Evaluación de almacenamiento de carbono azul en el ecosistema de manglar del Pacífico nariñense
Ilustraciones, tablas, gráficas
- Autores:
-
Moreno Muñoz, Angélica Sofía
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/83304
- Palabra clave:
- 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Carbono azul
Blue carbon
Biomasa arbórea por encima del suelo
Above ground tree biomass
Biomasa sobre el suelo
Biomasa por debajo del suelo
Below ground biomass
Secuestro de carbono
Carbon sequestration
Biomasa aérea
Biomasa subterránea
Carbono orgánico del suelo
Manglares
Pacífico Colombiano
Aboveground biomass
Belowground biomass
Soil organic carbon
Mangroves
Colombian Pacific
Mangrove areas
Ecosistema marino
Marine ecosystems
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_61e9d701fd5660375cef7aacca22ffd3 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/83304 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Evaluación de almacenamiento de carbono azul en el ecosistema de manglar del Pacífico nariñense |
dc.title.translated.eng.fl_str_mv |
Evaluation of blue carbon storage in the mangrove ecosystem of the Nariño Pacific |
title |
Evaluación de almacenamiento de carbono azul en el ecosistema de manglar del Pacífico nariñense |
spellingShingle |
Evaluación de almacenamiento de carbono azul en el ecosistema de manglar del Pacífico nariñense 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería Carbono azul Blue carbon Biomasa arbórea por encima del suelo Above ground tree biomass Biomasa sobre el suelo Biomasa por debajo del suelo Below ground biomass Secuestro de carbono Carbon sequestration Biomasa aérea Biomasa subterránea Carbono orgánico del suelo Manglares Pacífico Colombiano Aboveground biomass Belowground biomass Soil organic carbon Mangroves Colombian Pacific Mangrove areas Ecosistema marino Marine ecosystems |
title_short |
Evaluación de almacenamiento de carbono azul en el ecosistema de manglar del Pacífico nariñense |
title_full |
Evaluación de almacenamiento de carbono azul en el ecosistema de manglar del Pacífico nariñense |
title_fullStr |
Evaluación de almacenamiento de carbono azul en el ecosistema de manglar del Pacífico nariñense |
title_full_unstemmed |
Evaluación de almacenamiento de carbono azul en el ecosistema de manglar del Pacífico nariñense |
title_sort |
Evaluación de almacenamiento de carbono azul en el ecosistema de manglar del Pacífico nariñense |
dc.creator.fl_str_mv |
Moreno Muñoz, Angélica Sofía |
dc.contributor.advisor.none.fl_str_mv |
Guzmán Alvis, Ángela Inés |
dc.contributor.author.none.fl_str_mv |
Moreno Muñoz, Angélica Sofía |
dc.contributor.educationalvalidator.none.fl_str_mv |
Benavides Martínez, Iván Felipe |
dc.contributor.orcid.spa.fl_str_mv |
Angélica Sofía Moreno Muñoz [0000-0002-2482-3832] |
dc.subject.ddc.spa.fl_str_mv |
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería |
topic |
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería Carbono azul Blue carbon Biomasa arbórea por encima del suelo Above ground tree biomass Biomasa sobre el suelo Biomasa por debajo del suelo Below ground biomass Secuestro de carbono Carbon sequestration Biomasa aérea Biomasa subterránea Carbono orgánico del suelo Manglares Pacífico Colombiano Aboveground biomass Belowground biomass Soil organic carbon Mangroves Colombian Pacific Mangrove areas Ecosistema marino Marine ecosystems |
dc.subject.agrovoc.none.fl_str_mv |
Carbono azul Blue carbon Biomasa arbórea por encima del suelo Above ground tree biomass Biomasa sobre el suelo Biomasa por debajo del suelo Below ground biomass Secuestro de carbono |
dc.subject.armarc.none.fl_str_mv |
Carbon sequestration |
dc.subject.proposal.spa.fl_str_mv |
Biomasa aérea Biomasa subterránea Carbono orgánico del suelo Manglares Pacífico Colombiano |
dc.subject.proposal.eng.fl_str_mv |
Aboveground biomass Belowground biomass Soil organic carbon Mangroves Colombian Pacific |
dc.subject.unesco.none.fl_str_mv |
Mangrove areas Ecosistema marino Marine ecosystems |
description |
Ilustraciones, tablas, gráficas |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-02-03T21:40:34Z |
dc.date.available.none.fl_str_mv |
2023-02-03T21:40:34Z |
dc.date.issued.none.fl_str_mv |
2023-02-02 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/83304 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/83304 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A., & Hegewisch, K. C. (2018). TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015. Scientific Data, 5, 1–12. https://doi.org/10.1038/sdata.2017.191 Adame, M. F., Cherian, S., Reef, R., & Stewart-Koster, B. (2017). Mangrove root biomass and the uncertainty of belowground carbon estimations. Forest Ecology and Management, 403, 52–60. https://doi.org/10.1016/J.FORECO.2017.08.016 Adame, M. F., Connolly, R. M., Turschwell, M. P., Lovelock, C. E., Fatoyinbo, T., Lagomasino, D., Goldberg, L. A., Holdorf, J., Friess, D. A., Sasmito, S. D., Sanderman, J., Sievers, M., Buelow, C., Kauffman, J. B., Bryan-Brown, D., & Brown, C. J. (2021). Future carbon emissions from global mangrove forest loss. Global Change Biology, 27(12), 2856–2866. https://doi.org/10.1111/GCB.15571 Ahmed, R., & Mahmud, K. H. (2022). Potentiality of high-resolution topographic survey using unmanned aerial vehicle in Bangladesh. Remote Sensing Applications: Society and Environment, 26, 100729. https://doi.org/10.1016/J.RSASE.2022.100729 Ajonina, G. N., Kairo, J., Grimsditch, G., Sembres, T., Chuyong, G., & Diyouke, E. (2014). Assessment of Mangrove Carbon Stocks in Cameroon, Gabon, the Republic of Congo (RoC) and the Democratic Republic of Congo (DRC) Including their Potential for Reducing Emissions from Deforestation and Forest Degradation (REDD+) (Diop, S., J. Barusseau, & C. Descamps (eds.); pp. 177–189). Springer, Cham. https://doi.org/10.1007/978-3-319-06388-1_15 Alongi, D. M. (2014). Carbon cycling and storage in mangrove forests. Annual Review of Marine Science, 6, 195–219. https://doi.org/10.1146/annurev-marine-010213-135020 Alongi, D. M. (2018). Mangrove Forests. In Blue Carbon SpringerBriefs in Climate Studies. Springer. https://doi.org/https://doi.org/10.1007/978-3-319-91698-9_3 Arrouays, D., Grundy, M. G., Hartemink, A. E., Hempel, J. W., Heuvelink, G. B. M., Hong, S. Y., Lagacherie, P., Lelyk, G., McBratney, A. B., McKenzie, N. J., Mendonca-Santos, M. d. L., Minasny, B., Montanarella, L., Odeh, I. O. A., Sanchez, P. A., Thompson, J. A., & Zhang, G. L. (2014). GlobalSoilMap. Toward a Fine-Resolution Global Grid of Soil Properties. In Advances in Agronomy (Vol. 125). https://doi.org/10.1016/B978-0-12-800137-0.00003-0 Atwood, T. B., Connolly, R. M., Almahasheer, H., Carnell, P. E., Duarte, C. M., Lewis, C. J. E., Irigoien, X., Kelleway, J. J., Lavery, P. S., Macreadie, P. I., Serrano, O., Sanders, C. J., Santos, I., Steven, A. D. L., & Lovelock, C. E. (2017). Global patterns in mangrove soil carbon stocks and losses. Nature Climate Change, 7(7), 523–528. https://doi.org/10.1038/NCLIMATE3326 Bejarano M, A., Satizabal C, A., & Zapata, F. A. (1993). Estructura del bosque y granulometría del suelo en un manglar de ribera de la costa Pacífica colombiana. Boletín Científico CCCP, 4, 37–45. https://doi.org/10.26640/01213423.4.37_45 Benites, V. M., Machado, P. L. O. A., Fidalgo, E. C. C., Coelho, M. R., & Madari, B. E. (2007). Pedotransfer functions for estimating soil bulk density from existing soil survey reports in Brazil. Geoderma, 139(1–2), 90–97. https://doi.org/10.1016/J.GEODERMA.2007.01.005 Bermúdez, C., Merly, Á., & Niño, D. (2014). Caracterización de la geomorfología costera y sus coberturas vegetales asociadas, a través de sensores remotos en la bahía de Buenaventura, Valle del Cauca. Boletín Científico CIOH, 34, 49–63. https://doi.org/10.26640/22159045.426 Bettinger, P., Boston, K., Siry, J. P., & Grebner, D. L. (2017). Valuing and Characterizing Forest Conditions. In P. Bettinger, K. Boston, J. P. Siry, & D. L. Grebner (Eds.), Forest Management and Planning (Segunda edición, pp. 21–63). Academic Press. https://doi.org/10.1016/B978-0-12-809476-1.00002-3 Bhomia, R. K., Kauffman, J. B., & McFadden, T. N. (2016). Ecosystem carbon stocks of mangrove forests along the Pacific and Caribbean coasts of Honduras. Wetlands Ecology and Management, 24(2), 187–201. https://doi.org/10.1007/S11273-016-9483-1/TABLES/5 Bishop, T. F. A., McBratney, A. B., & Laslett, G. M. (1999). Modeling soil attribute depth functions with equal-area quadratic smoothing splines. Geoderma, 91(1–2), 27–45. https://doi.org/10.1016/S0016-7061(99)00003-8 Blanco-Libreros, J., López-Ródriguez, S., Valencia-Palacios, A., Pérez-Vega, G., & Álvarez-León, R. (2022). HELIO_SP.CO v.2: Hierarchical, Entity-based and Landscape-level Information Observatory for mangrove SPecies in Colombia, version 2. https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/QXQT59 Blanco, J. F., Estrada, E. A., Ortiz, L. F., & Urrego, L. E. (2012). Ecosystem-Wide Impacts of Deforestation in Mangroves: The Urabá Gulf (Colombian Caribbean) Case Study. International Scholarly Research Network , 2012, 1–14. https://doi.org/10.5402/2012/958709 Bolivar, J. M., Gutierrez-Velez, V. H., & Sierra, C. A. (2018). Carbon stocks in aboveground biomass for Colombian mangroves with associated uncertainties. Regional Studies in Marine Science, 18, 145–155. https://doi.org/10.1016/J.RSMA.2017.12.011 Breiman, L. (2001). Random Forests. Machine Learning 2001 45:1, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324 Breiman, L. (2003). Manual setting up, using, and understanding random forests v4.0. https://www.stat.berkeley.edu/~breiman/Using_random_forests_v4.0.pdf Bukoski, J. J., Elwin, A., Mackenzie, R. A., Sharma, S., Purbopuspito, J., Kopania, B., Apwong, M., Poolsiri, R., & Potts, M. D. (2020). The role of predictive model data in designing mangrove forest carbon programs. Environmental Research Letters, 15(8), 084019. https://doi.org/10.1088/1748-9326/AB7E4E Bunting, P., Rosenqvist, A., Hilarides, L., Lucas, R. M., Thomas, N., Tadono, T., Worthington, T. A., Spalding, M., Murray, N. J., & Rebelo, L.