Flujos de bióxido de carbono y vapor de agua medidos mediante covarianza de remolinos en sabana nativa y cultivos transitorios mecanizados en la Altillanura colombiana

ilustraciones

Autores:
Morales Rincón, Luis Alberto
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2020
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/79716
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/79716
https://repositorio.unal.edu.co/
Palabra clave:
660 - Ingeniería química
Calentamiento global
Global Warming
Altillanura
Covarianza de remolinos
Turbulencia ecuatoria
Flujos de carbono y vapor de agua
Intercomparación instrumental
Altillanura
Eddy covariance
Equatorial turbulence
Cambio climático
Climate change
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_61f7c1fba74950a2a5d2f8e861d6e7d0
oai_identifier_str oai:repositorio.unal.edu.co:unal/79716
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Flujos de bióxido de carbono y vapor de agua medidos mediante covarianza de remolinos en sabana nativa y cultivos transitorios mecanizados en la Altillanura colombiana
dc.title.translated.eng.fl_str_mv Carbon dioxide and water vapor fluxes measured by eddy covariance in native savanna and mechanized temporary crops in the Colombian High Plains
title Flujos de bióxido de carbono y vapor de agua medidos mediante covarianza de remolinos en sabana nativa y cultivos transitorios mecanizados en la Altillanura colombiana
spellingShingle Flujos de bióxido de carbono y vapor de agua medidos mediante covarianza de remolinos en sabana nativa y cultivos transitorios mecanizados en la Altillanura colombiana
660 - Ingeniería química
Calentamiento global
Global Warming
Altillanura
Covarianza de remolinos
Turbulencia ecuatoria
Flujos de carbono y vapor de agua
Intercomparación instrumental
Altillanura
Eddy covariance
Equatorial turbulence
Cambio climático
Climate change
title_short Flujos de bióxido de carbono y vapor de agua medidos mediante covarianza de remolinos en sabana nativa y cultivos transitorios mecanizados en la Altillanura colombiana
title_full Flujos de bióxido de carbono y vapor de agua medidos mediante covarianza de remolinos en sabana nativa y cultivos transitorios mecanizados en la Altillanura colombiana
title_fullStr Flujos de bióxido de carbono y vapor de agua medidos mediante covarianza de remolinos en sabana nativa y cultivos transitorios mecanizados en la Altillanura colombiana
title_full_unstemmed Flujos de bióxido de carbono y vapor de agua medidos mediante covarianza de remolinos en sabana nativa y cultivos transitorios mecanizados en la Altillanura colombiana
title_sort Flujos de bióxido de carbono y vapor de agua medidos mediante covarianza de remolinos en sabana nativa y cultivos transitorios mecanizados en la Altillanura colombiana
dc.creator.fl_str_mv Morales Rincón, Luis Alberto
dc.contributor.advisor.none.fl_str_mv Jiménez Pizarro, Rodrigo
dc.contributor.author.none.fl_str_mv Morales Rincón, Luis Alberto
dc.contributor.researchgroup.spa.fl_str_mv Calidad del Aire
dc.subject.ddc.spa.fl_str_mv 660 - Ingeniería química
topic 660 - Ingeniería química
Calentamiento global
Global Warming
Altillanura
Covarianza de remolinos
Turbulencia ecuatoria
Flujos de carbono y vapor de agua
Intercomparación instrumental
Altillanura
Eddy covariance
Equatorial turbulence
Cambio climático
Climate change
dc.subject.other.none.fl_str_mv Calentamiento global
Global Warming
dc.subject.proposal.spa.fl_str_mv Altillanura
Covarianza de remolinos
Turbulencia ecuatoria
Flujos de carbono y vapor de agua
Intercomparación instrumental
dc.subject.proposal.eng.fl_str_mv Altillanura
Eddy covariance
Equatorial turbulence
dc.subject.unesco.spa.fl_str_mv Cambio climático
dc.subject.unesco.eng.fl_str_mv Climate change
description ilustraciones
publishDate 2020
dc.date.issued.none.fl_str_mv 2020
dc.date.accessioned.none.fl_str_mv 2021-06-24T20:14:55Z
dc.date.available.none.fl_str_mv 2021-06-24T20:14:55Z
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/79716
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/79716
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Acevedo, O. C.; Moraes, O. L. L.; Degrazia, G. A.; Fitzjarrald, D. R.; Manzi, A. O. and Campos, J. G. (2009). Is friction velocity the most appropriate scale for correcting nocturnal carbon dioxide fluxes? Agricultural and Forest Meteorology, 149(1), 1–10. https://doi.org/10.1016/j.agrformet.2008.06.014
Ago, E. E.; Agbossou, E. K.; Cohard, J.-M.; Galle, S. and Aubinet, M. (2016). Response of CO2 fluxes and productivity to water availability in two contrasting ecosystems in northern Benin (West Africa). Annals of Forest Science, 73(2), 483–500. https://doi.org/10.1007/s13595-016-0542-9
Agrosavia. (2017). Informe Final de Meta. 2017. Recomendaciones tecnológicas de manejo de suelos de la altillanura plana mediante la estrategia de capa productiva para los diferentes sistemas. Villavicencio. Retrieved from https://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000002033
Alexandratos, N. and Bruinsma, J. (2012). World agriculture towards 2030/2050: the 2012 revision. ESA Working paper No. 12-03. Rome, FAO.
Archibald, S. A.; Kirton, A.; Van Der Merwe, M. R.; Scholes, R. J.; Williams, C. A. and Hanan, N. (2009). Drivers of inter-annual variability in Net Ecosystem Exchange in a semi-arid savanna ecosystem, South Africa. Biogeosciences, 6(2), 251–266. https://doi.org/10.5194/bg-6-251-2009
Aubinet, M.; Feigenwinter, C.; Heinesch, B.; Laffineur, Q.; Papale, D.; Reichstein, M.; Rinne, J. and Van Gorsel, E. (2012). Nighttime Flux Correction. In Eddy Covariance (pp. 133–157). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-007-2351-1_5
Aubinet, M.; Joly, L.; Loustau, D.; De Ligne, A.; Chopin, H.; Cousin, J.; Chauvin, N.; Decarpenterie, T. and Gross, P. (2016). Dimensioning IRGA gas sampling systems: Laboratory and field experiments. Atmospheric Measurement Techniques, 9(3), 1361–1367. https://doi.org/10.5194/amt-9-1361-2016
Aubinet, M.; Vesala, T. and Papale, D. (Eds). (2012). Eddy Covariance. Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-007-2351-1
Aurela, M.; Laurila, T. and Tuovinen, J. P. (2002). Annual CO<inf>2</inf> balance of a subarctic fen in northern Europe: Importance of the wintertime efflux. Journal of Geophysical Research Atmospheres, 107(21), 1–12. https://doi.org/10.1029/2002JD002055
Baldocchi, D. D. (2003). Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Global Change Biology, 9(4), 479–492. https://doi.org/10.1046/j.1365-2486.2003.00629.x
Baldocchi, D. D. (2014). Measuring fluxes of trace gases and energy between ecosystems and the atmosphere - the state and future of the eddy covariance method. Global Change Biology, 3600–3609. https://doi.org/10.1111/gcb.12649
Baldocchi, D. D. (2016). Advanced Topics in Biometeorology and Micrometeorology ESPM 228. Retrieved March 12, 2016, from https://nature.berkeley.edu/biometlab/index.php?scrn=espm228
Barman, N.; Borgohain, A.; Kundu, S. S.; Saha, B.; Roy, R.; Solanki, R.; Kumar, N. V. P. K. and N Raju, P. L. (2019). Impact of atmospheric conditions in surface–air exchange of energy in a topographically complex terrain over Umiam. Meteorology and Atmospheric Physics. https://doi.org/10.1007/s00703-019-00668-7
Bastin, J.-F.; Finegold, Y.; Garcia, C.; Mollicone, D.; Rezende, M.; Routh, D.; Zohner, C. M. and Crowther, T. W. (2019). The global tree restoration potential. Science, 365(6448), 76–79. https://doi.org/10.1126/science.aax0848
Bellarby, J.; Foereid, B.; Hastings, A. and Smith, P. (2008). Cool Farming : Climate impacts of agriculture and mitigation potential. Retrieved from http://www.greenpeace.org/international/en/publications/reports/cool-farming-full-report/
Béziat, P.; Ceschia, E. and Dedieu, G. (2009). Carbon balance of a three crop succession over two cropland sites in South West France. Agricultural and Forest Meteorology, 149, 1628–1645. https://doi.org/10.1016/j.agrformet.2009.05.004
Bond-Lamberty, B.; Bailey, V. L.; Chen, M.; Gough, C. M. and Vargas, R. (2018). Globally rising soil heterotrophic respiration over recent decades. Nature, 560(7716), 80–83. https://doi.org/10.1038/s41586-018-0358-x
Boos, D.; Broecker, H.; Dorr, T.; von Luepke, H. and Sharma, S. (2015). How are INDCs and NAMAs linked? . Giz. Retrieved from https://www.giz.de/en/downloads_els/indcnama.pdf%5Cnpapers3://publication/uuid/92F9F6C4-7414-4C25-AC29-8BACD78C239C
Burba, G. (2013a). Eddy covariance method. Eoearth.Org. Retrieved from http://www.eoearth.org/view/article/152354/
Burba, G. (2013b). Eddy Covariance Method for Scientific, Industrial, Agricultural and Regulatory Applications: A Field Book on Measuring Ecosystem Gas Exchage and Areal Emission Rates. Lincoln, NE, USA: LI-COR Biosciences.
