The stekloff problem for rotationally invariant metrics on the ball

Let (Br,g) be a ball of radius r and gt;0 in Rn (n≥ 2) endowed with a rotationally invariant metricds2+f2(s)dw2, where dw2 represents the standard metric on Sn-1, the (n-1)--dimensional unit sphere. Assume that Br has non--negative sectional curvature. In this paper we prove that ifh(r) and gt;0 is...

Full description

Autores:
Montaño Carreño, Óscar Andrés
Tipo de recurso:
Article of journal
Fecha de publicación:
2013
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/49342
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/49342
http://bdigital.unal.edu.co/42799/
Palabra clave:
Valor propio de Stekloff
métrica rotacionalmente invariante
curvatura seccional no negativa
35P15
53C20
53C42
53C43
Stekloff eigenvalue
Rotationally invariant metric
Non-negative sectional curvature
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
Description
Summary:Let (Br,g) be a ball of radius r and gt;0 in Rn (n≥ 2) endowed with a rotationally invariant metricds2+f2(s)dw2, where dw2 represents the standard metric on Sn-1, the (n-1)--dimensional unit sphere. Assume that Br has non--negative sectional curvature. In this paper we prove that ifh(r) and gt;0 is the mean curvature on ∂ Br and ν1 is the first eigenvalue of the Stekloff problem, thenν1 ≥ h(r). Equality (ν 1 = h(r)) holds only for the standard metric of Rn.