Evaluación de almacenamiento de carbono azul en el ecosistema de manglar del Pacífico nariñense

Ilustraciones, tablas, gráficas

Autores:
Moreno Muñoz, Angélica Sofía
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/83304
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/83304
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Carbono azul
Blue carbon
Biomasa arbórea por encima del suelo
Above ground tree biomass
Biomasa sobre el suelo
Biomasa por debajo del suelo
Below ground biomass
Secuestro de carbono
Carbon sequestration
Biomasa aérea
Biomasa subterránea
Carbono orgánico del suelo
Manglares
Pacífico Colombiano
Aboveground biomass
Belowground biomass
Soil organic carbon
Mangroves
Colombian Pacific
Mangrove areas
Ecosistema marino
Marine ecosystems
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_61e9d701fd5660375cef7aacca22ffd3
oai_identifier_str oai:repositorio.unal.edu.co:unal/83304
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Evaluación de almacenamiento de carbono azul en el ecosistema de manglar del Pacífico nariñense
dc.title.translated.eng.fl_str_mv Evaluation of blue carbon storage in the mangrove ecosystem of the Nariño Pacific
title Evaluación de almacenamiento de carbono azul en el ecosistema de manglar del Pacífico nariñense
spellingShingle Evaluación de almacenamiento de carbono azul en el ecosistema de manglar del Pacífico nariñense
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Carbono azul
Blue carbon
Biomasa arbórea por encima del suelo
Above ground tree biomass
Biomasa sobre el suelo
Biomasa por debajo del suelo
Below ground biomass
Secuestro de carbono
Carbon sequestration
Biomasa aérea
Biomasa subterránea
Carbono orgánico del suelo
Manglares
Pacífico Colombiano
Aboveground biomass
Belowground biomass
Soil organic carbon
Mangroves
Colombian Pacific
Mangrove areas
Ecosistema marino
Marine ecosystems
title_short Evaluación de almacenamiento de carbono azul en el ecosistema de manglar del Pacífico nariñense
title_full Evaluación de almacenamiento de carbono azul en el ecosistema de manglar del Pacífico nariñense
title_fullStr Evaluación de almacenamiento de carbono azul en el ecosistema de manglar del Pacífico nariñense
title_full_unstemmed Evaluación de almacenamiento de carbono azul en el ecosistema de manglar del Pacífico nariñense
title_sort Evaluación de almacenamiento de carbono azul en el ecosistema de manglar del Pacífico nariñense
dc.creator.fl_str_mv Moreno Muñoz, Angélica Sofía
dc.contributor.advisor.none.fl_str_mv Guzmán Alvis, Ángela Inés
dc.contributor.author.none.fl_str_mv Moreno Muñoz, Angélica Sofía
dc.contributor.educationalvalidator.none.fl_str_mv Benavides Martínez, Iván Felipe
dc.contributor.orcid.spa.fl_str_mv Angélica Sofía Moreno Muñoz [0000-0002-2482-3832]
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
topic 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Carbono azul
Blue carbon
Biomasa arbórea por encima del suelo
Above ground tree biomass
Biomasa sobre el suelo
Biomasa por debajo del suelo
Below ground biomass
Secuestro de carbono
Carbon sequestration
Biomasa aérea
Biomasa subterránea
Carbono orgánico del suelo
Manglares
Pacífico Colombiano
Aboveground biomass
Belowground biomass
Soil organic carbon
Mangroves
Colombian Pacific
Mangrove areas
Ecosistema marino
Marine ecosystems
dc.subject.agrovoc.none.fl_str_mv Carbono azul
Blue carbon
Biomasa arbórea por encima del suelo
Above ground tree biomass
Biomasa sobre el suelo
Biomasa por debajo del suelo
Below ground biomass
Secuestro de carbono
dc.subject.armarc.none.fl_str_mv Carbon sequestration
dc.subject.proposal.spa.fl_str_mv Biomasa aérea
Biomasa subterránea
Carbono orgánico del suelo
Manglares
Pacífico Colombiano
dc.subject.proposal.eng.fl_str_mv Aboveground biomass
Belowground biomass
Soil organic carbon
Mangroves
Colombian Pacific
dc.subject.unesco.none.fl_str_mv Mangrove areas
Ecosistema marino
Marine ecosystems
description Ilustraciones, tablas, gráficas
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-02-03T21:40:34Z
dc.date.available.none.fl_str_mv 2023-02-03T21:40:34Z
dc.date.issued.none.fl_str_mv 2023-02-02
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/83304
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/83304
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A., & Hegewisch, K. C. (2018). TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015. Scientific Data, 5, 1–12. https://doi.org/10.1038/sdata.2017.191
Adame, M. F., Cherian, S., Reef, R., & Stewart-Koster, B. (2017). Mangrove root biomass and the uncertainty of belowground carbon estimations. Forest Ecology and Management, 403, 52–60. https://doi.org/10.1016/J.FORECO.2017.08.016
Adame, M. F., Connolly, R. M., Turschwell, M. P., Lovelock, C. E., Fatoyinbo, T., Lagomasino, D., Goldberg, L. A., Holdorf, J., Friess, D. A., Sasmito, S. D., Sanderman, J., Sievers, M., Buelow, C., Kauffman, J. B., Bryan-Brown, D., & Brown, C. J. (2021). Future carbon emissions from global mangrove forest loss. Global Change Biology, 27(12), 2856–2866. https://doi.org/10.1111/GCB.15571
Ahmed, R., & Mahmud, K. H. (2022). Potentiality of high-resolution topographic survey using unmanned aerial vehicle in Bangladesh. Remote Sensing Applications: Society and Environment, 26, 100729. https://doi.org/10.1016/J.RSASE.2022.100729
Ajonina, G. N., Kairo, J., Grimsditch, G., Sembres, T., Chuyong, G., & Diyouke, E. (2014). Assessment of Mangrove Carbon Stocks in Cameroon, Gabon, the Republic of Congo (RoC) and the Democratic Republic of Congo (DRC) Including their Potential for Reducing Emissions from Deforestation and Forest Degradation (REDD+) (Diop, S., J. Barusseau, & C. Descamps (eds.); pp. 177–189). Springer, Cham. https://doi.org/10.1007/978-3-319-06388-1_15
Alongi, D. M. (2014). Carbon cycling and storage in mangrove forests. Annual Review of Marine Science, 6, 195–219. https://doi.org/10.1146/annurev-marine-010213-135020
Alongi, D. M. (2018). Mangrove Forests. In Blue Carbon SpringerBriefs in Climate Studies. Springer. https://doi.org/https://doi.org/10.1007/978-3-319-91698-9_3
Arrouays, D., Grundy, M. G., Hartemink, A. E., Hempel, J. W., Heuvelink, G. B. M., Hong, S. Y., Lagacherie, P., Lelyk, G., McBratney, A. B., McKenzie, N. J., Mendonca-Santos, M. d. L., Minasny, B., Montanarella, L., Odeh, I. O. A., Sanchez, P. A., Thompson, J. A., & Zhang, G. L. (2014). GlobalSoilMap. Toward a Fine-Resolution Global Grid of Soil Properties. In Advances in Agronomy (Vol. 125). https://doi.org/10.1016/B978-0-12-800137-0.00003-0
Atwood, T. B., Connolly, R. M., Almahasheer, H., Carnell, P. E., Duarte, C. M., Lewis, C. J. E., Irigoien, X., Kelleway, J. J., Lavery, P. S., Macreadie, P. I., Serrano, O., Sanders, C. J., Santos, I., Steven, A. D. L., & Lovelock, C. E. (2017). Global patterns in mangrove soil carbon stocks and losses. Nature Climate Change, 7(7), 523–528. https://doi.org/10.1038/NCLIMATE3326
Bejarano M, A., Satizabal C, A., & Zapata, F. A. (1993). Estructura del bosque y granulometría del suelo en un manglar de ribera de la costa Pacífica colombiana. Boletín Científico CCCP, 4, 37–45. https://doi.org/10.26640/01213423.4.37_45
Benites, V. M., Machado, P. L. O. A., Fidalgo, E. C. C., Coelho, M. R., & Madari, B. E. (2007). Pedotransfer functions for estimating soil bulk density from existing soil survey reports in Brazil. Geoderma, 139(1–2), 90–97. https://doi.org/10.1016/J.GEODERMA.2007.01.005
Bermúdez, C., Merly, Á., & Niño, D. (2014). Caracterización de la geomorfología costera y sus coberturas vegetales asociadas, a través de sensores remotos en la bahía de Buenaventura, Valle del Cauca. Boletín Científico CIOH, 34, 49–63. https://doi.org/10.26640/22159045.426
Bettinger, P., Boston, K., Siry, J. P., & Grebner, D. L. (2017). Valuing and Characterizing Forest Conditions. In P. Bettinger, K. Boston, J. P. Siry, & D. L. Grebner (Eds.), Forest Management and Planning (Segunda edición, pp. 21–63). Academic Press. https://doi.org/10.1016/B978-0-12-809476-1.00002-3
Bhomia, R. K., Kauffman, J. B., & McFadden, T. N. (2016). Ecosystem carbon stocks of mangrove forests along the Pacific and Caribbean coasts of Honduras. Wetlands Ecology and Management, 24(2), 187–201. https://doi.org/10.1007/S11273-016-9483-1/TABLES/5
Bishop, T. F. A., McBratney, A. B., & Laslett, G. M. (1999). Modeling soil attribute depth functions with equal-area quadratic smoothing splines. Geoderma, 91(1–2), 27–45. https://doi.org/10.1016/S0016-7061(99)00003-8
Blanco-Libreros, J., López-Ródriguez, S., Valencia-Palacios, A., Pérez-Vega, G., & Álvarez-León, R. (2022). HELIO_SP.CO v.2: Hierarchical, Entity-based and Landscape-level Information Observatory for mangrove SPecies in Colombia, version 2. https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/QXQT59
Blanco, J. F., Estrada, E. A., Ortiz, L. F., & Urrego, L. E. (2012). Ecosystem-Wide Impacts of Deforestation in Mangroves: The Urabá Gulf (Colombian Caribbean) Case Study. International Scholarly Research Network , 2012, 1–14. https://doi.org/10.5402/2012/958709
Bolivar, J. M., Gutierrez-Velez, V. H., & Sierra, C. A. (2018). Carbon stocks in aboveground biomass for Colombian mangroves with associated uncertainties. Regional Studies in Marine Science, 18, 145–155. https://doi.org/10.1016/J.RSMA.2017.12.011
Breiman, L. (2001). Random Forests. Machine Learning 2001 45:1, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324
Breiman, L. (2003). Manual setting up, using, and understanding random forests v4.0. https://www.stat.berkeley.edu/~breiman/Using_random_forests_v4.0.pdf
Bukoski, J. J., Elwin, A., Mackenzie, R. A., Sharma, S., Purbopuspito, J., Kopania, B., Apwong, M., Poolsiri, R., & Potts, M. D. (2020). The role of predictive model data in designing mangrove forest carbon programs. Environmental Research Letters, 15(8), 084019. https://doi.org/10.1088/1748-9326/AB7E4E
Bunting, P., Rosenqvist, A., Hilarides, L., Lucas, R. M., Thomas, N., Tadono, T., Worthington, T. A., Spalding, M., Murray, N. J., & Rebelo, L.-M. (2022). Global Mangrove Extent Change 1996–2020: Global Mangrove Watch Version 3.0. Remote Sensing 2022, Vol. 14, Page 3657, 14(15), 3657. https://doi.org/10.3390/RS14153657
Centro de Control de Contaminación del Pacífico [CCCP]. (2003). Aportes al entendimiento de la Bahía de Tumaco. Entorno oceanográfico, costero y de riesgos. In Aportes al entendimiento de la Bahía de Tumaco. Entorno oceanográfico, costero y de riesgos. Dirección General Marítima. https://doi.org/10.26640/9583352225.2003
Chang, K.-T. (2019). Introduction to geographic information systems (9th ed.). McGraw-Hill.