Burba, G.; Schmidt, A.; Scott, R. L.; Nakai, T.; Kathilankal, J.; Fratini, G.; Hanson, C.; Law, B.; Mcdermitt, D. K.; Eckles, R.; Furtaw, M. and Velgersdyk, M. (2012). Calculating CO2 and H2O eddy covariance fluxes from an enclosed gas analyzer using an instantaneous mixing ratio. Global Change Biology, 18(1), 385–399. https://doi.org/10.1111/j.1365-2486.2011.02536.x
Butterbach-Bahl, K.; Baggs, E. M.; Dannenmann, M.; Kiese, R. and Zechmeister-Boltenstern, S. (2013). Nitrous oxide emissions from soils: how well do we understand the processes and their controls? Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 368(1621), 20130122. https://doi.org/10.1098/rstb.2013.0122
Campioli, M.; Malhi, Y.; Vicca, S.; Luyssaert, S.; Papale, D.; Peñuelas, J.; Reichstein, M.; Migliavacca, M.; Arain, M. A. and Janssens, I. A. (2016). Evaluating the convergence between eddy-covariance and biometric methods for assessing carbon budgets of forests. Nature Communications, 7(May 2015), 1–12. https://doi.org/10.1038/ncomms13717
Ceschia, E.; Béziat, P.; Dejoux, J. F.; Aubinet, M.; Bernhofer, C.; Bodson, B.; Buchmann, N.; Carrara, a.; Cellier, P.; Di Tommasi, P.; Elbers, J. a.; Eugster, W.; Grünwald, T.; Jacobs, C. M. J.; Jans, W. W. P.; Jones, M.; Kutsch, W.; Lanigan, G.; Magliulo, E.; Marloie, O.; Moors, E. J.; Moureaux, C.; Olioso, a.; Osborne, B.; Sanz, M. J.; Saunders, M.; Smith, P.; Soegaard, H. and Wattenbach, M. (2010). Management effects on net ecosystem carbon and GHG budgets at European crop sites. Agriculture, Ecosystems & Environment, 139(3), 363–383. https://doi.org/10.1016/j.agee.2010.09.020
Chaichana, N.; Bellingrath-Kimura, S. D.; Komiya, S.; Fujii, Y.; Noborio, K.; Dietrich, O. and Pakoktom, T. (2018). Comparison of closed chamber and eddy covariance methods to improve the understanding of methane fluxes from rice paddy fields in Japan. Atmosphere, 9(9). https://doi.org/10.3390/atmos9090356
Chambers, J. Q.; Negron-Juarez, R. I.; Marra, D. M.; Di Vittorio, A.; Tews, J.; Roberts, D.; Ribeiro, G. H. P. M.; Trumbore, S. E. and Higuchi, N. (2013). The steady-state mosaic of disturbance and succession across an old-growth central Amazon forest landscape. Proceedings of the National Academy of Sciences of the United States of America, 110(10), 3949–3954. https://doi.org/10.1073/pnas.1202894110
Chapin, F. S.; Woodwell, G. M.; Randerson, J. T.; Rastetter, E. B.; Lovett, G. M.; Baldocchi, D. D.; Clark, D. A.; Harmon, M. E.; Schimel, D. S.; Valentini, R.; Wirth, C.; Aber, J. D.; Cole, J. J.; Goulden, M. L.; Harden, J. W.; Heimann, M.; Howarth, R. W.; Matson, P. A.; McGuire, A. D.; Melillo, J. M.; Mooney, H. A.; Neff, J. C.; Houghton, R. A.; Pace, M. L.; Ryan, M. G.; Running, S. W.; Sala, O. E.; Schlesinger, W. H. and Schulze, E.-D. (2006). Reconciling Carbon-cycle Concepts, Terminology, and Methods. Ecosystems, 9(7), 1041–1050. https://doi.org/10.1007/s10021-005-0105-7
Chu, H.; Baldocchi, D. D.; John, R.; Wolf, S. and Reichstein, M. (2017). Fluxes all of the time? A primer on the temporal representativeness of FLUXNET. Journal of Geophysical Research: Biogeosciences, 122(2), 289–307. https://doi.org/10.1002/2016JG003576
Corbin, K. D.; Denning, A. S.; Lokupitiya, E. Y.; Schuh, A. E.; Miles, N. L.; Davis, K. J.; Richardson, S. and Baker, I. T. (2010). Assessing the impact of crops on regional CO2 fluxes and atmospheric concentrations. Tellus B, 62(5), 521–532. https://doi.org/10.1111/j.1600-0889.2010.00485.x
DNP. (2014). Política para el desarrollo integral de la Orinoquia: Altillanura - Fase 1. (Documento CONPES 3797). Bogotá D.C.: DNP.
Eamus, D.; Hutley, L. B. and O’Grady, A. P. (2001). Daily and seasonal patterns of carbon and water fluxes above a north Australian savanna. Tree Physiology, 21(12–13), 977–988. https://doi.org/10.1093/treephys/21.12-13.977
EddyPro® (Version6.2). (2016). EddyPro® Software (Version 6.2) [windows]. Lincoln, NE. LI-COR, Inc; Infrastructure for Measurements of the European Carbon Cycle consortium.
Falge, E.; Baldocchi, D.; Olson, R.; Anthoni, P.; Aubinet, M.; Bernhofer, C.; Burba, G.; Ceulemans, R.; Clement, R.; Dolman, H.; Granier, A.; Gross, P.; Gr??nwald, T.; Hollinger, D.; Jensen, N. O.; Katul, G.; Keronen, P.; Kowalski, A.; Lai, C. T.; Law, B. E.; Meyers, T.; Moncrieff, J.; Moors, E.; Munger, J. W.; Pilegaard, K.; Rannik, ??llar; Rebmann, C.; Suyker, A.; Tenhunen, J.; Tu, K.; Verma, S.; Vesala, T.; Wilson, K. and Wofsy, S. (2001). Gap filling strategies for defensible annual sums of net ecosystem exchange. Agricultural and Forest Meteorology, 107(1), 43–69. https://doi.org/10.1016/S0168-1923(00)00225-2
FAO. (2011). Biodiversity for Food and Agriculture Biodiversity for Food and Agriculture. Retrieved from http://www.fao.org/3/a-i1980e.pdf
Fei, X.; Jin, Y.; Zhang, Y.; Sha, L.; Liu, Y.; Song, Q.; Zhou, W.; Liang, N.; Yu, G.; Zhang, L.; Zhou, R.; Li, J.; Zhang, S. and Li, P. (2017). Eddy covariance and biometric measurements show that a savanna ecosystem in Southwest China is a carbon sink. Scientific Reports, 7(July 2016), 1–14. https://doi.org/10.1038/srep41025
Figueres, C.; Schellnhuber, H. J.; Whiteman, G.; Rockström, J.; Hobley, A. and Rahmstorf, S. (2017, June 28). Three years to safeguard our climate. Nature. https://doi.org/10.1038/546593a
Finkelstein, P. L. and Sims, P. F. (2001). Sampling error in eddy correlation flux measurements. Journal of Geophysical Research: Atmospheres, 106(D4), 3503–3509. https://doi.org/10.1029/2000JD900731
Finnigan, J. J.; Clement, R.; Malhi, Y.; Leuning, R. and Cleugh, H. A. (2003). A Re-Evaluation of Long-Term Flux Measurement Techniques Part I: Averaging and Coordinate Rotation. Boundary-Layer Meteorology, 107(1), 1–48. https://doi.org/10.1023/A:1021554900225
Foken, T. (2008a). Micrometeorology. Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-74666-9
Foken, T. (2008b). The energy balance closure problem: An overview. Ecological Applications, 18(6), 1351–1367. https://doi.org/10.1890/06-0922.1
Foken, T. (2017a). Energy and Matter Fluxes of a Spruce Forest Ecosystem. (T. Foken, Ed.) (Vol. 229). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-49389-3
Foken, T. (2017b). General Basics. In Micrometeorology (pp. 1–32). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-25440-6_1
Foken, T.; Leuning, R.; Oncley, S. R.; Mauder, M. and Aubinet, M. (2012). Corrections and Data Quality Control. In Eddy Covariance (pp. 85–131). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-007-2351-1_4
Fratini, G.; Ibrom, A.; Arriga, N.; Burba, G. and Papale, D. (2012). Relative humidity effects on water vapour fluxes measured with closed-path eddy-covariance systems with short sampling lines. Agricultural and Forest Meteorology, 165, 53–63. https://doi.org/10.1016/j.agrformet.2012.05.018
Gill Instruments. (2016). Technical Key Note (KN1509v6*). Retrieved from http://gillinstruments.com/data/manuals/KN1509-WM-WMPro-W-Bug-Info-Sheet.pdf
Göckede, M.; Foken, T.; Aubinet, M.; Aurela, M.; Banza, J.; Bernhofer, C.; Bonnefond, J. M.; Brunet, Y.; Carrara, A.; … Yakir, D. (2008). Quality control of CarboEurope flux data &amp;ndash; Part 1: Coupling footprint analyses with flux data quality assessment to evaluate sites in forest ecosystems. Biogeosciences, 5(2), 433–450. https://doi.org/10.5194/bg-5-433-2008
Goodrich, J. P.; Oechel, W. C.; Gioli, B.; Moreaux, V.; Murphy, P. C.; Burba, G. and Zona, D. (2016). Impact of different eddy covariance sensors, site set-up, and maintenance on the annual balance of CO2 and CH4 in the harsh Arctic environment. Agricultural and Forest Meteorology, 228–229, 239–251. https://doi.org/10.1016/j.agrformet.2016.07.008
Görres, C. M.; Kammann, C. and Ceulemans, R. (2016). Automation of soil flux chamber measurements: Potentials and pitfalls. Biogeosciences, 13(6), 1949–1966. https://doi.org/10.5194/bg-13-1949-2016
Gough, C. M. (2011). Terrestrial Primary Production: Fuel for Life. Nature Education Knowledge, 3(10), 28.
Goulden, M. L.; Miller, S. D. and da Rocha, H. R. (2006). Nocturnal cold air drainage and pooling in a tropical forest. Journal of Geophysical Research Atmospheres, 111(8), 1–14. https://doi.org/10.1029/2005JD006037
Grace, J.; Jose, J. S.; Meir, P.; Miranda, H. S. and Montes, R. A. (2006). Productivity and carbon fluxes of tropical savannas. Journal of Biogeography, 33(3), 387–400. https://doi.org/10.1111/j.1365-2699.2005.01448.x
Grassini, P.; Eskridge, K. M. and Cassman, K. G. (2013). Distinguishing between yield advances and yield plateaus in historical crop production trends. Nature Communications, 4, 1–11. https://doi.org/10.1038/ncomms3918
Grover, S. P. P.; Livesley, S. J.; Hutley, L. B.; Jamali, H.; Fest, B.; Beringer, J.; Butterbach-Bahl, K. and Arndt, S. K. (2012). Land use change and the impact on greenhouse gas exchange in north Australian savanna soils. Biogeosciences, 9(1), 423–437. https://doi.org/10.5194/bg-9-423-2012
Haslwanter, A.; Hammerle, A. and Wohlfahrt, G. (2009). Open-path vs. closed-path eddy covariance measurements of the net ecosystem carbon dioxide and water vapour exchange: A long-term perspective. Agricultural and Forest Meteorology, 149(2), 291–302. https://doi.org/10.1016/j.agrformet.2008.08.011
Henry, J. (2005). Tropical And Equatorial Climates. In J. E. Oliver (Ed.), Encyclopedia of World Climatology (pp. 742–750). Dordrecht: Springer Netherlands. https://doi.org/10.1007/1-4020-3266-8_212
Horst, T. W. (1997). A simple formula for attenuation of eddy fluxes measured with first-order-response scalar sensors. Boundary-Layer Meteorology, 82(2), 219–233. https://doi.org/10.1023/A:1000229130034
Hutley, L. L. B.; Leuning, R.; Beringer, J. and Cleugh, H. H. a. (2005). The utility of the eddy covariance techniques as a tool in carbon accounting: tropical savanna as a case study. Australian Journal of Botany, 53(7), 663. https://doi.org/10.1071/BT04147
Ibrom, A.; Dellwik, E.; Flyvbjerg, H.; Jensen, N. O. and Pilegaard, K. (2007). Strong low-pass filtering effects on water vapour flux measurements with closed-path eddy correlation systems. Agricultural and Forest Meteorology, 147(3–4), 140–156. https://doi.org/10.1016/j.agrformet.2007.07.007
IDEAM. (2015). Primer Informe Bienal De Actualización Ante La Convención Marco de las Naciones Unidas sobre el Cambio Climático.