-M. (2022). Global Mangrove Extent Change 1996–2020: Global Mangrove Watch Version 3.0. Remote Sensing 2022, Vol. 14, Page 3657, 14(15), 3657. https://doi.org/10.3390/RS14153657 Centro de Control de Contaminación del Pacífico [CCCP]. (2003). Aportes al entendimiento de la Bahía de Tumaco. Entorno oceanográfico, costero y de riesgos. In Aportes al entendimiento de la Bahía de Tumaco. Entorno oceanográfico, costero y de riesgos. Dirección General Marítima. https://doi.org/10.26640/9583352225.2003 Chang, K.-T. (2019). Introduction to geographic information systems (9th ed.). McGraw-Hill. Chatting, M., Al-Maslamani, I., Walton, M., Skov, M. W., Kennedy, H., Husrevoglu, Y. S., & Le Vay, L. (2022). Future Mangrove Carbon Storage Under Climate Change and Deforestation. Frontiers in Marine Science, 9, 58. https://doi.org/10.3389/FMARS.2022.781876/BIBTEX Chave, J., Coomes, D., Jansen, S., Lewis, S. L., Swenson, N. G., & Zanne, A. E. (2009). Towards a worldwide wood economics spectrum. Ecology Letters, 12(4), 351–366. https://doi.org/10.1111/J.1461-0248.2009.01285.X Clough, B. F. (1992). Primary Productivity and Growth of Mangrove Forests. In A. I. , Robertson & D. M. Alongi (Eds.), Coastal and Estuarine Studies Tropical Mangrove Ecosystems (pp. 225–249). American Geophysical Union (AGU). https://doi.org/10.1029/CE041P0225 Cordero-Llach, L. (1971). Report on a Wood Testing Programme Carried Out for Undp/sf Project 234, Inventory and Forest Demostrations. Panama. Physical and Mechanical Properties of 113 Species. IICA. Instituto interamericano de ciencias agricolas, Turrialba - Costa Rica. Corponariño. (2010). Caracterización, Diagnóstico y Zonificación de los manglares en el departamento de Nariño | WWF. https://www.wwf.org.co/?201159/CaracterizacionDiagnosticoZonificacionmanglaresdepartamentoNarino Costanza, R., de Groot, R., Braat, L., Kubiszewski, I., Fioramonti, L., Sutton, P., Farber, S., & Grasso, M. (2017). Twenty years of ecosystem services: How far have we come and how far do we still need to go? Ecosystem Services, 28, 1–16. https://doi.org/10.1016/J.ECOSER.2017.09.008 De La Peña, A., Rojas, C. A., De La Peña, M., Grande, C., Marta, S., De, A., Cesar, P., & Rojas, A. (2010). Valoración económica del manglar por el almacenamiento de carbono, en la Ciénaga Grande de Santa Marta. Clío América, 4(7), 133–150. https://doi.org/10.21676/23897848.400 de Souza, J. J. L. L., Souza, B. I., Xavier, R. A., Cardoso, E. C. M., de Medeiros, J. R., da Fonseca, C. F., & Schaefer, C. E. G. R. (2022). Organic carbon rich-soils in the brazilian semiarid region and paleoenvironmental implications. CATENA, 212, 106101. https://doi.org/10.1016/J.CATENA.2022.106101 DelVecchia, A. G., Bruno, J. F., Benninger, L., Alperin, M., Banerje, O., & De Dios Morales, J. (2014). Organic carbon inventories in natural and restored Ecuadorian mangrove forests. PeerJ, 2014(1), e388. https://doi.org/10.7717/PEERJ.388/SUPP-1 Dey, A., Ghosh, A., Das, S., Bhattacharyya, R., Tigga, P., Dey, A., Das, S., Bhattacharyya, · R, Tigga, · P, & Ghosh, A. (2021). Belowground Carbon Storage and Dynamics. In Soil Science: Fundamentals to Recent Advances (pp. 49–67). Springer, Singapore. https://doi.org/10.1007/978-981-16-0917-6_4 Donato, D. C., Kauffman, J. B., Murdiyarso, D., Kurnianto, S., Stidham, M., & Kanninen, M. (2011). Mangroves among the most carbon-rich forests in the tropics. Nature Geoscience 2011 4:5, 4(5), 293–297. https://doi.org/10.1038/ngeo1123 Ellison, J. C. (2015). Vulnerability assessment of mangroves to climate change and sea-level rise impacts. Wetlands Ecology and Management, 23(2), 115–137. https://doi.org/10.1007/S11273-014-9397-8/FIGURES/6 Emadi, M., Taghizadeh-Mehrjardi, R., Cherati, A., Danesh, M., Mosavi, A., & Scholten, T. (2020). Predicting and mapping of soil organic carbon using machine learning algorithms in Northern Iran. Remote Sensing, 12(14). https://doi.org/10.3390/rs12142234 Fathizad, H., Taghizadeh-Mehrjardi, R., Hakimzadeh Ardakani, M. A., Zeraatpisheh, M., Heung, B., & Scholten, T. (2022). Spatiotemporal Assessment of Soil Organic Carbon Change Using Machine-Learning in Arid Regions. Agronomy, 12(3). https://doi.org/10.3390/agronomy12030628 Félix-Pico, E., Holguín-Quiñones, O., Hernández-Herrera, A., & Flores-Verdugo, F. (2006). Producción primaria de los mangles del Estero El Conchalito en Bahía de La Paz (Baja California Sur, México). Ciencias Marinas, 32(1A), 53–63. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0185-38802006000200006&lng=es&nrm=iso&tlng=es Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315. https://doi.org/10.1002/JOC.5086 Figueroa, L., & Álvarez, R. (2011). Evaluación de suelos de manglar en dos localidades de la ensenada de Tumaco, Pacífico colombiano. Arquivos de Ciências Do Mar, 44(1), 12–20. Fricke, K. (2014). Water Balance Model. In Analysis and Modelling of Water Supply and Demand Under Climate Change, Land Use Transformation and Socio-Economic Development (pp. 39–120). Springer, Cham. https://doi.org/10.1007/978-3-319-01610-8_3 Friess, D. A., Rogers, K., Lovelock, C. E., Krauss, K. W., Hamilton, S. E., Lee, S. Y., Lucas, R., Primavera, J., Rajkaran, A., & Shi, S. (2019). The State of the World’s Mangrove Forests: Past, Present, and Future. Annual Review of Environment and Resources, 44(April 2021), 89–115. https://doi.org/10.1146/annurev-environ-101718-033302 Fu, Y., Liao, H., & Lv, L. (2021). A comparative study of various methods of handling missing data in unsoda. Agriculture (Switzerland), 11(8). https://doi.org/10.3390/agriculture11080727 Gao, Y., Zhou, J., Wang, L., Guo, J., Feng, J., Wu, H., & Lin, G. (2019). Distribution patterns and controlling factors for the soil organic carbon in four mangrove forests of China. Global Ecology and Conservation, 17, e00575. https://doi.org/10.1016/J.GECCO.2019.E00575 Garcés, O., & Espinosa, L. (2019). Contaminación por Hidrocarburos en Sedimentos de Manglar del Estuario del Río Mira, Pacífico Colombiano, Afectados por Derrames de Petróleo Crudo. Bulletin of Marine and Coastal Research, 48(1), 159–168. Guevara, M., Arroyo, C., Brunsell, N., Cruz, C. O., Domke, G., Equihua, J., Etchevers, J., Hayes, D., Hengl, T., Ibelles, A., Johnson, K., de Jong, B., Libohova, Z., Llamas, R., Nave, L., Ornelas, J. L., Paz, F., Ressl, R., Schwartz, A., … Vargas, R. (2020). Soil Organic Carbon Across Mexico and the Conterminous United States (1991–2010). Global Biogeochemical Cycles, 34(3), no. https://doi.org/10.1029/2019GB006219 Gutíerrez, J., Ordoñez, N., Bolívar, S., Bunning, S., Guevara, M., Medina, E., Olivera, C., Olmedo, G., Sevilla, V., & Vargas, R. (2020). Estimación del carbono orgánico en los suelos de ecosistema de páramo en Colombia. Ecosistemas, 29(1), 1–10. https://doi.org/https://doi.org/10.7818/ECOS.1855 Hamilton, S. E., & Casey, D. (2016). Creation of a high spatio-temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC-21). Global Ecology and Biogeography, 25(6), 729–738. https://doi.org/10.1111/geb.12449 Hamilton, S. E., & Friess, D. A. (2018). Global carbon stocks and potential emissions due to mangrove deforestation from 2000 to 2012. Nature Climate Change, 8(3), 240–244. https://doi.org/10.1038/s41558-018-0090-4 Hamilton, S. E., Lovette, J. P., Borbor-Cordova, M. J., & Millones, M. (2017). The Carbon Holdings of Northern Ecuador’s Mangrove Forests. Annals of the American Association of Geographers, 107(1), 54–71. https://doi.org/10.1080/24694452.2016.1226160 Hengl, T., & MacMillan, R. . (2019). Predictive Soil Mapping with R. https://soilmapper.org/ Hengl, T., Nussbaum, M., Wright, M. N., Heuvelink, G. B. M., & Gräler, B. (2018). Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables. PeerJ, 2018(8). https://doi.org/10.7717/peerj.5518 Hernández-Blanco, M., Costanza, R., & Cifuentes-Jara, M. (2018). Valoración económica de los servicios ecosistémicos provistos por los manglares del Golfo de Nicoya. Conservación Internacional. Howard, J., Hoyt, S., Isensee, K., Pidgeon, E., & Telszewski, M. (2018). Coastal Blue Carbon: Methods for assessing carbon stocks and emissions factors in mangroves, tidal salt marshes, and seagrass meadows. Conservation International, Intergovernmental Oceanographic Commission of UNESCO, International Union for Conservation of Nature. Hu, Y., Fest, B. J., Swearer, S. E., & Arndt, S. K. (2021). Fine-scale spatial variability in organic carbon in a temperate mangrove forest: Implications for estimating carbon stocks in blue carbon ecosystems. Estuarine, Coastal and Shelf Science, 259, 107469. https://doi.org/10.1016/J.ECSS.2021.107469 Hutchison, J., Manica, A., Swetnam, R., Balmford, A., & Spalding, M. (2014). Predicting Global Patterns in Mangrove Forest Biomass. Conservation Letters, 7(3), 233–240. https://doi.org/10.1111/CONL.12060 Ideam. (2014). Atlas Interactivo - Climatológico - IDEAM. http://atlas.ideam.gov.co/visorAtlasClimatologico.html IGAC. (2004). Estudio General de suelos y Zonificación de tierras departamento de Nariño. Instituto Geográfico Agustín Codazzi. Invemar. (2010). Informe del Estado de los Ambientes y Recursos Marinos y Costeros en Colombia: Año 2009. Serie de Publicaciones Periódicas. Invemar. (2018). Manglares . https://hub.arcgis.com/datasets/4a14d0ccabf540e9a8934a56a2b55442/explore?layer=5&location=8.448780%2C-78.105500%2C6.00 Invemar. (2019). Servicios Ecosistémicos Marinos y Costeros de Colombia: Énfasis en Manglares Y Pastos Marinos. INVEMAR. https://aquadocs.org/handle/1834/15783 Invemar. (2020). Sistema de información para la gestión de los manglares en Colombia (SIGMA). http://sigma.invemar.org.co/inicio Invemar, Univalle, & Corponariño. (2017). Implementación de acciones que contribuyan a la rehabilitación ecológica de áreas afectadas por hidrocarburos en zona costera y piedemonte del departamento de Nariño. http://www.invemar.org.co/inicio?p_p_id=101&p_p_lifecycle=0&p_p_state=maximized&p_p_mode=view&_101_struts_action=%2Fasset_publisher%2Fview_content&_101_returnToFullPageURL=%2F&_101_assetEntryId=192196&_101_type=content&_101_urlTitle=implementacion-de-acciones-que-contribuyan-a-la-rehabilitacion-ecologica-de-areas-afectadas-por-hidrocarburos-en-zona-costera-y-piedemonte-del-departa&inheritRedirect=false Jardine, S. L., & Siikamäki, J. V. (2014). A global predictive model of carbon in mangrove soils. Environmental Research Letters, 9(10). https://doi.org/10.1088/1748-9326/9/10/104013 