Chatting, M., Al-Maslamani, I., Walton, M., Skov, M. W., Kennedy, H., Husrevoglu, Y. S., & Le Vay, L. (2022). Future Mangrove Carbon Storage Under Climate Change and Deforestation. Frontiers in Marine Science, 9, 58. https://doi.org/10.3389/FMARS.2022.781876/BIBTEX
Chave, J., Coomes, D., Jansen, S., Lewis, S. L., Swenson, N. G., & Zanne, A. E. (2009). Towards a worldwide wood economics spectrum. Ecology Letters, 12(4), 351–366. https://doi.org/10.1111/J.1461-0248.2009.01285.X
Clough, B. F. (1992). Primary Productivity and Growth of Mangrove Forests. In A. I. , Robertson & D. M. Alongi (Eds.), Coastal and Estuarine Studies Tropical Mangrove Ecosystems (pp. 225–249). American Geophysical Union (AGU). https://doi.org/10.1029/CE041P0225
Cordero-Llach, L. (1971). Report on a Wood Testing Programme Carried Out for Undp/sf Project 234, Inventory and Forest Demostrations. Panama. Physical and Mechanical Properties of 113 Species. IICA. Instituto interamericano de ciencias agricolas, Turrialba - Costa Rica.
Corponariño. (2010). Caracterización, Diagnóstico y Zonificación de los manglares en el departamento de Nariño | WWF. https://www.wwf.org.co/?201159/CaracterizacionDiagnosticoZonificacionmanglaresdepartamentoNarino
Costanza, R., de Groot, R., Braat, L., Kubiszewski, I., Fioramonti, L., Sutton, P., Farber, S., & Grasso, M. (2017). Twenty years of ecosystem services: How far have we come and how far do we still need to go? Ecosystem Services, 28, 1–16. https://doi.org/10.1016/J.ECOSER.2017.09.008
De La Peña, A., Rojas, C. A., De La Peña, M., Grande, C., Marta, S., De, A., Cesar, P., & Rojas, A. (2010). Valoración económica del manglar por el almacenamiento de carbono, en la Ciénaga Grande de Santa Marta. Clío América, 4(7), 133–150. https://doi.org/10.21676/23897848.400
de Souza, J. J. L. L., Souza, B. I., Xavier, R. A., Cardoso, E. C. M., de Medeiros, J. R., da Fonseca, C. F., & Schaefer, C. E. G. R. (2022). Organic carbon rich-soils in the brazilian semiarid region and paleoenvironmental implications. CATENA, 212, 106101. https://doi.org/10.1016/J.CATENA.2022.106101
DelVecchia, A. G., Bruno, J. F., Benninger, L., Alperin, M., Banerje, O., & De Dios Morales, J. (2014). Organic carbon inventories in natural and restored Ecuadorian mangrove forests. PeerJ, 2014(1), e388. https://doi.org/10.7717/PEERJ.388/SUPP-1
Dey, A., Ghosh, A., Das, S., Bhattacharyya, R., Tigga, P., Dey, A., Das, S., Bhattacharyya, · R, Tigga, · P, & Ghosh, A. (2021). Belowground Carbon Storage and Dynamics. In Soil Science: Fundamentals to Recent Advances (pp. 49–67). Springer, Singapore. https://doi.org/10.1007/978-981-16-0917-6_4
Donato, D. C., Kauffman, J. B., Murdiyarso, D., Kurnianto, S., Stidham, M., & Kanninen, M. (2011). Mangroves among the most carbon-rich forests in the tropics. Nature Geoscience 2011 4:5, 4(5), 293–297. https://doi.org/10.1038/ngeo1123
Ellison, J. C. (2015). Vulnerability assessment of mangroves to climate change and sea-level rise impacts. Wetlands Ecology and Management, 23(2), 115–137. https://doi.org/10.1007/S11273-014-9397-8/FIGURES/6
Emadi, M., Taghizadeh-Mehrjardi, R., Cherati, A., Danesh, M., Mosavi, A., & Scholten, T. (2020). Predicting and mapping of soil organic carbon using machine learning algorithms in Northern Iran. Remote Sensing, 12(14). https://doi.org/10.3390/rs12142234
Fathizad, H., Taghizadeh-Mehrjardi, R., Hakimzadeh Ardakani, M. A., Zeraatpisheh, M., Heung, B., & Scholten, T. (2022). Spatiotemporal Assessment of Soil Organic Carbon Change Using Machine-Learning in Arid Regions. Agronomy, 12(3). https://doi.org/10.3390/agronomy12030628
Félix-Pico, E., Holguín-Quiñones, O., Hernández-Herrera, A., & Flores-Verdugo, F. (2006). Producción primaria de los mangles del Estero El Conchalito en Bahía de La Paz (Baja California Sur, México). Ciencias Marinas, 32(1A), 53–63. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0185-38802006000200006&lng=es&nrm=iso&tlng=es
Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315. https://doi.org/10.1002/JOC.5086
Figueroa, L., & Álvarez, R. (2011). Evaluación de suelos de manglar en dos localidades de la ensenada de Tumaco, Pacífico colombiano. Arquivos de Ciências Do Mar, 44(1), 12–20.
Fricke, K. (2014). Water Balance Model. In Analysis and Modelling of Water Supply and Demand Under Climate Change, Land Use Transformation and Socio-Economic Development (pp. 39–120). Springer, Cham. https://doi.org/10.1007/978-3-319-01610-8_3
Friess, D. A., Rogers, K., Lovelock, C. E., Krauss, K. W., Hamilton, S. E., Lee, S. Y., Lucas, R., Primavera, J., Rajkaran, A., & Shi, S. (2019). The State of the World’s Mangrove Forests: Past, Present, and Future. Annual Review of Environment and Resources, 44(April 2021), 89–115. https://doi.org/10.1146/annurev-environ-101718-033302
Fu, Y., Liao, H., & Lv, L. (2021). A comparative study of various methods of handling missing data in unsoda. Agriculture (Switzerland), 11(8). https://doi.org/10.3390/agriculture11080727
Gao, Y., Zhou, J., Wang, L., Guo, J., Feng, J., Wu, H., & Lin, G. (2019). Distribution patterns and controlling factors for the soil organic carbon in four mangrove forests of China. Global Ecology and Conservation, 17, e00575. https://doi.org/10.1016/J.GECCO.2019.E00575
Garcés, O., & Espinosa, L. (2019). Contaminación por Hidrocarburos en Sedimentos de Manglar del Estuario del Río Mira, Pacífico Colombiano, Afectados por Derrames de Petróleo Crudo. Bulletin of Marine and Coastal Research, 48(1), 159–168.
Guevara, M., Arroyo, C., Brunsell, N., Cruz, C. O., Domke, G., Equihua, J., Etchevers, J., Hayes, D., Hengl, T., Ibelles, A., Johnson, K., de Jong, B., Libohova, Z., Llamas, R., Nave, L., Ornelas, J. L., Paz, F., Ressl, R., Schwartz, A., … Vargas, R. (2020). Soil Organic Carbon Across Mexico and the Conterminous United States (1991–2010). Global Biogeochemical Cycles, 34(3), no. https://doi.org/10.1029/2019GB006219
Gutíerrez, J., Ordoñez, N., Bolívar, S., Bunning, S., Guevara, M., Medina, E., Olivera, C., Olmedo, G., Sevilla, V., & Vargas, R. (2020). Estimación del carbono orgánico en los suelos de ecosistema de páramo en Colombia. Ecosistemas, 29(1), 1–10. https://doi.org/https://doi.org/10.7818/ECOS.1855
Hamilton, S. E., & Casey, D. (2016). Creation of a high spatio-temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC-21). Global Ecology and Biogeography, 25(6), 729–738. https://doi.org/10.1111/geb.12449
Hamilton, S. E., & Friess, D. A. (2018). Global carbon stocks and potential emissions due to mangrove deforestation from 2000 to 2012. Nature Climate Change, 8(3), 240–244. https://doi.org/10.1038/s41558-018-0090-4
Hamilton, S. E., Lovette, J. P., Borbor-Cordova, M. J., & Millones, M. (2017). The Carbon Holdings of Northern Ecuador’s Mangrove Forests. Annals of the American Association of Geographers, 107(1), 54–71. https://doi.org/10.1080/24694452.2016.1226160
Hengl, T., & MacMillan, R. . (2019). Predictive Soil Mapping with R. https://soilmapper.org/
Hengl, T., Nussbaum, M., Wright, M. N., Heuvelink, G. B. M., & Gräler, B. (2018). Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables. PeerJ, 2018(8). https://doi.org/10.7717/peerj.5518
Hernández-Blanco, M., Costanza, R., & Cifuentes-Jara, M. (2018). Valoración económica de los servicios ecosistémicos provistos por los manglares del Golfo de Nicoya. Conservación Internacional.
Howard, J., Hoyt, S., Isensee, K., Pidgeon, E., & Telszewski, M. (2018). Coastal Blue Carbon: Methods for assessing carbon stocks and emissions factors in mangroves, tidal salt marshes, and seagrass meadows. Conservation International, Intergovernmental Oceanographic Commission of UNESCO, International Union for Conservation of Nature.
Hu, Y., Fest, B. J., Swearer, S. E., & Arndt, S. K. (2021). Fine-scale spatial variability in organic carbon in a temperate mangrove forest: Implications for estimating carbon stocks in blue carbon ecosystems. Estuarine, Coastal and Shelf Science, 259, 107469. https://doi.org/10.1016/J.ECSS.2021.107469
Hutchison, J., Manica, A., Swetnam, R., Balmford, A., & Spalding, M. (2014). Predicting Global Patterns in Mangrove Forest Biomass. Conservation Letters, 7(3), 233–240. https://doi.org/10.1111/CONL.12060
Ideam. (2014). Atlas Interactivo - Climatológico - IDEAM. http://atlas.ideam.gov.co/visorAtlasClimatologico.html
IGAC. (2004). Estudio General de suelos y Zonificación de tierras departamento de Nariño. Instituto Geográfico Agustín Codazzi.
Invemar. (2010). Informe del Estado de los Ambientes y Recursos Marinos y Costeros en Colombia: Año 2009. Serie de Publicaciones Periódicas.