IGAC. (2004). Estudio General de Suelos y Zonificación de Tierras del Departamento del Meta. Bogota, Colombia.
IGAC. (2014). Estudio General de Suelos y Zonificación De Tierras Departamento del Vichada. Bogota, Colombia.
Infometrika – Sociedad de Agricultores de Colombia - SAC. (2014). Estudio de caracterización del sector agropecuario en Colombia Tomo I. Servicio Nacional de Aprendisaje - SENA.
IPCC. (2014). Climate Change 2014: Mitigation of Climate Change. Working Group III Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. https://doi.org/10.1017/CBO9781107415416
Jacobson, M. Z. (2005). Fundamentals of Atmospheric Modeling. Cambridge: Cambridge University Press.
Kai, F. M.; Cobb, A.; Chua, A. F. L.; Tee, M. H.; Ng, B.; Gandois, L. and Harvey, C. (2013). An off-grid PV power system for meteorological and eddy covariance flux station in Kranji, Singapore. Energy Procedia, 33, 364–373. https://doi.org/10.1016/j.egypro.2013.05.077
Kaimal, J. C.; Wyngaard, J. C.; Haugen, D. A.; Coté, O. R.; Izumi, Y.; Caughey, S. J. and Readings, C. J. (1976). Turbulence Structure in the Convective Boundary Layer. Journal of the Atmospheric Sciences. https://doi.org/10.1175/1520-0469(1976)033<2152:TSITCB>2.0.CO;2
Kaimal, J. C.; Wyngaard, J. C.; Izumi, Y. and Coté, O. R. (1972). Spectral characteristics of surface-layer turbulence. Quarterly Journal of the Royal Meteorological Society, 98(417), 563–589. https://doi.org/10.1002/qj.49709841707
Kaimal, J. J. C. and Finnigan, J. J. (1994). Atmospheric Boundary Layer Flows: their structure and measurements. Oxford University Press.
Keenan, T. F.; Migliavacca, M.; Papale, D.; Baldocchi, D.; Reichstein, M.; Torn, M. and Wutzler, T. (2019). Widespread inhibition of daytime ecosystem respiration. Nature Ecology and Evolution, 3(3), 407–415. https://doi.org/10.1038/s41559-019-0809-2
Kirschbaum, M.U.F. & Mueller, R. (2001). Net Ecosystem Exchange.
Kirschbaum, M. U. F.; Eamus, D.; Gifford, R. M.; Roxburgh, S. H. and Sands, P. J. (2001). C Accounting Definitions, (April), 18–20. Retrieved from http://www.steverox.info/Downloads/Software/C Accounting Definitions.pdf
Kljun, N.; Calanca, P.; Rotach, M. W. and Schmid, H. P. (2015). A simple two-dimensional parameterisation for Flux Footprint Prediction (FFP). Geoscientific Model Development, 8(11), 3695–3713. https://doi.org/10.5194/gmd-8-3695-2015
Lasslop, G.; Reichstein, M.; Papale, D.; Richardson, A.; Arneth, A.; Barr, A.; Stoy, P. and Wohlfahrt, G. (2010). Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: Critical issues and global evaluation. Global Change Biology, 16(1), 187–208. https://doi.org/10.1111/j.1365-2486.2009.02041.x
Lavelle, P.; Rodríguez, N.; Arguello, O.; Bernal, J.; Botero, C.; Chaparro, P.; Gómez, Y.; Gutiérrez, A.; Hurtado, M. del P.; Loaiza, S.; Pullido, S. X.; Rodríguez, E.; Sanabria, C.; Velásquez, E. and Fonte, S. J. (2014). Soil ecosystem services and land use in the rapidly changing Orinoco River Basin of Colombia. Agriculture, Ecosystems & Environment, 185, 106–117. https://doi.org/10.1016/j.agee.2013.12.020
Leclerc, M. Y. and Foken, T. (2014). Footprints in Micrometeorology and Ecology. https://doi.org/10.1007/978-3-642-54545-0
Lee, X.; Finnigan, J. and Paw U, K. T. (2005). Handbook of Micrometeorology: A Guide for surface flux measurement and analysis. (X. Lee, W. Massman and B. Law, Eds.), Handbook of Micrometeorology (Vol. 29). Dordrecht: Springer Netherlands. https://doi.org/10.1007/1-4020-2265-4
Leip, A.; Skiba, U.; Vermeulen, A. and Thompson, R. L. (2018). A complete rethink is needed on how greenhouse gas emissions are quantified for national reporting. Atmospheric Environment, 174(November 2017), 237–240. https://doi.org/10.1016/j.atmosenv.2017.12.006
LI-COR. (2010). Technical Note: Solar Power for Eddy Covariance Flux Station. Nebraska. Retrieved from https://www.licor.com/documents/aadiwe7sh4i79kvyteiy
LI-COR, I. (2016). EddyPro® version 6.2 Help and User’s Guide. LI-COR, Inc. Lincoln, NE.
Lucas-Moffat, A. M.; Huth, V.; Augustin, J.; Brümmer, C.; Herbst, M. and Kutsch, W. L. (2018). Towards pairing plot and field scale measurements in managed ecosystems: Using eddy covariance to cross-validate CO2 fluxes modeled from manual chamber campaigns. Agricultural and Forest Meteorology, 256–257(August 2016), 362–378. https://doi.org/10.1016/j.agrformet.2018.01.023
MADR. (2016). Agronet. Retrieved from http://www.agronet.gov.co/estadistica/Paginas/default.aspx
Mamadou, O.; Gourlez de la Motte, L.; De Ligne, A.; Heinesch, B. and Aubinet, M. (2016). Sensitivity of the annual net ecosystem exchange to the cospectral model used for high frequency loss corrections at a grazed grassland site. Agricultural and Forest Meteorology, 228–229, 360–369. https://doi.org/10.1016/j.agrformet.2016.06.008
Massman, W. and Clement, R. (2005). Uncertainty in Eddy Covariance Flux Estimates Resulting from Spectral Attenuation. In Handbook of Micrometeorology (Vol. 29, pp. 67–99). Dordrecht: Kluwer Academic Publishers. https://doi.org/10.1007/1-4020-2265-4_4
Massman, W. J. (2000). A simple method for estimating frequency response corrections for eddy covariance systems. Agricultural and Forest Meteorology, 104(3), 185–198. https://doi.org/10.1016/S0168-1923(00)00164-7
Massman, W. J. (2001). Reply to comment by Rannik on “A simple method for estimatiog frequency responde corrections for eddy covariance systems.” Agricultural and Forest Meteorology, 107(107), 247–251.
Mauder, M. and Foken, T. (2004). Documentation and instruction manual of the eddy covariance software package TK2. Bayreuth, Abt. Mikrometeorol., ISSN, (26), 1614–89166.
Mauder, M. and Foken, T. (2015). Eddy-Covariance Software TK3. Http://Dx.Doi.Org/10.5281/Zenodo.20349, (July 2015). https://doi.org/10.5281/zenodo.20349
McNaughton, K. G. and Laubach, J. (2000). Power Spectra and Cospectra for Wind and Scalars in a Disturbed Surface Layer at the Base of an Advective Inversion. Boundary-Layer Meteorology, 96(1/2), 143–185. https://doi.org/10.1023/A:1002477120507
Metzger, S.; Burba, G.; Burns, S. P.; Blanken, P. D.; Li, J.; Luo, H. and Zulueta, R. C. (2016). Optimization of an enclosed gas analyzer sampling system for measuring eddy covariance fluxes of H2O and CO2. Atmospheric Measurement Techniques, 9(3), 1341–1359. https://doi.org/10.5194/amt-9-1341-2016
Miranda, A. C.; Miranda, H. S.; Lloyd, J.; Grace, J.; Francey, R. J.; Mcintyre, J. A.; Meir, P.; Riggan, P.; Lockwood, R. and Brass, J. (1997). Fluxes of carbon, water and energy over Brazilian cerrado: An analysis using eddy covariance and stable isotopes. Plant, Cell and Environment, 20(3), 315–328. https://doi.org/10.1046/j.1365-3040.1997.d01-80.x
Moncrieff, J. B.; Massheder, J. M.; de Bruin, H.; Elbers, J.; Friborg, T.; Heusinkveld, B.; Kabat, P.; Scott, S.; Soegaard, H. and Verhoef, A. (1997). A system to measure surface fluxes of momentum, sensible heat, water vapour and carbon dioxide. Journal of Hydrology, 188–189, 589–611. https://doi.org/10.1016/S0022-1694(96)03194-0
Moncrieff, J.; Clement, R.; Finnigan, J. and Meyers, T. (2005). Averaging, Detrending, and Filtering of Eddy Covariance Time Series. In X. Lee, W. Massman and B. Law (Eds.), Handbook of Micrometeorology: A Guide for Surface Flux Measurement and Analysis (pp. 7–31). Dordrecht: Springer Netherlands. https://doi.org/10.1007/1-4020-2265-4_2
Moore, C. J. (1986). Frequency response corrections for eddy correlation systems. Boundary-Layer Meteorology, 37(1–2), 17–35. https://doi.org/10.1007/BF00122754
Munger, J. W.; Loescher, H. W. and Luo, H. (2012). Measurement, Tower, and Site Design Considerations. In Eddy Covariance (pp. 21–58). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-007-2351-1_2
Nakai, T.; Iwata, H.; Harazono, Y. and Ueyama, M. (2014). An inter-comparison between Gill and Campbell sonic anemometers. Agricultural and Forest Meteorology, 195–196, 123–131. https://doi.org/10.1016/j.agrformet.2014.05.005
Nakai, T. and Shimoyama, K. (2012). Ultrasonic anemometer angle of attack errors under turbulent conditions. Agricultural and Forest Meteorology, 162–163, 14–26. https://doi.org/10.1016/j.agrformet.2012.04.004
Nelson, J. A.; Carvalhais, N.; Migliavacca, M.; Reichstein, M. and Jung, M. (2018). Water-stress-induced breakdown of carbon-water relations: Indicators from diurnal FLUXNET patterns. Biogeosciences, 15(8), 2433–2447. https://doi.org/10.5194/bg-15-2433-2018
Novick, K. A.; Walker, J.; Chan, W. S.; Schmidt, A.; Sobek, C. and Vose, J. M. (2013). Eddy covariance measurements with a new fast-response, enclosed-path analyzer: Spectral characteristics and cross-system comparisons. Agricultural and Forest Meteorology, 181, 17–32. https://doi.org/10.1016/j.agrformet.2013.06.020
ORNL DAAC. (2017). Fluxnet: Archived Website Including Site and Investigator Information. ORNL Distributed Active Archive Center. https://doi.org/10.3334/ornldaac/1549
Ortiz, E. Y.; Jimenez, R.; Fochesatto, G. J. and Morales-Rincon, L. A. (2019). Caracterización de la turbulencia atmosférica en una gran zona verde de una megaciudad andina tropical. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 43(166), 133. https://doi.org/10.18257/raccefyn.697
Polonik, P.; Chan, W. S.; Billesbach, D. P.; Burba, G.; Li, J.; Nottrott, A.; Bogoev, I.; Conrad, B. and Biraud, S. C. (2019). Comparison of gas analyzers for eddy covariance: Effects of analyzer type and spectral corrections on fluxes. Agricultural and Forest Meteorology, 272–273(February), 128–142. https://doi.org/10.1016/j.agrformet.2019.02.010
Räsänen, M.; Aurela, M.; Vakkari, V.; Beukes, J. P.; Tuovinen, J. P.; Van Zyl, P. G.; Josipovic, M.; Venter, A. D.; Jaars, K.; Siebert, S. J.; Laurila, T.; Rinne, J. and Laakso, L. (2017). Carbon balance of a grazed savanna grassland ecosystem in South Africa. Biogeosciences, 14(5), 1039–1054. https://doi.org/10.5194/bg-14-1039-2017
Reichstein, M.; Falge, E.; Baldocchi, D. D.; Papale, D.; Aubinet, M.; Berbigier, P.; Bernhofer, C.; Buchmann, N.; Gilmanov, T.; … Valentini, R. (2005). On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology, 11(9), 1424–1439. https://doi.org/10.1111/j.1365-2486.2005.001002.x
Rippstein, G.; Escobar, G. and Motta, F. (2001). Agroecología y Biodiversidad de las Sabanas en los Llanos Orientales de Colombia. Meta.
Rumpel, C.; Amiraslani, F.; Koutika, L.-S.; Smith, P.; Whitehead, D. and Wollenberg, E. (2018). Put more carbon in soils to meet Paris climate pledges. Nature, 564(7734), 32–34. https://doi.org/10.1038/d41586-018-07587-4
San José, J. J. (1991). Corbon Dioxide and Ammonia Exchange in the Trachypogon Sabannas of the Orinoco Llanos. Annals of Botany, 68, 321–328.
San José, J. J. (2001). Evaluación de los efectos del uso de la tierra sobre el contenido y flujos de carbono en los llanos del Orinoco. Retrieved from http://www.uach.cl/procarbono/pdf/simposio_carbono/01_SanJose.PDF
San José, J. J. and Montes, R. A. (2007). Resource apportionment and net primary production across the Orinoco savanna-woodland continuum, Venezuela. Acta Oecologica, 32(2), 243–253. https://doi.org/10.1016/j.actao.2007.05.005
San José, J. J.; Montes, R. A. and Fariñas, M. (1998). Carbon stocks and fluxes in a temporal scaling from a savanna to a semi-deciduous forest. Forest Ecology and Management, 105(1–3), 251–262. https://doi.org/10.1016/S0378-1127(97)00288-0
San José, J. J.; Montes, R. A. and Rocha, C. (2003). Neotropical savanna converted to food cropping and cattle feeding systems: soil carbon and nitrogen changes over 30 years. Forest Ecology and Management, 184(1–3), 17–32. https://doi.org/10.1016/S0378-1127(03)00144-0
San José, J. J.; Montes, R.; Grace, J. and Nikonova, N. (2008). Land-use changes alter CO2flux patterns of a tall-grass Andropogon field and a savanna-woodland continuum in the Orinoco lowlands. Tree Physiology, 28(3), 437–450. https://doi.org/10.1093/treephys/28.3.437
San José, J. J.; Montes, R.; Nikonova, N.; Grace, J. and Buendía, C. (2014). Effect of the replacement of a native savanna by an African Brachiaria decumbens pasture on the CO2 exchange in the Orinoco lowlands, Venezuela. Photosynthetica, 52(3), 358–370. https://doi.org/10.1007/s11099-014-0039-4
Santos, A. J. B.; Silva, G. T. D. A.; Miranda, H. S.; Miranda, A. C. and Lloyd, J. (2003). Effects of fire on surface carbon, energy and water vapour fluxes over campo sujo savanna in central Brazil. Functional Ecology, 17(6), 711–719. https://doi.org/10.1111/j.1365-2435.2003.00790.x
Sarmiento, G. (1983). The savannas of tropical America. In F. Bourliere (Ed.), Ecosystems of the World XIII. Tropical Savannas (pp. 245–288). Amsterdam: Elsevier.
Saunders, M. J.; Kansiimet, F. and Jones, M. B. (2012). Agricultural encroachment : implications for carbon sequestration in tropical African wetlands. Global Change Biology, 18, 1312–1321. https://doi.org/10.1111/j.1365-2486.2011.02633.x
Schmidt, A.; Hanson, C.; Stephen Chan, W. and Law, B. E. (2012). Empirical assessment of uncertainties of meteorological parameters and turbulent fluxes in the AmeriFlux network. Journal of Geophysical Research G: Biogeosciences, 117(4). https://doi.org/10.1029/2012JG002100
Sievers, J.; Papakyriakou, T.; Larsen, S. E.; Jammet, M. M.; Rysgaard, S.; Sejr, M. K. and S??rensen, L. L. (2015). Estimating surface fluxes using eddy covariance and numerical ogive optimization. Atmospheric Chemistry and Physics, 15(4), 2081–2103. https://doi.org/10.5194/acp-15-2081-2015
Smith, P.; Lanigan, G.; Kutsch, W. L.; Buchmann, N.; Eugster, W.; Aubinet, M.; Ceschia, E.; Béziat, P.; Yeluripati, J. B.; Osborne, B.; Moors, E. J.; Brut, A.; Wattenbach, M.; Saunders, M. and Jones, M. (2010). Measurements necessary for assessing the net ecosystem carbon budget of croplands. Agriculture, Ecosystems & Environment, 139(3), 302–315. https://doi.org/10.1016/j.agee.2010.04.004
Smith, P.; Martino, D.; Cai, Z.; Gwary, D.; Janzen, H.; Kumar, P.; McCarl, B.; Ogle, S. M.; O’Mara, F.; Rice, C.; Scholes, B.; Sirotenko, O.; Howden, M.; McAllister, T.; Pan, G.; Romanenkov, V.; Schneider, U.; Towprayoon, S.; Wattenbach, M. and Smith, J. (2008). Greenhouse gas mitigation in agriculture. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 363(1492), 789–813. https://doi.org/10.1098/rstb.2007.2184
Smith, W. N.; Grant, B. B.; Desjardins, R. L.; Worth, D.; Li, C.; Boles, S. H. and Huffman, E. C. (2010). A tool to link agricultural activity data with the DNDC model to estimate GHG emission factors in Canada. Agriculture, Ecosystems & Environment, 136(3–4), 301–309. https://doi.org/10.1016/j.agee.2009.12.008
Tagesson, T. (2012). Turbulent transport in the atmospheric surface layer. SKB TR-12-05. Retrieved from https://inis.iaea.org/collection/NCLCollectionStore/_Public/43/127/43127961.pdf
Tagesson, T.; Fensholt, R.; Cropley, F.; Guiro, I.; Horion, S.; Ehammer, A. and Ardö, J. (2015). Dynamics in carbon exchange fluxes for a grazed semi-arid savanna ecosystem in West Africa. Agriculture, Ecosystems & Environment, 205, 15–24. https://doi.org/10.1016/j.agee.2015.02.017
Thomas, A. R. C.; Bond, A. J. and Hiscock, K. M. (2013). A multi-criteria based review of models that predict environmental impacts of land use-change for perennial energy crops on water, carbon and nitrogen cycling. GCB Bioenergy, 5(3), 227–242. https://doi.org/10.1111/j.1757-1707.2012.01198.x
Ueyama, M.; Hirata, R.; Mano, M.; Hamotani, K.; Harazono, Y.; Hirano, T.; Miyata, A.; Takagi, K. and Takahashi, Y. (2012). Influences of various calculation options on heat, water and carbon fluxes determined by open- and closed-path eddy covariance methods. Tellus B, 64(0). https://doi.org/10.3402/tellusb.v64i0.19048
Van Gorsel, E.; Leuning, R.; Cleugh, H. A.; Keith, H. and Suni, T. (2007). Nocturnal carbon efflux: Reconciliation of eddy covariance and chamber measurements using an alternative to the u * -threshold filtering technique. Tellus, Series B: Chemical and Physical Meteorology, 59(3), 397–403. https://doi.org/10.1111/j.1600-0889.2007.00252.x
Vejen, F.; Jacobsson, C.; Fredriksson, U.; Moe, M.; Andresen, L.; Hellsten, E.; Rissanen, P.; Pálsdóttir, Þ. and Arason, Þ. (2002). Quality Control of Meteorological Observations: Automatic Methods Used in the Nordic Countries. (F. Vejen, Ed.) (Vol. 15). Norwegian Meteorological Institute. Retrieved from https://books.google.com.co/books?id=5MtaHQAACAAJ
Velasco, E. and Roth, M. (2010). Cities as net sources of CO2: Review of atmospheric CO2 exchange in urban environments measured by eddy covariance technique. Geography Compass, 4(9), 1238–1259. https://doi.org/10.1111/j.1749-8198.2010.00384.x
Vickers, D. and Mahrt, L. (1997). Quality Control and Flux Sampling Problems for Tower and Aircraft Data. Journal of Atmospheric and Oceanic Technology, 512–526. https://doi.org/10.1175/1520-0426
Vourlitis, G. L.; Priante Filho, N.; Hayashi, M. M. S.; Nogueira, J. D. S.; Caseiro, F. T. and Holanda Campelo, J. (2001). Seasonal variations in the net ecosystem CO2 exchange of a mature Amazonian transitional tropical forest (cerradão). Functional Ecology, 15(3), 388–395. https://doi.org/10.1046/j.1365-2435.2001.00535.x
Webb, E. K.; Pearman, G. . and Leuning, R. (1980). Correction of flux measurements for density effects due to heat and water vapour transfer. Quarterly Journal of the Royal Meteorological Society. https://doi.org/10.1002/qj.49710644707
Wilczak, J.; Oncley, S. and Stage, S. (2001). Sonic Anemometer Tilt Correction Algorithms. Boundary-Layer Meteorology, 99(1), 127–150.