Jennerjahn, T. C., Gilman, E., Krauss, K. W., Lacerda, L. D., Nordhaus, I., & Wolanski, E. (2017). Mangrove ecosystems under climate change. In V. Rivera-Monroy, S. Lee, E. Kristensen, & R. Twilley (Eds.), Mangrove Ecosystems: A Global Biogeographic Perspective: Structure, Function, and Services (pp. 211–244). Springer International Publishing. https://doi.org/10.1007/978-3-319-62206-4_7/COVER Kauffman, J. B., Adame, M. F., Arifanti, V. B., Schile-Beers, L. M., Bernardino, A. F., Bhomia, R. K., Donato, D. C., Feller, I. C., Ferreira, T. O., Jesus Garcia, M. del C., MacKenzie, R. A., Megonigal, J. P., Murdiyarso, D., Simpson, L., & Hernández Trejo, H. (2020). Total ecosystem carbon stocks of mangroves across broad global environmental and physical gradients. Ecological Monographs, 90(2), 1–18. https://doi.org/10.1002/ecm.1405 Kauffman, J. B., & Donato, D. (2012). Protocols for the measurement, monitoring and reporting of structure, biomass and carbon stocks in mangrove forests. Center for International Forestry Research (CIFOR). https://doi.org/10.17528/CIFOR/003749 Kauffman, J. B., Heider, C., Norfolk, J., & Payton, F. (2014). Carbon stocks of intact mangroves and carbon emissions arising from their conversion in the Dominican Republic. Ecological Applications, 24(3), 518–527. https://doi.org/10.1890/13-0640.1 Kauffman, J., Donato, D., & Adame, M. F. (2013). Protocolo para la medición, monitoreo y reporte de la estructura, biomasa y reservas de carbono de los manglares. In Protocolo para la medición, monitoreo y reporte de la estructura, biomasa y reservas de carbono de los manglares. CIFOR. http://creativecommons.org/licenses/by-nc-nd/3.0/ Kida, M., Watanabe, I., Kinjo, K., Kondo, M., Yoshitake, S., Tomotsune, M., Iimura, Y., Umnouysin, S., Suchewaboripont, V., Poungparn, S., Ohtsuka, T., & Fujitake, N. (2021). Organic carbon stock and composition in 3.5-m core mangrove soils (Trat, Thailand). Science of The Total Environment, 801, 149682. https://doi.org/10.1016/J.SCITOTENV.2021.149682 Komiyama, A., Ong, J. E., & Poungparn, S. (2008). Allometry, biomass, and productivity of mangrove forests: A review. Aquatic Botany, 89(2), 128–137. https://doi.org/10.1016/J.AQUABOT.2007.12.006 Kusumaningtyas, M. A., Hutahaean, A. A., Fischer, H. W., Pérez-Mayo, M., Ransby, D., & Jennerjahn, T. C. (2019). Variability in the organic carbon stocks, sources, and accumulation rates of Indonesian mangrove ecosystems. Estuarine, Coastal and Shelf Science, 218, 310–323. https://doi.org/10.1016/J.ECSS.2018.12.007 Lang, A. P., Madi, M., Torres Boeger, M. R., Reissmann, C. B., Geronazzo Martins, K., E D E B O G O T Á, S., De, F., Departamento, C., & Biología, D. E. (2016). Soil-plant nutrient interactions in two mangrove areas at Southern Brazil. Acta Biológica Colombiana, 21(1), 39–50. https://doi.org/10.15446/ABC.V21N1.42894 Ley 2243, Ley de protección de ecosistemas de manglar y otras disposiciones (08 de Julio de 2022). Ministerio de Ambiente y Desarrollo Sostenible. Little, E., & Wadsworth, F. (1964). Trees of Puerto Rico and the Virgin Islands. US Department of Agriculture. https://doi.org/10.2307/2484965 López-Angarita, J., Roberts, C. M., Tilley, A., Hawkins, J. P., & Cooke, R. G. (2016). Mangroves and people: Lessons from a history of use and abuse in four Latin American countries. Forest Ecology and Management, 368, 151–162. https://doi.org/10.1016/J.FORECO.2016.03.020 Lyard, F. H., Allain, D. J., Cancet, M., Carrère, L., & Picot, N. (2021). FES2014 global ocean tide atlas: Design and performance. Ocean Science, 17(3), 615–649. https://doi.org/10.5194/OS-17-615-2021 Makonyo, M., & Msabi, M. M. (2021). Identification of groundwater potential recharge zones using GIS-based multi-criteria decision analysis: A case study of semi-arid midlands Manyara fractured aquifer, North-Eastern Tanzania. Remote Sensing Applications: Society and Environment, 23, 100544. https://doi.org/10.1016/J.RSASE.2021.100544 Malone, B., McBratney, A. B., Minasny, B., & Laslett, G. M. (2009). Mapping continuous depth functions of soil carbon storage and available water capacity. Geoderma, 154(1–2), 138–152. https://doi.org/10.1016/j.geoderma.2009.10.007 Malone, B., Minasny, B., & Mcbratney, A. B. (2017). Using R for Digital Soil Mapping. Springer. http://www.springer.com/series/8746 McNally, A., & NASA/GSFC/HSL. (2018). FLDAS Noah Land Surface Model L4 Global Monthly 0.1 x 0.1 degree (MERRA-2 and CHIRPS) (FLDAS_NOAH01_C_GL_M 001). https://disc.gsfc.nasa.gov/datasets/FLDAS_NOAH01_C_GL_M_001/summary Mejía-Rentería, J. C., Castellanos-Galindo, G. A., Cantera-Kintz, J. R., & Hamilton, S. E. (2018). A comparison of Colombian Pacific mangrove extent estimations: Implications for the conservation of a unique Neotropical tidal forest. Estuarine, Coastal and Shelf Science, 212, 233–240. https://doi.org/10.1016/j.ecss.2018.07.020 Monsalve, A., & Ramírez, G. (2015). Caracterización de la estructura y contenido de carbono de los bosques de manglar en el área de jurisdicción del Consejo comunitario La Plata, Bahía Málaga, Valle del Cauca. http://climares.invemar.org.co/proyectos/-/asset_publisher/3W2QxkeIz5Ex/content/id/41676 Murillo-Sandoval, P. J., Fatoyinbo, L., & Simard, M. (2022). Mangroves Cover Change Trajectories 1984-2020: The Gradual Decrease of Mangroves in Colombia. Frontiers in Marine Science, 9, 1277. https://doi.org/10.3389/FMARS.2022.892946/BIBTEX NASA Goddard Space Flight Center, & Ocean Ecology Laboratory. (2014). MODIS-Aqua Ocean Color Data; NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group. https://oceancolor.gsfc.nasa.gov/data/aqua/ Olmedo, G. ., & Baritz, R. (2018). Preparation of local soil data. In Y. Yigini, G. . Olmedo, S. Reiter, R. Baritz, K. Viatkin, & R. . Vargas (Eds.), Soil Organic Carbon Mapping Cookbook (2nd ed., pp. 19–35). FAO. https://fao-gsp.github.io/SOC-Mapping-Cookbook/index.html Palacios, M., Vargas, E., & de la Pava, M. (1990). Determinación del aporte de materia orgánica del Manglar en la zona de Bocagrande. Boletín Científico CCCP, 1(1), 55–72. https://doi.org/10.26640/01213423.1.55_72 Palacios Peñaranda, M. L., Cantera Kintz, J. R., & Peña Salamanca, E. J. (2019). Carbon stocks in mangrove forests of the Colombian Pacific. Estuarine, Coastal and Shelf Science, 227(May), 106299. https://doi.org/10.1016/j.ecss.2019.106299 Parques Nacionales Naturales de Colombia [PNNC]. (2017). Actualización plan de manejo Parque Nacional Natural Sanquianga 2018-2023. https://www.parquesnacionales.gov.co/portal/wp-content/uploads/2020/10/plan-de-manejo-pnn-sanquianga.pdf Parra, A. S., & Restrepo Ángel, J. D. (2014). The environmental collapse in the Patía river, Colombia: Morphological variations and impacts on mangrove ecosystems. Latin American Journal of Aquatic Research, 42(1), 40–60. https://doi.org/10.3856/vol42-issue1-fulltext-4 Perdomo-Trujillo, L. V., Mancera-Pineda, J. E., Medina-Calderón, J. H., Sánchez-Núñez, D. A., & Schnetter, M. L. (2021). Effect of Restoration Actions on Organic Carbon Pools in the Lagoon—Delta Ciénaga Grande de Santa Marta, Colombian Caribbean. Water 2021, Vol. 13, Page 1297, 13(9), 1297. https://doi.org/10.3390/W13091297 Perdomo, L. (2020). Biomasa y producción radicular en manglares de cuenca neotropicales a lo largo de una trayectoria de restauración y su contribución a las reservas de carbono en el ecosistema. Universidad Nacional de Colombia. Pham, T. D., Yokoya, N., Nguyen, T. T. T., Le, N. N., Ha, N. T., Xia, J., Takeuchi, W., & Pham, T. D. (2020). Improvement of Mangrove Soil Carbon Stocks Estimation in North Vietnam Using Sentinel-2 Data and Machine Learning Approach. Https://Doi.Org/10.1080/15481603.2020.1857623, 58(1), 68–87. https://doi.org/10.1080/15481603.2020.1857623 Phillips, S., & US National Oceanographic Data Center. (2011). AVHRR Pathfinder version 5.0 global 4km sea surface temperature (SST) day-night monthly and yearly averages for 1985-2009 (NCEI Accession 0077816). https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.nodc:0077816 Poggio, L., De Sousa, L. M., Batjes, N. H., Heuvelink, G. B. M., Kempen, B., Ribeiro, E., & Rossiter, D. (2021). SoilGrids 2.0: Producing soil information for the globe with quantified spatial uncertainty. Soil, 7(1), 217–240. https://doi.org/10.5194/soil-7-217-2021 R Core Team. (2021). R: The R Stats Package. https://stat.ethz.ch/R-manual/R-devel/library/stats/html/stats-package.html R Core Team. (2022). Package ‘caret.’ CRAN. https://cran.r-project.org/web/packages/caret/caret.pdf Resolución 1447, se reglamenta el Sistema de monitoreo, reporte y verificación de las acciones de mitigación a nivel nacional (01 de Agosto de 2018). Ministerio de Ambiente y Desarrollo Sostenible. Rodríguez-Rodríguez, J. A., Sierra-Correa, P. C., Gómez-Cubillos, M. C., & Villanueva, L. V. L. (2016). Mangroves of Colombia. In C. . Finlayson, G. . Milton, R. . Prentice, & N. Davidson (Eds.), The Wetland Book (pp. 1–10). Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6173-5_280-2 Romero-Berny, E. I., Acosta-Velázquez, J., Tovilla-Hernández, C., Schmook, B., & Gómez-Ortega, R. (2016). Cambios de cobertura y fragmentación de manglares en la región del Soconusco, Chiapas, México, 1994-2011 . Revista Geográfica de América Central, 1(54), 153–169. https://doi.org/10.15359/RGAC.1-54.7 Rovai, A. S., Riul, P., Twilley, R. R., Castañeda-Moya, E., Rivera-Monroy, V. H., Williams, A. A., Simard, M., Cifuentes-Jara, M., Lewis, R. R., Crooks, S., Horta, P. A., Schaeffer-Novelli, Y., Cintrón, G., Pozo-Cajas, M., & Pagliosa, P. R. (2016). Scaling mangrove aboveground biomass from site-level to continental-scale. Global Ecology and Biogeography, 25(3), 286–298. https://doi.org/10.1111/GEB.12409 Rovai, A. S., Twilley, R. R., Castañeda-Moya, E., Riul, P., Cifuentes-Jara, M., Manrow-Villalobos, M., Horta, P. A., Simonassi, J. C., Fonseca, A. L., & Pagliosa, P. R. (2018). Global controls on carbon storage in mangrove soils. Nature Climate Change, 8(6), 534–538. https://doi.org/10.1038/s41558-018-0162-5 Rowley, M. C., Grand, S., & Verrecchia, É. P. (2018). Calcium-mediated stabilisation of soil organic carbon. Biogeochemistry, 137(1–2), 27–49. https://doi.org/10.1007/S10533-017-0410-1/FIGURES/3 Rozainah, M. Z., Nazri, M. N., Sofawi, A. B., Hemati, Z., & Juliana, W. A. (2018). Estimation of carbon pool in soil, above and below ground vegetation at different types of mangrove forests in Peninsular Malaysia. Marine Pollution Bulletin, 137, 237–245. https://doi.org/10.1016/J.MARPOLBUL.2018.10.023 Saavedra-Hortua, D. A., Friess, D. A., Zimmer, M., & Gillis, L. G. (2020). Sources of Particulate Organic Matter across Mangrove Forests and Adjacent Ecosystems in Different Geomorphic Settings. Wetlands, 40(5), 1047–1059. https://doi.org/10.1007/S13157-019-01261-9/FIGURES/7 Sahu, B., Ghosh, A. K., & Seema. (2021). Deterministic and geostatistical models for predicting soil organic carbon in a 60 ha farm on Inceptisol in Varanasi, India. Geoderma Regional, 26, e00413. https://doi.org/10.1016/J.GEODRS.2021.E00413 Sánchez, H., Álvarez, R., Guevara, O., Zamora, A., Rodríguez, H., & Bravo, H. (1997). Diagnóstico y zonificación preliminar de los manglares del Pacífico de Colombia. Ministerio del Medio Ambiente. Sanderman, J., Hengl, T., Fiske, G., Solvik, K., Adame, M. F., Benson, L., Bukoski, J. J., Carnell, P., Cifuentes-Jara, M., Donato, D., Duncan, C., Eid, E. M., Ermgassen, P. Z., Lewis, C. J. E., Macreadie, P. I., Glass, L., Gress, S., Jardine, S. L., Jones, T. G., … Landis, E. (2018). A global map of mangrove forest soil carbon at 30 m spatial resolution. Environmental Research Letters, 13(5). https://doi.org/10.1088/1748-9326/aabe1c Sasmito, S. D., Kuzyakov, Y., Lubis, A. A., Murdiyarso, D., Hutley, L. B., Bachri, S., Friess, D. A., Martius, C., & Borchard, N. (2020). Organic carbon burial and sources in soils of coastal mudflat and mangrove ecosystems. Catena, 187(December 2019), 104414. https://doi.org/10.1016/j.catena.2019.104414 Simard, M., Fatoyinbo, L., Smetanka, C., Rivera-Monroy, V. H., Castañeda-Moya, E., Thomas, N., & Van der Stocken, T. (2019). Mangrove canopy height globally related to precipitation, temperature and cyclone frequency. Nature Geoscience, 12(1), 40–45. https://doi.org/10.1038/s41561-018-0279-1 Southwell, C. R., & Bultman, J. D. (1971). Marine Borer Resistance of Untreated Woods Over Long Periods of Immersion in Tropical Waters. Biotropica, 3(1), 81. https://doi.org/10.2307/2989709 Stekhoven, D. J., & Bühlmann, P. (2012). MissForest—non-parametric missing value imputation for mixed-type data. Bioinformatics, 28(1), 112–118. https://doi.org/10.1093/BIOINFORMATICS/BTR597 Stockmann, U., Adams, M. A., Crawford, J. W., Field, D. J., Henakaarchchi, N., Jenkins, M., Minasny, B., McBratney, A. B., Courcelles, V. de R. de, Singh, K., Wheeler, I., Abbott, L., Angers, D. A., Baldock, J., Bird, M., Brookes, P. C., Chenu, C., Jastrow, J. D., Lal, R., … Zimmermann, M. (2013). The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agriculture, Ecosystems & Environment, 164, 80–99. https://doi.org/10.1016/J.AGEE.2012.10.001 Suhaili, N. S., Fei, J. L. J., Sha’ari, F. W., Idris, M. I., Hatta, S. M., Kodoh, J., & Besar, N. A. (2020). Carbon stock estimation of mangrove forest in Sulaman Lake Forest Reserve, Sabah, Malaysia. Biodiversitas Journal of Biological Diversity, 21(12), 5657–5664. https://doi.org/10.13057/BIODIV/D211223 Taillardat, P., Friess, D. A., & Lupascu, M. (2018). Mangrove blue carbon strategies for climate change mitigation are most effective at the national scale. Biology Letters, 14(10). https://doi.org/10.1098/rsbl.2018.0251 Tanner, M. K., Moity, N., Costa, M. T., Marin Jarrin, J. R., Aburto-Oropeza, O., & Salinas-de-León, P. (2019). Mangroves in the Galapagos: Ecosystem services and their valuation. Ecological Economics, 160(June 2018), 12–24. https://doi.org/10.1016/j.ecolecon.2019.01.024 Trettin, C. C., Dai, Z., Tang, W., Lagomasino, D., Thomas, N., Lee, S. K., Simard, M., Ebanega, M. O., Stoval, A., & Fatoyinbo, T. E. (2021). Mangrove carbon stocks in Pongara National Park, Gabon. Estuarine, Coastal and Shelf Science, 259(April 2020). https://doi.org/10.1016/j.ecss.2021.107432 Tue, N. T., Dung, L. V., Nhuan, M. T., & Omori, K. (2014). Carbon storage of a tropical mangrove forest in Mui Ca Mau National Park, Vietnam. CATENA, 121, 119–126. https://doi.org/10.1016/J.CATENA.2014.05.008 Twilley, R. R., Castañeda-Moya, E., Rivera-Monroy, V. H., & Rovai, A. (2017). Productivity and carbon dynamics in mangrove wetlands. In V. . Rivera-Monroy, S. . Lee, E. . Kristensen, & R. Twilley (Eds.), Mangrove Ecosystems: A Global Biogeographic Perspective: Structure, Function, and Services (pp. 113–162). Springer International Publishing. https://doi.org/10.1007/978-3-319-62206-4_5/FIGURES/14 Twilley, R. R., & Rivera-Monroy, V. H. (2009). Ecogeomorphic Models of Nutrient Biogeochemistry for Mangrove Wetlands. In Coastal Wetlands: An Integrated Ecosystem Approach (First edit, Issue June, pp. 641–684). Elsevier. https://doi.org/10.1016/B978-0-444-53103-2.00023-5 Twilley, R. R., Rivera-Monroy, V. H., Rovai, A. S., Castañeda-Moya, E., & Davis, S. (2019). Mangrove Biogeochemistry at Local to Global Scales Using Ecogeomorphic Approaches. In G. . Perillo, E. . Wolanski, D. . Cahoon, & Hopkinson C. (Eds.), Coastal Wetlands: An Integrated Ecosystem Approach (pp. 717–785). Elsevier. https://doi.org/10.1016/B978-0-444-63893-9.00021-6 Twilley, R. R., Rovai, A. S., & Riul, P. (2018). Coastal morphology explains global blue carbon distributions. Frontiers in Ecology and the Environment, 16(9), 503–508. https://doi.org/10.1002/FEE.1937 Wadoux, A. M. J.-C., Odeh, I. O. A., & McBratney, A. B. (2021). Overview of Pedometrics. Reference Module in Earth Systems and Environmental Sciences. https://doi.org/10.1016/B978-0-12-822974-3.00001-X Wang, G., Singh, M., Wang, J., Xiao, L., & Guan, D. (2021). Effects of marine pollution, climate, and tidal range on biomass and sediment organic carbon in Chinese mangrove forests. CATENA, 202, 105270. https://doi.org/10.1016/J.CATENA.2021.105270 Wang, N., Xue, J., Peng, J., Biswas, A., He, Y., & Shi, Z. (2020). Integrating remote sensing and landscape characteristics to estimate soil salinity using machine learning methods: A case study from southern xinjiang, china. Remote Sensing, 12(24), 1–21. https://doi.org/10.3390/rs12244118 Wang, S., Adhikari, K., Wang, Q., Jin, X., & Li, H. (2018). Role of environmental variables in the spatial distribution of soil carbon (C), nitrogen (N), and C:N ratio from the northeastern coastal agroecosystems in China. Ecological Indicators, 84, 263–272. https://doi.org/10.1016/J.ECOLIND.2017.08.046 Wicaksono, P., Danoedoro, P., Hartono, & Nehren, U. (2015). Mangrove biomass carbon stock mapping of the Karimunjawa Islands using multispectral remote sensing. 37(1), 26–52. https://doi.org/10.1080/01431161.2015.1117679 Wiesmeier, M., Urbanski, L., Hobley, E., Lang, B., von Lützow, M., Marin-Spiotta, E., van Wesemael, B., Rabot, E., Ließ, M., Garcia-Franco, N., Wollschläger, U., Vogel, H. J., & Kögel-Knabner, I. (2019). Soil organic carbon storage as a key function of soils - A review of drivers and indicators at various scales. Geoderma, 333, 149–162. https://doi.org/10.1016/J.GEODERMA.2018.07.026 Woodroffe, C. D., Rogers, K., McKee, K. L., Lovelock, C. E., Mendelssohn, I. A., & Saintilan, N. (2016). Mangrove Sedimentation and Response to Relative Sea-Level Rise. Http://Dx.Doi.Org/10.1146/Annurev-Marine-122414-034025, 8, 243–266. https://doi.org/10.1146/ANNUREV-MARINE-122414-034025 Worthington, T. A., zu Ermgassen, P. S. E., Friess, D. A., Krauss, K. W., Lovelock, C. E., Thorley, J., Tingey, R., Woodroffe, C. D., Bunting, P., Cormier, N., Lagomasino, D., Lucas, R., Murray, N. J., Sutherland, W. J., & Spalding, M. (2020). A global biophysical typology of mangroves and its relevance for ecosystem structure and deforestation. Scientific Reports 2020 10:1, 10(1), 1–11. https://doi.org/10.1038/s41598-020-71194-5 Yang, R. M., Zhang, G. L., Liu, F., Lu, Y. Y., Yang, F., Yang, F., Yang, M., Zhao, Y. G., & Li, D. C. (2016). Comparison of boosted regression tree and random forest models for mapping topsoil organic carbon concentration in an alpine ecosystem. Ecological Indicators, 60, 870–878. https://doi.org/10.1016/j.ecolind.2015.08.036 Zakaria, R. M., Chen, G., Chew, L. L., Sofawi, A. B., Moh, H. H., Chen, S., Teoh, H. W., & Adibah, S. Y. S. N. (2021). Carbon stock of disturbed and undisturbed mangrove ecosystems in Klang Straits, Malaysia. Journal of Sea Research, 176, 102113. https://doi.org/10.1016/J.SEARES.2021.102113 Zarate-Barrera, T. G., & Maldonado, J. H. (2015). Valuing blue carbon: Carbon sequestration benefits provided by the marine protected areas in Colombia. PLoS ONE, 10(5), 1–22. https://doi.org/10.1371/journal.pone.0126627 Zeraatpisheh, M., Garosi, Y., Reza Owliaie, H., Ayoubi, S., Taghizadeh-Mehrjardi, R., Scholten, T., & Xu, M. (2022). Improving the spatial prediction of soil organic carbon using environmental covariates selection: A comparison of a group of environmental covariates. Catena, 208(September 2021), 105723. https://doi.org/10.1016/j.catena.2021.105723 Zhang, Z., Li, J., Tsui, C. C., & Chen, Z. S. (2020). The Study of Gaining More Detailed Variability Information of Soil Organic Carbon in Surface Soils and Its Significance to Enriching the Existing Soil Database. Sustainability 2020, Vol. 12, Page 4866, 12(12), 4866. https://doi.org/10.3390/SU12124866 Zhou, Y., Xue, J., Chen, S., Zhou, Y., Liang, Z., Wang, N., & Shi, Z. (2020). Fine-resolution mapping of soil total nitrogen across china based on weighted model averaging. Remote Sensing, 12(1), 1–18. https://doi.org/10.3390/RS12010085 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xii, 64 páginas + anexos |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.region.none.fl_str_mv |
Pacífico Colombiano |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Palmira - Ingeniería y Administración - Maestría en Ingeniería - Ingeniería Ambiental |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería y Administración |
dc.publisher.place.spa.fl_str_mv |