Invemar. (2018). Manglares . https://hub.arcgis.com/datasets/4a14d0ccabf540e9a8934a56a2b55442/explore?layer=5&location=8.448780%2C-78.105500%2C6.00
Invemar. (2019). Servicios Ecosistémicos Marinos y Costeros de Colombia: Énfasis en Manglares Y Pastos Marinos. INVEMAR. https://aquadocs.org/handle/1834/15783
Invemar. (2020). Sistema de información para la gestión de los manglares en Colombia (SIGMA). http://sigma.invemar.org.co/inicio
Invemar, Univalle, & Corponariño. (2017). Implementación de acciones que contribuyan a la rehabilitación ecológica de áreas afectadas por hidrocarburos en zona costera y piedemonte del departamento de Nariño. http://www.invemar.org.co/inicio?p_p_id=101&p_p_lifecycle=0&p_p_state=maximized&p_p_mode=view&_101_struts_action=%2Fasset_publisher%2Fview_content&_101_returnToFullPageURL=%2F&_101_assetEntryId=192196&_101_type=content&_101_urlTitle=implementacion-de-acciones-que-contribuyan-a-la-rehabilitacion-ecologica-de-areas-afectadas-por-hidrocarburos-en-zona-costera-y-piedemonte-del-departa&inheritRedirect=false
Jardine, S. L., & Siikamäki, J. V. (2014). A global predictive model of carbon in mangrove soils. Environmental Research Letters, 9(10). https://doi.org/10.1088/1748-9326/9/10/104013
Jennerjahn, T. C., Gilman, E., Krauss, K. W., Lacerda, L. D., Nordhaus, I., & Wolanski, E. (2017). Mangrove ecosystems under climate change. In V. Rivera-Monroy, S. Lee, E. Kristensen, & R. Twilley (Eds.), Mangrove Ecosystems: A Global Biogeographic Perspective: Structure, Function, and Services (pp. 211–244). Springer International Publishing. https://doi.org/10.1007/978-3-319-62206-4_7/COVER
Kauffman, J. B., Adame, M. F., Arifanti, V. B., Schile-Beers, L. M., Bernardino, A. F., Bhomia, R. K., Donato, D. C., Feller, I. C., Ferreira, T. O., Jesus Garcia, M. del C., MacKenzie, R. A., Megonigal, J. P., Murdiyarso, D., Simpson, L., & Hernández Trejo, H. (2020). Total ecosystem carbon stocks of mangroves across broad global environmental and physical gradients. Ecological Monographs, 90(2), 1–18. https://doi.org/10.1002/ecm.1405
Kauffman, J. B., & Donato, D. (2012). Protocols for the measurement, monitoring and reporting of structure, biomass and carbon stocks in mangrove forests. Center for International Forestry Research (CIFOR). https://doi.org/10.17528/CIFOR/003749
Kauffman, J. B., Heider, C., Norfolk, J., & Payton, F. (2014). Carbon stocks of intact mangroves and carbon emissions arising from their conversion in the Dominican Republic. Ecological Applications, 24(3), 518–527. https://doi.org/10.1890/13-0640.1
Kauffman, J., Donato, D., & Adame, M. F. (2013). Protocolo para la medición, monitoreo y reporte de la estructura, biomasa y reservas de carbono de los manglares. In Protocolo para la medición, monitoreo y reporte de la estructura, biomasa y reservas de carbono de los manglares. CIFOR. http://creativecommons.org/licenses/by-nc-nd/3.0/
Kida, M., Watanabe, I., Kinjo, K., Kondo, M., Yoshitake, S., Tomotsune, M., Iimura, Y., Umnouysin, S., Suchewaboripont, V., Poungparn, S., Ohtsuka, T., & Fujitake, N. (2021). Organic carbon stock and composition in 3.5-m core mangrove soils (Trat, Thailand). Science of The Total Environment, 801, 149682. https://doi.org/10.1016/J.SCITOTENV.2021.149682
Komiyama, A., Ong, J. E., & Poungparn, S. (2008). Allometry, biomass, and productivity of mangrove forests: A review. Aquatic Botany, 89(2), 128–137. https://doi.org/10.1016/J.AQUABOT.2007.12.006
Kusumaningtyas, M. A., Hutahaean, A. A., Fischer, H. W., Pérez-Mayo, M., Ransby, D., & Jennerjahn, T. C. (2019). Variability in the organic carbon stocks, sources, and accumulation rates of Indonesian mangrove ecosystems. Estuarine, Coastal and Shelf Science, 218, 310–323. https://doi.org/10.1016/J.ECSS.2018.12.007
Lang, A. P., Madi, M., Torres Boeger, M. R., Reissmann, C. B., Geronazzo Martins, K., E D E B O G O T Á, S., De, F., Departamento, C., & Biología, D. E. (2016). Soil-plant nutrient interactions in two mangrove areas at Southern Brazil. Acta Biológica Colombiana, 21(1), 39–50. https://doi.org/10.15446/ABC.V21N1.42894
Ley 2243, Ley de protección de ecosistemas de manglar y otras disposiciones (08 de Julio de 2022). Ministerio de Ambiente y Desarrollo Sostenible.
Little, E., & Wadsworth, F. (1964). Trees of Puerto Rico and the Virgin Islands. US Department of Agriculture. https://doi.org/10.2307/2484965
López-Angarita, J., Roberts, C. M., Tilley, A., Hawkins, J. P., & Cooke, R. G. (2016). Mangroves and people: Lessons from a history of use and abuse in four Latin American countries. Forest Ecology and Management, 368, 151–162. https://doi.org/10.1016/J.FORECO.2016.03.020
Lyard, F. H., Allain, D. J., Cancet, M., Carrère, L., & Picot, N. (2021). FES2014 global ocean tide atlas: Design and performance. Ocean Science, 17(3), 615–649. https://doi.org/10.5194/OS-17-615-2021
Makonyo, M., & Msabi, M. M. (2021). Identification of groundwater potential recharge zones using GIS-based multi-criteria decision analysis: A case study of semi-arid midlands Manyara fractured aquifer, North-Eastern Tanzania. Remote Sensing Applications: Society and Environment, 23, 100544. https://doi.org/10.1016/J.RSASE.2021.100544
Malone, B., McBratney, A. B., Minasny, B., & Laslett, G. M. (2009). Mapping continuous depth functions of soil carbon storage and available water capacity. Geoderma, 154(1–2), 138–152. https://doi.org/10.1016/j.geoderma.2009.10.007
Malone, B., Minasny, B., & Mcbratney, A. B. (2017). Using R for Digital Soil Mapping. Springer. http://www.springer.com/series/8746
McNally, A., & NASA/GSFC/HSL. (2018). FLDAS Noah Land Surface Model L4 Global Monthly 0.1 x 0.1 degree (MERRA-2 and CHIRPS) (FLDAS_NOAH01_C_GL_M 001). https://disc.gsfc.nasa.gov/datasets/FLDAS_NOAH01_C_GL_M_001/summary
Mejía-Rentería, J. C., Castellanos-Galindo, G. A., Cantera-Kintz, J. R., & Hamilton, S. E. (2018). A comparison of Colombian Pacific mangrove extent estimations: Implications for the conservation of a unique Neotropical tidal forest. Estuarine, Coastal and Shelf Science, 212, 233–240. https://doi.org/10.1016/j.ecss.2018.07.020
Monsalve, A., & Ramírez, G. (2015). Caracterización de la estructura y contenido de carbono de los bosques de manglar en el área de jurisdicción del Consejo comunitario La Plata, Bahía Málaga, Valle del Cauca. http://climares.invemar.org.co/proyectos/-/asset_publisher/3W2QxkeIz5Ex/content/id/41676
Murillo-Sandoval, P. J., Fatoyinbo, L., & Simard, M. (2022). Mangroves Cover Change Trajectories 1984-2020: The Gradual Decrease of Mangroves in Colombia. Frontiers in Marine Science, 9, 1277. https://doi.org/10.3389/FMARS.2022.892946/BIBTEX
NASA Goddard Space Flight Center, & Ocean Ecology Laboratory. (2014). MODIS-Aqua Ocean Color Data; NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group. https://oceancolor.gsfc.nasa.gov/data/aqua/
Olmedo, G. ., & Baritz, R. (2018). Preparation of local soil data. In Y. Yigini, G. . Olmedo, S. Reiter, R. Baritz, K. Viatkin, & R. . Vargas (Eds.), Soil Organic Carbon Mapping Cookbook (2nd ed., pp. 19–35). FAO. https://fao-gsp.github.io/SOC-Mapping-Cookbook/index.html
Palacios, M., Vargas, E., & de la Pava, M. (1990). Determinación del aporte de materia orgánica del Manglar en la zona de Bocagrande. Boletín Científico CCCP, 1(1), 55–72. https://doi.org/10.26640/01213423.1.55_72
Palacios Peñaranda, M. L., Cantera Kintz, J. R., & Peña Salamanca, E. J. (2019). Carbon stocks in mangrove forests of the Colombian Pacific. Estuarine, Coastal and Shelf Science, 227(May), 106299. https://doi.org/10.1016/j.ecss.2019.106299
Parques Nacionales Naturales de Colombia [PNNC]. (2017). Actualización plan de manejo Parque Nacional Natural Sanquianga 2018-2023. https://www.parquesnacionales.gov.co/portal/wp-content/uploads/2020/10/plan-de-manejo-pnn-sanquianga.pdf
Parra, A. S., & Restrepo Ángel, J. D. (2014). The environmental collapse in the Patía river, Colombia: Morphological variations and impacts on mangrove ecosystems. Latin American Journal of Aquatic Research, 42(1), 40–60. https://doi.org/10.3856/vol42-issue1-fulltext-4
Perdomo-Trujillo, L. V., Mancera-Pineda, J. E., Medina-Calderón, J. H., Sánchez-Núñez, D. A., & Schnetter, M. L. (2021). Effect of Restoration Actions on Organic Carbon Pools in the Lagoon—Delta Ciénaga Grande de Santa Marta, Colombian Caribbean. Water 2021, Vol. 13, Page 1297, 13(9), 1297. https://doi.org/10.3390/W13091297
Perdomo, L. (2020). Biomasa y producción radicular en manglares de cuenca neotropicales a lo largo de una trayectoria de restauración y su contribución a las reservas de carbono en el ecosistema. Universidad Nacional de Colombia.
Pham, T. D., Yokoya, N., Nguyen, T. T. T., Le, N. N., Ha, N. T., Xia, J., Takeuchi, W., & Pham, T. D. (2020). Improvement of Mangrove Soil Carbon Stocks Estimation in North Vietnam Using Sentinel-2 Data and Machine Learning Approach. Https://Doi.Org/10.1080/15481603.2020.1857623, 58(1), 68–87. https://doi.org/10.1080/15481603.2020.1857623
Phillips, S., & US National Oceanographic Data Center. (2011). AVHRR Pathfinder version 5.0 global 4km sea surface temperature (SST) day-night monthly and yearly averages for 1985-2009 (NCEI Accession 0077816). https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.nodc:0077816
Poggio, L., De Sousa, L. M., Batjes, N. H., Heuvelink, G. B. M., Kempen, B., Ribeiro, E., & Rossiter, D. (2021). SoilGrids 2.0: Producing soil information for the globe with quantified spatial uncertainty. Soil, 7(1), 217–240. https://doi.org/10.5194/soil-7-217-2021
R Core Team. (2021). R: The R Stats Package. https://stat.ethz.ch/R-manual/R-devel/library/stats/html/stats-package.html
R Core Team. (2022). Package ‘caret.’ CRAN. https://cran.r-project.org/web/packages/caret/caret.pdf
Resolución 1447, se reglamenta el Sistema de monitoreo, reporte y verificación de las acciones de mitigación a nivel nacional (01 de Agosto de 2018). Ministerio de Ambiente y Desarrollo Sostenible.
Rodríguez-Rodríguez, J. A., Sierra-Correa, P. C., Gómez-Cubillos, M. C., & Villanueva, L. V. L. (2016). Mangroves of Colombia. In C. . Finlayson, G. . Milton, R. . Prentice, & N. Davidson (Eds.), The Wetland Book (pp. 1–10). Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6173-5_280-2
Romero-Berny, E. I., Acosta-Velázquez, J., Tovilla-Hernández, C., Schmook, B., & Gómez-Ortega, R. (2016). Cambios de cobertura y fragmentación de manglares en la región del Soconusco, Chiapas, México, 1994-2011 . Revista Geográfica de América Central, 1(54), 153–169. https://doi.org/10.15359/RGAC.1-54.7
Rovai, A. S., Riul, P., Twilley, R. R., Castañeda-Moya, E., Rivera-Monroy, V. H., Williams, A. A., Simard, M., Cifuentes-Jara, M., Lewis, R. R., Crooks, S., Horta, P. A., Schaeffer-Novelli, Y., Cintrón, G., Pozo-Cajas, M., & Pagliosa, P. R. (2016). Scaling mangrove aboveground biomass from site-level to continental-scale. Global Ecology and Biogeography, 25(3), 286–298. https://doi.org/10.1111/GEB.12409
Rovai, A. S., Twilley, R. R., Castañeda-Moya, E., Riul, P., Cifuentes-Jara, M., Manrow-Villalobos, M., Horta, P. A., Simonassi, J. C., Fonseca, A. L., & Pagliosa, P. R. (2018). Global controls on carbon storage in mangrove soils. Nature Climate Change, 8(6), 534–538. https://doi.org/10.1038/s41558-018-0162-5
Rowley, M. C., Grand, S., & Verrecchia, É. P. (2018). Calcium-mediated stabilisation of soil organic carbon. Biogeochemistry, 137(1–2), 27–49. https://doi.org/10.1007/S10533-017-0410-1/FIGURES/3
Rozainah, M. Z., Nazri, M. N., Sofawi, A. B., Hemati, Z., & Juliana, W. A. (2018). Estimation of carbon pool in soil, above and below ground vegetation at different types of mangrove forests in Peninsular Malaysia. Marine Pollution Bulletin, 137, 237–245. https://doi.org/10.1016/J.MARPOLBUL.2018.10.023
Saavedra-Hortua, D. A., Friess, D. A., Zimmer, M., & Gillis, L. G. (2020). Sources of Particulate Organic Matter across Mangrove Forests and Adjacent Ecosystems in Different Geomorphic Settings. Wetlands, 40(5), 1047–1059. https://doi.org/10.1007/S13157-019-01261-9/FIGURES/7
Sahu, B., Ghosh, A. K., & Seema. (2021). Deterministic and geostatistical models for predicting soil organic carbon in a 60 ha farm on Inceptisol in Varanasi, India. Geoderma Regional, 26, e00413. https://doi.org/10.1016/J.GEODRS.2021.E00413
Sánchez, H., Álvarez, R., Guevara, O., Zamora, A., Rodríguez, H., & Bravo, H. (1997). Diagnóstico y zonificación preliminar de los manglares del Pacífico de Colombia. Ministerio del Medio Ambiente.
Sanderman, J., Hengl, T., Fiske, G., Solvik, K., Adame, M. F., Benson, L., Bukoski, J. J., Carnell, P., Cifuentes-Jara, M., Donato, D., Duncan, C., Eid, E. M., Ermgassen, P. Z., Lewis, C. J. E., Macreadie, P. I., Glass, L., Gress, S., Jardine, S. L., Jones, T. G., … Landis, E. (2018). A global map of mangrove forest soil carbon at 30 m spatial resolution. Environmental Research Letters, 13(5). https://doi.org/10.1088/1748-9326/aabe1c
Sasmito, S. D., Kuzyakov, Y., Lubis, A. A., Murdiyarso, D., Hutley, L. B., Bachri, S., Friess, D. A., Martius, C., & Borchard, N. (2020). Organic carbon burial and sources in soils of coastal mudflat and mangrove ecosystems. Catena, 187(December 2019), 104414. https://doi.org/10.1016/j.catena.2019.104414
Simard, M., Fatoyinbo, L., Smetanka, C., Rivera-Monroy, V. H., Castañeda-Moya, E., Thomas, N., & Van der Stocken, T. (2019). Mangrove canopy height globally related to precipitation, temperature and cyclone frequency. Nature Geoscience, 12(1), 40–45. https://doi.org/10.1038/s41561-018-0279-1
Southwell, C. R., & Bultman, J. D. (1971). Marine Borer Resistance of Untreated Woods Over Long Periods of Immersion in Tropical Waters. Biotropica, 3(1), 81. https://doi.org/10.2307/2989709
Stekhoven, D. J., & Bühlmann, P. (2012). MissForest—non-parametric missing value imputation for mixed-type data. Bioinformatics, 28(1), 112–118. https://doi.org/10.1093/BIOINFORMATICS/BTR597
Stockmann, U., Adams, M. A., Crawford, J. W., Field, D. J., Henakaarchchi, N., Jenkins, M., Minasny, B., McBratney, A. B., Courcelles, V. de R. de, Singh, K., Wheeler, I., Abbott, L., Angers, D. A., Baldock, J., Bird, M., Brookes, P. C., Chenu, C., Jastrow, J. D., Lal, R., … Zimmermann, M. (2013). The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agriculture, Ecosystems & Environment, 164, 80–99. https://doi.org/10.1016/J.AGEE.2012.10.001
Suhaili, N. S., Fei, J. L. J., Sha’ari, F. W., Idris, M. I., Hatta, S. M., Kodoh, J., & Besar, N. A. (2020). Carbon stock estimation of mangrove forest in Sulaman Lake Forest Reserve, Sabah, Malaysia. Biodiversitas Journal of Biological Diversity, 21(12), 5657–5664. https://doi.org/10.13057/BIODIV/D211223
Taillardat, P., Friess, D. A., & Lupascu, M. (2018). Mangrove blue carbon strategies for climate change mitigation are most effective at the national scale. Biology Letters, 14(10). https://doi.org/10.1098/rsbl.2018.0251
Tanner, M. K., Moity, N., Costa, M. T., Marin Jarrin, J. R., Aburto-Oropeza, O., & Salinas-de-León, P. (2019). Mangroves in the Galapagos: Ecosystem services and their valuation. Ecological Economics, 160(June 2018), 12–24. https://doi.org/10.1016/j.ecolecon.2019.01.024
Trettin, C. C., Dai, Z., Tang, W., Lagomasino, D., Thomas, N., Lee, S. K., Simard, M., Ebanega, M. O., Stoval, A., & Fatoyinbo, T. E. (2021). Mangrove carbon stocks in Pongara National Park, Gabon. Estuarine, Coastal and Shelf Science, 259(April 2020). https://doi.org/10.1016/j.ecss.2021.107432
Tue, N. T., Dung, L. V., Nhuan, M. T., & Omori, K. (2014). Carbon storage of a tropical mangrove forest in Mui Ca Mau National Park, Vietnam. CATENA, 121, 119–126. https://doi.org/10.1016/J.CATENA.2014.05.008
Twilley, R. R., Castañeda-Moya, E., Rivera-Monroy, V. H., & Rovai, A. (2017). Productivity and carbon dynamics in mangrove wetlands. In V. . Rivera-Monroy, S. . Lee, E. . Kristensen, & R. Twilley (Eds.), Mangrove Ecosystems: A Global Biogeographic Perspective: Structure, Function, and Services (pp. 113–162). Springer International Publishing. https://doi.org/10.1007/978-3-319-62206-4_5/FIGURES/14
Twilley, R. R., & Rivera-Monroy, V. H. (2009). Ecogeomorphic Models of Nutrient Biogeochemistry for Mangrove Wetlands. In Coastal Wetlands: An Integrated Ecosystem Approach (First edit, Issue June, pp. 641–684). Elsevier. https://doi.org/10.1016/B978-0-444-53103-2.00023-5
Twilley, R. R., Rivera-Monroy, V. H., Rovai, A. S., Castañeda-Moya, E., & Davis, S. (2019). Mangrove Biogeochemistry at Local to Global Scales Using Ecogeomorphic Approaches. In G. . Perillo, E. . Wolanski, D. . Cahoon, & Hopkinson C. (Eds.), Coastal Wetlands: An Integrated Ecosystem Approach (pp. 717–785). Elsevier. https://doi.org/10.1016/B978-0-444-63893-9.00021-6
Twilley, R. R., Rovai, A. S., & Riul, P. (2018). Coastal morphology explains global blue carbon distributions. Frontiers in Ecology and the Environment, 16(9), 503–508. https://doi.org/10.1002/FEE.1937
Wadoux, A. M. J.-C., Odeh, I. O. A., & McBratney, A. B. (2021). Overview of Pedometrics. Reference Module in Earth Systems and Environmental Sciences. https://doi.org/10.1016/B978-0-12-822974-3.00001-X
Wang, G., Singh, M., Wang, J., Xiao, L., & Guan, D. (2021). Effects of marine pollution, climate, and tidal range on biomass and sediment organic carbon in Chinese mangrove forests. CATENA, 202, 105270. https://doi.org/10.1016/J.CATENA.2021.105270
Wang, N., Xue, J., Peng, J., Biswas, A., He, Y., & Shi, Z. (2020). Integrating remote sensing and landscape characteristics to estimate soil salinity using machine learning methods: A case study from southern xinjiang, china. Remote Sensing, 12(24), 1–21. https://doi.org/10.3390/rs12244118
Wang, S., Adhikari, K., Wang, Q., Jin, X., & Li, H. (2018). Role of environmental variables in the spatial distribution of soil carbon (C), nitrogen (N), and C:N ratio from the northeastern coastal agroecosystems in China. Ecological Indicators, 84, 263–272. https://doi.org/10.1016/J.ECOLIND.2017.08.046
Wicaksono, P., Danoedoro, P., Hartono, & Nehren, U. (2015). Mangrove biomass carbon stock mapping of the Karimunjawa Islands using multispectral remote sensing. 37(1), 26–52. https://doi.org/10.1080/01431161.2015.1117679
Wiesmeier, M., Urbanski, L., Hobley, E., Lang, B., von Lützow, M., Marin-Spiotta, E., van Wesemael, B., Rabot, E., Ließ, M., Garcia-Franco, N., Wollschläger, U., Vogel, H. J., & Kögel-Knabner, I. (2019). Soil organic carbon storage as a key function of soils - A review of drivers and indicators at various scales. Geoderma, 333, 149–162. https://doi.org/10.1016/J.GEODERMA.2018.07.026
Woodroffe, C. D., Rogers, K., McKee, K. L., Lovelock, C. E., Mendelssohn, I. A., & Saintilan, N. (2016). Mangrove Sedimentation and Response to Relative Sea-Level Rise. Http://Dx.Doi.Org/10.1146/Annurev-Marine-122414-034025, 8, 243–266. https://doi.org/10.1146/ANNUREV-MARINE-122414-034025
Worthington, T. A., zu Ermgassen, P. S. E., Friess, D. A., Krauss, K. W., Lovelock, C. E., Thorley, J., Tingey, R., Woodroffe, C. D., Bunting, P., Cormier, N., Lagomasino, D., Lucas, R., Murray, N. J., Sutherland, W. J., & Spalding, M. (2020). A global biophysical typology of mangroves and its relevance for ecosystem structure and deforestation. Scientific Reports 2020 10:1, 10(1), 1–11. https://doi.org/10.1038/s41598-020-71194-5
Yang, R. M., Zhang, G. L., Liu, F., Lu, Y. Y., Yang, F., Yang, F., Yang, M., Zhao, Y. G., & Li, D. C. (2016). Comparison of boosted regression tree and random forest models for mapping topsoil organic carbon concentration in an alpine ecosystem. Ecological Indicators, 60, 870–878. https://doi.org/10.1016/j.ecolind.2015.08.036
Zakaria, R. M., Chen, G., Chew, L. L., Sofawi, A. B., Moh, H. H., Chen, S., Teoh, H. W., & Adibah, S. Y. S. N. (2021). Carbon stock of disturbed and undisturbed mangrove ecosystems in Klang Straits, Malaysia. Journal of Sea Research, 176, 102113. https://doi.org/10.1016/J.SEARES.2021.102113
Zarate-Barrera, T. G., & Maldonado, J. H. (2015). Valuing blue carbon: Carbon sequestration benefits provided by the marine protected areas in Colombia. PLoS ONE, 10(5), 1–22. https://doi.org/10.1371/journal.pone.0126627
Zeraatpisheh, M., Garosi, Y., Reza Owliaie, H., Ayoubi, S., Taghizadeh-Mehrjardi, R., Scholten, T., & Xu, M. (2022). Improving the spatial prediction of soil organic carbon using environmental covariates selection: A comparison of a group of environmental covariates. Catena, 208(September 2021), 105723. https://doi.org/10.1016/j.catena.2021.105723
Zhang, Z., Li, J., Tsui, C. C., & Chen, Z. S. (2020). The Study of Gaining More Detailed Variability Information of Soil Organic Carbon in Surface Soils and Its Significance to Enriching the Existing Soil Database. Sustainability 2020, Vol. 12, Page 4866, 12(12), 4866. https://doi.org/10.3390/SU12124866
Zhou, Y., Xue, J., Chen, S., Zhou, Y., Liang, Z., Wang, N., & Shi, Z. (2020). Fine-resolution mapping of soil total nitrogen across china based on weighted model averaging. Remote Sensing, 12(1), 1–18. https://doi.org/10.3390/RS12010085
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xii, 64 páginas + anexos
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.region.none.fl_str_mv Pacífico Colombiano
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Palmira - Ingeniería y Administración - Maestría en Ingeniería - Ingeniería Ambiental
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería y Administración
dc.publisher.place.spa.fl_str_mv Palmira, Valle del Cauca, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Palmira
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/83304/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/83304/2/1085936056_2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/83304/3/1085936056_2023.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
bc58d6c7d50a08cfff2323acd47fb95c
db4490d3ddd3d16c755906fabd634236
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089331369836544
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Guzmán Alvis, Ángela Inés8c733f9c7d11c92667d587cf952caa8bMoreno Muñoz, Angélica Sofía8443ab83ffa458555a4f6ce0789ffd21Benavides Martínez, Iván FelipeAngélica Sofía Moreno Muñoz [0000-0002-2482-3832]2023-02-03T21:40:34Z2023-02-03T21:40:34Z2023-02-02https://repositorio.unal.edu.co/handle/unal/83304Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/Ilustraciones, tablas, gráficasLos manglares representan grandes reservas de carbono, especialmente en el suelo, sin embargo, a escalas locales se necesita mejorar la precisión de sus estimaciones con muestreos en campo, permitiendo un manejo adecuado del ecosistema. Así, el objetivo fue evaluar el carbono total almacenado en el ecosistema de manglar del Pacífico nariñense. Se utilizó información de inventarios forestales en 10 sitios para determinar el carbono almacenado en la biomasa aérea (AGB) y subterránea (BWG) mediante ecuaciones alométricas y factores de conversión de biomasa a carbono. Para el carbono almacenado en el suelo (COS) se construyó un modelo Random Forest (RF) con 28 perfiles tomados a dos metros de profundidad y 18 variables predictoras. Se halló un buen ajuste del modelo RF (R2 de 0.82). El carbono total almacenado presentó una media de 359.05 ± 71.29 t ha-1 , donde la mayor contribución la tuvo el suelo (75.51%), seguida de la biomasa aérea (17.24%) y la biomasa subterránea (7.25%). Las estimaciones de COS fueron menores a las globales, sugiriendo una posible sobreestimación, debido a que los modelos globales no consideran datos ‘in situ’. Finalmente, las tres cuartas partes del carbono total almacenado en el manglar estudiado se encontraron en el suelo, coincidiendo con otros bosques de manglar y resaltando la importancia de su conservación. (Texto tomado de la fuente)Mangroves represent large reserves of carbon, especially in the soil. However, it is necessary to improve the precision of their estimates with field sampling at local scales, allowing adequate management of the ecosystem. The aim was to evaluate the total carbon stored in the mangrove ecosystem of the Nariño. Allometric equations and biomass-tocarbon conversion factors used information from forest inventories at 10 sites to determine carbon stored in aboveground (AGB) and belowground (BWG) biomass(R2 of 0.82) was found. For soil carbon stored (SOC), a Random Forest (RF) model was built with 28 profiles to 2 m depth and 18 predictor variables. A good fit of the RF model was found (R2 of 0.82). The total carbon stored presented a mean of 359.05 ± 71.29 t ha-1 , where the greatest contribution was from the soil (75.51%), followed by aboveground (17.24%) and belowground biomass (7.25%). The SOC estimates were lower than the global models, suggesting a possible overestimation because the global models do not consider 'in situ data. Finally, three-quarters of the total carbon stored in the mangrove studied was found in the soil, coinciding with other mangrove forests, and highlighting the importance of its conservation.MaestríaMagister en Ingeniería AmbientalSe utilizó información de inventarios forestales en 10 sitios para determinar el carbono almacenado en la biomasa aérea (AGB) y subterránea (BWG) mediante ecuaciones alométricas y factores de conversión de biomasa a carbono. Para el carbono almacenado en el suelo (COS) se construyó un modelo Random Forest (RF) con 28 perfiles tomados a dos metros de profundidad y 18 variables predictoras.Ingeniería.Sede Palmiraxii, 64 páginas + anexosapplication/pdfspaUniversidad Nacional de ColombiaPalmira - Ingeniería y Administración - Maestría en Ingeniería - Ingeniería AmbientalFacultad de Ingeniería y AdministraciónPalmira, Valle del Cauca, ColombiaUniversidad Nacional de Colombia - Sede Palmira620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaCarbono azulBlue carbonBiomasa arbórea por encima del sueloAbove ground tree biomassBiomasa sobre el sueloBiomasa por debajo del sueloBelow ground biomassSecuestro de carbonoCarbon sequestrationBiomasa aéreaBiomasa subterráneaCarbono orgánico del sueloManglaresPacífico ColombianoAboveground biomassBelowground biomassSoil organic carbonMangrovesColombian PacificMangrove areasEcosistema marinoMarine ecosystemsEvaluación de almacenamiento de carbono azul en el ecosistema de manglar del Pacífico nariñenseEvaluation of blue carbon storage in the mangrove ecosystem of the Nariño PacificTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMPacífico ColombianoAbatzoglou, J. T., Dobrowski, S. Z., Parks, S. A., & Hegewisch, K. C. (2018). TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015. Scientific Data, 5, 1–12. https://doi.org/10.1038/sdata.2017.191Adame, M. F., Cherian, S., Reef, R., & Stewart-Koster, B. (2017). Mangrove root biomass and the uncertainty of belowground carbon estimations. Forest Ecology and Management, 403, 52–60. https://doi.org/10.1016/J.FORECO.2017.08.016Adame, M. F., Connolly, R. M., Turschwell, M. P., Lovelock, C. E., Fatoyinbo, T., Lagomasino, D., Goldberg, L. A., Holdorf, J., Friess, D. A., Sasmito, S. D., Sanderman, J., Sievers, M., Buelow, C., Kauffman, J. B., Bryan-Brown, D., & Brown, C. J. (2021). Future carbon emissions from global mangrove forest loss. Global Change Biology, 27(12), 2856–2866. https://doi.org/10.1111/GCB.15571Ahmed, R., & Mahmud, K. H. (2022). Potentiality of high-resolution topographic survey using unmanned aerial vehicle in Bangladesh. Remote Sensing Applications: Society and Environment, 26, 100729. https://doi.org/10.1016/J.RSASE.2022.100729Ajonina, G. N., Kairo, J., Grimsditch, G., Sembres, T., Chuyong, G., & Diyouke, E. (2014). Assessment of Mangrove Carbon Stocks in Cameroon, Gabon, the Republic of Congo (RoC) and the Democratic Republic of Congo (DRC) Including their Potential for Reducing Emissions from Deforestation and Forest Degradation (REDD+) (Diop, S., J. Barusseau, & C. Descamps (eds.); pp. 177–189). Springer, Cham. https://doi.org/10.1007/978-3-319-06388-1_15Alongi, D. M. (2014). Carbon cycling and storage in mangrove forests. Annual Review of Marine Science, 6, 195–219. https://doi.org/10.1146/annurev-marine-010213-135020Alongi, D. M. (2018). Mangrove Forests. In Blue Carbon SpringerBriefs in Climate Studies. Springer. https://doi.org/https://doi.org/10.1007/978-3-319-91698-9_3Arrouays, D., Grundy, M. G., Hartemink, A. E., Hempel, J. W., Heuvelink, G. B. M., Hong, S. Y., Lagacherie, P., Lelyk, G., McBratney, A. B., McKenzie, N. J., Mendonca-Santos, M. d. L., Minasny, B., Montanarella, L., Odeh, I. O. A., Sanchez, P. A., Thompson, J. A., & Zhang, G. L. (2014). GlobalSoilMap. Toward a Fine-Resolution Global Grid of Soil Properties. In Advances in Agronomy (Vol. 125). https://doi.org/10.1016/B978-0-12-800137-0.00003-0Atwood, T. B., Connolly, R. M., Almahasheer, H., Carnell, P. E., Duarte, C. M., Lewis, C. J. E., Irigoien, X., Kelleway, J. J., Lavery, P. S., Macreadie, P. I., Serrano, O., Sanders, C. J., Santos, I., Steven, A. D. L., & Lovelock, C. E. (2017). Global patterns in mangrove soil carbon stocks and losses. Nature Climate Change, 7(7), 523–528. https://doi.org/10.1038/NCLIMATE3326Bejarano M, A., Satizabal C, A., & Zapata, F. A. (1993). Estructura del bosque y granulometría del suelo en un manglar de ribera de la costa Pacífica colombiana. Boletín Científico CCCP, 4, 37–45. https://doi.org/10.26640/01213423.4.37_45Benites, V. M., Machado, P. L. O. A., Fidalgo, E. C. C., Coelho, M. R., & Madari, B. E. (2007). Pedotransfer functions for estimating soil bulk density from existing soil survey reports in Brazil. Geoderma, 139(1–2), 90–97. https://doi.org/10.1016/J.GEODERMA.2007.01.005Bermúdez, C., Merly, Á., & Niño, D. (2014). Caracterización de la geomorfología costera y sus coberturas vegetales asociadas, a través de sensores remotos en la bahía de Buenaventura, Valle del Cauca. Boletín Científico CIOH, 34, 49–63. https://doi.org/10.26640/22159045.426Bettinger, P., Boston, K., Siry, J. P., & Grebner, D. L. (2017). Valuing and Characterizing Forest Conditions. In P. Bettinger, K. Boston, J. P. Siry, & D. L. Grebner (Eds.), Forest Management and Planning (Segunda edición, pp. 21–63). Academic Press. https://doi.org/10.1016/B978-0-12-809476-1.00002-3Bhomia, R. K., Kauffman, J. B., & McFadden, T. N. (2016). Ecosystem carbon stocks of mangrove forests along the Pacific and Caribbean coasts of Honduras. Wetlands Ecology and Management, 24(2), 187–201. https://doi.org/10.1007/S11273-016-9483-1/TABLES/5Bishop, T. F. A., McBratney, A. B., & Laslett, G. M. (1999). Modeling soil attribute depth functions with equal-area quadratic smoothing splines. Geoderma, 91(1–2), 27–45. https://doi.org/10.1016/S0016-7061(99)00003-8Blanco-Libreros, J., López-Ródriguez, S., Valencia-Palacios, A., Pérez-Vega, G., & Álvarez-León, R. (2022). HELIO_SP.CO v.2: Hierarchical, Entity-based and Landscape-level Information Observatory for mangrove SPecies in Colombia, version 2. https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/QXQT59Blanco, J. F., Estrada, E. A., Ortiz, L. F., & Urrego, L. E. (2012). Ecosystem-Wide Impacts of Deforestation in Mangroves: The Urabá Gulf (Colombian Caribbean) Case Study. International Scholarly Research Network , 2012, 1–14. https://doi.org/10.5402/2012/958709Bolivar, J. M., Gutierrez-Velez, V. H., & Sierra, C. A. (2018). Carbon stocks in aboveground biomass for Colombian mangroves with associated uncertainties. Regional Studies in Marine Science, 18, 145–155. https://doi.org/10.1016/J.RSMA.2017.12.011Breiman, L. (2001). Random Forests. Machine Learning 2001 45:1, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324Breiman, L. (2003). Manual setting up, using, and understanding random forests v4.0. https://www.stat.berkeley.edu/~breiman/Using_random_forests_v4.0.pdfBukoski, J. J., Elwin, A., Mackenzie, R. A., Sharma, S., Purbopuspito, J., Kopania, B., Apwong, M., Poolsiri, R., & Potts, M. D. (2020). The role of predictive model data in designing mangrove forest carbon programs. Environmental Research Letters, 15(8), 084019. https://doi.org/10.1088/1748-9326/AB7E4EBunting, P., Rosenqvist, A., Hilarides, L., Lucas, R. M., Thomas, N., Tadono, T., Worthington, T. A., Spalding, M., Murray, N. J., & Rebelo, L.-M. (2022). Global Mangrove Extent Change 1996–2020: Global Mangrove Watch Version 3.0. Remote Sensing 2022, Vol. 14, Page 3657, 14(15), 3657. https://doi.org/10.3390/RS14153657Centro de Control de Contaminación del Pacífico [CCCP]. (2003). Aportes al entendimiento de la Bahía de Tumaco. Entorno oceanográfico, costero y de riesgos. In Aportes al entendimiento de la Bahía de Tumaco. Entorno oceanográfico, costero y de riesgos. Dirección General Marítima. https://doi.org/10.26640/9583352225.2003Chang, K.-T. (2019). Introduction to geographic information systems (9th ed.). McGraw-Hill.Chatting, M., Al-Maslamani, I., Walton, M., Skov, M. W., Kennedy, H., Husrevoglu, Y. S., & Le Vay, L. (2022). Future Mangrove Carbon Storage Under Climate Change and Deforestation. Frontiers in Marine Science, 9, 58. https://doi.org/10.3389/FMARS.2022.781876/BIBTEXChave, J., Coomes, D., Jansen, S., Lewis, S. L., Swenson, N. G., & Zanne, A. E. (2009). Towards a worldwide wood economics spectrum. Ecology Letters, 12(4), 351–366. https://doi.org/10.1111/J.1461-0248.2009.01285.XClough, B. F. (1992). Primary Productivity and Growth of Mangrove Forests. In A. I. , Robertson & D. M. Alongi (Eds.), Coastal and Estuarine Studies Tropical Mangrove Ecosystems (pp. 225–249). American Geophysical Union (AGU). https://doi.org/10.1029/CE041P0225Cordero-Llach, L. (1971). Report on a Wood Testing Programme Carried Out for Undp/sf Project 234, Inventory and Forest Demostrations. Panama. Physical and Mechanical Properties of 113 Species. IICA. Instituto interamericano de ciencias agricolas, Turrialba - Costa Rica.Corponariño. (2010). Caracterización, Diagnóstico y Zonificación de los manglares en el departamento de Nariño | WWF. https://www.wwf.org.co/?201159/CaracterizacionDiagnosticoZonificacionmanglaresdepartamentoNarinoCostanza, R., de Groot, R., Braat, L., Kubiszewski, I., Fioramonti, L., Sutton, P., Farber, S., & Grasso, M. (2017). Twenty years of ecosystem services: How far have we come and how far do we still need to go? Ecosystem Services, 28, 1–16. https://doi.org/10.1016/J.ECOSER.2017.09.008De La Peña, A., Rojas, C. A., De La Peña, M., Grande, C., Marta, S., De, A., Cesar, P., & Rojas, A. (2010). Valoración económica del manglar por el almacenamiento de carbono, en la Ciénaga Grande de Santa Marta. Clío América, 4(7), 133–150. https://doi.org/10.21676/23897848.400de Souza, J. J. L. L., Souza, B. I., Xavier, R. A., Cardoso, E. C. M., de Medeiros, J. R., da Fonseca, C. F., & Schaefer, C. E. G. R. (2022). Organic carbon rich-soils in the brazilian semiarid region and paleoenvironmental implications. CATENA, 212, 106101. https://doi.org/10.1016/J.CATENA.2022.106101DelVecchia, A. G., Bruno, J. F., Benninger, L., Alperin, M., Banerje, O., & De Dios Morales, J. (2014). Organic carbon inventories in natural and restored Ecuadorian mangrove forests. PeerJ, 2014(1), e388. https://doi.org/10.7717/PEERJ.388/SUPP-1Dey, A., Ghosh, A., Das, S., Bhattacharyya, R., Tigga, P., Dey, A., Das, S., Bhattacharyya, · R, Tigga, · P, & Ghosh, A. (2021). Belowground Carbon Storage and Dynamics. In Soil Science: Fundamentals to Recent Advances (pp. 49–67). Springer, Singapore. https://doi.org/10.1007/978-981-16-0917-6_4Donato, D. C., Kauffman, J. B., Murdiyarso, D., Kurnianto, S., Stidham, M., & Kanninen, M. (2011). Mangroves among the most carbon-rich forests in the tropics. Nature Geoscience 2011 4:5, 4(5), 293–297. https://doi.org/10.1038/ngeo1123Ellison, J. C. (2015). Vulnerability assessment of mangroves to climate change and sea-level rise impacts. Wetlands Ecology and Management, 23(2), 115–137. https://doi.org/10.1007/S11273-014-9397-8/FIGURES/6Emadi, M., Taghizadeh-Mehrjardi, R., Cherati, A., Danesh, M., Mosavi, A., & Scholten, T. (2020). Predicting and mapping of soil organic carbon using machine learning algorithms in Northern Iran. Remote Sensing, 12(14). https://doi.org/10.3390/rs12142234Fathizad, H., Taghizadeh-Mehrjardi, R., Hakimzadeh Ardakani, M. A., Zeraatpisheh, M., Heung, B., & Scholten, T. (2022). Spatiotemporal Assessment of Soil Organic Carbon Change Using Machine-Learning in Arid Regions. Agronomy, 12(3). https://doi.org/10.3390/agronomy12030628Félix-Pico, E., Holguín-Quiñones, O., Hernández-Herrera, A., & Flores-Verdugo, F. (2006). Producción primaria de los mangles del Estero El Conchalito en Bahía de La Paz (Baja California Sur, México). Ciencias Marinas, 32(1A), 53–63. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0185-38802006000200006&lng=es&nrm=iso&tlng=esFick, S. E., & Hijmans, R. J. (2017). WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315. https://doi.org/10.1002/JOC.5086Figueroa, L., & Álvarez, R. (2011). Evaluación de suelos de manglar en dos localidades de la ensenada de Tumaco, Pacífico colombiano. Arquivos de Ciências Do Mar, 44(1), 12–20.Fricke, K. (2014). Water Balance Model. In Analysis and Modelling of Water Supply and Demand Under Climate Change, Land Use Transformation and Socio-Economic Development (pp. 39–120). Springer, Cham. https://doi.org/10.1007/978-3-319-01610-8_3Friess, D. A., Rogers, K., Lovelock, C. E., Krauss, K. W., Hamilton, S. E., Lee, S. Y., Lucas, R., Primavera, J., Rajkaran, A., & Shi, S. (2019). The State of the World’s Mangrove Forests: Past, Present, and Future. Annual Review of Environment and Resources, 44(April 2021), 89–115. https://doi.org/10.1146/annurev-environ-101718-033302Fu, Y., Liao, H., & Lv, L. (2021). A comparative study of various methods of handling missing data in unsoda. Agriculture (Switzerland), 11(8). https://doi.org/10.3390/agriculture11080727Gao, Y., Zhou, J., Wang, L., Guo, J., Feng, J., Wu, H., & Lin, G. (2019). Distribution patterns and controlling factors for the soil organic carbon in four mangrove forests of China. Global Ecology and Conservation, 17, e00575. https://doi.org/10.1016/J.GECCO.2019.E00575Garcés, O., & Espinosa, L. (2019). Contaminación por Hidrocarburos en Sedimentos de Manglar del Estuario del Río Mira, Pacífico Colombiano, Afectados por Derrames de Petróleo Crudo. Bulletin of Marine and Coastal Research, 48(1), 159–168.Guevara, M., Arroyo, C., Brunsell, N., Cruz, C. O., Domke, G., Equihua, J., Etchevers, J., Hayes, D., Hengl, T., Ibelles, A., Johnson, K., de Jong, B., Libohova, Z., Llamas, R., Nave, L., Ornelas, J. L., Paz, F., Ressl, R., Schwartz, A., … Vargas, R. (2020). Soil Organic Carbon Across Mexico and the Conterminous United States (1991–2010). Global Biogeochemical Cycles, 34(3), no. https://doi.org/10.1029/2019GB006219Gutíerrez, J., Ordoñez, N., Bolívar, S., Bunning, S., Guevara, M., Medina, E., Olivera, C., Olmedo, G., Sevilla, V., & Vargas, R. (2020). Estimación del carbono orgánico en los suelos de ecosistema de páramo en Colombia. Ecosistemas, 29(1), 1–10. https://doi.org/https://doi.org/10.7818/ECOS.1855Hamilton, S. E., & Casey, D. (2016). Creation of a high spatio-temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC-21). Global Ecology and Biogeography, 25(6), 729–738. https://doi.org/10.1111/geb.12449Hamilton, S. E., & Friess, D. A. (2018). Global carbon stocks and potential emissions due to mangrove deforestation from 2000 to 2012. Nature Climate Change, 8(3), 240–244. https://doi.org/10.1038/s41558-018-0090-4Hamilton, S. E., Lovette, J. P., Borbor-Cordova, M. J., & Millones, M. (2017). The Carbon Holdings of Northern Ecuador’s Mangrove Forests. Annals of the American Association of Geographers, 107(1), 54–71. https://doi.org/10.1080/24694452.2016.1226160Hengl, T., & MacMillan, R. . (2019). Predictive Soil Mapping with R. https://soilmapper.org/Hengl, T., Nussbaum, M., Wright, M. N., Heuvelink, G. B. M., & Gräler, B. (2018). Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables. PeerJ, 2018(8). https://doi.org/10.7717/peerj.5518Hernández-Blanco, M., Costanza, R., & Cifuentes-Jara, M. (2018). Valoración económica de los servicios ecosistémicos provistos por los manglares del Golfo de Nicoya. Conservación Internacional.Howard, J., Hoyt, S., Isensee, K., Pidgeon, E., & Telszewski, M. (2018). Coastal Blue Carbon: Methods for assessing carbon stocks and emissions factors in mangroves, tidal salt marshes, and seagrass meadows. Conservation International, Intergovernmental Oceanographic Commission of UNESCO, International Union for Conservation of Nature.Hu, Y., Fest, B. J., Swearer, S. E., & Arndt, S. K. (2021). Fine-scale spatial variability in organic carbon in a temperate mangrove forest: Implications for estimating carbon stocks in blue carbon ecosystems. Estuarine, Coastal and Shelf Science, 259, 107469. https://doi.org/10.1016/J.ECSS.2021.107469Hutchison, J., Manica, A., Swetnam, R., Balmford, A., & Spalding, M. (2014). Predicting Global Patterns in Mangrove Forest Biomass. Conservation Letters, 7(3), 233–240. https://doi.org/10.1111/CONL.12060Ideam. (2014). Atlas Interactivo - Climatológico - IDEAM. http://atlas.ideam.gov.co/visorAtlasClimatologico.htmlIGAC. (2004). Estudio General de suelos y Zonificación de tierras departamento de Nariño. Instituto Geográfico Agustín Codazzi.Invemar. (2010). Informe del Estado de los Ambientes y Recursos Marinos y Costeros en Colombia: Año 2009. Serie de Publicaciones Periódicas.Invemar. (2018). Manglares . https://hub.arcgis.com/datasets/4a14d0ccabf540e9a8934a56a2b55442/explore?layer=5&location=8.448780%2C-78.105500%2C6.00Invemar. (2019). Servicios Ecosistémicos Marinos y Costeros de Colombia: Énfasis en Manglares Y Pastos Marinos. INVEMAR. https://aquadocs.org/handle/1834/15783Invemar. (2020). Sistema de información para la gestión de los manglares en Colombia (SIGMA). http://sigma.invemar.org.co/inicioInvemar, Univalle, & Corponariño. (2017). Implementación de acciones que contribuyan a la rehabilitación ecológica de áreas afectadas por hidrocarburos en zona costera y piedemonte del departamento de Nariño. http://www.invemar.org.co/inicio?p_p_id=101&p_p_lifecycle=0&p_p_state=maximized&p_p_mode=view&_101_struts_action=%2Fasset_publisher%2Fview_content&_101_returnToFullPageURL=%2F&_101_assetEntryId=192196&_101_type=content&_101_urlTitle=implementacion-de-acciones-que-contribuyan-a-la-rehabilitacion-ecologica-de-areas-afectadas-por-hidrocarburos-en-zona-costera-y-piedemonte-del-departa&inheritRedirect=falseJardine, S. L., & Siikamäki, J. V. (2014). A global predictive model of carbon in mangrove soils. Environmental Research Letters, 9(10). https://doi.org/10.1088/1748-9326/9/10/104013Jennerjahn, T. C., Gilman, E., Krauss, K. W., Lacerda, L. D., Nordhaus, I., & Wolanski, E. (2017). Mangrove ecosystems under climate change. In V. Rivera-Monroy, S. Lee, E. Kristensen, & R. Twilley (Eds.), Mangrove Ecosystems: A Global Biogeographic Perspective: Structure, Function, and Services (pp. 211–244). Springer International Publishing. https://doi.org/10.1007/978-3-319-62206-4_7/COVERKauffman, J. B., Adame, M. F., Arifanti, V. B., Schile-Beers, L. M., Bernardino, A. F., Bhomia, R. K., Donato, D. C., Feller, I. C., Ferreira, T. O., Jesus Garcia, M. del C., MacKenzie, R. A., Megonigal, J. P., Murdiyarso, D., Simpson, L., & Hernández Trejo, H. (2020). Total ecosystem carbon stocks of mangroves across broad global environmental and physical gradients. Ecological Monographs, 90(2), 1–18. https://doi.org/10.1002/ecm.1405Kauffman, J. B., & Donato, D. (2012). Protocols for the measurement, monitoring and reporting of structure, biomass and carbon stocks in mangrove forests. Center for International Forestry Research (CIFOR). https://doi.org/10.17528/CIFOR/003749Kauffman, J. B., Heider, C., Norfolk, J., & Payton, F. (2014). Carbon stocks of intact mangroves and carbon emissions arising from their conversion in the Dominican Republic. Ecological Applications, 24(3), 518–527. https://doi.org/10.1890/13-0640.1Kauffman, J., Donato, D., & Adame, M. F. (2013). Protocolo para la medición, monitoreo y reporte de la estructura, biomasa y reservas de carbono de los manglares. In Protocolo para la medición, monitoreo y reporte de la estructura, biomasa y reservas de carbono de los manglares. CIFOR. http://creativecommons.org/licenses/by-nc-nd/3.0/Kida, M., Watanabe, I., Kinjo, K., Kondo, M., Yoshitake, S., Tomotsune, M., Iimura, Y., Umnouysin, S., Suchewaboripont, V., Poungparn, S., Ohtsuka, T., & Fujitake, N. (2021). Organic carbon stock and composition in 3.5-m core mangrove soils (Trat, Thailand). Science of The Total Environment, 801, 149682. https://doi.org/10.1016/J.SCITOTENV.2021.149682Komiyama, A., Ong, J. E., & Poungparn, S. (2008). Allometry, biomass, and productivity of mangrove forests: A review. Aquatic Botany, 89(2), 128–137. https://doi.org/10.1016/J.AQUABOT.2007.12.006Kusumaningtyas, M. A., Hutahaean, A. A., Fischer, H. W., Pérez-Mayo, M., Ransby, D., & Jennerjahn, T. C. (2019). Variability in the organic carbon stocks, sources, and accumulation rates of Indonesian mangrove ecosystems. Estuarine, Coastal and Shelf Science, 218, 310–323. https://doi.org/10.1016/J.ECSS.2018.12.007Lang, A. P., Madi, M., Torres Boeger, M. R., Reissmann, C. B., Geronazzo Martins, K., E D E B O G O T Á, S., De, F., Departamento, C., & Biología, D. E. (2016). Soil-plant nutrient interactions in two mangrove areas at Southern Brazil. Acta Biológica Colombiana, 21(1), 39–50. https://doi.org/10.15446/ABC.V21N1.42894Ley 2243, Ley de protección de ecosistemas de manglar y otras disposiciones (08 de Julio de 2022). Ministerio de Ambiente y Desarrollo Sostenible.Little, E., & Wadsworth, F. (1964). Trees of Puerto Rico and the Virgin Islands. US Department of Agriculture. https://doi.org/10.2307/2484965López-Angarita, J., Roberts, C. M., Tilley, A., Hawkins, J. P., & Cooke, R. G. (2016). Mangroves and people: Lessons from a history of use and abuse in four Latin American countries. Forest Ecology and Management, 368, 151–162. https://doi.org/10.1016/J.FORECO.2016.03.020Lyard, F. H., Allain, D. J., Cancet, M., Carrère, L., & Picot, N. (2021). FES2014 global ocean tide atlas: Design and performance. Ocean Science, 17(3), 615–649. https://doi.org/10.5194/OS-17-615-2021Makonyo, M., & Msabi, M. M. (2021). Identification of groundwater potential recharge zones using GIS-based multi-criteria decision analysis: A case study of semi-arid midlands Manyara fractured aquifer, North-Eastern Tanzania. Remote Sensing Applications: Society and Environment, 23, 100544. https://doi.org/10.1016/J.RSASE.2021.100544Malone, B., McBratney, A. B., Minasny, B., & Laslett, G. M. (2009). Mapping continuous depth functions of soil carbon storage and available water capacity. Geoderma, 154(1–2), 138–152. https://doi.org/10.1016/j.geoderma.2009.10.007Malone, B., Minasny, B., & Mcbratney, A. B. (2017). Using R for Digital Soil Mapping. Springer. http://www.springer.com/series/8746McNally, A., & NASA/GSFC/HSL. (2018). FLDAS Noah Land Surface Model L4 Global Monthly 0.1 x 0.1 degree (MERRA-2 and CHIRPS) (FLDAS_NOAH01_C_GL_M 001). https://disc.gsfc.nasa.gov/datasets/FLDAS_NOAH01_C_GL_M_001/summaryMejía-Rentería, J. C., Castellanos-Galindo, G. A., Cantera-Kintz, J. R., & Hamilton, S. E. (2018). A comparison of Colombian Pacific mangrove extent estimations: Implications for the conservation of a unique Neotropical tidal forest. Estuarine, Coastal and Shelf Science, 212, 233–240. https://doi.org/10.1016/j.ecss.2018.07.020Monsalve, A., & Ramírez, G. (2015). Caracterización de la estructura y contenido de carbono de los bosques de manglar en el área de jurisdicción del Consejo comunitario La Plata, Bahía Málaga, Valle del Cauca. http://climares.invemar.org.co/proyectos/-/asset_publisher/3W2QxkeIz5Ex/content/id/41676Murillo-Sandoval, P. J., Fatoyinbo, L., & Simard, M. (2022). Mangroves Cover Change Trajectories 1984-2020: The Gradual Decrease of Mangroves in Colombia. Frontiers in Marine Science, 9, 1277. https://doi.org/10.3389/FMARS.2022.892946/BIBTEXNASA Goddard Space Flight Center, & Ocean Ecology Laboratory. (2014). MODIS-Aqua Ocean Color Data; NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group. https://oceancolor.gsfc.nasa.gov/data/aqua/Olmedo, G. ., & Baritz, R. (2018). Preparation of local soil data. In Y. Yigini, G. . Olmedo, S. Reiter, R. Baritz, K. Viatkin, & R. . Vargas (Eds.), Soil Organic Carbon Mapping Cookbook (2nd ed., pp. 19–35). FAO. https://fao-gsp.github.io/SOC-Mapping-Cookbook/index.htmlPalacios, M., Vargas, E., & de la Pava, M. (1990). Determinación del aporte de materia orgánica del Manglar en la zona de Bocagrande. Boletín Científico CCCP, 1(1), 55–72. https://doi.org/10.26640/01213423.1.55_72Palacios Peñaranda, M. L., Cantera Kintz, J. R., & Peña Salamanca, E. J. (2019). Carbon stocks in mangrove forests of the Colombian Pacific. Estuarine, Coastal and Shelf Science, 227(May), 106299. https://doi.org/10.1016/j.ecss.2019.106299Parques Nacionales Naturales de Colombia [PNNC]. (2017). Actualización plan de manejo Parque Nacional Natural Sanquianga 2018-2023. https://www.parquesnacionales.gov.co/portal/wp-content/uploads/2020/10/plan-de-manejo-pnn-sanquianga.pdfParra, A. S., & Restrepo Ángel, J. D. (2014). The environmental collapse in the Patía river, Colombia: Morphological variations and impacts on mangrove ecosystems. Latin American Journal of Aquatic Research, 42(1), 40–60. https://doi.org/10.3856/vol42-issue1-fulltext-4Perdomo-Trujillo, L. V., Mancera-Pineda, J. E., Medina-Calderón, J. H., Sánchez-Núñez, D. A., & Schnetter, M. L. (2021). Effect of Restoration Actions on Organic Carbon Pools in the Lagoon—Delta Ciénaga Grande de Santa Marta, Colombian Caribbean. Water 2021, Vol. 13, Page 1297, 13(9), 1297. https://doi.org/10.3390/W13091297Perdomo, L. (2020). Biomasa y producción radicular en manglares de cuenca neotropicales a lo largo de una trayectoria de restauración y su contribución a las reservas de carbono en el ecosistema. Universidad Nacional de Colombia.Pham, T. D., Yokoya, N., Nguyen, T. T. T., Le, N. N., Ha, N. T., Xia, J., Takeuchi, W., & Pham, T. D. (2020). Improvement of Mangrove Soil Carbon Stocks Estimation in North Vietnam Using Sentinel-2 Data and Machine Learning Approach. Https://Doi.Org/10.1080/15481603.2020.1857623, 58(1), 68–87. https://doi.org/10.1080/15481603.2020.1857623Phillips, S., & US National Oceanographic Data Center. (2011). AVHRR Pathfinder version 5.0 global 4km sea surface temperature (SST) day-night monthly and yearly averages for 1985-2009 (NCEI Accession 0077816). https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.nodc:0077816Poggio, L., De Sousa, L. M., Batjes, N. H., Heuvelink, G. B. M., Kempen, B., Ribeiro, E., & Rossiter, D. (2021). SoilGrids 2.0: Producing soil information for the globe with quantified spatial uncertainty. Soil, 7(1), 217–240. https://doi.org/10.5194/soil-7-217-2021R Core Team. (2021). R: The R Stats Package. https://stat.ethz.ch/R-manual/R-devel/library/stats/html/stats-package.htmlR Core Team. (2022). Package ‘caret.’ CRAN. https://cran.r-project.org/web/packages/caret/caret.pdfResolución 1447, se reglamenta el Sistema de monitoreo, reporte y verificación de las acciones de mitigación a nivel nacional (01 de Agosto de 2018). Ministerio de Ambiente y Desarrollo Sostenible.Rodríguez-Rodríguez, J. A., Sierra-Correa, P. C., Gómez-Cubillos, M. C., & Villanueva, L. V. L. (2016). Mangroves of Colombia. In C. . Finlayson, G. . Milton, R. . Prentice, & N. Davidson (Eds.), The Wetland Book (pp. 1–10). Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6173-5_280-2Romero-Berny, E. I., Acosta-Velázquez, J., Tovilla-Hernández, C., Schmook, B., & Gómez-Ortega, R. (2016). Cambios de cobertura y fragmentación de manglares en la región del Soconusco, Chiapas, México, 1994-2011 . Revista Geográfica de América Central, 1(54), 153–169. https://doi.org/10.15359/RGAC.1-54.7Rovai, A. S., Riul, P., Twilley, R. R., Castañeda-Moya, E., Rivera-Monroy, V. H., Williams, A. A., Simard, M., Cifuentes-Jara, M., Lewis, R. R., Crooks, S., Horta, P. A., Schaeffer-Novelli, Y., Cintrón, G., Pozo-Cajas, M., & Pagliosa, P. R. (2016). Scaling mangrove aboveground biomass from site-level to continental-scale. Global Ecology and Biogeography, 25(3), 286–298. https://doi.org/10.1111/GEB.12409Rovai, A. S., Twilley, R. R., Castañeda-Moya, E., Riul, P., Cifuentes-Jara, M., Manrow-Villalobos, M., Horta, P. A., Simonassi, J. C., Fonseca, A. L., & Pagliosa, P. R. (2018). Global controls on carbon storage in mangrove soils. Nature Climate Change, 8(6), 534–538. https://doi.org/10.1038/s41558-018-0162-5Rowley, M. C., Grand, S., & Verrecchia, É. P. (2018). Calcium-mediated stabilisation of soil organic carbon. Biogeochemistry, 137(1–2), 27–49. https://doi.org/10.1007/S10533-017-0410-1/FIGURES/3Rozainah, M. Z., Nazri, M. N., Sofawi, A. B., Hemati, Z., & Juliana, W. A. (2018). Estimation of carbon pool in soil, above and below ground vegetation at different types of mangrove forests in Peninsular Malaysia. Marine Pollution Bulletin, 137, 237–245. https://doi.org/10.1016/J.MARPOLBUL.2018.10.023Saavedra-Hortua, D. A., Friess, D. A., Zimmer, M., & Gillis, L. G. (2020). Sources of Particulate Organic Matter across Mangrove Forests and Adjacent Ecosystems in Different Geomorphic Settings. Wetlands, 40(5), 1047–1059. https://doi.org/10.1007/S13157-019-01261-9/FIGURES/7Sahu, B., Ghosh, A. K., & Seema. (2021). Deterministic and geostatistical models for predicting soil organic carbon in a 60 ha farm on Inceptisol in Varanasi, India. Geoderma Regional, 26, e00413. https://doi.org/10.1016/J.GEODRS.2021.E00413Sánchez, H., Álvarez, R., Guevara, O., Zamora, A., Rodríguez, H., & Bravo, H. (1997). Diagnóstico y zonificación preliminar de los manglares del Pacífico de Colombia. Ministerio del Medio Ambiente.Sanderman, J., Hengl, T., Fiske, G., Solvik, K., Adame, M. F., Benson, L., Bukoski, J. J., Carnell, P., Cifuentes-Jara, M., Donato, D., Duncan, C., Eid, E. M., Ermgassen, P. Z., Lewis, C. J. E., Macreadie, P. I., Glass, L., Gress, S., Jardine, S. L., Jones, T. G., … Landis, E. (2018). A global map of mangrove forest soil carbon at 30 m spatial resolution. Environmental Research Letters, 13(5). https://doi.org/10.1088/1748-9326/aabe1cSasmito, S. D., Kuzyakov, Y., Lubis, A. A., Murdiyarso, D., Hutley, L. B., Bachri, S., Friess, D. A., Martius, C., & Borchard, N. (2020). Organic carbon burial and sources in soils of coastal mudflat and mangrove ecosystems. Catena, 187(December 2019), 104414. https://doi.org/10.1016/j.catena.2019.104414Simard, M., Fatoyinbo, L., Smetanka, C., Rivera-Monroy, V. H., Castañeda-Moya, E., Thomas, N., & Van der Stocken, T. (2019). Mangrove canopy height globally related to precipitation, temperature and cyclone frequency. Nature Geoscience, 12(1), 40–45. https://doi.org/10.1038/s41561-018-0279-1Southwell, C. R., & Bultman, J. D. (1971). Marine Borer Resistance of Untreated Woods Over Long Periods of Immersion in Tropical Waters. Biotropica, 3(1), 81. https://doi.org/10.2307/2989709Stekhoven, D. J., & Bühlmann, P. (2012). MissForest—non-parametric missing value imputation for mixed-type data. Bioinformatics, 28(1), 112–118. https://doi.org/10.1093/BIOINFORMATICS/BTR597Stockmann, U., Adams, M. A., Crawford, J. W., Field, D. J., Henakaarchchi, N., Jenkins, M., Minasny, B., McBratney, A. B., Courcelles, V. de R. de, Singh, K., Wheeler, I., Abbott, L., Angers, D. A., Baldock, J., Bird, M., Brookes, P. C., Chenu, C., Jastrow, J. D., Lal, R., … Zimmermann, M. (2013). The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agriculture, Ecosystems & Environment, 164, 80–99. https://doi.org/10.1016/J.AGEE.2012.10.001Suhaili, N. S., Fei, J. L. J., Sha’ari, F. W., Idris, M. I., Hatta, S. M., Kodoh, J., & Besar, N. A. (2020). Carbon stock estimation of mangrove forest in Sulaman Lake Forest Reserve, Sabah, Malaysia. Biodiversitas Journal of Biological Diversity, 21(12), 5657–5664. https://doi.org/10.13057/BIODIV/D211223Taillardat, P., Friess, D. A., & Lupascu, M. (2018). Mangrove blue carbon strategies for climate change mitigation are most effective at the national scale. Biology Letters, 14(10). https://doi.org/10.1098/rsbl.2018.0251Tanner, M. K., Moity, N., Costa, M. T., Marin Jarrin, J. R., Aburto-Oropeza, O., & Salinas-de-León, P. (2019). Mangroves in the Galapagos: Ecosystem services and their valuation. Ecological Economics, 160(June 2018), 12–24. https://doi.org/10.1016/j.ecolecon.2019.01.024Trettin, C. C., Dai, Z., Tang, W., Lagomasino, D., Thomas, N., Lee, S. K., Simard, M., Ebanega, M. O., Stoval, A., & Fatoyinbo, T. E. (2021). Mangrove carbon stocks in Pongara National Park, Gabon. Estuarine, Coastal and Shelf Science, 259(April 2020). https://doi.org/10.1016/j.ecss.2021.107432Tue, N. T., Dung, L. V., Nhuan, M. T., & Omori, K. (2014). Carbon storage of a tropical mangrove forest in Mui Ca Mau National Park, Vietnam. CATENA, 121, 119–126. https://doi.org/10.1016/J.CATENA.2014.05.008Twilley, R. R., Castañeda-Moya, E., Rivera-Monroy, V. H., & Rovai, A. (2017). Productivity and carbon dynamics in mangrove wetlands. In V. . Rivera-Monroy, S. . Lee, E. . Kristensen, & R. Twilley (Eds.), Mangrove Ecosystems: A Global Biogeographic Perspective: Structure, Function, and Services (pp. 113–162). Springer International Publishing. https://doi.org/10.1007/978-3-319-62206-4_5/FIGURES/14Twilley, R. R., & Rivera-Monroy, V. H. (2009). Ecogeomorphic Models of Nutrient Biogeochemistry for Mangrove Wetlands. In Coastal Wetlands: An Integrated Ecosystem Approach (First edit, Issue June, pp. 641–684). Elsevier. https://doi.org/10.1016/B978-0-444-53103-2.00023-5Twilley, R. R., Rivera-Monroy, V. H., Rovai, A. S., Castañeda-Moya, E., & Davis, S. (2019). Mangrove Biogeochemistry at Local to Global Scales Using Ecogeomorphic Approaches. In G. . Perillo, E. . Wolanski, D. . Cahoon, & Hopkinson C. (Eds.), Coastal Wetlands: An Integrated Ecosystem Approach (pp. 717–785). Elsevier. https://doi.org/10.1016/B978-0-444-63893-9.00021-6Twilley, R. R., Rovai, A. S., & Riul, P. (2018). Coastal morphology explains global blue carbon distributions. Frontiers in Ecology and the Environment, 16(9), 503–508. https://doi.org/10.1002/FEE.1937Wadoux, A. M. J.-C., Odeh, I. O. A., & McBratney, A. B. (2021). Overview of Pedometrics. Reference Module in Earth Systems and Environmental Sciences. https://doi.org/10.1016/B978-0-12-822974-3.00001-XWang, G., Singh, M., Wang, J., Xiao, L., & Guan, D. (2021). Effects of marine pollution, climate, and tidal range on biomass and sediment organic carbon in Chinese mangrove forests. CATENA, 202, 105270. https://doi.org/10.1016/J.CATENA.2021.105270Wang, N., Xue, J., Peng, J., Biswas, A., He, Y., & Shi, Z. (2020). Integrating remote sensing and landscape characteristics to estimate soil salinity using machine learning methods: A case study from southern xinjiang, china. Remote Sensing, 12(24), 1–21. https://doi.org/10.3390/rs12244118Wang, S., Adhikari, K., Wang, Q., Jin, X., & Li, H. (2018). Role of environmental variables in the spatial distribution of soil carbon (C), nitrogen (N), and C:N ratio from the northeastern coastal agroecosystems in China. Ecological Indicators, 84, 263–272. https://doi.org/10.1016/J.ECOLIND.2017.08.046Wicaksono, P., Danoedoro, P., Hartono, & Nehren, U. (2015). Mangrove biomass carbon stock mapping of the Karimunjawa Islands using multispectral remote sensing. 37(1), 26–52. https://doi.org/10.1080/01431161.2015.1117679Wiesmeier, M., Urbanski, L., Hobley, E., Lang, B., von Lützow, M., Marin-Spiotta, E., van Wesemael, B., Rabot, E., Ließ, M., Garcia-Franco, N., Wollschläger, U., Vogel, H. J., & Kögel-Knabner, I. (2019). Soil organic carbon storage as a key function of soils - A review of drivers and indicators at various scales. Geoderma, 333, 149–162. https://doi.org/10.1016/J.GEODERMA.2018.07.026Woodroffe, C. D., Rogers, K., McKee, K. L., Lovelock, C. E., Mendelssohn, I. A., & Saintilan, N. (2016). Mangrove Sedimentation and Response to Relative Sea-Level Rise. Http://Dx.Doi.Org/10.1146/Annurev-Marine-122414-034025, 8, 243–266. https://doi.org/10.1146/ANNUREV-MARINE-122414-034025Worthington, T. A., zu Ermgassen, P. S. E., Friess, D. A., Krauss, K. W., Lovelock, C. E., Thorley, J., Tingey, R., Woodroffe, C. D., Bunting, P., Cormier, N., Lagomasino, D., Lucas, R., Murray, N. J., Sutherland, W. J., & Spalding, M. (2020). A global biophysical typology of mangroves and its relevance for ecosystem structure and deforestation. Scientific Reports 2020 10:1, 10(1), 1–11. https://doi.org/10.1038/s41598-020-71194-5Yang, R. M., Zhang, G. L., Liu, F., Lu, Y. Y., Yang, F., Yang, F., Yang, M., Zhao, Y. G., & Li, D. C. (2016). Comparison of boosted regression tree and random forest models for mapping topsoil organic carbon concentration in an alpine ecosystem. Ecological Indicators, 60, 870–878. https://doi.org/10.1016/j.ecolind.2015.08.036Zakaria, R. M., Chen, G., Chew, L. L., Sofawi, A. B., Moh, H. H., Chen, S., Teoh, H. W., & Adibah, S. Y. S. N. (2021). Carbon stock of disturbed and undisturbed mangrove ecosystems in Klang Straits, Malaysia. Journal of Sea Research, 176, 102113. https://doi.org/10.1016/J.SEARES.2021.102113Zarate-Barrera, T. G., & Maldonado, J. H. (2015). Valuing blue carbon: Carbon sequestration benefits provided by the marine protected areas in Colombia. PLoS ONE, 10(5), 1–22. https://doi.org/10.1371/journal.pone.0126627Zeraatpisheh, M., Garosi, Y., Reza Owliaie, H., Ayoubi, S., Taghizadeh-Mehrjardi, R., Scholten, T., & Xu, M. (2022). Improving the spatial prediction of soil organic carbon using environmental covariates selection: A comparison of a group of environmental covariates. Catena, 208(September 2021), 105723. https://doi.org/10.1016/j.catena.2021.105723Zhang, Z., Li, J., Tsui, C. C., & Chen, Z. S. (2020). The Study of Gaining More Detailed Variability Information of Soil Organic Carbon in Surface Soils and Its Significance to Enriching the Existing Soil Database. Sustainability 2020, Vol. 12, Page 4866, 12(12), 4866. https://doi.org/10.3390/SU12124866Zhou, Y., Xue, J., Chen, S., Zhou, Y., Liang, Z., Wang, N., & Shi, Z. (2020). Fine-resolution mapping of soil total nitrogen across china based on weighted model averaging. Remote Sensing, 12(1), 1–18. https://doi.org/10.3390/RS12010085EstudiantesPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/83304/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1085936056_2023.pdf1085936056_2023.pdfTesis de Maestría en Ingeniería Ambientalapplication/pdf2211563https://repositorio.unal.edu.co/bitstream/unal/83304/2/1085936056_2023.pdfbc58d6c7d50a08cfff2323acd47fb95cMD52THUMBNAIL1085936056_2023.pdf.jpg1085936056_2023.pdf.jpgGenerated Thumbnailimage/jpeg4636https://repositorio.unal.edu.co/bitstream/unal/83304/3/1085936056_2023.pdf.jpgdb4490d3ddd3d16c755906fabd634236MD53unal/83304oai:repositorio.unal.edu.co:unal/833042023-08-15 23:04:02.389Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=