Yi, C.; Wei, S. and Hendrey, G. (2014). Warming climate extends dryness-controlled areas of terrestrial carbon sequestration. Scientific Reports, 4, 1–6. https://doi.org/10.1038/srep05472
Zahumenský, I. (2004). Guidelines on quality control procedures for data from automatic weather stations. Retrieved from http://www.wmo.int/pages/prog/www/IMOP/publications/IOM-82-TECO_2005/Papers/3(14)_Slovakia_2_Zahumensky.pdf
dc.rights.spa.fl_str_mv Derechos Reservados al Autor, 2020
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
Derechos Reservados al Autor, 2020
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 249 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.country.none.fl_str_mv Colombia
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Química
dc.publisher.department.spa.fl_str_mv Departamento de Ingeniería Química y Ambiental
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/79716/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/79716/2/91519742.2020.pdf
https://repositorio.unal.edu.co/bitstream/unal/79716/3/91519742.2020.pdf.jpg
bitstream.checksum.fl_str_mv cccfe52f796b7c63423298c2d3365fc6
3949a5607ac42edbbb0849022788d37d
9f4f5810088a2f545d83b7944c5fac6e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090208599080960
spelling Atribución-NoComercial-SinDerivadas 4.0 InternacionalDerechos Reservados al Autor, 2020http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Jiménez Pizarro, Rodrigo1f1ebc67eeca2fadf0fe2b132faaee4cMorales Rincón, Luis Albertobdea582f7ac628b6e1c256fc001bf57bCalidad del Aire2021-06-24T20:14:55Z2021-06-24T20:14:55Z2020https://repositorio.unal.edu.co/handle/unal/79716Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustracionesMediciones de flujos de carbono y energía en una sabana nativa y un ecosistema de cultivo transitorio en la altillanura colombiana. En este documento se presenta la estrategia metodológica para la selección del sitio de medición, diseño de la estación de monitoreo, análisis y procesamiento de datos de mediciones realizadas a través de la técnica de covarianza de remolinos (Apartes del texto)Carbon and energy flux measurements in a native savanna and a temporary crop ecosystem in the Colombian High Plains. This document presents the methodological strategy for the selection of the measurement site, design of the monitoring station, analysis and data processing of measurements conducted using the eddy covariance technique. (Apartes del texto)DoctoradoDoctor en Ingeniería - Ingeniería QuímicaProcesos ambientales249 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería QuímicaDepartamento de Ingeniería Química y AmbientalFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá660 - Ingeniería químicaCalentamiento globalGlobal WarmingAltillanuraCovarianza de remolinosTurbulencia ecuatoriaFlujos de carbono y vapor de aguaIntercomparación instrumentalAltillanuraEddy covarianceEquatorial turbulenceCambio climáticoClimate changeFlujos de bióxido de carbono y vapor de agua medidos mediante covarianza de remolinos en sabana nativa y cultivos transitorios mecanizados en la Altillanura colombianaCarbon dioxide and water vapor fluxes measured by eddy covariance in native savanna and mechanized temporary crops in the Colombian High PlainsTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDColombiaAcevedo, O. C.; Moraes, O. L. L.; Degrazia, G. A.; Fitzjarrald, D. R.; Manzi, A. O. and Campos, J. G. (2009). Is friction velocity the most appropriate scale for correcting nocturnal carbon dioxide fluxes? Agricultural and Forest Meteorology, 149(1), 1–10. https://doi.org/10.1016/j.agrformet.2008.06.014Ago, E. E.; Agbossou, E. K.; Cohard, J.-M.; Galle, S. and Aubinet, M. (2016). Response of CO2 fluxes and productivity to water availability in two contrasting ecosystems in northern Benin (West Africa). Annals of Forest Science, 73(2), 483–500. https://doi.org/10.1007/s13595-016-0542-9Agrosavia. (2017). Informe Final de Meta. 2017. Recomendaciones tecnológicas de manejo de suelos de la altillanura plana mediante la estrategia de capa productiva para los diferentes sistemas. Villavicencio. Retrieved from https://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000002033Alexandratos, N. and Bruinsma, J. (2012). World agriculture towards 2030/2050: the 2012 revision. ESA Working paper No. 12-03. Rome, FAO.Archibald, S. A.; Kirton, A.; Van Der Merwe, M. R.; Scholes, R. J.; Williams, C. A. and Hanan, N. (2009). Drivers of inter-annual variability in Net Ecosystem Exchange in a semi-arid savanna ecosystem, South Africa. Biogeosciences, 6(2), 251–266. https://doi.org/10.5194/bg-6-251-2009Aubinet, M.; Feigenwinter, C.; Heinesch, B.; Laffineur, Q.; Papale, D.; Reichstein, M.; Rinne, J. and Van Gorsel, E. (2012). Nighttime Flux Correction. In Eddy Covariance (pp. 133–157). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-007-2351-1_5Aubinet, M.; Joly, L.; Loustau, D.; De Ligne, A.; Chopin, H.; Cousin, J.; Chauvin, N.; Decarpenterie, T. and Gross, P. (2016). Dimensioning IRGA gas sampling systems: Laboratory and field experiments. Atmospheric Measurement Techniques, 9(3), 1361–1367. https://doi.org/10.5194/amt-9-1361-2016Aubinet, M.; Vesala, T. and Papale, D. (Eds). (2012). Eddy Covariance. Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-007-2351-1Aurela, M.; Laurila, T. and Tuovinen, J. P. (2002). Annual CO<inf>2</inf> balance of a subarctic fen in northern Europe: Importance of the wintertime efflux. Journal of Geophysical Research Atmospheres, 107(21), 1–12. https://doi.org/10.1029/2002JD002055Baldocchi, D. D. (2003). Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Global Change Biology, 9(4), 479–492. https://doi.org/10.1046/j.1365-2486.2003.00629.xBaldocchi, D. D. (2014). Measuring fluxes of trace gases and energy between ecosystems and the atmosphere - the state and future of the eddy covariance method. Global Change Biology, 3600–3609. https://doi.org/10.1111/gcb.12649Baldocchi, D. D. (2016). Advanced Topics in Biometeorology and Micrometeorology ESPM 228. Retrieved March 12, 2016, from https://nature.berkeley.edu/biometlab/index.php?scrn=espm228Barman, N.; Borgohain, A.; Kundu, S. S.; Saha, B.; Roy, R.; Solanki, R.; Kumar, N. V. P. K. and N Raju, P. L. (2019). Impact of atmospheric conditions in surface–air exchange of energy in a topographically complex terrain over Umiam. Meteorology and Atmospheric Physics. https://doi.org/10.1007/s00703-019-00668-7Bastin, J.-F.; Finegold, Y.; Garcia, C.; Mollicone, D.; Rezende, M.; Routh, D.; Zohner, C. M. and Crowther, T. W. (2019). The global tree restoration potential. Science, 365(6448), 76–79. https://doi.org/10.1126/science.aax0848Bellarby, J.; Foereid, B.; Hastings, A. and Smith, P. (2008). Cool Farming : Climate impacts of agriculture and mitigation potential. Retrieved from http://www.greenpeace.org/international/en/publications/reports/cool-farming-full-report/Béziat, P.; Ceschia, E. and Dedieu, G. (2009). Carbon balance of a three crop succession over two cropland sites in South West France. Agricultural and Forest Meteorology, 149, 1628–1645. https://doi.org/10.1016/j.agrformet.2009.05.004Bond-Lamberty, B.; Bailey, V. L.; Chen, M.; Gough, C. M. and Vargas, R. (2018). Globally rising soil heterotrophic respiration over recent decades. Nature, 560(7716), 80–83. https://doi.org/10.1038/s41586-018-0358-xBoos, D.; Broecker, H.; Dorr, T.; von Luepke, H. and Sharma, S. (2015). How are INDCs and NAMAs linked? . Giz. Retrieved from https://www.giz.de/en/downloads_els/indcnama.pdf%5Cnpapers3://publication/uuid/92F9F6C4-7414-4C25-AC29-8BACD78C239CBurba, G. (2013a). Eddy covariance method. Eoearth.Org. Retrieved from http://www.eoearth.org/view/article/152354/Burba, G. (2013b). Eddy Covariance Method for Scientific, Industrial, Agricultural and Regulatory Applications: A Field Book on Measuring Ecosystem Gas Exchage and Areal Emission Rates. Lincoln, NE, USA: LI-COR Biosciences.Burba, G.; Schmidt, A.; Scott, R. L.; Nakai, T.; Kathilankal, J.; Fratini, G.; Hanson, C.; Law, B.; Mcdermitt, D. K.; Eckles, R.; Furtaw, M. and Velgersdyk, M. (2012). Calculating CO2 and H2O eddy covariance fluxes from an enclosed gas analyzer using an instantaneous mixing ratio. Global Change Biology, 18(1), 385–399. https://doi.org/10.1111/j.1365-2486.2011.02536.xButterbach-Bahl, K.; Baggs, E. M.; Dannenmann, M.; Kiese, R. and Zechmeister-Boltenstern, S. (2013). Nitrous oxide emissions from soils: how well do we understand the processes and their controls? Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 368(1621), 20130122. https://doi.org/10.1098/rstb.2013.0122Campioli, M.; Malhi, Y.; Vicca, S.; Luyssaert, S.; Papale, D.; Peñuelas, J.; Reichstein, M.; Migliavacca, M.; Arain, M. A. and Janssens, I. A. (2016). Evaluating the convergence between eddy-covariance and biometric methods for assessing carbon budgets of forests. Nature Communications, 7(May 2015), 1–12. https://doi.org/10.1038/ncomms13717Ceschia, E.; Béziat, P.; Dejoux, J. F.; Aubinet, M.; Bernhofer, C.; Bodson, B.; Buchmann, N.; Carrara, a.; Cellier, P.; Di Tommasi, P.; Elbers, J. a.; Eugster, W.; Grünwald, T.; Jacobs, C. M. J.; Jans, W. W. P.; Jones, M.; Kutsch, W.; Lanigan, G.; Magliulo, E.; Marloie, O.; Moors, E. J.; Moureaux, C.; Olioso, a.; Osborne, B.; Sanz, M. J.; Saunders, M.; Smith, P.; Soegaard, H. and Wattenbach, M. (2010). Management effects on net ecosystem carbon and GHG budgets at European crop sites. Agriculture, Ecosystems & Environment, 139(3), 363–383. https://doi.org/10.1016/j.agee.2010.09.020Chaichana, N.; Bellingrath-Kimura, S. D.; Komiya, S.; Fujii, Y.; Noborio, K.; Dietrich, O. and Pakoktom, T. (2018). Comparison of closed chamber and eddy covariance methods to improve the understanding of methane fluxes from rice paddy fields in Japan. Atmosphere, 9(9). https://doi.org/10.3390/atmos9090356Chambers, J. Q.; Negron-Juarez, R. I.; Marra, D. M.; Di Vittorio, A.; Tews, J.; Roberts, D.; Ribeiro, G. H. P. M.; Trumbore, S. E. and Higuchi, N. (2013). The steady-state mosaic of disturbance and succession across an old-growth central Amazon forest landscape. Proceedings of the National Academy of Sciences of the United States of America, 110(10), 3949–3954. https://doi.org/10.1073/pnas.1202894110Chapin, F. S.; Woodwell, G. M.; Randerson, J. T.; Rastetter, E. B.; Lovett, G. M.; Baldocchi, D. D.; Clark, D. A.; Harmon, M. E.; Schimel, D. S.; Valentini, R.; Wirth, C.; Aber, J. D.; Cole, J. J.; Goulden, M. L.; Harden, J. W.; Heimann, M.; Howarth, R. W.; Matson, P. A.; McGuire, A. D.; Melillo, J. M.; Mooney, H. A.; Neff, J. C.; Houghton, R. A.; Pace, M. L.; Ryan, M. G.; Running, S. W.; Sala, O. E.; Schlesinger, W. H. and Schulze, E.-D. (2006). Reconciling Carbon-cycle Concepts, Terminology, and Methods. Ecosystems, 9(7), 1041–1050. https://doi.org/10.1007/s10021-005-0105-7Chu, H.; Baldocchi, D. D.; John, R.; Wolf, S. and Reichstein, M. (2017). Fluxes all of the time? A primer on the temporal representativeness of FLUXNET. Journal of Geophysical Research: Biogeosciences, 122(2), 289–307. https://doi.org/10.1002/2016JG003576Corbin, K. D.; Denning, A. S.; Lokupitiya, E. Y.; Schuh, A. E.; Miles, N. L.; Davis, K. J.; Richardson, S. and Baker, I. T. (2010). Assessing the impact of crops on regional CO2 fluxes and atmospheric concentrations. Tellus B, 62(5), 521–532. https://doi.org/10.1111/j.1600-0889.2010.00485.xDNP. (2014). Política para el desarrollo integral de la Orinoquia: Altillanura - Fase 1. (Documento CONPES 3797). Bogotá D.C.: DNP.Eamus, D.; Hutley, L. B. and O’Grady, A. P. (2001). Daily and seasonal patterns of carbon and water fluxes above a north Australian savanna. Tree Physiology, 21(12–13), 977–988. https://doi.org/10.1093/treephys/21.12-13.977EddyPro® (Version6.2). (2016). EddyPro® Software (Version 6.2) [windows]. Lincoln, NE. LI-COR, Inc; Infrastructure for Measurements of the European Carbon Cycle consortium.Falge, E.; Baldocchi, D.; Olson, R.; Anthoni, P.; Aubinet, M.; Bernhofer, C.; Burba, G.; Ceulemans, R.; Clement, R.; Dolman, H.; Granier, A.; Gross, P.; Gr??nwald, T.; Hollinger, D.; Jensen, N. O.; Katul, G.; Keronen, P.; Kowalski, A.; Lai, C. T.; Law, B. E.; Meyers, T.; Moncrieff, J.; Moors, E.; Munger, J. W.; Pilegaard, K.; Rannik, ??llar; Rebmann, C.; Suyker, A.; Tenhunen, J.; Tu, K.; Verma, S.; Vesala, T.; Wilson, K. and Wofsy, S. (2001). Gap filling strategies for defensible annual sums of net ecosystem exchange. Agricultural and Forest Meteorology, 107(1), 43–69. https://doi.org/10.1016/S0168-1923(00)00225-2FAO. (2011). Biodiversity for Food and Agriculture Biodiversity for Food and Agriculture. Retrieved from http://www.fao.org/3/a-i1980e.pdfFei, X.; Jin, Y.; Zhang, Y.; Sha, L.; Liu, Y.; Song, Q.; Zhou, W.; Liang, N.; Yu, G.; Zhang, L.; Zhou, R.; Li, J.; Zhang, S. and Li, P. (2017). Eddy covariance and biometric measurements show that a savanna ecosystem in Southwest China is a carbon sink. Scientific Reports, 7(July 2016), 1–14. https://doi.org/10.1038/srep41025Figueres, C.; Schellnhuber, H. J.; Whiteman, G.; Rockström, J.; Hobley, A. and Rahmstorf, S. (2017, June 28). Three years to safeguard our climate. Nature. https://doi.org/10.1038/546593aFinkelstein, P. L. and Sims, P. F. (2001). Sampling error in eddy correlation flux measurements. Journal of Geophysical Research: Atmospheres, 106(D4), 3503–3509. https://doi.org/10.1029/2000JD900731Finnigan, J. J.; Clement, R.; Malhi, Y.; Leuning, R. and Cleugh, H. A. (2003). A Re-Evaluation of Long-Term Flux Measurement Techniques Part I: Averaging and Coordinate Rotation. Boundary-Layer Meteorology, 107(1), 1–48. https://doi.org/10.1023/A:1021554900225Foken, T. (2008a). Micrometeorology. Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-74666-9Foken, T. (2008b). The energy balance closure problem: An overview. Ecological Applications, 18(6), 1351–1367. https://doi.org/10.1890/06-0922.1Foken, T. (2017a). Energy and Matter Fluxes of a Spruce Forest Ecosystem. (T. Foken, Ed.) (Vol. 229). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-49389-3Foken, T. (2017b). General Basics. In Micrometeorology (pp. 1–32). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-25440-6_1Foken, T.; Leuning, R.; Oncley, S. R.; Mauder, M. and Aubinet, M. (2012). Corrections and Data Quality Control. In Eddy Covariance (pp. 85–131). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-007-2351-1_4Fratini, G.; Ibrom, A.; Arriga, N.; Burba, G. and Papale, D. (2012). Relative humidity effects on water vapour fluxes measured with closed-path eddy-covariance systems with short sampling lines. Agricultural and Forest Meteorology, 165, 53–63. https://doi.org/10.1016/j.agrformet.2012.05.018Gill Instruments. (2016). Technical Key Note (KN1509v6*). Retrieved from http://gillinstruments.com/data/manuals/KN1509-WM-WMPro-W-Bug-Info-Sheet.pdfGöckede, M.; Foken, T.; Aubinet, M.; Aurela, M.; Banza, J.; Bernhofer, C.; Bonnefond, J. M.; Brunet, Y.; Carrara, A.; … Yakir, D. (2008). Quality control of CarboEurope flux data &amp;ndash; Part 1: Coupling footprint analyses with flux data quality assessment to evaluate sites in forest ecosystems. Biogeosciences, 5(2), 433–450. https://doi.org/10.5194/bg-5-433-2008Goodrich, J. P.; Oechel, W. C.; Gioli, B.; Moreaux, V.; Murphy, P. C.; Burba, G. and Zona, D. (2016). Impact of different eddy covariance sensors, site set-up, and maintenance on the annual balance of CO2 and CH4 in the harsh Arctic environment. Agricultural and Forest Meteorology, 228–229, 239–251. https://doi.org/10.1016/j.agrformet.2016.07.008Görres, C. M.; Kammann, C. and Ceulemans, R. (2016). Automation of soil flux chamber measurements: Potentials and pitfalls. Biogeosciences, 13(6), 1949–1966. https://doi.org/10.5194/bg-13-1949-2016Gough, C. M. (2011). Terrestrial Primary Production: Fuel for Life. Nature Education Knowledge, 3(10), 28.Goulden, M. L.; Miller, S. D. and da Rocha, H. R. (2006). Nocturnal cold air drainage and pooling in a tropical forest. Journal of Geophysical Research Atmospheres, 111(8), 1–14. https://doi.org/10.1029/2005JD006037Grace, J.; Jose, J. S.; Meir, P.; Miranda, H. S. and Montes, R. A. (2006). Productivity and carbon fluxes of tropical savannas. Journal of Biogeography, 33(3), 387–400. https://doi.org/10.1111/j.1365-2699.2005.01448.xGrassini, P.; Eskridge, K. M. and Cassman, K. G. (2013). Distinguishing between yield advances and yield plateaus in historical crop production trends. Nature Communications, 4, 1–11. https://doi.org/10.1038/ncomms3918Grover, S. P. P.; Livesley, S. J.; Hutley, L. B.; Jamali, H.; Fest, B.; Beringer, J.; Butterbach-Bahl, K. and Arndt, S. K. (2012). Land use change and the impact on greenhouse gas exchange in north Australian savanna soils. Biogeosciences, 9(1), 423–437. https://doi.org/10.5194/bg-9-423-2012Haslwanter, A.; Hammerle, A. and Wohlfahrt, G. (2009). Open-path vs. closed-path eddy covariance measurements of the net ecosystem carbon dioxide and water vapour exchange: A long-term perspective. Agricultural and Forest Meteorology, 149(2), 291–302. https://doi.org/10.1016/j.agrformet.2008.08.011Henry, J. (2005). Tropical And Equatorial Climates. In J. E. Oliver (Ed.), Encyclopedia of World Climatology (pp. 742–750). Dordrecht: Springer Netherlands. https://doi.org/10.1007/1-4020-3266-8_212Horst, T. W. (1997). A simple formula for attenuation of eddy fluxes measured with first-order-response scalar sensors. Boundary-Layer Meteorology, 82(2), 219–233. https://doi.org/10.1023/A:1000229130034Hutley, L. L. B.; Leuning, R.; Beringer, J. and Cleugh, H. H. a. (2005). The utility of the eddy covariance techniques as a tool in carbon accounting: tropical savanna as a case study. Australian Journal of Botany, 53(7), 663. https://doi.org/10.1071/BT04147Ibrom, A.; Dellwik, E.; Flyvbjerg, H.; Jensen, N. O. and Pilegaard, K. (2007). Strong low-pass filtering effects on water vapour flux measurements with closed-path eddy correlation systems. Agricultural and Forest Meteorology, 147(3–4), 140–156. https://doi.org/10.1016/j.agrformet.2007.07.007IDEAM. (2015). Primer Informe Bienal De Actualización Ante La Convención Marco de las Naciones Unidas sobre el Cambio Climático.IGAC. (2004). Estudio General de Suelos y Zonificación de Tierras del Departamento del Meta. Bogota, Colombia.IGAC. (2014). Estudio General de Suelos y