Palmira, Valle del Cauca, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Palmira |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/83304/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/83304/2/1085936056_2023.pdf https://repositorio.unal.edu.co/bitstream/unal/83304/3/1085936056_2023.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a bc58d6c7d50a08cfff2323acd47fb95c db4490d3ddd3d16c755906fabd634236 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089331369836544 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Guzmán Alvis, Ángela Inés8c733f9c7d11c92667d587cf952caa8bMoreno Muñoz, Angélica Sofía8443ab83ffa458555a4f6ce0789ffd21Benavides Martínez, Iván FelipeAngélica Sofía Moreno Muñoz [0000-0002-2482-3832]2023-02-03T21:40:34Z2023-02-03T21:40:34Z2023-02-02https://repositorio.unal.edu.co/handle/unal/83304Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/Ilustraciones, tablas, gráficasLos manglares representan grandes reservas de carbono, especialmente en el suelo, sin embargo, a escalas locales se necesita mejorar la precisión de sus estimaciones con muestreos en campo, permitiendo un manejo adecuado del ecosistema. Así, el objetivo fue evaluar el carbono total almacenado en el ecosistema de manglar del Pacífico nariñense. Se utilizó información de inventarios forestales en 10 sitios para determinar el carbono almacenado en la biomasa aérea (AGB) y subterránea (BWG) mediante ecuaciones alométricas y factores de conversión de biomasa a carbono. Para el carbono almacenado en el suelo (COS) se construyó un modelo Random Forest (RF) con 28 perfiles tomados a dos metros de profundidad y 18 variables predictoras. Se halló un buen ajuste del modelo RF (R2 de 0.82). El carbono total almacenado presentó una media de 359.05 ± 71.29 t ha-1 , donde la mayor contribución la tuvo el suelo (75.51%), seguida de la biomasa aérea (17.24%) y la biomasa subterránea (7.25%). Las estimaciones de COS fueron menores a las globales, sugiriendo una posible sobreestimación, debido a que los modelos globales no consideran datos ‘in situ’. Finalmente, las tres cuartas partes del carbono total almacenado en el manglar estudiado se encontraron en el suelo, coincidiendo con otros bosques de manglar y resaltando la importancia de su conservación. (Texto tomado de la fuente)Mangroves represent large reserves of carbon, especially in the soil. However, it is necessary to improve the precision of their estimates with field sampling at local scales, allowing adequate management of the ecosystem. The aim was to evaluate the total carbon stored in the mangrove ecosystem of the Nariño. Allometric equations and biomass-tocarbon conversion factors used information from forest inventories at 10 sites to determine carbon stored in aboveground (AGB) and belowground (BWG) biomass(R2 of 0.82) was found. For soil carbon stored (SOC), a Random Forest (RF) model was built with 28 profiles to 2 m depth and 18 predictor variables. A good fit of the RF model was found (R2 of 0.82). The total carbon stored presented a mean of 359.05 ± 71.29 t ha-1 , where the greatest contribution was from the soil (75.51%), followed by aboveground (17.24%) and belowground biomass (7.25%). The SOC estimates were lower than the global models, suggesting a possible overestimation because the global models do not consider 'in situ data. Finally, three-quarters of the total carbon stored in the mangrove studied was found in the soil, coinciding with other mangrove forests, and highlighting the importance of its conservation.MaestríaMagister en Ingeniería AmbientalSe utilizó información de inventarios forestales en 10 sitios para determinar el carbono almacenado en la biomasa aérea (AGB) y subterránea (BWG) mediante ecuaciones alométricas y factores de conversión de biomasa a carbono. Para el carbono almacenado en el suelo (COS) se construyó un modelo Random Forest (RF) con 28 perfiles tomados a dos metros de profundidad y 18 variables predictoras.Ingeniería.Sede Palmiraxii, 64 páginas + anexosapplication/pdfspaUniversidad Nacional de ColombiaPalmira - Ingeniería y Administración - Maestría en Ingeniería - Ingeniería AmbientalFacultad de Ingeniería y AdministraciónPalmira, Valle del Cauca, ColombiaUniversidad Nacional de Colombia - Sede Palmira620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaCarbono azulBlue carbonBiomasa arbórea por encima del sueloAbove ground tree biomassBiomasa sobre el sueloBiomasa por debajo del sueloBelow ground biomassSecuestro de carbonoCarbon sequestrationBiomasa aéreaBiomasa subterráneaCarbono orgánico del sueloManglaresPacífico ColombianoAboveground biomassBelowground biomassSoil organic carbonMangrovesColombian PacificMangrove areasEcosistema marinoMarine ecosystemsEvaluación de almacenamiento de carbono azul en el ecosistema de manglar del Pacífico nariñenseEvaluation of blue carbon storage in the mangrove ecosystem of the Nariño PacificTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMPacífico ColombianoAbatzoglou, J. T., Dobrowski, S. Z., Parks, S. A., & Hegewisch, K. C. (2018). TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015. Scientific Data, 5, 1–12. https://doi.org/10.1038/sdata.2017.191Adame, M. F., Cherian, S., Reef, R., & Stewart-Koster, B. (2017). Mangrove root biomass and the uncertainty of belowground carbon estimations. Forest Ecology and Management, 403, 52–60. https://doi.org/10.1016/J.FORECO.2017.08.016Adame, M. F., Connolly, R. M., Turschwell, M. P., Lovelock, C. E., Fatoyinbo, T., Lagomasino, D., Goldberg, L. A., Holdorf, J., Friess, D. A., Sasmito, S. D., Sanderman, J., Sievers, M., Buelow, C., Kauffman, J. B., Bryan-Brown, D., & Brown, C. J. (2021). Future carbon emissions from global mangrove forest loss. Global Change Biology, 27(12), 2856–2866. https://doi.org/10.1111/GCB.15571Ahmed, R., & Mahmud, K. H. (2022). Potentiality of high-resolution topographic survey using unmanned aerial vehicle in Bangladesh. Remote Sensing Applications: Society and Environment, 26, 100729. https://doi.org/10.1016/J.RSASE.2022.100729Ajonina, G. N., Kairo, J., Grimsditch, G., Sembres, T., Chuyong, G., & Diyouke, E. (2014). Assessment of Mangrove Carbon Stocks in Cameroon, Gabon, the Republic of Congo (RoC) and the Democratic Republic of Congo (DRC) Including their Potential for Reducing Emissions from Deforestation and Forest Degradation (REDD+) (Diop, S., J. Barusseau, & C. Descamps (eds.); pp. 177–189). Springer, Cham. https://doi.org/10.1007/978-3-319-06388-1_15Alongi, D. M. (2014). Carbon cycling and storage in mangrove forests. Annual Review of Marine Science, 6, 195–219. https://doi.org/10.1146/annurev-marine-010213-135020Alongi, D. M. (2018). Mangrove Forests. In Blue Carbon SpringerBriefs in Climate Studies. Springer. https://doi.org/https://doi.org/10.1007/978-3-319-91698-9_3Arrouays, D., Grundy, M. G., Hartemink, A. E., Hempel, J. W., Heuvelink, G. B. M., Hong, S. Y., Lagacherie, P., Lelyk, G., McBratney, A. B., McKenzie, N. J., Mendonca-Santos, M. d. L., Minasny, B., Montanarella, L., Odeh, I. O. A., Sanchez, P. A., Thompson, J. A., & Zhang, G. L. (2014). GlobalSoilMap. Toward a Fine-Resolution Global Grid of Soil Properties. In Advances in Agronomy (Vol. 125). https://doi.org/10.1016/B978-0-12-800137-0.00003-0Atwood, T. B., Connolly, R. M., Almahasheer, H., Carnell, P. E., Duarte, C. M., Lewis, C. J. E., Irigoien, X., Kelleway, J. J., Lavery, P. S., Macreadie, P. I., Serrano, O., Sanders, C. J., Santos, I., Steven, A. D. L., & Lovelock, C. E. (2017). Global patterns in mangrove soil carbon stocks and losses. Nature Climate Change, 7(7), 523–528. https://doi.org/10.1038/NCLIMATE3326Bejarano M, A., Satizabal C, A., & Zapata, F. A. (1993). Estructura del bosque y granulometría del suelo en un manglar de ribera de la costa Pacífica colombiana. Boletín Científico CCCP, 4, 37–45. https://doi.org/10.26640/01213423.4.37_45Benites, V. M., Machado, P. L. O. A., Fidalgo, E. C. C., Coelho, M. R., & Madari, B. E. (2007). Pedotransfer functions for estimating soil bulk density from existing soil survey reports in Brazil. Geoderma, 139(1–2), 90–97. https://doi.org/10.1016/J.GEODERMA.2007.01.005Bermúdez, C., Merly, Á., & Niño, D. (2014). Caracterización de la geomorfología costera y sus coberturas vegetales asociadas, a través de sensores remotos en la bahía de Buenaventura, Valle del Cauca. Boletín Científico CIOH, 34, 49–63. https://doi.org/10.26640/22159045.426Bettinger, P., Boston, K., Siry, J. P., & Grebner, D. L. (2017). Valuing and Characterizing Forest Conditions. In P. Bettinger, K. Boston, J. P. Siry, & D. L. Grebner (Eds.), Forest Management and Planning (Segunda edición, pp. 21–63). Academic Press. https://doi.org/10.1016/B978-0-12-809476-1.00002-3Bhomia, R. K., Kauffman, J. B., & McFadden, T. N. (2016). Ecosystem carbon stocks of mangrove forests along the Pacific and Caribbean coasts of Honduras. Wetlands Ecology and Management, 24(2), 187–201. https://doi.org/10.1007/S11273-016-9483-1/TABLES/5Bishop, T. F. A., McBratney, A. B., & Laslett, G. M. (1999). Modeling soil attribute depth functions with equal-area quadratic smoothing splines. Geoderma, 91(1–2), 27–45. https://doi.org/10.1016/S0016-7061(99)00003-8Blanco-Libreros, J., López-Ródriguez, S., Valencia-Palacios, A., Pérez-Vega, G., & Álvarez-León, R. (2022). HELIO_SP.CO v.2: Hierarchical, Entity-based and Landscape-level Information Observatory for mangrove SPecies in Colombia, version 2. https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/QXQT59Blanco, J. F., Estrada, E. A., Ortiz, L. F., & Urrego, L. E. (2012). Ecosystem-Wide Impacts of Deforestation in Mangroves: The Urabá Gulf (Colombian Caribbean) Case Study. International Scholarly Research Network , 2012, 1–14. https://doi.org/10.5402/2012/958709Bolivar, J. M., Gutierrez-Velez, V. H., & Sierra, C. A. (2018). Carbon stocks in aboveground biomass for Colombian mangroves with associated uncertainties. Regional Studies in Marine Science, 18, 145–155. https://doi.org/10.1016/J.RSMA.2017.12.011Breiman, L. (2001). Random Forests. Machine Learning 2001 45:1, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324Breiman, L. (2003). Manual setting up, using, and understanding random forests v4.0. https://www.stat.berkeley.edu/~breiman/Using_random_forests_v4.0.pdfBukoski, J. J., Elwin, A., Mackenzie, R. A., Sharma, S., Purbopuspito, J., Kopania, B., Apwong, M., Poolsiri, R., & Potts, M. D. (2020). The role of predictive model data in designing mangrove forest carbon programs. Environmental Research Letters, 15(8), 084019. https://doi.org/10.1088/1748-9326/AB7E4EBunting, P., Rosenqvist, A., Hilarides, L., Lucas, R. M., Thomas, N., Tadono, T., Worthington, T. A., Spalding, M., Murray, N. J., & Rebelo, L.