https://doi.org/10.3390/app13053252
Maidl, B., Thewes, M., Maidl, U., David, S. y Frank, S. (2014). Handbook of tunnel engineering II: Basics and additional services for design and construction. Ernst & Sohn. https://onlinelibrary.wiley.com/doi/book/10.1002/9783433603536 https://doi.org/10.1002/9783433603536
Montgomery D.C. (2004). Diseño y análisis de experimentos. LIMUSA, S.A.
Montiel, E., & Tlalolini, A. (2018). Didáctica para mostrar La influencia de la rigidez de las discontinuidades y la dilatancia en la estabilidad de las excavaciones PDF. Sociedad Mexicana de Ingeniería Geotécnica, A.C. https://www.scribd.com/document/419776379/Didactica-para-mostrar-la-influencia-de-la-rigidez-de-las-discontinuidades-y-la-dilatancia-en-la-estabilidad-de-las-excavaciones-pdf
Neuzil, C. E. (2003). Hydromechanical coupling in geologic processes. Hydrogeology Journal, 11(1), 41–83. https://doi.org/10.1007/s10040-002-0230-8
Polemis Júnior, K., Da Silva Filho, F. C. y Lima-Filho, F. P. (2021). Estimating the rock mass deformation modulus: A comparative study of empirical methods based on 48 rock mass scenarios. REM - International Engineering Journal, 74(1), 39–49. https://doi.org/10.1590/0370-44672019740150
Priest, S. D. (1993). Discontinuity Analysis for Rock Engineering. Springer Netherlands. https://doi.org/10.1007/978-94-011-1498-1
Raymer et al. (1980). An improved sonic transit time-to-porosity transform: Presented at 21st Annual Logging Symposium: In Proceedings of the. Lafayette.
Selvadurai, A. P. S. y Suvorov, A. P. (2020). The influence of the pore shape on the bulk modulus and the Biot coefficient of fluid-saturated porous rocks. Scientific Reports, 10(1), 18959. https://doi.org/10.1038/s41598-020-75979-6
Serafim y Pereira (1983). Consideration of the geomechanical classification of Bieniawski: Presentada en INTERNATIONAL SYMPOSIUM ON ENGINEERING GEOLOGY AND UNDERGROUND CONSTRUCTION. SPG – Sociedade Portuguesa De Geotecnia.
Sheorey, P. R. (1994). A theory for in situ stresses in isotropic and Transverseley isotropic rock. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 31(1), 23–34. https://doi.org/10.1016/0148-9062(94)92312-4
Singh, B. y Goel, R. K. (Eds.). (2012). Engineering rock mass classification: Tunnelling, foundations, and landslides. Butterworth-Heinemann.
Sonmez et al. (2006). Estimation of rock modulus: for intact rocks with an artificial neural network and for rock masses with a new empirical equation. International Journal of Rock Mechanics and Mining Sciences.
Tjie Liong (2014). Common Mistakes on the Application of Plaxis 2D in Analyzing Excavation Problems. International Journal of Applied Engineering Research.
Wang, X., Li, S., Wei, Y., & Zhang, Y. (2022, March 30). Analysis of surface deformation and settlement characteristics caused by tunnel excavation and unloading. Geofluids. https://doi.org/10.1155/2022/5383257
Wittke, W. (2014). Rock mechanics based on an Anisotropic Jointed Rock Model (AJRM). Ernst.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xiv, 168 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Ingeniería - Geotecnia
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/86218/2/1022365958.2024.pdf
https://repositorio.unal.edu.co/bitstream/unal/86218/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/86218/3/1022365958.2024.pdf.jpg
bitstream.checksum.fl_str_mv bc3ec9e4c4176840360a151ca01d18f9
eb34b1cf90b7e1103fc9dfd26be24b4a
1f7137eb59ad6692ed362e0c7e03bb62
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089262663991296
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Rodríguez Pineda, Carlos Eduardob954af0360b40e5197ca64222afcdc8cValbuena Cerinza, Jefersson9e52b198dff73b9b69c054f85417c7fd2024-06-07T20:29:15Z2024-06-07T20:29:15Z2024https://repositorio.unal.edu.co/handle/unal/86218Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasEl vínculo entre las propiedades mecánicas y de flujo de un macizo rocoso, en relación con la construcción de un túnel circular, es evaluado mediante diferentes modelos numéricos hipotéticos. Para tal fin, se utilizó principalmente el programa de elementos finitos Plaxis 2D®. Con base en estas simulaciones se realizó un análisis comparativo que da cuenta de la influencia de los siguientes aspectos en la estabilidad del túnel y en los cambios del flujo debidos a su construcción: modelo estructural, coeficiente de presión lateral, coeficiente de Biot, separación y apertura de las discontinuidades, condición de saturación, cobertura y diámetro del túnel. Los parámetros de evaluación fueron: deformación máxima alrededor del túnel, subsidencia, esfuerzo desviador, caudal de infiltración y factor de seguridad. Se encontró que el parámetro de presión lateral modifica de manera significativa la distribución y concentración de esfuerzos alrededor del túnel; el coeficiente de Biot afecta directamente al valor de los esfuerzos efectivos, por lo que no debe subestimarse y las deformaciones alrededor del túnel, la subsidencia y los esfuerzos desviadores son menores en los modelos homogéneos en relación con los modelos anisotrópicos. Consecuentemente, los factores de seguridad son mayores en los modelos homogéneos. Respecto al caudal de infiltración, se observa un claro incremento en su valor con el aumento de la apertura de las discontinuidades y el número de intersecciones con el túnel. Por lo anterior, a pesar de las dificultades que pueden presentarse en la obtención de información, se hace el llamado a caracterizar adecuadamente los macizos rocosos en las simulaciones numéricas, en orden de realizar diseños más útiles y realistas. (Texto tomado de la fuente).The link between the mechanical and flow properties of a rock mass regarding the construction of a circular tunnel is assessed by means of different hypothetical numerical models. For this purpose, the finite element program Plaxis 2D® was mainly used. Based on these simulations, a comparative analysis was carried out to analyze the influence of the following aspects on the tunnel stability and flow changes due to its construction: structural model, lateral pressure coefficient, Biot coefficient, discontinuity separation and opening, saturation condition, overburden and tunnel diameter. The evaluation parameters were: maximum deformation around the tunnel, subsidence, deviatoric stress, seepage discharge, and safety factor. It was found that the lateral pressure parameter significantly modifies the distribution and concentration of stresses around the tunnel; the Biot coefficient directly affects the value of the effective stresses, and therefore should not be underestimated; and the deformations around the tunnel, subsidence, and deviatoric stresses are lower in the homogeneous models in relation to the anisotropic models. Consequently, the safety factors are higher in the homogeneous models. Regarding the seepage discharge, a significant increment in its value is observed with the increase in the discontinuities opening and the number of intersections with the tunnel. Therefore, despite the difficulties that may arise in obtaining information, a call is made to adequately characterize the rock masses in numerical simulations, in order to obtain more useful and realistic designs.MaestríaMagíster en Ingeniería - GeotecniaModelación y análisis en geotecnia – Excavaciones subterráneasxiv, 168 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - GeotecniaFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaInteracción hidromecánicaModelo estructuralDiscontinuidadHydromechanical interactionStructural modelDiscontinuityRocaIngeniería geológicaModelo de simulaciónRocksEngineering geologySimulation modelsInteracción hidromecánica en un macizo rocoso alrededor de un túnelHydromechanical interaction in a rock mass around a tunnelTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMBarton, N. R. (1972). A model study of rock-joint deformation. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 9(5), 579–582. https://doi.org/10.1016/0148-9062(72)90010-1Bentley (2021a). Material Models Manual. Plaxis 2D.Bentley (2021b). PLAXIS 2D-Reference Manual.Bentley (2022). Modelling rock discontinuities with Jointed Rock vs Discontinuity elements. Plaxis 2D.Chapman, D., Metje, N. y Stärk, A. (2018). Introduction to tunnel construction (Second edition). Applied geotechnics. CRC Press, Taylor & Francis Group.Fu, J., Yang, J., Klapperich, H. y Wang, S. (2016). Analytical Prediction of Ground Movements due to a Nonuniform Deforming Tunnel. International Journal of Geomechanics, 16(4), Artículo 04015089. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000580Gercek, H. (2007). Poisson's ratio values for rocks. International Journal of Rock Mechanics and Mining Sciences, 44(1), 1–13. https://doi.org/10.1016/j.ijrmms.2006.04.011Golpasand, M.-R. B. ;Do. (2018). Effect of the lateral earth pressure coefficient on settlements during mechanized tunneling. Geomechanics and Engineering. https://doi.org/10.12989/gae.2018.16.6.643González de Vallejo, L. I. (D.L. 2012). Ingeniería geológica. Pearson Educación.González y Sagaseta (2001). Patterns of soil deformations around tunnels. Application to the extension of Madrid Metro. Computers and Geotechnics, 28(6-7), 445–468. https://doi.org/10.1016/S0266-352X(01)00007-6Hakami, E. (1995). Aperture distribution of rock fractures (tech. rep.). Royal Inst. of Tech.Hoek. (2006). Practical Rock Engineering.Hudson y Harrison. (1997). Engineering Rock Mechanics: an introduction to the principles. ELSEVIER SCIENCE Ltd.Islam et al. (2013). Experimentally Evaluating Shale Dilation Behavior. The American Association of Petroleum Geologists.Karimi-Khajelangi, B. y Noorian-Bidgoli, M. (2022). Numerical study of the effect of rock anisotropy on stresses around an opening located in the fractured rock mass. Journal of Petroleum Science and Engineering, 208, 109593. https://doi.org/10.1016/j.petrol.2021.109593Kolymbas. (2005). Tunnelling and Tunnel Mechanics: A Rational Approach to Tunnelling. Springer.Krishna, S. S. y Lokhande, R. D. (2022). Study on the Effect of Surface Subsidence Due to Tunneling Under Various Loading Conditions. Geotechnical and Geological Engineering, 40(2), 923–943. https://doi.org/10.1007/s10706-021-01936-3Kutter et al. (2000). Hydromechanical Behaviour of Rock Joints: The Effect of recessed Flow Channels in Smooth - and Roughwalled Fractures. International Society for Rock Mechanics.Lee, J., Lee, D. y Park, D. (2014). Experimental Investigation on the Coefficient of Lateral Earth Pressure at Rest of Silty Sands: Effect of Fines. Geotechnical Testing Journal, 37(6), 20130204. https://doi.org/10.1520/GTJ20130204Ma, S. y Gutierrez, M. (2021). Determination of the poroelasticity of shale. Acta Geotechnica, 16(2), 581–594. https://doi.org/10.1007/s11440-020-01062-zMabe Fogang, P., Liu, Y., Zhao, J.‑L., Ka, T. A. y Xu, S. (2023). Analytical Prediction of Tunnel Deformation Beneath an Inclined Plane: Complex Potential Analysis. Applied Sciences, 13(5), 3252. https://doi.org/10.3390/app13053252Maidl, B., Thewes, M., Maidl, U., David, S. y Frank, S. (2014). Handbook of tunnel engineering II: Basics and additional services for design and construction. Ernst & Sohn. https://onlinelibrary.wiley.com/doi/book/10.1002/9783433603536 https://doi.org/10.1002/9783433603536Montgomery D.C. (2004). Diseño y análisis de experimentos. LIMUSA, S.A.Montiel, E., & Tlalolini, A. (2018). Didáctica para mostrar La influencia de la rigidez de las discontinuidades y la dilatancia en la estabilidad de las excavaciones PDF. Sociedad Mexicana de Ingeniería Geotécnica, A.C. https://www.scribd.com/document/419776379/Didactica-para-mostrar-la-influencia-de-la-rigidez-de-las-discontinuidades-y-la-dilatancia-en-la-estabilidad-de-las-excavaciones-pdfNeuzil, C. E. (2003). Hydromechanical coupling in geologic processes. Hydrogeology Journal, 11(1), 41–83. https://doi.org/10.1007/s10040-002-0230-8Polemis Júnior, K., Da Silva Filho, F. C. y Lima-Filho, F. P. (2021). Estimating the rock mass deformation modulus: A comparative study of empirical methods based on 48 rock mass scenarios. REM - International Engineering Journal, 74(1), 39–49. https://doi.org/10.1590/0370-44672019740150Priest, S. D. (1993). Discontinuity Analysis for Rock Engineering. Springer Netherlands. https://doi.org/10.1007/978-94-011-1498-1Raymer et al. (1980). An improved sonic transit time-to-porosity transform: Presented at 21st Annual Logging Symposium: In Proceedings of the. Lafayette.Selvadurai, A. P. S. y Suvorov, A. P. (2020). The influence of the pore shape on the bulk modulus and the Biot coefficient of fluid-saturated porous rocks. Scientific Reports, 10(1), 18959. https://doi.org/10.1038/s41598-020-75979-6Serafim y Pereira (1983). Consideration of the geomechanical classification of Bieniawski: Presentada en INTERNATIONAL SYMPOSIUM ON ENGINEERING GEOLOGY AND UNDERGROUND CONSTRUCTION. SPG – Sociedade Portuguesa De Geotecnia.Sheorey, P. R. (1994). A theory for in situ stresses in isotropic and Transverseley isotropic rock. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 31(1), 23–34. https://doi.org/10.1016/0148-9062(94)92312-4Singh, B. y Goel, R. K. (Eds.). (2012). Engineering rock mass classification: Tunnelling, foundations, and landslides. Butterworth-Heinemann.Sonmez et al. (2006). Estimation of rock modulus: for intact rocks with an artificial neural network and for rock masses with a new empirical equation. International Journal of Rock Mechanics and Mining Sciences.Tjie Liong (2014). Common Mistakes on the Application of Plaxis 2D in Analyzing Excavation Problems. International Journal of Applied Engineering Research.Wang, X., Li, S., Wei, Y., & Zhang, Y. (2022, March 30). Analysis of surface deformation and settlement characteristics caused by tunnel excavation and unloading. Geofluids. https://doi.org/10.1155/2022/5383257Wittke, W. (2014). Rock mechanics based on an Anisotropic Jointed Rock Model (AJRM). Ernst.EstudiantesMaestrosORIGINAL1022365958.2024.pdf1022365958.2024.pdfTesis de Maestría en Ingeniería - Geotecniaapplication/pdf22563404https://repositorio.unal.edu.co/bitstream/unal/86218/2/1022365958.2024.pdfbc3ec9e4c4176840360a151ca01d18f9MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86218/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51THUMBNAIL1022365958.2024.pdf.jpg1022365958.2024.pdf.jpgGenerated Thumbnailimage/jpeg4708https://repositorio.unal.edu.co/bitstream/unal/86218/3/1022365958.2024.pdf.jpg1f7137eb59ad6692ed362e0c7e03bb62MD53unal/86218oai:repositorio.unal.edu.co:unal/862182024-06-07 23:05:05.895Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=