Zonificación De Tierras Departamento del Vichada. Bogota, Colombia.Infometrika – Sociedad de Agricultores de Colombia - SAC. (2014). Estudio de caracterización del sector agropecuario en Colombia Tomo I. Servicio Nacional de Aprendisaje - SENA.IPCC. (2014). Climate Change 2014: Mitigation of Climate Change. Working Group III Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. https://doi.org/10.1017/CBO9781107415416Jacobson, M. Z. (2005). Fundamentals of Atmospheric Modeling. Cambridge: Cambridge University Press.Kai, F. M.; Cobb, A.; Chua, A. F. L.; Tee, M. H.; Ng, B.; Gandois, L. and Harvey, C. (2013). An off-grid PV power system for meteorological and eddy covariance flux station in Kranji, Singapore. Energy Procedia, 33, 364–373. https://doi.org/10.1016/j.egypro.2013.05.077Kaimal, J. C.; Wyngaard, J. C.; Haugen, D. A.; Coté, O. R.; Izumi, Y.; Caughey, S. J. and Readings, C. J. (1976). Turbulence Structure in the Convective Boundary Layer. Journal of the Atmospheric Sciences. https://doi.org/10.1175/1520-0469(1976)033<2152:TSITCB>2.0.CO;2Kaimal, J. C.; Wyngaard, J. C.; Izumi, Y. and Coté, O. R. (1972). Spectral characteristics of surface-layer turbulence. Quarterly Journal of the Royal Meteorological Society, 98(417), 563–589. https://doi.org/10.1002/qj.49709841707Kaimal, J. J. C. and Finnigan, J. J. (1994). Atmospheric Boundary Layer Flows: their structure and measurements. Oxford University Press.Keenan, T. F.; Migliavacca, M.; Papale, D.; Baldocchi, D.; Reichstein, M.; Torn, M. and Wutzler, T. (2019). Widespread inhibition of daytime ecosystem respiration. Nature Ecology and Evolution, 3(3), 407–415. https://doi.org/10.1038/s41559-019-0809-2Kirschbaum, M.U.F. & Mueller, R. (2001). Net Ecosystem Exchange.Kirschbaum, M. U. F.; Eamus, D.; Gifford, R. M.; Roxburgh, S. H. and Sands, P. J. (2001). C Accounting Definitions, (April), 18–20. Retrieved from http://www.steverox.info/Downloads/Software/C Accounting Definitions.pdfKljun, N.; Calanca, P.; Rotach, M. W. and Schmid, H. P. (2015). A simple two-dimensional parameterisation for Flux Footprint Prediction (FFP). Geoscientific Model Development, 8(11), 3695–3713. https://doi.org/10.5194/gmd-8-3695-2015Lasslop, G.; Reichstein, M.; Papale, D.; Richardson, A.; Arneth, A.; Barr, A.; Stoy, P. and Wohlfahrt, G. (2010). Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: Critical issues and global evaluation. Global Change Biology, 16(1), 187–208. https://doi.org/10.1111/j.1365-2486.2009.02041.xLavelle, P.; Rodríguez, N.; Arguello, O.; Bernal, J.; Botero, C.; Chaparro, P.; Gómez, Y.; Gutiérrez, A.; Hurtado, M. del P.; Loaiza, S.; Pullido, S. X.; Rodríguez, E.; Sanabria, C.; Velásquez, E. and Fonte, S. J. (2014). Soil ecosystem services and land use in the rapidly changing Orinoco River Basin of Colombia. Agriculture, Ecosystems & Environment, 185, 106–117. https://doi.org/10.1016/j.agee.2013.12.020Leclerc, M. Y. and Foken, T. (2014). Footprints in Micrometeorology and Ecology. https://doi.org/10.1007/978-3-642-54545-0Lee, X.; Finnigan, J. and Paw U, K. T. (2005). Handbook of Micrometeorology: A Guide for surface flux measurement and analysis. (X. Lee, W. Massman and B. Law, Eds.), Handbook of Micrometeorology (Vol. 29). Dordrecht: Springer Netherlands. https://doi.org/10.1007/1-4020-2265-4Leip, A.; Skiba, U.; Vermeulen, A. and Thompson, R. L. (2018). A complete rethink is needed on how greenhouse gas emissions are quantified for national reporting. Atmospheric Environment, 174(November 2017), 237–240. https://doi.org/10.1016/j.atmosenv.2017.12.006LI-COR. (2010). Technical Note: Solar Power for Eddy Covariance Flux Station. Nebraska. Retrieved from https://www.licor.com/documents/aadiwe7sh4i79kvyteiyLI-COR, I. (2016). EddyPro® version 6.2 Help and User’s Guide. LI-COR, Inc. Lincoln, NE.Lucas-Moffat, A. M.; Huth, V.; Augustin, J.; Brümmer, C.; Herbst, M. and Kutsch, W. L. (2018). Towards pairing plot and field scale measurements in managed ecosystems: Using eddy covariance to cross-validate CO2 fluxes modeled from manual chamber campaigns. Agricultural and Forest Meteorology, 256–257(August 2016), 362–378. https://doi.org/10.1016/j.agrformet.2018.01.023MADR. (2016). Agronet. Retrieved from http://www.agronet.gov.co/estadistica/Paginas/default.aspxMamadou, O.; Gourlez de la Motte, L.; De Ligne, A.; Heinesch, B. and Aubinet, M. (2016). Sensitivity of the annual net ecosystem exchange to the cospectral model used for high frequency loss corrections at a grazed grassland site. Agricultural and Forest Meteorology, 228–229, 360–369. https://doi.org/10.1016/j.agrformet.2016.06.008Massman, W. and Clement, R. (2005). Uncertainty in Eddy Covariance Flux Estimates Resulting from Spectral Attenuation. In Handbook of Micrometeorology (Vol. 29, pp. 67–99). Dordrecht: Kluwer Academic Publishers. https://doi.org/10.1007/1-4020-2265-4_4Massman, W. J. (2000). A simple method for estimating frequency response corrections for eddy covariance systems. Agricultural and Forest Meteorology, 104(3), 185–198. https://doi.org/10.1016/S0168-1923(00)00164-7Massman, W. J. (2001). Reply to comment by Rannik on “A simple method for estimatiog frequency responde corrections for eddy covariance systems.” Agricultural and Forest Meteorology, 107(107), 247–251.Mauder, M. and Foken, T. (2004). Documentation and instruction manual of the eddy covariance software package TK2. Bayreuth, Abt. Mikrometeorol., ISSN, (26), 1614–89166.Mauder, M. and Foken, T. (2015). Eddy-Covariance Software TK3. Http://Dx.Doi.Org/10.5281/Zenodo.20349, (July 2015). https://doi.org/10.5281/zenodo.20349McNaughton, K. G. and Laubach, J. (2000). Power Spectra and Cospectra for Wind and Scalars in a Disturbed Surface Layer at the Base of an Advective Inversion. Boundary-Layer Meteorology, 96(1/2), 143–185. https://doi.org/10.1023/A:1002477120507Metzger, S.; Burba, G.; Burns, S. P.; Blanken, P. D.; Li, J.; Luo, H. and Zulueta, R. C. (2016). Optimization of an enclosed gas analyzer sampling system for measuring eddy covariance fluxes of H2O and CO2. Atmospheric Measurement Techniques, 9(3), 1341–1359. https://doi.org/10.5194/amt-9-1341-2016Miranda, A. C.; Miranda, H. S.; Lloyd, J.; Grace, J.; Francey, R. J.; Mcintyre, J. A.; Meir, P.; Riggan, P.; Lockwood, R. and Brass, J. (1997). Fluxes of carbon, water and energy over Brazilian cerrado: An analysis using eddy covariance and stable isotopes. Plant, Cell and Environment, 20(3), 315–328. https://doi.org/10.1046/j.1365-3040.1997.d01-80.xMoncrieff, J. B.; Massheder, J. M.; de Bruin, H.; Elbers, J.; Friborg, T.; Heusinkveld, B.; Kabat, P.; Scott, S.; Soegaard, H. and Verhoef, A. (1997). A system to measure surface fluxes of momentum, sensible heat, water vapour and carbon dioxide. Journal of Hydrology, 188–189, 589–611. https://doi.org/10.1016/S0022-1694(96)03194-0Moncrieff, J.; Clement, R.; Finnigan, J. and Meyers, T. (2005). Averaging, Detrending, and Filtering of Eddy Covariance Time Series. In X. Lee, W. Massman and B. Law (Eds.), Handbook of Micrometeorology: A Guide for Surface Flux Measurement and Analysis (pp. 7–31). Dordrecht: Springer Netherlands. https://doi.org/10.1007/1-4020-2265-4_2Moore, C. J. (1986). Frequency response corrections for eddy correlation systems. Boundary-Layer Meteorology, 37(1–2), 17–35. https://doi.org/10.1007/BF00122754Munger, J. W.; Loescher, H. W. and Luo, H. (2012). Measurement, Tower, and Site Design Considerations. In Eddy Covariance (pp. 21–58). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-007-2351-1_2Nakai, T.; Iwata, H.; Harazono, Y. and Ueyama, M. (2014). An inter-comparison between Gill and Campbell sonic anemometers. Agricultural and Forest Meteorology, 195–196, 123–131. https://doi.org/10.1016/j.agrformet.2014.05.005Nakai, T. and Shimoyama, K. (2012). Ultrasonic anemometer angle of attack errors under turbulent conditions. Agricultural and Forest Meteorology, 162–163, 14–26. https://doi.org/10.1016/j.agrformet.2012.04.004Nelson, J. A.; Carvalhais, N.; Migliavacca, M.; Reichstein, M. and Jung, M. (2018). Water-stress-induced breakdown of carbon-water relations: Indicators from diurnal FLUXNET patterns. Biogeosciences, 15(8), 2433–2447. https://doi.org/10.5194/bg-15-2433-2018Novick, K. A.; Walker, J.; Chan, W. S.; Schmidt, A.; Sobek, C. and Vose, J. M. (2013). Eddy covariance measurements with a new fast-response, enclosed-path analyzer: Spectral characteristics and cross-system comparisons. Agricultural and Forest Meteorology, 181, 17–32. https://doi.org/10.1016/j.agrformet.2013.06.020ORNL DAAC. (2017). Fluxnet: Archived Website Including Site and Investigator Information. ORNL Distributed Active Archive Center. https://doi.org/10.3334/ornldaac/1549Ortiz, E. Y.; Jimenez, R.; Fochesatto, G. J. and Morales-Rincon, L. A. (2019). Caracterización de la turbulencia atmosférica en una gran zona verde de una megaciudad andina tropical. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 43(166), 133. https://doi.org/10.18257/raccefyn.697Polonik, P.; Chan, W. S.; Billesbach, D. P.; Burba, G.; Li, J.; Nottrott, A.; Bogoev, I.; Conrad, B. and Biraud, S. C. (2019). Comparison of gas analyzers for eddy covariance: Effects of analyzer type and spectral corrections on fluxes. Agricultural and Forest Meteorology, 272–273(February), 128–142. https://doi.org/10.1016/j.agrformet.2019.02.010Räsänen, M.; Aurela, M.; Vakkari, V.; Beukes, J. P.; Tuovinen, J. P.; Van Zyl, P. G.; Josipovic, M.; Venter, A. D.; Jaars, K.; Siebert, S. J.; Laurila, T.; Rinne, J. and Laakso, L. (2017). Carbon balance of a grazed savanna grassland ecosystem in South Africa. Biogeosciences, 14(5), 1039–1054. https://doi.org/10.5194/bg-14-1039-2017Reichstein, M.; Falge, E.; Baldocchi, D. D.; Papale, D.; Aubinet, M.; Berbigier, P.; Bernhofer, C.; Buchmann, N.; Gilmanov, T.; … Valentini, R. (2005). On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology, 11(9), 1424–1439. https://doi.org/10.1111/j.1365-2486.2005.001002.xRippstein, G.; Escobar, G. and Motta, F. (2001). Agroecología y Biodiversidad de las Sabanas en los Llanos Orientales de Colombia. Meta.Rumpel, C.; Amiraslani, F.; Koutika, L.-S.; Smith, P.; Whitehead, D. and Wollenberg, E. (2018). Put more carbon in soils to meet Paris climate pledges. Nature, 564(7734), 32–34. https://doi.org/10.1038/d41586-018-07587-4San José, J. J. (1991). Corbon Dioxide and Ammonia Exchange in the Trachypogon Sabannas of the Orinoco Llanos. Annals of Botany, 68, 321–328.San José, J. J. (2001). Evaluación de los efectos del uso de la tierra sobre el contenido y flujos de carbono en los llanos del Orinoco. Retrieved from http://www.uach.cl/procarbono/pdf/simposio_carbono/01_SanJose.PDFSan José, J. J. and Montes, R. A. (2007). Resource apportionment and net primary production across the Orinoco savanna-woodland continuum, Venezuela. Acta Oecologica, 32(2), 243–253. https://doi.org/10.1016/j.actao.2007.05.005San José, J. J.; Montes, R. A. and Fariñas, M. (1998). Carbon stocks and fluxes in a temporal scaling from a savanna to a semi-deciduous forest. Forest Ecology and Management, 105(1–3), 251–262. https://doi.org/10.1016/S0378-1127(97)00288-0San José, J. J.; Montes, R. A. and Rocha, C. (2003). Neotropical savanna converted to food cropping and cattle feeding systems: soil carbon and nitrogen changes over 30 years. Forest Ecology and Management, 184(1–3), 17–32. https://doi.org/10.1016/S0378-1127(03)00144-0San José, J. J.; Montes, R.; Grace, J. and Nikonova, N. (2008). Land-use changes alter CO2flux patterns of a tall-grass Andropogon field and a savanna-woodland continuum in the Orinoco lowlands. Tree Physiology, 28(3), 437–450. https://doi.org/10.1093/treephys/28.3.437San José, J. J.; Montes, R.; Nikonova, N.; Grace, J. and Buendía, C. (2014). Effect of the replacement of a native savanna by an African Brachiaria decumbens pasture on the CO2 exchange in the Orinoco lowlands, Venezuela. Photosynthetica, 52(3), 358–370. https://doi.org/10.1007/s11099-014-0039-4Santos, A. J. B.; Silva, G. T. D. A.; Miranda, H. S.; Miranda, A. C. and Lloyd, J. (2003). Effects of fire on surface carbon, energy and water vapour fluxes over campo sujo savanna in central Brazil. Functional Ecology, 17(6), 711–719. https://doi.org/10.1111/j.1365-2435.2003.00790.xSarmiento, G. (1983). The savannas of tropical America. In F. Bourliere (Ed.), Ecosystems of the World XIII. Tropical Savannas (pp. 245–288). Amsterdam: Elsevier.Saunders, M. J.; Kansiimet, F. and Jones, M. B. (2012). Agricultural encroachment : implications for carbon sequestration in tropical African wetlands. Global Change Biology, 18, 1312–1321. https://doi.org/10.1111/j.1365-2486.2011.02633.xSchmidt, A.; Hanson, C.; Stephen Chan, W. and Law, B. E. (2012). Empirical assessment of uncertainties of meteorological parameters and turbulent fluxes in the AmeriFlux network. Journal of Geophysical Research G: Biogeosciences, 117(4). https://doi.org/10.1029/2012JG002100Sievers, J.; Papakyriakou, T.; Larsen, S. E.; Jammet, M. M.; Rysgaard, S.; Sejr, M. K. and S??rensen, L. L. (2015). Estimating surface fluxes using eddy covariance and numerical ogive optimization. Atmospheric Chemistry and Physics, 15(4), 2081–2103. https://doi.org/10.5194/acp-15-2081-2015Smith, P.; Lanigan, G.; Kutsch, W. L.; Buchmann, N.; Eugster, W.; Aubinet, M.; Ceschia, E.; Béziat, P.; Yeluripati, J. B.; Osborne, B.; Moors, E. J.; Brut, A.; Wattenbach, M.; Saunders, M. and Jones, M. (2010). Measurements necessary for assessing the net ecosystem carbon budget of croplands. Agriculture, Ecosystems & Environment, 139(3), 302–315. https://doi.org/10.1016/j.agee.2010.04.004Smith, P.; Martino, D.; Cai, Z.; Gwary, D.; Janzen, H.; Kumar, P.; McCarl, B.; Ogle, S. M.; O’Mara, F.; Rice, C.; Scholes, B.; Sirotenko, O.; Howden, M.; McAllister, T.; Pan, G.; Romanenkov, V.; Schneider, U.; Towprayoon, S.; Wattenbach, M. and Smith, J. (2008). Greenhouse gas mitigation in agriculture. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 363(1492), 789–813. https://doi.org/10.1098/rstb.2007.2184Smith, W. N.; Grant, B. B.; Desjardins, R. L.; Worth, D.; Li, C.; Boles, S. H. and Huffman, E. C. (2010). A tool to link agricultural activity data with the DNDC model to estimate GHG emission factors in Canada. Agriculture, Ecosystems & Environment, 136(3–4), 301–309. https://doi.org/10.1016/j.agee.2009.12.008Tagesson, T. (2012). Turbulent transport in the atmospheric surface layer. SKB TR-12-05. Retrieved from https://inis.iaea.org/collection/NCLCollectionStore/_Public/43/127/43127961.pdfTagesson, T.; Fensholt, R.; Cropley, F.; Guiro, I.; Horion, S.; Ehammer, A. and Ardö, J. (2015). Dynamics in carbon exchange fluxes for a grazed semi-arid savanna ecosystem in West Africa. Agriculture, Ecosystems & Environment, 205, 15–24. https://doi.org/10.1016/j.agee.2015.02.017Thomas, A. R. C.; Bond, A. J. and Hiscock, K. M. (2013). A multi-criteria based review of models that predict environmental impacts of land use-change for perennial energy crops on water, carbon and nitrogen cycling. GCB Bioenergy, 5(3), 227–242. https://doi.org/10.1111/j.1757-1707.2012.01198.xUeyama, M.; Hirata, R.; Mano, M.; Hamotani, K.; Harazono, Y.; Hirano, T.; Miyata, A.; Takagi, K. and Takahashi, Y. (2012). Influences of various calculation options on heat, water and carbon fluxes determined by open- and closed-path eddy covariance methods. Tellus B, 64(0). https://doi.org/10.3402/tellusb.v64i0.19048Van Gorsel, E.; Leuning, R.; Cleugh, H. A.; Keith, H. and Suni, T. (2007). Nocturnal carbon efflux: Reconciliation of eddy covariance and chamber measurements using an alternative to the u * -threshold filtering technique. Tellus, Series B: Chemical and Physical Meteorology, 59(3), 397–403. https://doi.org/10.1111/j.1600-0889.2007.00252.xVejen, F.; Jacobsson, C.; Fredriksson, U.; Moe, M.; Andresen, L.; Hellsten, E.; Rissanen, P.; Pálsdóttir, Þ. and Arason, Þ. (2002). Quality Control of Meteorological Observations: Automatic Methods Used in the Nordic Countries. (F. Vejen, Ed.) (Vol. 15). Norwegian Meteorological Institute. Retrieved from https://books.google.com.co/books?id=5MtaHQAACAAJVelasco, E. and Roth, M. (2010). Cities as net sources of CO2: Review of atmospheric CO2 exchange in urban environments measured by eddy covariance technique. Geography Compass, 4(9), 1238–1259. https://doi.org/10.1111/j.1749-8198.2010.00384.xVickers, D. and Mahrt, L. (1997). Quality Control and Flux Sampling Problems for Tower and Aircraft Data. Journal of Atmospheric and Oceanic Technology, 512–526. https://doi.org/10.1175/1520-0426Vourlitis, G. L.; Priante Filho, N.; Hayashi, M. M. S.; Nogueira, J. D. S.; Caseiro, F. T. and Holanda Campelo, J. (2001). Seasonal variations in the net ecosystem CO2 exchange of a mature Amazonian transitional tropical forest (cerradão). Functional Ecology, 15(3), 388–395. https://doi.org/10.1046/j.1365-2435.2001.00535.xWebb, E. K.; Pearman, G. . and Leuning, R. (1980). Correction of flux measurements for density effects due to heat and water vapour transfer. Quarterly Journal of the Royal Meteorological Society. https://doi.org/10.1002/qj.49710644707Wilczak, J.; Oncley, S. and Stage, S. (2001). Sonic Anemometer Tilt Correction Algorithms. Boundary-Layer Meteorology, 99(1), 127–150.Yi, C.; Wei, S. and Hendrey, G. (2014). Warming climate extends dryness-controlled areas of terrestrial carbon sequestration. Scientific Reports, 4, 1–6. https://doi.org/10.1038/srep05472Zahumenský, I. (2004). Guidelines on quality control procedures for data from automatic weather stations. Retrieved from http://www.wmo.int/pages/prog/www/IMOP/publications/IOM-82-TECO_2005/Papers/3(14)_Slovakia_2_Zahumensky.pdfGeneralLICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79716/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51ORIGINAL91519742.2020.pdf91519742.2020.pdfTesis de Doctorado en Ingeniería - Ingeniería Químicaapplication/pdf14216789https://repositorio.unal.edu.co/bitstream/unal/79716/2/91519742.2020.pdf3949a5607ac42edbbb0849022788d37dMD52THUMBNAIL91519742.2020.pdf.jpg91519742.2020.pdf.jpgGenerated Thumbnailimage/jpeg6055https://repositorio.unal.edu.co/bitstream/unal/79716/3/91519742.2020.pdf.jpg9f4f5810088a2f545d83b7944c5fac6eMD53unal/79716oai:repositorio.unal.edu.co:unal/797162023-07-23 23:03:17.381Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==