-M. (2022). Global Mangrove Extent Change 1996–2020: Global Mangrove Watch Version 3.0. Remote Sensing 2022, Vol. 14, Page 3657, 14(15), 3657. https://doi.org/10.3390/RS14153657Centro de Control de Contaminación del Pacífico [CCCP]. (2003). Aportes al entendimiento de la Bahía de Tumaco. Entorno oceanográfico, costero y de riesgos. In Aportes al entendimiento de la Bahía de Tumaco. Entorno oceanográfico, costero y de riesgos. Dirección General Marítima. https://doi.org/10.26640/9583352225.2003Chang, K.-T. (2019). Introduction to geographic information systems (9th ed.). McGraw-Hill.Chatting, M., Al-Maslamani, I., Walton, M., Skov, M. W., Kennedy, H., Husrevoglu, Y. S., & Le Vay, L. (2022). Future Mangrove Carbon Storage Under Climate Change and Deforestation. Frontiers in Marine Science, 9, 58. https://doi.org/10.3389/FMARS.2022.781876/BIBTEXChave, J., Coomes, D., Jansen, S., Lewis, S. L., Swenson, N. G., & Zanne, A. E. (2009). Towards a worldwide wood economics spectrum. Ecology Letters, 12(4), 351–366. https://doi.org/10.1111/J.1461-0248.2009.01285.XClough, B. F. (1992). Primary Productivity and Growth of Mangrove Forests. In A. I. , Robertson & D. M. Alongi (Eds.), Coastal and Estuarine Studies Tropical Mangrove Ecosystems (pp. 225–249). American Geophysical Union (AGU). https://doi.org/10.1029/CE041P0225Cordero-Llach, L. (1971). Report on a Wood Testing Programme Carried Out for Undp/sf Project 234, Inventory and Forest Demostrations. Panama. Physical and Mechanical Properties of 113 Species. IICA. Instituto interamericano de ciencias agricolas, Turrialba - Costa Rica.Corponariño. (2010). Caracterización, Diagnóstico y Zonificación de los manglares en el departamento de Nariño | WWF. https://www.wwf.org.co/?201159/CaracterizacionDiagnosticoZonificacionmanglaresdepartamentoNarinoCostanza, R., de Groot, R., Braat, L., Kubiszewski, I., Fioramonti, L., Sutton, P., Farber, S., & Grasso, M. (2017). Twenty years of ecosystem services: How far have we come and how far do we still need to go? Ecosystem Services, 28, 1–16. https://doi.org/10.1016/J.ECOSER.2017.09.008De La Peña, A., Rojas, C. A., De La Peña, M., Grande, C., Marta, S., De, A., Cesar, P., & Rojas, A. (2010). Valoración económica del manglar por el almacenamiento de carbono, en la Ciénaga Grande de Santa Marta. Clío América, 4(7), 133–150. https://doi.org/10.21676/23897848.400de Souza, J. J. L. L., Souza, B. I., Xavier, R. A., Cardoso, E. C. M., de Medeiros, J. R., da Fonseca, C. F., & Schaefer, C. E. G. R. (2022). Organic carbon rich-soils in the brazilian semiarid region and paleoenvironmental implications. CATENA, 212, 106101. https://doi.org/10.1016/J.CATENA.2022.106101DelVecchia, A. G., Bruno, J. F., Benninger, L., Alperin, M., Banerje, O., & De Dios Morales, J. (2014). Organic carbon inventories in natural and restored Ecuadorian mangrove forests. PeerJ, 2014(1), e388. https://doi.org/10.7717/PEERJ.388/SUPP-1Dey, A., Ghosh, A., Das, S., Bhattacharyya, R., Tigga, P., Dey, A., Das, S., Bhattacharyya, · R, Tigga, · P, & Ghosh, A. (2021). Belowground Carbon Storage and Dynamics. In Soil Science: Fundamentals to Recent Advances (pp. 49–67). Springer, Singapore. https://doi.org/10.1007/978-981-16-0917-6_4Donato, D. C., Kauffman, J. B., Murdiyarso, D., Kurnianto, S., Stidham, M., & Kanninen, M. (2011). Mangroves among the most carbon-rich forests in the tropics. Nature Geoscience 2011 4:5, 4(5), 293–297. https://doi.org/10.1038/ngeo1123Ellison, J. C. (2015). Vulnerability assessment of mangroves to climate change and sea-level rise impacts. Wetlands Ecology and Management, 23(2), 115–137. https://doi.org/10.1007/S11273-014-9397-8/FIGURES/6Emadi, M., Taghizadeh-Mehrjardi, R., Cherati, A., Danesh, M., Mosavi, A., & Scholten, T. (2020). Predicting and mapping of soil organic carbon using machine learning algorithms in Northern Iran. Remote Sensing, 12(14). https://doi.org/10.3390/rs12142234Fathizad, H., Taghizadeh-Mehrjardi, R., Hakimzadeh Ardakani, M. A., Zeraatpisheh, M., Heung, B., & Scholten, T. (2022). Spatiotemporal Assessment of Soil Organic Carbon Change Using Machine-Learning in Arid Regions. Agronomy, 12(3). https://doi.org/10.3390/agronomy12030628Félix-Pico, E., Holguín-Quiñones, O., Hernández-Herrera, A., & Flores-Verdugo, F. (2006). Producción primaria de los mangles del Estero El Conchalito en Bahía de La Paz (Baja California Sur, México). Ciencias Marinas, 32(1A), 53–63. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0185-38802006000200006&lng=es&nrm=iso&tlng=esFick, S. E., & Hijmans, R. J. (2017). WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315. https://doi.org/10.1002/JOC.5086Figueroa, L., & Álvarez, R. (2011). Evaluación de suelos de manglar en dos localidades de la ensenada de Tumaco, Pacífico colombiano. Arquivos de Ciências Do Mar, 44(1), 12–20.Fricke, K. (2014). Water Balance Model. In Analysis and Modelling of Water Supply and Demand Under Climate Change, Land Use Transformation and Socio-Economic Development (pp. 39–120). Springer, Cham. https://doi.org/10.1007/978-3-319-01610-8_3Friess, D. A., Rogers, K., Lovelock, C. E., Krauss, K. W., Hamilton, S. E., Lee, S. Y., Lucas, R., Primavera, J., Rajkaran, A., & Shi, S. (2019). The State of the World’s Mangrove Forests: Past, Present, and Future. Annual Review of Environment and Resources, 44(April 2021), 89–115. https://doi.org/10.1146/annurev-environ-101718-033302Fu, Y., Liao, H., & Lv, L. (2021). A comparative study of various methods of handling missing data in unsoda. Agriculture (Switzerland), 11(8). https://doi.org/10.3390/agriculture11080727Gao, Y., Zhou, J., Wang, L., Guo, J., Feng, J., Wu, H., & Lin, G. (2019). Distribution patterns and controlling factors for the soil organic carbon in four mangrove forests of China. Global Ecology and Conservation, 17, e00575. https://doi.org/10.1016/J.GECCO.2019.E00575Garcés, O., & Espinosa, L. (2019). Contaminación por Hidrocarburos en Sedimentos de Manglar del Estuario del Río Mira, Pacífico Colombiano, Afectados por Derrames de Petróleo Crudo. Bulletin of Marine and Coastal Research, 48(1), 159–168.Guevara, M., Arroyo, C., Brunsell, N., Cruz, C. O., Domke, G., Equihua, J., Etchevers, J., Hayes, D., Hengl, T., Ibelles, A., Johnson, K., de Jong, B., Libohova, Z., Llamas, R., Nave, L., Ornelas, J. L., Paz, F., Ressl, R., Schwartz, A., … Vargas, R. (2020). Soil Organic Carbon Across Mexico and the Conterminous United States (1991–2010). Global Biogeochemical Cycles, 34(3), no. https://doi.org/10.1029/2019GB006219Gutíerrez, J., Ordoñez, N., Bolívar, S., Bunning, S., Guevara, M., Medina, E., Olivera, C., Olmedo, G., Sevilla, V., & Vargas, R. (2020). Estimación del carbono orgánico en los suelos de ecosistema de páramo en Colombia. Ecosistemas, 29(1), 1–10. https://doi.org/https://doi.org/10.7818/ECOS.1855Hamilton, S. E., & Casey, D. (2016). Creation of a high spatio-temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC-21). Global Ecology and Biogeography, 25(6), 729–738. https://doi.org/10.1111/geb.12449Hamilton, S. E., & Friess, D. A. (2018). Global carbon stocks and potential emissions due to mangrove deforestation from 2000 to 2012. Nature Climate Change, 8(3), 240–244. https://doi.org/10.1038/s41558-018-0090-4Hamilton, S. E., Lovette, J. P., Borbor-Cordova, M. J., & Millones, M. (2017). The Carbon Holdings of Northern Ecuador’s Mangrove Forests. Annals of the American Association of Geographers, 107(1), 54–71. https://doi.org/10.1080/24694452.2016.1226160Hengl, T., & MacMillan, R. . (2019). Predictive Soil Mapping with R. https://soilmapper.org/Hengl, T., Nussbaum, M., Wright, M. N., Heuvelink, G. B. M., & Gräler, B. (2018). Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables. PeerJ, 2018(8). https://doi.org/10.7717/peerj.5518Hernández-Blanco, M., Costanza, R., & Cifuentes-Jara, M. (2018). Valoración económica de los servicios ecosistémicos provistos por los manglares del Golfo de Nicoya. Conservación Internacional.Howard, J., Hoyt, S., Isensee, K., Pidgeon, E., & Telszewski, M. (2018). Coastal Blue Carbon: Methods for assessing carbon stocks and emissions factors in mangroves, tidal salt marshes, and seagrass meadows. Conservation International, Intergovernmental Oceanographic Commission of UNESCO, International Union for Conservation of Nature.Hu, Y., Fest, B. J., Swearer, S. E., & Arndt, S. K. (2021). Fine-scale spatial variability in organic carbon in a temperate mangrove forest: Implications for estimating carbon stocks in blue carbon ecosystems. Estuarine, Coastal and Shelf Science, 259, 107469. https://doi.org/10.1016/J.ECSS.2021.107469Hutchison, J., Manica, A., Swetnam, R., Balmford, A., & Spalding, M. (2014). Predicting Global Patterns in Mangrove Forest Biomass. Conservation Letters, 7(3), 233–240. https://doi.org/10.1111/CONL.12060Ideam. (2014). Atlas Interactivo - Climatológico - IDEAM. http://atlas.ideam.gov.co/visorAtlasClimatologico.htmlIGAC. (2004). Estudio General de suelos y Zonificación de tierras departamento de Nariño. Instituto Geográfico Agustín Codazzi.Invemar. (2010). Informe del Estado de los Ambientes y Recursos Marinos y Costeros en Colombia: Año 2009. Serie de Publicaciones Periódicas.Invemar. (2018). Manglares . https://hub.arcgis.com/datasets/4a14d0ccabf540e9a8934a56a2b55442/explore?layer=5&location=8.448780%2C-78.105500%2C6.00Invemar. (2019). Servicios Ecosistémicos Marinos y Costeros de Colombia: Énfasis en Manglares Y Pastos Marinos. INVEMAR. https://aquadocs.org/handle/1834/15783Invemar. (2020). Sistema de información para la gestión de los manglares en Colombia (SIGMA). http://sigma.invemar.org.co/inicioInvemar, Univalle, & Corponariño. (2017). Implementación de acciones que contribuyan a la rehabilitación ecológica de áreas afectadas por hidrocarburos en zona costera y piedemonte del departamento de Nariño. http://www.invemar.org.co/inicio?p_p_id=101&p_p_lifecycle=0&p_p_state=maximized&p_p_mode=view&_101_struts_action=%2Fasset_publisher%2Fview_content&_101_returnToFullPageURL=%2F&_101_assetEntryId=192196&_101_type=content&_101_urlTitle=implementacion-de-acciones-que-contribuyan-a-la-rehabilitacion-ecologica-de-areas-afectadas-por-hidrocarburos-en-zona-costera-y-piedemonte-del-departa&inheritRedirect=falseJardine, S. L., & Siikamäki, J. V. (2014). A global predictive model of carbon in mangrove soils. Environmental Research Letters, 9(10). https://doi.org/10.1088/1748-9326/9/10/104013Jennerjahn, T. C., Gilman, E., Krauss, K. W., Lacerda, L. D., Nordhaus, I., & Wolanski, E. (2017). Mangrove ecosystems under climate change. In V. Rivera-Monroy, S. Lee, E. Kristensen, & R. Twilley (Eds.), Mangrove Ecosystems: A Global Biogeographic Perspective: Structure, Function, and Services (pp. 211–244). Springer International Publishing. https://doi.org/10.1007/978-3-319-62206-4_7/COVERKauffman, J. B., Adame, M. F., Arifanti, V. B., Schile-Beers, L. M., Bernardino, A. F., Bhomia, R. K., Donato, D. C., Feller, I. C., Ferreira, T. O., Jesus Garcia, M. del C., MacKenzie, R. A., Megonigal, J. P., Murdiyarso, D., Simpson, L., & Hernández Trejo, H. (2020). Total ecosystem carbon stocks of mangroves across broad global environmental and physical gradients. Ecological Monographs, 90(2), 1–18. https://doi.org/10.1002/ecm.1405Kauffman, J. B., & Donato, D. (2012). Protocols for the measurement, monitoring and reporting of structure, biomass and carbon stocks in mangrove forests. Center for International Forestry Research (CIFOR). https://doi.org/10.17528/CIFOR/003749Kauffman, J. B., Heider, C., Norfolk, J., & Payton, F. (2014). Carbon stocks of intact mangroves and carbon emissions arising from their conversion in the Dominican Republic. Ecological Applications, 24(3), 518–527. https://doi.org/10.1890/13-0640.1Kauffman, J., Donato, D., & Adame, M. F. (2013). Protocolo para la medición, monitoreo y reporte de la estructura, biomasa y reservas de carbono de los manglares. In Protocolo para la medición, monitoreo y reporte de la estructura, biomasa y reservas de carbono de los manglares. CIFOR. http://creativecommons.org/licenses/by-nc-nd/3.0/Kida, M., Watanabe, I., Kinjo, K., Kondo, M., Yoshitake, S., Tomotsune, M., Iimura, Y., Umnouysin, S., Suchewaboripont, V., Poungparn, S., Ohtsuka, T., & Fujitake, N. (2021). Organic carbon stock and composition in 3.5-m core mangrove soils (Trat, Thailand). Science of The Total Environment, 801, 149682. https://doi.org/10.1016/J.SCITOTENV.2021.149682Komiyama, A., Ong, J. E., & Poungparn, S. (2008). Allometry, biomass, and productivity of mangrove forests: A review. Aquatic Botany, 89(2), 128–137. https://doi.org/10.1016/J.AQUABOT.2007.12.006Kusumaningtyas, M. A., Hutahaean, A. A., Fischer, H. W., Pérez-Mayo, M., Ransby, D., & Jennerjahn, T. C. (2019). Variability in the organic carbon stocks, sources, and accumulation rates of Indonesian mangrove ecosystems. Estuarine, Coastal and Shelf Science, 218, 310–323. https://doi.org/10.1016/J.ECSS.2018.12.007Lang, A. P., Madi, M., Torres Boeger, M. R., Reissmann, C. B., Geronazzo Martins, K., E D E B O G O T Á, S., De, F., Departamento, C., & Biología, D. E. (2016). Soil-plant nutrient interactions in two mangrove areas at Southern Brazil. Acta Biológica Colombiana, 21(1), 39–50. https://doi.org/10.15446/ABC.V21N1.42894Ley 2243, Ley de protección de ecosistemas de manglar y otras disposiciones (08 de Julio de 2022). Ministerio de Ambiente y Desarrollo Sostenible.Little, E., & Wadsworth, F. (1964). Trees of Puerto Rico and the Virgin Islands. US Department of Agriculture. https://doi.org/10.2307/2484965López-Angarita, J., Roberts, C. M., Tilley, A., Hawkins, J. P., & Cooke, R. G. (2016). Mangroves and people: Lessons from a history of use and abuse in four Latin American countries. Forest Ecology and Management, 368, 151–162. https://doi.org/10.1016/J.FORECO.2016.03.020Lyard, F. H., Allain, D. J., Cancet, M., Carrère, L., & Picot, N. (2021). FES2014 global ocean tide atlas: Design and performance. Ocean Science, 17(3), 615–649. https://doi.org/10.5194/OS-17-615-2021Makonyo, M., & Msabi, M. M. (2021). Identification of groundwater potential recharge zones using GIS-based multi-criteria decision analysis: A case study of semi-arid midlands Manyara fractured aquifer, North-Eastern Tanzania. Remote Sensing Applications: Society and Environment, 23, 100544. https://doi.org/10.1016/J.RSASE.2021.100544Malone, B., McBratney, A. B., Minasny, B., & Laslett, G. M. (2009). Mapping continuous depth functions of soil carbon storage and available water capacity. Geoderma, 154(1–2), 138–152. https://doi.org/10.1016/j.geoderma.2009.10.007Malone, B., Minasny, B., & Mcbratney, A. B. (2017). Using R for Digital Soil Mapping. Springer. http://www.springer.com/series/8746McNally, A., & NASA/GSFC/HSL. (2018). FLDAS Noah Land Surface Model L4 Global Monthly 0.1 x 0.1 degree (MERRA-2 and CHIRPS) (FLDAS_NOAH01_C_GL_M 001). https://disc.gsfc.nasa.gov/datasets/FLDAS_NOAH01_C_GL_M_001/summaryMejía-Rentería, J. C., Castellanos-Galindo, G. A., Cantera-Kintz, J. R., & Hamilton, S. E. (2018). A comparison of Colombian Pacific mangrove extent estimations: Implications for the conservation of a unique Neotropical tidal forest. Estuarine, Coastal and Shelf Science, 212, 233–240. https://doi.org/10.1016/j.ecss.2018.07.020Monsalve, A., & Ramírez, G. (2015). Caracterización de la estructura y contenido de carbono de los bosques de manglar en el área de jurisdicción del Consejo comunitario La Plata, Bahía Málaga, Valle del Cauca. http://climares.invemar.org.co/proyectos/-/asset_publisher/3W2QxkeIz5Ex/content/id/41676Murillo-Sandoval, P. J., Fatoyinbo, L., & Simard, M. (2022). Mangroves Cover Change Trajectories 1984-2020: The Gradual Decrease of Mangroves in Colombia. Frontiers in Marine Science, 9, 1277. https://doi.org/10.3389/FMARS.2022.892946/BIBTEXNASA Goddard Space Flight Center, & Ocean Ecology Laboratory. (2014). MODIS-Aqua Ocean Color Data; NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group. https://oceancolor.gsfc.nasa.gov/data/aqua/Olmedo, G. ., & Baritz, R. (2018). Preparation of local soil data. In Y. Yigini, G. . Olmedo, S. Reiter, R. Baritz, K. Viatkin, & R. . Vargas (Eds.), Soil Organic Carbon Mapping Cookbook (2nd ed., pp. 19–35). FAO. https://fao-gsp.github.io/SOC-Mapping-Cookbook/index.htmlPalacios, M., Vargas, E., & de la Pava, M. (1990). Determinación del aporte de materia orgánica del Manglar en la zona de Bocagrande. Boletín Científico CCCP, 1(1), 55–72. https://doi.org/10.26640/01213423.1.55_72Palacios Peñaranda, M. L., Cantera Kintz, J. R., & Peña Salamanca, E. J. (2019). Carbon stocks in mangrove forests of the Colombian Pacific. Estuarine, Coastal and Shelf Science, 227(May), 106299. https://doi.org/10.1016/j.ecss.2019.106299Parques Nacionales Naturales de Colombia [PNNC]. (2017). Actualización plan de manejo Parque Nacional Natural Sanquianga 2018-2023. https://www.parquesnacionales.gov.co/portal/wp-content/uploads/2020/10/plan-de-manejo-pnn-sanquianga.pdfParra, A. S., & Restrepo Ángel, J. D. (2014). The environmental collapse in the Patía river, Colombia: Morphological variations and impacts on mangrove ecosystems. Latin American Journal of Aquatic Research, 42(1), 40–60. https://doi.org/10.3856/vol42-issue1-fulltext-4Perdomo-Trujillo, L. V., Mancera-Pineda, J. E., Medina-Calderón, J. H., Sánchez-Núñez, D. A., & Schnetter, M. L. (2021). Effect of Restoration Actions on Organic Carbon Pools in the Lagoon—Delta Ciénaga Grande de Santa Marta, Colombian Caribbean. Water 2021, Vol. 13, Page 1297, 13(9), 1297. https://doi.org/10.3390/W13091297Perdomo, L. (2020). Biomasa y producción radicular en manglares de cuenca neotropicales a lo largo de una trayectoria de restauración y su contribución a las reservas de carbono en el ecosistema. Universidad Nacional de Colombia.Pham, T. D., Yokoya, N., Nguyen, T. T. T., Le, N. N., Ha, N. T., Xia, J., Takeuchi, W., & Pham, T. D. (2020). Improvement of Mangrove Soil Carbon Stocks Estimation in North Vietnam Using Sentinel-2 Data and Machine Learning Approach. Https://Doi.Org/10.1080/15481603.2020.1857623, 58(1), 68–87. https://doi.org/10.1080/15481603.2020.1857623Phillips, S., & US National Oceanographic Data Center. (2011). AVHRR Pathfinder version 5.0 global 4km sea surface temperature (SST) day-night monthly and yearly averages for 1985-2009 (NCEI Accession 0077816). https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.nodc:0077816Poggio, L., De Sousa, L. M., Batjes, N. H., Heuvelink, G. B. M., Kempen, B., Ribeiro, E., & Rossiter, D. (2021). SoilGrids 2.0: Producing soil information for the globe with quantified spatial uncertainty. Soil, 7(1), 217–240. https://doi.org/10.5194/soil-7-217-2021R Core Team. (2021). R: The R Stats Package. https://stat.ethz.ch/R-manual/R-devel/library/stats/html/stats-package.htmlR Core Team. (2022). Package ‘caret.’ CRAN. https://cran.r-project.org/web/packages/caret/caret.pdfResolución 1447, se reglamenta el Sistema de monitoreo, reporte y verificación de las acciones de mitigación a nivel nacional (01 de Agosto de 2018). Ministerio de Ambiente y Desarrollo Sostenible.Rodríguez-Rodríguez, J. A., Sierra-Correa, P. C., Gómez-Cubillos, M. C., & Villanueva, L. V. L. (2016). Mangroves of Colombia. In C. . Finlayson, G. . Milton, R. . Prentice, & N. Davidson (Eds.), The Wetland Book (pp. 1–10). Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6173-5_280-2Romero-Berny, E. I., Acosta-Velázquez, J., Tovilla-Hernández, C., Schmook, B., & Gómez-Ortega, R. (2016). Cambios de cobertura y fragmentación de manglares en la región del Soconusco, Chiapas, México, 1994-2011 . Revista Geográfica de América Central, 1(54), 153–169. https://doi.org/10.15359/RGAC.1-54.7Rovai, A. S., Riul, P., Twilley, R. R., Castañeda-Moya, E., Rivera-Monroy, V. H., Williams, A. A., Simard, M., Cifuentes-Jara, M., Lewis, R. R., Crooks, S., Horta, P. A., Schaeffer-Novelli, Y., Cintrón, G., Pozo-Cajas, M., & Pagliosa, P. R. (2016). Scaling mangrove aboveground biomass from site-level to continental-scale. Global Ecology and Biogeography, 25(3), 286–298. https://doi.org/10.1111/GEB.12409Rovai, A. S., Twilley, R. R., Castañeda-Moya, E., Riul, P., Cifuentes-Jara, M., Manrow-Villalobos, M., Horta, P. A., Simonassi, J. C., Fonseca, A. L., & Pagliosa, P. R. (2018). Global controls on carbon storage in mangrove soils. Nature Climate Change, 8(6), 534–538. https://doi.org/10.1038/s41558-018-0162-5Rowley, M. C., Grand, S., & Verrecchia, É. P. (2018). Calcium-mediated stabilisation of soil organic carbon. Biogeochemistry, 137(1–2), 27–49. https://doi.org/10.1007/S10533-017-0410-1/FIGURES/3Rozainah, M. Z., Nazri, M. N., Sofawi, A. B., Hemati, Z., & Juliana, W. A. (2018). Estimation of carbon pool in soil, above and below ground vegetation at different types of mangrove forests in Peninsular Malaysia. Marine Pollution Bulletin, 137, 237–245. https://doi.org/10.1016/J.MARPOLBUL.2018.10.023Saavedra-Hortua, D. A., Friess, D. A., Zimmer, M., & Gillis, L. G. (2020). Sources of Particulate Organic Matter across Mangrove Forests and Adjacent Ecosystems in Different Geomorphic Settings. Wetlands, 40(5), 1047–1059. https://doi.org/10.1007/S13157-019-01261-9/FIGURES/7Sahu, B., Ghosh, A. K., & Seema. (2021). Deterministic and geostatistical models for predicting soil organic carbon in a 60 ha farm on Inceptisol in Varanasi, India. Geoderma Regional, 26, e00413. https://doi.org/10.1016/J.GEODRS.2021.E00413Sánchez, H., Álvarez, R., Guevara, O., Zamora, A., Rodríguez, H., & Bravo, H. (1997). Diagnóstico y zonificación preliminar de los manglares del Pacífico de Colombia. Ministerio del Medio Ambiente.Sanderman, J., Hengl, T., Fiske, G., Solvik, K., Adame, M. F., Benson, L., Bukoski, J. J., Carnell, P., Cifuentes-Jara, M., Donato, D., Duncan, C., Eid, E. M., Ermgassen, P. Z., Lewis, C. J. E., Macreadie, P. I., Glass, L., Gress, S., Jardine, S. L., Jones, T. G., … Landis, E. (2018). A global map of mangrove forest soil carbon at 30 m spatial resolution. Environmental Research Letters, 13(5). https://doi.org/10.1088/1748-9326/aabe1cSasmito, S. D., Kuzyakov, Y., Lubis, A. A., Murdiyarso, D., Hutley, L. B., Bachri, S., Friess, D. A., Martius, C., & Borchard, N. (2020). Organic carbon burial and sources in soils of coastal mudflat and mangrove ecosystems. Catena, 187(December 2019), 104414. https://doi.org/10.1016/j.catena.2019.104414Simard, M., Fatoyinbo, L., Smetanka, C., Rivera-Monroy, V. H., Castañeda-Moya, E., Thomas, N., & Van der Stocken, T. (2019). Mangrove canopy height globally related to precipitation, temperature and cyclone frequency. Nature Geoscience, 12(1), 40–45. https://doi.org/10.1038/s41561-018-0279-1Southwell, C. R., & Bultman, J. D. (1971). Marine Borer Resistance of Untreated Woods Over Long Periods of Immersion in Tropical Waters. Biotropica, 3(1), 81. https://doi.org/10.2307/2989709Stekhoven, D. J., & Bühlmann, P. (2012). MissForest—non-parametric missing value imputation for mixed-type data. Bioinformatics, 28(1), 112–118. https://doi.org/10.1093/BIOINFORMATICS/BTR597Stockmann, U., Adams, M. A., Crawford, J. W., Field, D. J., Henakaarchchi, N., Jenkins, M., Minasny, B., McBratney, A. B., Courcelles, V. de R. de, Singh, K., Wheeler, I., Abbott, L., Angers, D. A., Baldock, J., Bird, M., Brookes, P. C., Chenu, C., Jastrow, J. D., Lal, R., … Zimmermann, M. (2013). The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agriculture, Ecosystems & Environment, 164, 80–99. https://doi.org/10.1016/J.AGEE.2012.10.001Suhaili, N. S., Fei, J. L. J., Sha’ari, F. W., Idris, M. I., Hatta, S. M., Kodoh, J., & Besar, N. A. (2020). Carbon stock estimation of mangrove forest in Sulaman Lake Forest Reserve, Sabah, Malaysia. Biodiversitas Journal of Biological Diversity, 21(12), 5657–5664. https://doi.org/10.13057/BIODIV/D211223Taillardat, P., Friess, D. A., & Lupascu, M. (2018). Mangrove blue carbon strategies for climate change mitigation are most effective at the national scale. Biology Letters, 14(10). https://doi.org/10.1098/rsbl.2018.0251Tanner, M. K., Moity, N., Costa, M. T., Marin Jarrin, J. R., Aburto-Oropeza, O., & Salinas-de-León, P. (2019). Mangroves in the Galapagos: Ecosystem services and their valuation. Ecological Economics, 160(June 2018), 12–24. https://doi.org/10.1016/j.ecolecon.2019.01.024Trettin, C. C., Dai, Z., Tang, W., Lagomasino, D., Thomas, N., Lee, S. K., Simard, M., Ebanega, M. O., Stoval, A., & Fatoyinbo, T. E. (2021). Mangrove carbon stocks in Pongara National Park, Gabon. Estuarine, Coastal and Shelf Science, 259(April 2020). https://doi.org/10.1016/j.ecss.2021.107432Tue, N. T., Dung, L. V., Nhuan, M. T., & Omori, K. (2014). Carbon storage of a tropical mangrove forest in Mui Ca Mau National Park, Vietnam. CATENA, 121, 119–126. https://doi.org/10.1016/J.CATENA.2014.05.008Twilley, R. R., Castañeda-Moya, E., Rivera-Monroy, V. H., & Rovai, A. (2017). Productivity and carbon dynamics in mangrove wetlands. In V. . Rivera-Monroy, S. . Lee, E. . Kristensen, & R. Twilley (Eds.), Mangrove Ecosystems: A Global Biogeographic Perspective: Structure, Function, and Services (pp. 113–162). Springer International Publishing. https://doi.org/10.1007/978-3-319-62206-4_5/FIGURES/14Twilley, R. R., & Rivera-Monroy, V. H. (2009). Ecogeomorphic Models of Nutrient Biogeochemistry for Mangrove Wetlands. In Coastal Wetlands: An Integrated Ecosystem Approach (First edit, Issue June, pp. 641–684). Elsevier. https://doi.org/10.1016/B978-0-444-53103-2.00023-5Twilley, R. R., Rivera-Monroy, V. H., Rovai, A. S., Castañeda-Moya, E., & Davis, S. (2019). Mangrove Biogeochemistry at Local to Global Scales Using Ecogeomorphic Approaches. In G. . Perillo, E. . Wolanski, D. . Cahoon, & Hopkinson C. (Eds.), Coastal Wetlands: An Integrated Ecosystem Approach (pp. 717–785). Elsevier. https://doi.org/10.1016/B978-0-444-63893-9.00021-6Twilley, R. R., Rovai, A. S., & Riul, P. (2018). Coastal morphology explains global blue carbon distributions. Frontiers in Ecology and the Environment, 16(9), 503–508. https://doi.org/10.1002/FEE.1937Wadoux, A. M. J.-C., Odeh, I. O. A., & McBratney, A. B. (2021). Overview of Pedometrics. Reference Module in Earth Systems and Environmental Sciences. https://doi.org/10.1016/B978-0-12-822974-3.00001-XWang, G., Singh, M., Wang, J., Xiao, L., & Guan, D. (2021). Effects of marine pollution, climate, and tidal range on biomass and sediment organic carbon in Chinese mangrove forests. CATENA, 202, 105270. https://doi.org/10.1016/J.CATENA.2021.105270Wang, N., Xue, J., Peng, J., Biswas, A., He, Y., & Shi, Z. (2020). Integrating remote sensing and landscape characteristics to estimate soil salinity using machine learning methods: A case study from southern xinjiang, china. Remote Sensing, 12(24), 1–21. https://doi.org/10.3390/rs12244118Wang, S., Adhikari, K., Wang, Q., Jin, X., & Li, H. (2018). Role of environmental variables in the spatial distribution of soil carbon (C), nitrogen (N), and C:N ratio from the northeastern coastal agroecosystems in China. Ecological Indicators, 84, 263–272. https://doi.org/10.1016/J.ECOLIND.2017.08.046Wicaksono, P., Danoedoro, P., Hartono, & Nehren, U. (2015). Mangrove biomass carbon stock mapping of the Karimunjawa Islands using multispectral remote sensing. 37(1), 26–52. https://doi.org/10.1080/01431161.2015.1117679Wiesmeier, M., Urbanski, L., Hobley, E., Lang, B., von Lützow, M., Marin-Spiotta, E., van Wesemael, B., Rabot, E., Ließ, M., Garcia-Franco, N., Wollschläger, U., Vogel, H. J., & Kögel-Knabner, I. (2019). Soil organic carbon storage as a key function of soils - A review of drivers and indicators at various scales. Geoderma, 333, 149–162. https://doi.org/10.1016/J.GEODERMA.2018.07.026Woodroffe, C. D., Rogers, K., McKee, K. L., Lovelock, C. E., Mendelssohn, I. A., & Saintilan, N. (2016). Mangrove Sedimentation and Response to Relative Sea-Level Rise. Http://Dx.Doi.Org/10.1146/Annurev-Marine-122414-034025, 8, 243–266. https://doi.org/10.1146/ANNUREV-MARINE-122414-034025Worthington, T. A., zu Ermgassen, P. S. E., Friess, D. A., Krauss, K. W., Lovelock, C. E., Thorley, J., Tingey, R., Woodroffe, C. D., Bunting, P., Cormier, N., Lagomasino, D., Lucas, R., Murray, N. J., Sutherland, W. J., & Spalding, M. (2020). A global biophysical typology of mangroves and its relevance for ecosystem structure and deforestation. Scientific Reports 2020 10:1, 10(1), 1–11. https://doi.org/10.1038/s41598-020-71194-5Yang, R. M., Zhang, G. L., Liu, F., Lu, Y. Y., Yang, F., Yang, F., Yang, M., Zhao, Y. G., & Li, D. C. (2016). Comparison of boosted regression tree and random forest models for mapping topsoil organic carbon concentration in an alpine ecosystem. Ecological Indicators, 60, 870–878. https://doi.org/10.1016/j.ecolind.2015.08.036Zakaria, R. M., Chen, G., Chew, L. L., Sofawi, A. B., Moh, H. H., Chen, S., Teoh, H. W., & Adibah, S. Y. S. N. (2021). Carbon stock of disturbed and undisturbed mangrove ecosystems in Klang Straits, Malaysia. Journal of Sea Research, 176, 102113. https://doi.org/10.1016/J.SEARES.2021.102113Zarate-Barrera, T. G., & Maldonado, J. H. (2015). Valuing blue carbon: Carbon sequestration benefits provided by the marine protected areas in Colombia. PLoS ONE, 10(5), 1–22. https://doi.org/10.1371/journal.pone.0126627Zeraatpisheh, M., Garosi, Y., Reza Owliaie, H., Ayoubi, S., Taghizadeh-Mehrjardi, R., Scholten, T., & Xu, M. (2022). Improving the spatial prediction of soil organic carbon using environmental covariates selection: A comparison of a group of environmental covariates. Catena, 208(September 2021), 105723. https://doi.org/10.1016/j.catena.2021.105723Zhang, Z., Li, J., Tsui, C. C., & Chen, Z. S. (2020). The Study of Gaining More Detailed Variability Information of Soil Organic Carbon in Surface Soils and Its Significance to Enriching the Existing Soil Database. Sustainability 2020, Vol. 12, Page 4866, 12(12), 4866. https://doi.org/10.3390/SU12124866Zhou, Y., Xue, J., Chen, S., Zhou, Y., Liang, Z., Wang, N., & Shi, Z. (2020). Fine-resolution mapping of soil total nitrogen across china based on weighted model averaging. Remote Sensing, 12(1), 1–18. https://doi.org/10.3390/RS12010085EstudiantesPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/83304/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1085936056_2023.pdf1085936056_2023.pdfTesis de Maestría en Ingeniería Ambientalapplication/pdf2211563https://repositorio.unal.edu.co/bitstream/unal/83304/2/1085936056_2023.pdfbc58d6c7d50a08cfff2323acd47fb95cMD52THUMBNAIL1085936056_2023.pdf.jpg1085936056_2023.pdf.jpgGenerated Thumbnailimage/jpeg4636https://repositorio.unal.edu.co/bitstream/unal/83304/3/1085936056_2023.pdf.jpgdb4490d3ddd3d16c755906fabd634236MD53unal/83304oai:repositorio.unal.edu.co:unal/833042023-08-15 23:04:02.389Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |