Interacción hidromecánica en un macizo rocoso alrededor de un túnel
ilustraciones, diagramas
- Autores:
-
Valbuena Cerinza, Jefersson
- Tipo de recurso:
- Fecha de publicación:
- 2024
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/86218
- Palabra clave:
- 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Interacción hidromecánica
Modelo estructural
Discontinuidad
Hydromechanical interaction
Structural model
Discontinuity
Roca
Ingeniería geológica
Modelo de simulación
Rocks
Engineering geology
Simulation models
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_621ff22ebdefe48ef833a1f9a11168ff |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/86218 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Interacción hidromecánica en un macizo rocoso alrededor de un túnel |
dc.title.translated.eng.fl_str_mv |
Hydromechanical interaction in a rock mass around a tunnel |
title |
Interacción hidromecánica en un macizo rocoso alrededor de un túnel |
spellingShingle |
Interacción hidromecánica en un macizo rocoso alrededor de un túnel 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería Interacción hidromecánica Modelo estructural Discontinuidad Hydromechanical interaction Structural model Discontinuity Roca Ingeniería geológica Modelo de simulación Rocks Engineering geology Simulation models |
title_short |
Interacción hidromecánica en un macizo rocoso alrededor de un túnel |
title_full |
Interacción hidromecánica en un macizo rocoso alrededor de un túnel |
title_fullStr |
Interacción hidromecánica en un macizo rocoso alrededor de un túnel |
title_full_unstemmed |
Interacción hidromecánica en un macizo rocoso alrededor de un túnel |
title_sort |
Interacción hidromecánica en un macizo rocoso alrededor de un túnel |
dc.creator.fl_str_mv |
Valbuena Cerinza, Jefersson |
dc.contributor.advisor.spa.fl_str_mv |
Rodríguez Pineda, Carlos Eduardo |
dc.contributor.author.spa.fl_str_mv |
Valbuena Cerinza, Jefersson |
dc.subject.ddc.spa.fl_str_mv |
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería |
topic |
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería Interacción hidromecánica Modelo estructural Discontinuidad Hydromechanical interaction Structural model Discontinuity Roca Ingeniería geológica Modelo de simulación Rocks Engineering geology Simulation models |
dc.subject.proposal.spa.fl_str_mv |
Interacción hidromecánica Modelo estructural Discontinuidad |
dc.subject.proposal.eng.fl_str_mv |
Hydromechanical interaction Structural model Discontinuity |
dc.subject.unesco.spa.fl_str_mv |
Roca Ingeniería geológica Modelo de simulación |
dc.subject.unesco.eng.fl_str_mv |
Rocks Engineering geology Simulation models |
description |
ilustraciones, diagramas |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-06-07T20:29:15Z |
dc.date.available.none.fl_str_mv |
2024-06-07T20:29:15Z |
dc.date.issued.none.fl_str_mv |
2024 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/86218 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/86218 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Barton, N. R. (1972). A model study of rock-joint deformation. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 9(5), 579–582. https://doi.org/10.1016/0148-9062(72)90010-1 Bentley (2021a). Material Models Manual. Plaxis 2D. Bentley (2021b). PLAXIS 2D-Reference Manual. Bentley (2022). Modelling rock discontinuities with Jointed Rock vs Discontinuity elements. Plaxis 2D. Chapman, D., Metje, N. y Stärk, A. (2018). Introduction to tunnel construction (Second edition). Applied geotechnics. CRC Press, Taylor & Francis Group. Fu, J., Yang, J., Klapperich, H. y Wang, S. (2016). Analytical Prediction of Ground Movements due to a Nonuniform Deforming Tunnel. International Journal of Geomechanics, 16(4), Artículo 04015089. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000580 Gercek, H. (2007). Poisson's ratio values for rocks. International Journal of Rock Mechanics and Mining Sciences, 44(1), 1–13. https://doi.org/10.1016/j.ijrmms.2006.04.011 Golpasand, M.-R. B. ;Do. (2018). Effect of the lateral earth pressure coefficient on settlements during mechanized tunneling. Geomechanics and Engineering. https://doi.org/10.12989/gae.2018.16.6.643 González de Vallejo, L. I. (D.L. 2012). Ingeniería geológica. Pearson Educación. González y Sagaseta (2001). Patterns of soil deformations around tunnels. Application to the extension of Madrid Metro. Computers and Geotechnics, 28(6-7), 445–468. https://doi.org/10.1016/S0266-352X(01)00007-6 Hakami, E. (1995). Aperture distribution of rock fractures (tech. rep.). Royal Inst. of Tech. Hoek. (2006). Practical Rock Engineering. Hudson y Harrison. (1997). Engineering Rock Mechanics: an introduction to the principles. ELSEVIER SCIENCE Ltd. Islam et al. (2013). Experimentally Evaluating Shale Dilation Behavior. The American Association of Petroleum Geologists. Karimi-Khajelangi, B. y Noorian-Bidgoli, M. (2022). Numerical study of the effect of rock anisotropy on stresses around an opening located in the fractured rock mass. Journal of Petroleum Science and Engineering, 208, 109593. https://doi.org/10.1016/j.petrol.2021.109593 Kolymbas. (2005). Tunnelling and Tunnel Mechanics: A Rational Approach to Tunnelling. Springer. Krishna, S. S. y Lokhande, R. D. (2022). Study on the Effect of Surface Subsidence Due to Tunneling Under Various Loading Conditions. Geotechnical and Geological Engineering, 40(2), 923–943. https://doi.org/10.1007/s10706-021-01936-3 Kutter et al. (2000). Hydromechanical Behaviour of Rock Joints: The Effect of recessed Flow Channels in Smooth - and Roughwalled Fractures. International Society for Rock Mechanics. Lee, J., Lee, D. y Park, D. (2014). Experimental Investigation on the Coefficient of Lateral Earth Pressure at Rest of Silty Sands: Effect of Fines. Geotechnical Testing Journal, 37(6), 20130204. https://doi.org/10.1520/GTJ20130204 Ma, S. y Gutierrez, M. (2021). Determination of the poroelasticity of shale. Acta Geotechnica, 16(2), 581–594. https://doi.org/10.1007/s11440-020-01062-z Mabe Fogang, P., Liu, Y., Zhao, J.‑L., Ka, T. A. y Xu, S. (2023). Analytical Prediction of Tunnel Deformation Beneath an Inclined Plane: Complex Potential Analysis. Applied Sciences, 13(5), 3252. https://doi.org/10.3390/app13053252 Maidl, B., Thewes, M., Maidl, U., David, S. y Frank, S. (2014). Handbook of tunnel engineering II: Basics and additional services for design and construction. Ernst & Sohn. https://onlinelibrary.wiley.com/doi/book/10.1002/9783433603536 https://doi.org/10.1002/9783433603536 Montgomery D.C. (2004). Diseño y análisis de experimentos. LIMUSA, S.A. Montiel, E., & Tlalolini, A. (2018). Didáctica para mostrar La influencia de la rigidez de las discontinuidades y la dilatancia en la estabilidad de las excavaciones PDF. Sociedad Mexicana de Ingeniería Geotécnica, A.C. https://www.scribd.com/document/419776379/Didactica-para-mostrar-la-influencia-de-la-rigidez-de-las-discontinuidades-y-la-dilatancia-en-la-estabilidad-de-las-excavaciones-pdf Neuzil, C. E. (2003). Hydromechanical coupling in geologic processes. Hydrogeology Journal, 11(1), 41–83. https://doi.org/10.1007/s10040-002-0230-8 Polemis Júnior, K., Da Silva Filho, F. C. y Lima-Filho, F. P. (2021). Estimating the rock mass deformation modulus: A comparative study of empirical methods based on 48 rock mass scenarios. REM - International Engineering Journal, 74(1), 39–49. https://doi.org/10.1590/0370-44672019740150 Priest, S. D. (1993). Discontinuity Analysis for Rock Engineering. Springer Netherlands. https://doi.org/10.1007/978-94-011-1498-1 Raymer et al. (1980). An improved sonic transit time-to-porosity transform: Presented at 21st Annual Logging Symposium: In Proceedings of the. Lafayette. Selvadurai, A. P. S. y Suvorov, A. P. (2020). The influence of the pore shape on the bulk modulus and the Biot coefficient of fluid-saturated porous rocks. Scientific Reports, 10(1), 18959. https://doi.org/10.1038/s41598-020-75979-6 Serafim y Pereira (1983). Consideration of the geomechanical classification of Bieniawski: Presentada en INTERNATIONAL SYMPOSIUM ON ENGINEERING GEOLOGY AND UNDERGROUND CONSTRUCTION. SPG – Sociedade Portuguesa De Geotecnia. Sheorey, P. R. (1994). A theory for in situ stresses in isotropic and Transverseley isotropic rock. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 31(1), 23–34. https://doi.org/10.1016/0148-9062(94)92312-4 Singh, B. y Goel, R. K. (Eds.). (2012). Engineering rock mass classification: Tunnelling, foundations, and landslides. Butterworth-Heinemann. Sonmez et al. (2006). Estimation of rock modulus: for intact rocks with an artificial neural network and for rock masses with a new empirical equation. International Journal of Rock Mechanics and Mining Sciences. Tjie Liong (2014). Common Mistakes on the Application of Plaxis 2D in Analyzing Excavation Problems. International Journal of Applied Engineering Research. Wang, X., Li, S., Wei, Y., & Zhang, Y. (2022, March 30). Analysis of surface deformation and settlement characteristics caused by tunnel excavation and unloading. Geofluids. https://doi.org/10.1155/2022/5383257 Wittke, W. (2014). Rock mechanics based on an Anisotropic Jointed Rock Model (AJRM). Ernst. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xiv, 168 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ingeniería - Maestría en Ingeniería - Geotecnia |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/86218/2/1022365958.2024.pdf https://repositorio.unal.edu.co/bitstream/unal/86218/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/86218/3/1022365958.2024.pdf.jpg |
bitstream.checksum.fl_str_mv |
bc3ec9e4c4176840360a151ca01d18f9 eb34b1cf90b7e1103fc9dfd26be24b4a 1f7137eb59ad6692ed362e0c7e03bb62 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089262663991296 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Rodríguez Pineda, Carlos Eduardob954af0360b40e5197ca64222afcdc8cValbuena Cerinza, Jefersson9e52b198dff73b9b69c054f85417c7fd2024-06-07T20:29:15Z2024-06-07T20:29:15Z2024https://repositorio.unal.edu.co/handle/unal/86218Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasEl vínculo entre las propiedades mecánicas y de flujo de un macizo rocoso, en relación con la construcción de un túnel circular, es evaluado mediante diferentes modelos numéricos hipotéticos. Para tal fin, se utilizó principalmente el programa de elementos finitos Plaxis 2D®. Con base en estas simulaciones se realizó un análisis comparativo que da cuenta de la influencia de los siguientes aspectos en la estabilidad del túnel y en los cambios del flujo debidos a su construcción: modelo estructural, coeficiente de presión lateral, coeficiente de Biot, separación y apertura de las discontinuidades, condición de saturación, cobertura y diámetro del túnel. Los parámetros de evaluación fueron: deformación máxima alrededor del túnel, subsidencia, esfuerzo desviador, caudal de infiltración y factor de seguridad. Se encontró que el parámetro de presión lateral modifica de manera significativa la distribución y concentración de esfuerzos alrededor del túnel; el coeficiente de Biot afecta directamente al valor de los esfuerzos efectivos, por lo que no debe subestimarse y las deformaciones alrededor del túnel, la subsidencia y los esfuerzos desviadores son menores en los modelos homogéneos en relación con los modelos anisotrópicos. Consecuentemente, los factores de seguridad son mayores en los modelos homogéneos. Respecto al caudal de infiltración, se observa un claro incremento en su valor con el aumento de la apertura de las discontinuidades y el número de intersecciones con el túnel. Por lo anterior, a pesar de las dificultades que pueden presentarse en la obtención de información, se hace el llamado a caracterizar adecuadamente los macizos rocosos en las simulaciones numéricas, en orden de realizar diseños más útiles y realistas. (Texto tomado de la fuente).The link between the mechanical and flow properties of a rock mass regarding the construction of a circular tunnel is assessed by means of different hypothetical numerical models. For this purpose, the finite element program Plaxis 2D® was mainly used. Based on these simulations, a comparative analysis was carried out to analyze the influence of the following aspects on the tunnel stability and flow changes due to its construction: structural model, lateral pressure coefficient, Biot coefficient, discontinuity separation and opening, saturation condition, overburden and tunnel diameter. The evaluation parameters were: maximum deformation around the tunnel, subsidence, deviatoric stress, seepage discharge, and safety factor. It was found that the lateral pressure parameter significantly modifies the distribution and concentration of stresses around the tunnel; the Biot coefficient directly affects the value of the effective stresses, and therefore should not be underestimated; and the deformations around the tunnel, subsidence, and deviatoric stresses are lower in the homogeneous models in relation to the anisotropic models. Consequently, the safety factors are higher in the homogeneous models. Regarding the seepage discharge, a significant increment in its value is observed with the increase in the discontinuities opening and the number of intersections with the tunnel. Therefore, despite the difficulties that may arise in obtaining information, a call is made to adequately characterize the rock masses in numerical simulations, in order to obtain more useful and realistic designs.MaestríaMagíster en Ingeniería - GeotecniaModelación y análisis en geotecnia – Excavaciones subterráneasxiv, 168 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - GeotecniaFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaInteracción hidromecánicaModelo estructuralDiscontinuidadHydromechanical interactionStructural modelDiscontinuityRocaIngeniería geológicaModelo de simulaciónRocksEngineering geologySimulation modelsInteracción hidromecánica en un macizo rocoso alrededor de un túnelHydromechanical interaction in a rock mass around a tunnelTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMBarton, N. R. (1972). A model study of rock-joint deformation. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 9(5), 579–582. https://doi.org/10.1016/0148-9062(72)90010-1Bentley (2021a). Material Models Manual. Plaxis 2D.Bentley (2021b). PLAXIS 2D-Reference Manual.Bentley (2022). Modelling rock discontinuities with Jointed Rock vs Discontinuity elements. Plaxis 2D.Chapman, D., Metje, N. y Stärk, A. (2018). Introduction to tunnel construction (Second edition). Applied geotechnics. CRC Press, Taylor & Francis Group.Fu, J., Yang, J., Klapperich, H. y Wang, S. (2016). Analytical Prediction of Ground Movements due to a Nonuniform Deforming Tunnel. International Journal of Geomechanics, 16(4), Artículo 04015089. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000580Gercek, H. (2007). Poisson's ratio values for rocks. International Journal of Rock Mechanics and Mining Sciences, 44(1), 1–13. https://doi.org/10.1016/j.ijrmms.2006.04.011Golpasand, M.-R. B. ;Do. (2018). Effect of the lateral earth pressure coefficient on settlements during mechanized tunneling. Geomechanics and Engineering. https://doi.org/10.12989/gae.2018.16.6.643González de Vallejo, L. I. (D.L. 2012). Ingeniería geológica. Pearson Educación.González y Sagaseta (2001). Patterns of soil deformations around tunnels. Application to the extension of Madrid Metro. Computers and Geotechnics, 28(6-7), 445–468. https://doi.org/10.1016/S0266-352X(01)00007-6Hakami, E. (1995). Aperture distribution of rock fractures (tech. rep.). Royal Inst. of Tech.Hoek. (2006). Practical Rock Engineering.Hudson y Harrison. (1997). Engineering Rock Mechanics: an introduction to the principles. ELSEVIER SCIENCE Ltd.Islam et al. (2013). Experimentally Evaluating Shale Dilation Behavior. The American Association of Petroleum Geologists.Karimi-Khajelangi, B. y Noorian-Bidgoli, M. (2022). Numerical study of the effect of rock anisotropy on stresses around an opening located in the fractured rock mass. Journal of Petroleum Science and Engineering, 208, 109593. https://doi.org/10.1016/j.petrol.2021.109593Kolymbas. (2005). Tunnelling and Tunnel Mechanics: A Rational Approach to Tunnelling. Springer.Krishna, S. S. y Lokhande, R. D. (2022). Study on the Effect of Surface Subsidence Due to Tunneling Under Various Loading Conditions. Geotechnical and Geological Engineering, 40(2), 923–943. https://doi.org/10.1007/s10706-021-01936-3Kutter et al. (2000). Hydromechanical Behaviour of Rock Joints: The Effect of recessed Flow Channels in Smooth - and Roughwalled Fractures. International Society for Rock Mechanics.Lee, J., Lee, D. y Park, D. (2014). Experimental Investigation on the Coefficient of Lateral Earth Pressure at Rest of Silty Sands: Effect of Fines. Geotechnical Testing Journal, 37(6), 20130204. https://doi.org/10.1520/GTJ20130204Ma, S. y Gutierrez, M. (2021). Determination of the poroelasticity of shale. Acta Geotechnica, 16(2), 581–594. https://doi.org/10.1007/s11440-020-01062-zMabe Fogang, P., Liu, Y., Zhao, J.‑L., Ka, T. A. y Xu, S. (2023). Analytical Prediction of Tunnel Deformation Beneath an Inclined Plane: Complex Potential Analysis. Applied Sciences, 13(5), 3252. https://doi.org/10.3390/app13053252Maidl, B., Thewes, M., Maidl, U., David, S. y Frank, S. (2014). Handbook of tunnel engineering II: Basics and additional services for design and construction. Ernst & Sohn. https://onlinelibrary.wiley.com/doi/book/10.1002/9783433603536 https://doi.org/10.1002/9783433603536Montgomery D.C. (2004). Diseño y análisis de experimentos. LIMUSA, S.A.Montiel, E., & Tlalolini, A. (2018). Didáctica para mostrar La influencia de la rigidez de las discontinuidades y la dilatancia en la estabilidad de las excavaciones PDF. Sociedad Mexicana de Ingeniería Geotécnica, A.C. https://www.scribd.com/document/419776379/Didactica-para-mostrar-la-influencia-de-la-rigidez-de-las-discontinuidades-y-la-dilatancia-en-la-estabilidad-de-las-excavaciones-pdfNeuzil, C. E. (2003). Hydromechanical coupling in geologic processes. Hydrogeology Journal, 11(1), 41–83. https://doi.org/10.1007/s10040-002-0230-8Polemis Júnior, K., Da Silva Filho, F. C. y Lima-Filho, F. P. (2021). Estimating the rock mass deformation modulus: A comparative study of empirical methods based on 48 rock mass scenarios. REM - International Engineering Journal, 74(1), 39–49. https://doi.org/10.1590/0370-44672019740150Priest, S. D. (1993). Discontinuity Analysis for Rock Engineering. Springer Netherlands. https://doi.org/10.1007/978-94-011-1498-1Raymer et al. (1980). An improved sonic transit time-to-porosity transform: Presented at 21st Annual Logging Symposium: In Proceedings of the. Lafayette.Selvadurai, A. P. S. y Suvorov, A. P. (2020). The influence of the pore shape on the bulk modulus and the Biot coefficient of fluid-saturated porous rocks. Scientific Reports, 10(1), 18959. https://doi.org/10.1038/s41598-020-75979-6Serafim y Pereira (1983). Consideration of the geomechanical classification of Bieniawski: Presentada en INTERNATIONAL SYMPOSIUM ON ENGINEERING GEOLOGY AND UNDERGROUND CONSTRUCTION. SPG – Sociedade Portuguesa De Geotecnia.Sheorey, P. R. (1994). A theory for in situ stresses in isotropic and Transverseley isotropic rock. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 31(1), 23–34. https://doi.org/10.1016/0148-9062(94)92312-4Singh, B. y Goel, R. K. (Eds.). (2012). Engineering rock mass classification: Tunnelling, foundations, and landslides. Butterworth-Heinemann.Sonmez et al. (2006). Estimation of rock modulus: for intact rocks with an artificial neural network and for rock masses with a new empirical equation. International Journal of Rock Mechanics and Mining Sciences.Tjie Liong (2014). Common Mistakes on the Application of Plaxis 2D in Analyzing Excavation Problems. International Journal of Applied Engineering Research.Wang, X., Li, S., Wei, Y., & Zhang, Y. (2022, March 30). Analysis of surface deformation and settlement characteristics caused by tunnel excavation and unloading. Geofluids. https://doi.org/10.1155/2022/5383257Wittke, W. (2014). Rock mechanics based on an Anisotropic Jointed Rock Model (AJRM). Ernst.EstudiantesMaestrosORIGINAL1022365958.2024.pdf1022365958.2024.pdfTesis de Maestría en Ingeniería - Geotecniaapplication/pdf22563404https://repositorio.unal.edu.co/bitstream/unal/86218/2/1022365958.2024.pdfbc3ec9e4c4176840360a151ca01d18f9MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86218/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51THUMBNAIL1022365958.2024.pdf.jpg1022365958.2024.pdf.jpgGenerated Thumbnailimage/jpeg4708https://repositorio.unal.edu.co/bitstream/unal/86218/3/1022365958.2024.pdf.jpg1f7137eb59ad6692ed362e0c7e03bb62MD53unal/86218oai:repositorio.unal.edu.co:unal/862182024-06-07 23:05:05.895Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |