A deep learning question answering method over mixed closed domain information sources
digramas, tablas
- Autores:
-
Rosso Mateus, Andrés Enrique
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2021
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/79562
- Palabra clave:
- 000 - Ciencias de la computación, información y obras generales
Respuesta a preguntas, recuperación de pasajes, Deep Learning, Machine Learning, recuperación de información, biomédica, BioASQ.
Respuesta a preguntas
Recuperación de pasajes
Recuperación de información
Biomédica
BioASQ
Question answering
Passage retrieval
Deep Learning
Machine Learning
Biomedical information retrieval
BioASQ
Sistema de información médica
Medical information systems
Indexación automática
Automatic indexing
- Rights
- openAccess
- License
- Reconocimiento 4.0 Internacional
id |
UNACIONAL2_611ee7051da133dae95462b5d4b96e41 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/79562 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.eng.fl_str_mv |
A deep learning question answering method over mixed closed domain information sources |
dc.title.translated.spa.fl_str_mv |
Un método de aprendizaje profundo para responder automáticamente a preguntas en dominio cerrado sobre fuentes de información mixta |
title |
A deep learning question answering method over mixed closed domain information sources |
spellingShingle |
A deep learning question answering method over mixed closed domain information sources 000 - Ciencias de la computación, información y obras generales Respuesta a preguntas, recuperación de pasajes, Deep Learning, Machine Learning, recuperación de información, biomédica, BioASQ. Respuesta a preguntas Recuperación de pasajes Recuperación de información Biomédica BioASQ Question answering Passage retrieval Deep Learning Machine Learning Biomedical information retrieval BioASQ Sistema de información médica Medical information systems Indexación automática Automatic indexing |
title_short |
A deep learning question answering method over mixed closed domain information sources |
title_full |
A deep learning question answering method over mixed closed domain information sources |
title_fullStr |
A deep learning question answering method over mixed closed domain information sources |
title_full_unstemmed |
A deep learning question answering method over mixed closed domain information sources |
title_sort |
A deep learning question answering method over mixed closed domain information sources |
dc.creator.fl_str_mv |
Rosso Mateus, Andrés Enrique |
dc.contributor.advisor.none.fl_str_mv |
González Osorio, Fabio Augusto Montes-y-Gómez, Manuel |
dc.contributor.author.none.fl_str_mv |
Rosso Mateus, Andrés Enrique |
dc.contributor.researchgroup.spa.fl_str_mv |
MindLab |
dc.subject.ddc.spa.fl_str_mv |
000 - Ciencias de la computación, información y obras generales |
topic |
000 - Ciencias de la computación, información y obras generales Respuesta a preguntas, recuperación de pasajes, Deep Learning, Machine Learning, recuperación de información, biomédica, BioASQ. Respuesta a preguntas Recuperación de pasajes Recuperación de información Biomédica BioASQ Question answering Passage retrieval Deep Learning Machine Learning Biomedical information retrieval BioASQ Sistema de información médica Medical information systems Indexación automática Automatic indexing |
dc.subject.proposal.spa.fl_str_mv |
Respuesta a preguntas, recuperación de pasajes, Deep Learning, Machine Learning, recuperación de información, biomédica, BioASQ. Respuesta a preguntas Recuperación de pasajes Recuperación de información Biomédica BioASQ |
dc.subject.proposal.eng.fl_str_mv |
Question answering Passage retrieval Deep Learning Machine Learning Biomedical information retrieval BioASQ |
dc.subject.unesco.none.fl_str_mv |
Sistema de información médica Medical information systems Indexación automática Automatic indexing |
description |
digramas, tablas |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-05-25T21:57:38Z |
dc.date.available.none.fl_str_mv |
2021-05-25T21:57:38Z |
dc.date.issued.none.fl_str_mv |
2021-05-25 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/79562 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/79562 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
Agichtein, Eugene ; Brill, Eric ; Dumais, Susan: Improving web search ranking by incorporating user behavior information. In: Proceedings of the 29th annual interna- tional ACM SIGIR conference on Research and development in information retrieval ACM, 2006, S. Al-Chalabi, Hani ; Ray, Santosh ; Shaalan, Khaled: Semantic Based Query Expansion for Arabic Question Answering Systems. In: Arabic Computational Linguistics (ACLing), 2015 First International Conference on IEEE, 2015, S. Alsentzer, Emily ; Murphy, John ; Boag, William ; Weng, Wei-Hung ; Jindi, Di ; Naumann, Tristan ; McDermott, Matthew: Publicly Available Clinical BERT Embeddings. In: Proceedings of the 2nd Clinical Natural Language Processing Work- shop, 2019, S. Androutsopoulos, Ion: A challenge on large-scale biomedical semantic indexing and question answering. In: BioNLP workshop (part of the ACL Conference) (2013), S. Auer, S oren ; Bizer, Christian ; Kobilarov, Georgi ; Lehmann, Jens ; Cyganiak, Richard ; Ives, Zachary: Dbpedia: A nucleus for a web of open data. In: The semantic web. Springer, 2007, S. Azzopardi, Leif ; Girolami, Mark ; Crowe, Malcolm: Probabilistic hyperspace analogue to language. In: Proceedings of the 28th annual international ACM SIGIR conference on Research and development in information retrieval ACM, 2005, S. 575{ 576 Baasiri, Rudeina A. ; Glasser, Stanley R. ; Steffen, David L. ; Wheeler, David A.: The breast cancer gene database: a collaborative information resource. In: Oncogene 18 (1999), Nr. 56, S. Banerjee, Somnath ; Bandyopadhyay, Sivaji: Ensemble approach for ne-grained question classi cation in bengali. In: 27th Paci c Asia Conference on Language, Information, and Computation, 2013, S. Bibliography 89 Beam, Andrew L. ; Kompa, Benjamin ; Fried, Inbar ; Palmer, Nathan P. ; Shi, Xu ; Cai, Tianxi ; Kohane, Isaac S.: Clinical Concept Embeddings Learned from Massive Sources of Medical Data. In: arXiv preprint arXiv:1804.01486 (2018) Berant, Jonathan ; Chou, Andrew ; Frostig, Roy ; Liang, Percy: Semantic parsing on freebase from question-answer pairs. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, 2013, S. Berners-Lee, Tim ; Hendler, James ; Lassila, Ora: The semantic web. In: Scienti c american 284 (2001), Nr. 5, S. Bhogal, Jagdev ; MacFarlane, Andrew ; Smith, Peter: A review of ontology based query expansion. In: Information processing & management 43 (2007), Nr. 4, S. Bilotti, Matthew W. ; Elsas, Jonathan ; Carbonell, Jaime ; Nyberg, Eric: Rank learning for factoid question answering with linguistic and semantic constraints. In: Proceedings of the 19th ACM international conference on Information and knowledge management, 2010, S. Bird, Steven: NLTK: the natural language toolkit. In: Proceedings of the COL- ING/ACL on Interactive presentation sessions Bd. 1 ACL, 2006, S. Blei, David M. ; Ng, Andrew Y. ; Jordan, Michael I.: Latent dirichlet allocation. In: Journal of machine Learning research 3 (2003), Nr. Jan, S. Bodenreider, Olivier: The uni ed medical language system (UMLS): integrating biomedical terminology. In: Nucleic acids research 32 (2004), Nr. suppl 1, S. D267{ D270 Bollacker, Kurt ; Evans, Colin ; Paritosh, Praveen ; Sturge, Tim ; Taylor, Jamie: Freebase: a collaboratively created graph database for structuring human knowledge. In: Proceedings of the 2008 ACM SIGMOD international conference on Management of data AcM, 2008, S. Bonadiman, Daniele ; Kumar, Anjishnu ; Mittal, Arpit: Large Scale Question Paraphrase Retrieval with Smoothed Deep Metric Learning. In: Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019), 2019, S. Brill, Eric ; Dumais, Susan ; Banko, Michele: An analysis of the AskMSR questionanswering system. In: Proceedings of the ACL-02 conference on Empirical methods in natural language processing-Volume 10 Association for Computational Linguistics, 2002, S. 90 Bibliography Brokos, Georgios-Ioannis ; Liosis, Polyvios ; McDonald, Ryan ; Pappas, Dimitris ; Androutsopoulos, Ion: AUEB at BioASQ 6: Document and Snippet Retrieval. In: arXiv preprint arXiv:1809.06366 (2018) Bucher, Maxime ; Herbin, St ephane ; Jurie, Fr ed eric: Hard negative mining for metric learning based zero-shot classi cation. In: European Conference on Computer Vision Springer, 2016, S. Buscaldi, Davide ; Flores, Jorge G. ; Meza, Ivan V. ; Rodriguez, Isaac: Sopa: Random forests regression for the semantic textual similarity task. In: Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015), 2015, S. Chen, Qingyu ; Peng, Yifan ; Lu, Zhiyong: BioSentVec: creating sentence embeddings for biomedical texts. In: 2019 IEEE International Conference on Healthcare Informatics (ICHI) IEEE, 2019, S. Chen, Yueguo ; Gao, Lexi ; Shi, Shuming ; Du, Xiaoyong ; Wen, Ji-Rong: Improving context and category matching for entity search. In: Proceedings of the Twenty-Eighth AAAI Conference on Arti cial Intelligence, 2014, S. Clark, Kevin ; Khandelwal, Urvashi ; Levy, Omer ; Manning, Christopher D.: What does bert look at? an analysis of berts attention. In: arXiv preprint arXiv:1906.04341 (2019) Clarke, Charles L. ; Cormack, Gordon V. ; Lynam, Thomas R. ; Terra, Egidio L.: Question answering by passage selection. In: Advances in Open Domain Question Answering. Springer, 2008, S. Cohen, Daniel ; Croft, W B.: A Hybrid Embedding Approach to Noisy Answer Passage Retrieval. In: European Conference on Information Retrieval Springer, 2018, S. Deerwester, Scott ; Dumais, Susan T. ; Furnas, George W. ; Landauer, Thomas K. ; Harshman, Richard: Indexing by latent semantic analysis. In: Journal of the American society for information science 41 (1990), Nr. 6, S. 391 Devlin, Jacob ; Chang, Ming-Wei ; Lee, Kenton ; Toutanova, Kristina: Bert: Pre-training of deep bidirectional transformers for language understanding. In: arXiv preprint arXiv:1810.04805 (2018) Dong, Li ; Wei, Furu ; Zhou, Ming ; Xu, Ke: Question Answering over Freebase with Multi-Column Convolutional Neural Networks. In: ACL Bd. 1, 2015, S. Bibliography 91 Feng, Minwei ; Xiang, Bing ; Glass, Michael R. ; Wang, Lidan ; Zhou, Bowen: Applying deep learning to answer selection: A study and an open task. In: 2015 IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU) IEEE, 2015, S. Galk o, Ferenc ; Eickhoff, Carsten: Biomedical question answering via weighted neural network passage retrieval. In: European Conference on Information Retrieval Springer, 2018, S. Ganguly, Debasis ; Roy, Dwaipayan ; Mitra, Mandar ; Jones, Gareth J.: Word embedding based generalized language model for information retrieval. In: Proceed- ings of the 38th international ACM SIGIR conference on research and development in information retrieval ACM, 2015, S. Goodfellow, Ian ; Bengio, Yoshua ; Courville, Aaron ; Bengio, Yoshua: Deep learning. 1. MIT press Cambridge, 2016 Gormley, Clinton ; Tong, Zachary: Elasticsearch: The De nitive Guide: A Dis- tributed Real-Time Search and Analytics Engine. 1. " OReilly Media, Inc.", 2015 Guo, Jiafeng ; Fan, Yixing ; Ai, Qingyao ; Croft, W B.: A deep relevance matching model for ad-hoc retrieval. In: Proceedings of the 25th ACM International on Conference on Information and Knowledge Management ACM, 2016, S. Guo, Shangmin ; Zeng, Xiangrong ; He, Shizhu ; Liu, Kang ; Zhao, Jun: Which is the e ective way for gaokao: Information retrieval or neural networks? In: Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers, 2017, S. Hardy, H ; Cheah, Yu-N: Question classi cation using extreme learning machine on semantic features. In: Journal of ICT Research and Applications 7 (2013), Nr. 1, S. He, Hua ; Lin, Jimmy J.: Pairwise Word Interaction Modeling with Deep Neural Networks for Semantic Similarity Measurement. In: HLT-NAACL Bd. 1, 2016, S. He, Yun ; Zhu, Ziwei ; Zhang, Yin ; Chen, Qin ; Caverlee, James: Infusing Disease Knowledge into BERT for Health Question Answering, Medical Inference and Disease Name Recognition. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2020, S. Hermjakob, Ulf: Parsing and question classi cation for question answering. In: Pro- ceedings of the workshop on Open-domain question answering-Volume 12 Association for Computational Linguistics, 2001, S. 92 Bibliography Hiemstra, Djoerd: Using language models for information retrieval. 1. Taaluitgeverij Neslia Paniculata, 2001 Hoffart, Johannes ; Suchanek, Fabian M. ; Berberich, Klaus ; Weikum, Gerhard: YAGO2: A spatially and temporally enhanced knowledge base from Wikipedia. In: Arti cial Intelligence 194 (2013), S. Kaya, Mahmut ; Bilge, Hasan S.: Deep metric learning: a survey. In: Symmetry 11 (2019), Nr. 9, S. 1066 Khalifa, Khalid ; Omar, Nazlia: A hybrid method using lexicon-based approach and Naive Bayes classi er for Arabic opinion question answering. In: J. Comput. Sci. 10 (2014), Nr. 10, S. Kolomiyets, Oleksandr ; Moens, Marie-Francine: A survey on question answering technology from an information retrieval perspective. In: Information Sciences 181 (2011), Nr. 24, S. Krishnamurthy, Jayant ; Kollar, Thomas: Jointly learning to parse and perceive: Connecting natural language to the physical world. In: Transactions of the Association for Computational Linguistics 1 (2013), S. Kuzi, Saar ; Shtok, Anna ; Kurland, Oren: Query expansion using word embeddings. In: Proceedings of the 25th ACM international on conference on information and knowledge management ACM, 2016, S. Le, Quoc V. ; Mikolov, Tomas: Distributed Representations of Sentences and Documents. In: ICML Bd. 14, 2014, S. Lee, Jinhyuk ; Yoon,Wonjin ; Kim, Sungdong ; Kim, Donghyeon ; Kim, Sunkyu ; So, Chan H. ; Kang, Jaewoo: BioBERT: pre-trained biomedical language representation model for biomedical text mining. In: arXiv preprint arXiv:1901.08746 (2019) Lee, Jinhyuk ; Yoon,Wonjin ; Kim, Sungdong ; Kim, Donghyeon ; Kim, Sunkyu ; So, Chan H. ; Kang, Jaewoo: BioBERT: a pre-trained biomedical language representation model for biomedical text mining. In: Bioinformatics 36 (2020), Nr. 4, S. Levenshtein, Vladimir I.: Binary codes capable of correcting deletions, insertions, and reversals. In: Soviet physics doklady Bd. 10, 1966, S. Leys, Christophe ; Ley, Christophe ; Klein, Olivier ; Bernard, Philippe ; Licata, Laurent: Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median. In: Journal of Experimental Social Psychology 49 (2013), Nr. 4, S. Bibliography 93 Lin, Jimmy: An exploration of the principles underlying redundancy-based factoid question answering. In: ACM Transactions on Information Systems (TOIS) 25 (2007), Nr. 2, S. 6 Lison, Pierre ; Kutuzov, Andrey: Rede ning context windows for word embedding models: An experimental study. In: arXiv preprint arXiv:1704.05781 (2017) Liu, Feifan ; Pennell, Deana ; Liu, Fei ; Liu, Yang: Unsupervised approaches for automatic keyword extraction using meeting transcripts. In: Proceedings of human language technologies. Bd. 1 ACL, 2009, S. Liu, Xiaodong ; Gao, Jianfeng ; He, Xiaodong ; Deng, Li ; Duh, Kevin ; Wang, Ye-Yi: Representation learning using multi-task deep neural networks for semantic classi cation and information retrieval. (2015) Loni, Babak: A survey of state-of-the-art methods on question classi cation. (2011) Lu, Jiwen ; Hu, Junlin ; Zhou, Jie: Deep metric learning for visual understanding: An overview of recent advances. In: IEEE Signal Processing Magazine 34 (2017), Nr. 6, S. Ma, Zhuang ; Collins, Michael: Noise Contrastive Estimation and Negative Sampling for Conditional Models: Consistency and Statistical E ciency. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, 2018, S. Majdoubi, Jihen ; Tmar, Mohamed ; Gargouri, Faiez: Using the MeSH thesaurus to index a medical article: combination of content, structure and semantics. In: Inter- national Conference on Knowledge-Based and Intelligent Information and Engineering Systems Springer, 2009, S. Malakasiotis, Prodromos ; Androutsopoulos, Ion ; Bernadou, Agiatis ; Chatzidiakou, Nephelie ; Papaki, Eliza ; Constantopoulos, Panos ; Pavlopoulos, Ioannis ; Krithara, Anastasia ; Almyrantis, Yannis ; Polychronopoulos, Dimitris [u. a.]: Challenge Evaluation Report 2 and Roadmap. In: BioASQ deliverable D 5 (2014) Mao, Yuqing ; Wei, Chih-Hsuan ; Lu, Zhiyong: NCBI at the 2014 BioASQ Challenge Task: Large-scale Biomedical Semantic Indexing and Question Answering. In: CLEF (Working Notes), 2014, S. Mass, Yosi ; Roitman, Haggai ; Erera, Shai ; Rivlin, Or ; Weiner, Bar ; Konopnicki, David: A Study of BERT for Non-Factoid Question-Answering under Passage Length Constraints. In: arXiv preprint arXiv:1908.06780 (2019) 94 Bibliography McKeown, Kathleen ; Radev, Dragomir R.: Generating summaries of multiple news articles. In: Proceedings of the 18th annual international ACM SIGIR conference on Research and development in information retrieval ACM, 1995, S. Mikolov, Tomas ; Chen, Kai ; Corrado, Greg ; Dean, Je rey: E cient estimation of word representations in vector space. In: arXiv preprint arXiv:1301.3781 (2013) Mikolov, Tomas ; Corrado, Greg ; Chen, Kai ; Dean, Je rey: E cient Estimation of Word Representations in Vector Space. In: Proceedings of the International Conference on Learning Representations (ICLR 2013) (2013), S. . { ISBN 1532{ 4435 Miller, Alexander ; Fisch, Adam ; Dodge, Jesse ; Karimi, Amir-Hossein ; Bordes, Antoine ; Weston, Jason: Key-Value Memory Networks for Directly Reading Documents. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, 2016, S. Mitra, Bhaskar ; Craswell, Nick: Neural text embeddings for information retrieval. In: Proceedings of the Tenth ACM International Conference on Web Search and Data Mining ACM, 2017, S. Mitra, Bhaskar ; Nalisnick, Eric ; Craswell, Nick ; Caruana, Rich: A dual embedding space model for document ranking. In: arXiv preprint arXiv:1602.01137 (2016) Moen, SPFGH ; Ananiadou, Tapio Salakoski2 S.: Distributional semantics resources for biomedical text processing. In: Proceedings of the 5th International Symposium on Languages in Biology and Medicine, Tokyo, Japan, 2013, S. Monz, Christof: Document retrieval in the context of question answering. In: Euro- pean Conference on Information Retrieval Springer, 2003, S. Narasimhan, Karthik ; Yala, Adam ; Barzilay, Regina: Improving information extraction by acquiring external evidence with reinforcement learning. In: arXiv preprint arXiv:1603.07954 (2016) Nentidis, Anastasios ; Bougiatiotis, Konstantinos ; Krithara, Anastasia ; Paliouras, Georgios: Results of the Seventh Edition of the BioASQ Challenge. In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases Springer, 2019, S. Nentidis, Anastasios ; Krithara, Anastasia ; Bougiatiotis, Konstantinos ; Paliouras, Georgios ; Kakadiaris, Ioannis: Results of the sixth edition of the BioASQ Challenge. In: Proceedings of the 6th BioASQ Workshop A challenge on Bibliography 95 large-scale biomedical semantic indexing and question answering. Brussels, Belgium : Association for Computational Linguistics, November 2018, S. Nentidis, Anastasios ; Krithara, Anastasia ; Bougiatiotis, Konstantinos ; Paliouras, Georgios ; Kakadiaris, Ioannis: Results of the sixth edition of the BioASQ Challenge. In: Proceedings of the 6th BioASQ Workshop A challenge on large-scale biomedical semantic indexing and question answering. Brussels, Belgium : Association for Computational Linguistics, November 2018, S. Neto, Joel L. ; Santos, Alexandre D. ; Kaestner, Celso A. ; Alexandre, Neto ; Santos, D [u. a.]: Document clustering and text summarization. (2000) Neumann, Mark ; King, Daniel ; Beltagy, Iz ; Ammar, Waleed: ScispaCy: Fast and Robust Models for Biomedical Natural Language Processing. In: arXiv preprint arXiv:1902.07669 (2019) NIH. PubMed Baseline Repository. 2017 NIH. PubMed Baseline Repository. 2018 Nogueira, Rodrigo ; Cho, Kyunghyun: Passage Re-ranking with BERT. In: arXiv preprint arXiv:1901.04085 (2019) Nogueira, Rodrigo ; Yang, Wei ; Cho, Kyunghyun ; Lin, Jimmy: Multi-stage document ranking with BERT. In: arXiv preprint arXiv:1910.14424 (2019) Noy, Natalya F. ; McGuinness, Deborah L. [u. a.]. Ontology development 101: A guide to creating your rst ontology. 2001 Oh, Jong-Hoon ; Torisawa, Kentaro ; Kruengkrai, Canasai ; Iida, Ryu ; Kloetzer, Julien: Multi-column convolutional neural networks with causality-attention for why-question answering. In: Proceedings of the Tenth ACM International Conference on Web Search and Data Mining ACM, 2017, S. Othman, Nouha ; Faiz, Rim: Question answering passage retrieval and re-ranking using n-grams and SVM. In: Computaci on y Sistemas 20 (2016), Nr. 3, S. Ozyurt, Ibrahim B. ; Bandrowski, Anita ; Grethe, Je rey S.: Bio-AnswerFinder: a system to nd answers to questions from biomedical texts. In: Database 2020 (2020) Pakray, Partha ; Bhaskar, Pinaki ; Banerjee, Somnath ; Pal, Bidhan C. ; Bandyopadhyay, Sivaji ; Gelbukh, Alexander F.: A Hybrid Question Answering System based on Information Retrieval and Answer Validation. In: CLEF (Notebook Papers/Labs/Workshop), 2011 96 Bibliography Palangi, Hamid ; Deng, Li ; Shen, Yelong ; Gao, Jianfeng ; He, Xiaodong ; Chen, Jianshu ; Song, Xinying ; Ward, Rabab: Deep sentence embedding using long short-term memory networks: Analysis and application to information retrieval. In: IEEE/ACM Transactions on Audio, Speech and Language Processing (TASLP) 24 (2016), Nr. 4, S. Pappas, Dimitris ; McDonald, Ryan ; Brokos, Georgios-Ioannis ; Androutsopoulos, Ion: AUEB at BioASQ 7: document and snippet retrieval. In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases Springer, 2019, S. Peters, Matthew E. ; Neumann, Mark ; Iyyer, Mohit ; Gardner, Matt ; Clark, Christopher ; Lee, Kenton ; Zettlemoyer, Luke: Deep contextualized word representations. In: arXiv preprint arXiv:1802.05365 (2018) Pineda-Vargas, M onica ; Rosso-Mateus, Andr es ; Gonz alez, Fabio A. ; Montes-y G omez, Manuel: A Mixed Information Source Approach for Biomedical Question Answering: MindLab at BioASQ 7B. In: Cellier, Peggy (Hrsg.) ; Driessens, Kurt (Hrsg.): Machine Learning and Knowledge Discovery in Databases. Cham : Springer International Publishing, 2020, S. Pizzato, Luiz A. ; Moll a, Diego: Indexing on semantic roles for question answering. In: Coling 2008: Proceedings of the 2nd workshop on Information Retrieval for Question Answering, 2008, S. Ponte, Jay M. ; Croft, W B.: A language modeling approach to information retrieval. In: Proceedings of the 21st annual international ACM SIGIR conference on Research and development in information retrieval, 1998, S. Radford, Alec ; Narasimhan, Karthik ; Salimans, Tim ; Sutskever, Ilya. Im- proving language understanding by generative pre-training. 2018 Rajpurkar, Pranav ; Zhang, Jian ; Lopyrev, Konstantin ; Liang, Percy: SQuAD: 100,000+ Questions for Machine Comprehension of Text. (2016), S. Ramage, Daniel ; Rafferty, Anna N. ; Manning, Christopher D.: Random walks for text semantic similarity. In: Proceedings of the 2009 workshop on graph-based methods for natural language processing Association for Computational Linguistics, 2009, S. Riezler, Stefan ; Vasserman, Alexander ; Tsochantaridis, Ioannis ; Mittal, Vibhu ; Liu, Yi: Statistical machine translation for query expansion in answer retrieval. In: ACL, 2007 Bibliography 97 Robertson, Stephen ; Zaragoza, Hugo: The probabilistic relevance framework: BM25 and beyond. 1. Now Publishers Inc, 2009 Rosso-Mateus, Andres ; Montes-y Gomez, Manuel ; Rosso, Paolo ; Gonzalez, Fabio A.: Deep fusion of multiple term-similarity measures for biomedical passage retrieval. In: Journal of Intelligent and Fuzzy Systems 39, Nr. 2, S. Rosso-Mateus, Andr es ; Gonz alez, Fabio A. ; Montes-y G omez, Manuel: A Shallow Convolutional Neural Network Architecture for Open Domain Question Answering. In: Colombian Conference on Computing Springer, 2017, S. Rosso-Mateus, Andr es ; Gonz alez, Fabio A. ; Montes-y G omez, Manuel: A Two-Step Neural Network Approach to Passage Retrieval for Open Domain Question Answering. In: Iberoamerican Congress on Pattern Recognition Springer, 2017, S. Rosso-Mateus, Andr es ; Gonz alez, Fabio A. ; Montes, Manuel: Mindlab neural network approach at bioasq 6b. In: Proceedings of the 6th BioASQ Workshop A challenge on large-scale biomedical semantic indexing and question answering, 2018, S. Rosso-Mateus Andr es, Fabio A. G.: A Deep Metric Learning Method for Biomedical Passage Retrieval. (2020) Rubin, Daniel L. ; Lewis, Suzanna E. ; Mungall, Chris J. ; Misra, Sima ; Westerfield, Monte ; Ashburner, Michael ; Sim, Ida ; Chute, Christopher G. ; Storey, Margaret-Anne ; Smith, Barry [u. a.]: National center for biomedical ontology: advancing biomedicine through structured organization of scienti c knowledge. In: Omics: a journal of integrative biology 10 (2006), Nr. 2, S. Rybinski, Maciej ; Xu, Jerry ; Karimi, Sarvnaz: Clinical trial search: Using biomedical language understanding models for re-ranking. In: Journal of Biomedical Infor- matics 109 (2020), S. 103530 Rydning, David Reinsel-John Gantz-John: The digitization of the world from edge to core. In: Framingham: International Data Corporation (2018) Salakhutdinov, Ruslan ; Hinton, Geo rey: Semantic hashing. In: International Journal of Approximate Reasoning 50 (2009), Nr. 7, S. Schroff, Florian ; Kalenichenko, Dmitry ; Philbin, James: Facenet: A uni ed embedding for face recognition and clustering. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, S. 98 Bibliography Severyn, Aliaksei ; Moschitti, Alessandro: Learning to rank short text pairs with convolutional deep neural networks. In: Proceedings of the 38th international ACM SIGIR conference on research and development in information retrieval, 2015, S. 373{ 382 SHATKAY, HAGIT ; FELDMAN, RONEN: Mining the Biomedical Literature in the Genomic Era: An Overview. In: JOURNAL OF COMPUTATIONAL BIOLOGY 10 (2003), Nr. 6 Shen, Yelong ; He, Xiaodong ; Gao, Jianfeng ; Deng, Li ; Mesnil, Gr egoire: A latent semantic model with convolutional-pooling structure for information retrieval. In: Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management ACM, 2014, S. Silva, Joao ; Coheur, Lu sa ; Mendes, Ana C. ; Wichert, Andreas: From symbolic to sub-symbolic information in question classi cation. In: Arti cial Intelligence Review 35 (2011), Nr. 2, S. Socher, Richard ; Manning, Christopher D. ; Ng, Andrew Y.: Learning continuous phrase representations and syntactic parsing with recursive neural networks. In: Proceedings of the NIPS-2010 Deep Learning and Unsupervised Feature Learning Workshop Bd. 2010, 2010, S. Soldaini, Luca ; Goharian, Nazli: Quickumls: a fast, unsupervised approach for medical concept extraction. In: MedIR workshop, sigir, 2016 Srihari, Rohini ; Li, Wei: Information Extraction Supported Question Answering. (1999) Srivastava, Nitish ; Hinton, Geo rey E. ; Krizhevsky, Alex ; Sutskever, Ilya ; Salakhutdinov, Ruslan: Dropout: a simple way to prevent neural networks from over tting. In: Journal of Machine Learning Research 15 (2014), Nr. 1, S. Steinberger, Josef ; Jezek, Karel: Using latent semantic analysis in text summarization and summary evaluation. In: Proc. ISIM 4 (2004), S. Surdeanu, Mihai ; Ciaramita, Massimiliano ; Zaragoza, Hugo: Learning to rank answers to non-factoid questions from web collections. In: Computational linguistics 37 (2011), Nr. 2, S. Tan, Ming ; Xiang, Bing ; Zhou, Bowen: LSTM-based Deep Learning Models for non-factoid answer selection. CoRR abs/1511.04108 (2015). In: arXiv preprint arXiv:1511.04108 (2015) Bibliography 99 Tay, Yi ; Tuan, Luu A. ; Hui, Siu C.: Hyperbolic representation learning for fast and e cient neural question answering. In: Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, 2018, S. Telukuntla, Sai K. ; Kapri, Aditya ; Zadrozny, Wlodek: UNCC biomedical semantic question answering systems. BioASQ: Task-7B, Phase-B. In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases Springer, 2019, S. Tsatsaronis, George ; Balikas, Georgios ; Malakasiotis, Prodromos ; Partalas, Ioannis ; Zschunke, Matthias ; Alvers, Michael R. ; Weissenborn, Dirk ; Krithara, Anastasia ; Petridis, Sergios ; Polychronopoulos, Dimitris ; Almirantis, Yannis ; Pavlopoulos, John ; Baskiotis, Nicolas ; Gallinari, Patrick ; Arti eres, Thierry ; Ngomo, Axel-Cyrille N. ; Heino, Norman ; Gaussier, Eric ; Barrio-Alvers, Liliana ; Schroeder, Michael ; Androutsopoulos, Ion ; Paliouras, Georgios: An overview of the BIOASQ large-scale biomedical semantic indexing and question answering competition. In: BMC Bioinformatics 16 (2015), Nr. 1, S. 138. { ISBN 14712105 (Electronic) Tsatsaronis, George ; Balikas, Georgios ; Malakasiotis, Prodromos ; Partalas, Ioannis ; Zschunke, Matthias ; Alvers, Michael R. ; Weissenborn, Dirk ; Krithara, Anastasia ; Petridis, Sergios ; Polychronopoulos, Dimitris ; Almirantis, Yannis ; Pavlopoulos, John ; Baskiotis, Nicolas ; Gallinari, Patrick ; Arti eres, Thierry ; Ngomo, Axel-Cyrille N. ; Heino, Norman ; Gaussier, Eric ; Barrio-Alvers, Liliana ; Schroeder, Michael ; Androutsopoulos, Ion ; Paliouras, Georgios: An overview of the BIOASQ large-scale biomedical semantic indexing and question answering competition. In: BMC Bioinformatics 16 (2015), Nr. 1, S. 138. { ISBN 14712105 (Electronic) Tsatsaronis, George ; Schroeder, Michael ; Paliouras, Georgios ; Almirantis, Yannis ; Androutsopoulos, Ion ; Gaussier, Eric ; Gallinari, Patrick ; Artieres, Thierry ; Alvers, Michael R. ; Zschunke, Matthias [u. a.]: BioASQ: A Challenge on Large-Scale Biomedical Semantic Indexing and Question Answering. In: AAAI fall symposium: Information retrieval and knowledge discovery in biomedical text, 2012 Tymoshenko, Kateryna ; Bonadiman, Daniele ; Moschitti, Alessandro: Convolutional neural networks vs. convolution kernels: Feature engineering for answer sentence reranking. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2016, S. 100 Bibliography Unger, Christina ; B uhmann, Lorenz ; Lehmann, Jens ; Ngonga Ngomo, Axel- Cyrille ; Gerber, Daniel ; Cimiano, Philipp: Template-based question answering over RDF data. In: Proceedings of the 21st international conference on World Wide Web ACM, 2012, S. Van-Tu, Nguyen ; Anh-Cuong, Le: Improving question classi cation by feature extraction and selection. In: Indian Journal of Science and Technology 9 (2016), Nr. 17 Vaswani, Ashish ; Shazeer, Noam ; Parmar, Niki ; Uszkoreit, Jakob ; Jones, Llion ; Gomez, Aidan N. ; Kaiser, Lukasz ; Polosukhin, Illia: Attention is All you Need. In: Advances in Neural Information Processing Systems, 2017, S. Veyseh, Amir Pouran B.: Cross-lingual question answering using common semantic space. In: Proceedings of TextGraphs-10: the workshop on graph-based methods for natural language processing, 2016, S. Voorhees, Ellen M. [u. a.]: The TREC-8 question answering track report. In: Trec Bd. 99, 1999, S. Wang, Di ; Nyberg, Eric: A long short-term memory model for answer sentence selection in question answering. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 2: Short Papers), 2015, S. Wang, Mengqiu ; Smith, Noah A. ; Mitamura, Teruko: What is the Jeopardy Model? A Quasi-Synchronous Grammar for QA. 7 (2007), S. Weston, Jason ; Bordes, Antoine ; Chopra, Sumit ; Rush, Alexander M. ; van Merri enboer, Bart ; Joulin, Armand ; Mikolov, Tomas: Towards aicomplete question answering: A set of prerequisite toy tasks. In: arXiv preprint arXiv:1502.05698 (2015) Wu, Zhibiao ; Palmer, Martha: Verbs semantics and lexical selection. In: 32nd Proceedings ACL Bd. 1 Association for Computational Linguistics, 1994, S. Xu, Kun ; Reddy, Siva ; Feng, Yansong ; Huang, Songfang ; Zhao, Dongyan: Question answering on freebase via relation extraction and textual evidence. In: arXiv preprint arXiv:1603.00957 (2016) Yahya, Mohamed ; Berberich, Klaus ; Elbassuoni, Shady ; Ramanath, Maya ; Tresp, Volker ; Weikum, Gerhard: Natural language questions for the web of data. In: Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning Association for Computational Linguistics, 2012, S. Bibliography 101 Yang, Hui ; Chua, Tat-Seng ; Wang, Shuguang ; Koh, Chun-Keat: Structured use of external knowledge for event-based open domain question answering. In: Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval ACM, 2003, S. Yang, Liu ; Ai, Qingyao ; Guo, Jiafeng ; Croft, W B.: anmm: Ranking short answer texts with attention-based neural matching model. In: Proceedings of the 25th ACM International on Conference on Information and Knowledge Management ACM, 2016, S. Yang, Runqi ; Zhang, Jianhai ; Gao, Xing ; Ji, Feng ; Chen, Haiqing: Simple and E ective Text Matching with Richer Alignment Features. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Florence, Italy : Association for Computational Linguistics, Juli 2019, S. Yang, Wei ; Xie, Yuqing ; Lin, Aileen ; Li, Xingyu ; Tan, Luchen ; Xiong, Kun ; Li, Ming ; Lin, Jimmy: End-to-End Open-Domain Question Answering with BERTserini. In: NAACL-HLT (Demonstrations), 2019 Yang, Yi ; Yih, Wen-tau ; Meek, Christopher: WikiQA: A Challenge Dataset for Open-Domain Question Answering. In: EMNLP Citeseer, 2015, S. Yih, Scott Wen-tau ; Chang, Ming-Wei ; He, Xiaodong ; Gao, Jianfeng: Semantic parsing via staged query graph generation: Question answering with knowledge base. (2015) Yin, Wenpeng ; Sch utze, Hinrich ; Xiang, Bing ; Zhou, Bowen: Abcnn: Attentionbased convolutional neural network for modeling sentence pairs. In: Transactions of the Association for Computational Linguistics 4 (2016), S. Yoon, Seunghyun ; Dernoncourt, Franck ; Kim, Doo S. ; Bui, Trung ; Jung, Kyomin: A compare-aggregate model with latent clustering for answer selection. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, 2019, S. Yu, Lei ; Hermann, Karl M. ; Blunsom, Phil ; Pulman, Stephen: Deep learning for answer sentence selection. In: arXiv preprint arXiv:1412.1632 (2014) Yu, Lei ; Hermann, Karl M. ; Blunsom, Phil ; Pulman, Stephen: Deep learning for answer sentence selection. In: NIPS deep learning workshop (2014) Yujian, Li ; Bo, Liu: A normalized Levenshtein distance metric. In: IEEE transac- tions on pattern analysis and machine intelligence 29 (2007), Nr. 6, S. 102 Bibliography Zadeh, Lot A.: From search engines to question answering systems|The problems of world knowledge, relevance, deduction and precisiation. In: Capturing Intelligence 1 (2006), S. Zhai, Chengxiang ; Lafferty, John. A study of smoothing methods for language models applied to Ad Hoc information retrieval. 2001 Zhang, Dell ; Lee, Wee S.: Question classi cation using support vector machines. In: Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval ACM, 2003, S. Zheng, Guoqing ; Callan, Jamie: Learning to reweight terms with distributed representations. In: Proceedings of the 38th international ACM SIGIR conference on research and development in information retrieval ACM, 2015, S. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Reconocimiento 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Reconocimiento 4.0 Internacional http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
1 recurso en línea (114 páginas) |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ingeniería - Doctorado en Ingeniería - Sistemas y Computación |
dc.publisher.department.spa.fl_str_mv |
Departamento de Ingeniería de Sistemas e Industrial |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.place.spa.fl_str_mv |
Bogotá |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/79562/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/79562/2/79958715.2021.pdf https://repositorio.unal.edu.co/bitstream/unal/79562/3/license_rdf https://repositorio.unal.edu.co/bitstream/unal/79562/4/79958715.2021.pdf.jpg |
bitstream.checksum.fl_str_mv |
cccfe52f796b7c63423298c2d3365fc6 ac72dbffe46516945262ba1897a9af0f 0175ea4a2d4caec4bbcc37e300941108 d8ea9fdddb2d3137cb70ec929dca885c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089822458871808 |
spelling |
Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2González Osorio, Fabio Augusto35912f60905ba6e179208c70e6024e80Montes-y-Gómez, Manuel253a4544c3c97e9f2385102bf8e5fe93600Rosso Mateus, Andrés Enriquef10b6eaa9d867fd07267efbec6a9fdb3MindLab2021-05-25T21:57:38Z2021-05-25T21:57:38Z2021-05-25https://repositorio.unal.edu.co/handle/unal/79562Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/digramas, tablasQuestion Answering (QA) is an active research area due to its usefulness in accessing the ever increasing amount of data. Information needs have led to the emergence of new information retrieval paradigms in which the user can easily access accurate information. QA methods allow to solve queries submitted by the user in natural language concisely and effectively, reducing the need for manual validation of large documents. In closed domains, such the biomedical one, these methods are relevant due to the large amount of specialized documents that make difficult the task of finding specific information as well as the usefulness of this information to support practice and research. In this research work, passage retrieval, which is often the final step in a question-answer system, was particularly addressed. This task evaluates the text fragments that make up the documents that may contain the answer to the question submitted by the user. This evaluation carries out semantic and sometimes syntactic checks that allow to deduce if the text passage is a valid answer, to finally return a ranked list of passages that have a higher probability of being an answer. In a closed domain, such as the biomedical domain, passage retrieval is particularly challenging due to the complexity of biomedical terminology and the heterogeneity of information sources. These challenges, along with others that will be detailed throughout the document, make it necessary to use other sources of information, such as semantic ones, which, when used in combination with textual sources, help to manage the complexity of language. On the other hand, the use of deep learning in this field has great interest and recently it has become increasingly popular as an important tool to solve the task of passage retrieval, however there are very few methods that merge the different modalities of information that in a domain like biomedicine offer obvious advantages. In this research work, different deep learning techniques were explored. In addition, several methods of information fusion were evaluated to take advantage of the complementarity of the modalities. The proposed methods were systematically evaluated in different open and closed domain data sets. Particularly in the biomedical domain the results were outstanding, surpassing the state of the art and demonstrating their effectiveness in the biggest global challenge for this particular task, BioASQ.La tarea de respuesta automática a preguntas (QA), es un área de investigación muy activa debido a su utilidad para acceder a la creciente cantidad de datos. Las necesidades de información han llevado a la aparición de nuevos paradigmas de recuperación de información en los que el usuario puede acceder fácilmente a información precisa. Los métodos de QA permiten resolver las consultas enviadas por el usuario en lenguaje natural de forma concisa y eficaz, reduciendo la necesidad de validación manual de grandes documentos. En dominios cerrados, como el biomédico, estos métodos son relevantes debido a la gran cantidad de documentos especializados que dificultan la tarea de encontrar información específica, así como la utilidad de esta información para apoyar la práctica y la investigación. En este trabajo de investigación se abordó especialmente la recuperación de pasajes, que suele ser el último paso de un sistema de QA. Esta tarea evalúa los fragmentos de texto que componen los documentos que pueden contener la respuesta a la pregunta presentada por el usuario. Esta evaluación realiza comprobaciones semánticas y a veces sintácticas que permiten deducir si el pasaje de texto es una respuesta válida, para finalmente devolver una lista clasificada de pasajes que tienen una mayor probabilidad de ser una respuesta. En un dominio cerrado, como el biomédico, la recuperación de pasajes es especialmente difícil debido a la complejidad de la terminología biomédica y a la heterogeneidad de las fuentes de información. Estos retos, junto con otros que se detallarán a lo largo del documento, hacen necesario el uso de otras fuentes de información, como las semánticas, que, utilizadas en combinación con las fuentes textuales, ayudan a gestionar la complejidad del lenguaje. Por otro lado, el uso del aprendizaje profundo en este campo tiene un gran interés y recientemente se ha popularizado como una importante herramienta para resolver la tarea de recuperación de pasajes, sin embargo existen muy pocos métodos que fusionen las diferentes modalidades de información que en un dominio como el biomédico ofrece evidentes ventajas. En este trabajo de investigación se exploraron diferentes técnicas de aprendizaje profundo. Además, se evaluaron varios métodos de fusión de información para aprovechar la complementariedad de las modalidades. Los métodos propuestos se evaluaron sistemáticamente en diferentes conjuntos de datos de dominio abierto y cerrado. Particularmente en el dominio biomédico los resultados fueron sobresalientes, superando el estado del arte y demostrando su efectividad en el mayor desafío global para esta tarea en particular, BioASQ.COLCIENCIAS, REF. Acuerdo 727, 2016DoctoradoDoctor en IngenieríaInteligencia artificial1 recurso en línea (114 páginas)application/pdfengUniversidad Nacional de ColombiaBogotá - Ingeniería - Doctorado en Ingeniería - Sistemas y ComputaciónDepartamento de Ingeniería de Sistemas e IndustrialFacultad de IngenieríaBogotáUniversidad Nacional de Colombia - Sede Bogotá000 - Ciencias de la computación, información y obras generalesRespuesta a preguntas, recuperación de pasajes, Deep Learning, Machine Learning, recuperación de información, biomédica, BioASQ.Respuesta a preguntasRecuperación de pasajesRecuperación de informaciónBiomédicaBioASQQuestion answeringPassage retrievalDeep LearningMachine LearningBiomedical information retrievalBioASQSistema de información médicaMedical information systemsIndexación automáticaAutomatic indexingA deep learning question answering method over mixed closed domain information sourcesUn método de aprendizaje profundo para responder automáticamente a preguntas en dominio cerrado sobre fuentes de información mixtaTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDAgichtein, Eugene ; Brill, Eric ; Dumais, Susan: Improving web search ranking by incorporating user behavior information. In: Proceedings of the 29th annual interna- tional ACM SIGIR conference on Research and development in information retrieval ACM, 2006, S.Al-Chalabi, Hani ; Ray, Santosh ; Shaalan, Khaled: Semantic Based Query Expansion for Arabic Question Answering Systems. In: Arabic Computational Linguistics (ACLing), 2015 First International Conference on IEEE, 2015, S.Alsentzer, Emily ; Murphy, John ; Boag, William ; Weng, Wei-Hung ; Jindi, Di ; Naumann, Tristan ; McDermott, Matthew: Publicly Available Clinical BERT Embeddings. In: Proceedings of the 2nd Clinical Natural Language Processing Work- shop, 2019, S.Androutsopoulos, Ion: A challenge on large-scale biomedical semantic indexing and question answering. In: BioNLP workshop (part of the ACL Conference) (2013), S.Auer, S oren ; Bizer, Christian ; Kobilarov, Georgi ; Lehmann, Jens ; Cyganiak, Richard ; Ives, Zachary: Dbpedia: A nucleus for a web of open data. In: The semantic web. Springer, 2007, S.Azzopardi, Leif ; Girolami, Mark ; Crowe, Malcolm: Probabilistic hyperspace analogue to language. In: Proceedings of the 28th annual international ACM SIGIR conference on Research and development in information retrieval ACM, 2005, S. 575{ 576Baasiri, Rudeina A. ; Glasser, Stanley R. ; Steffen, David L. ; Wheeler, David A.: The breast cancer gene database: a collaborative information resource. In: Oncogene 18 (1999), Nr. 56, S.Banerjee, Somnath ; Bandyopadhyay, Sivaji: Ensemble approach for ne-grained question classi cation in bengali. In: 27th Paci c Asia Conference on Language, Information, and Computation, 2013, S. Bibliography 89Beam, Andrew L. ; Kompa, Benjamin ; Fried, Inbar ; Palmer, Nathan P. ; Shi, Xu ; Cai, Tianxi ; Kohane, Isaac S.: Clinical Concept Embeddings Learned from Massive Sources of Medical Data. In: arXiv preprint arXiv:1804.01486 (2018)Berant, Jonathan ; Chou, Andrew ; Frostig, Roy ; Liang, Percy: Semantic parsing on freebase from question-answer pairs. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, 2013, S.Berners-Lee, Tim ; Hendler, James ; Lassila, Ora: The semantic web. In: Scienti c american 284 (2001), Nr. 5, S.Bhogal, Jagdev ; MacFarlane, Andrew ; Smith, Peter: A review of ontology based query expansion. In: Information processing & management 43 (2007), Nr. 4, S.Bilotti, Matthew W. ; Elsas, Jonathan ; Carbonell, Jaime ; Nyberg, Eric: Rank learning for factoid question answering with linguistic and semantic constraints. In: Proceedings of the 19th ACM international conference on Information and knowledge management, 2010, S.Bird, Steven: NLTK: the natural language toolkit. In: Proceedings of the COL- ING/ACL on Interactive presentation sessions Bd. 1 ACL, 2006, S.Blei, David M. ; Ng, Andrew Y. ; Jordan, Michael I.: Latent dirichlet allocation. In: Journal of machine Learning research 3 (2003), Nr. Jan, S.Bodenreider, Olivier: The uni ed medical language system (UMLS): integrating biomedical terminology. In: Nucleic acids research 32 (2004), Nr. suppl 1, S. D267{ D270Bollacker, Kurt ; Evans, Colin ; Paritosh, Praveen ; Sturge, Tim ; Taylor, Jamie: Freebase: a collaboratively created graph database for structuring human knowledge. In: Proceedings of the 2008 ACM SIGMOD international conference on Management of data AcM, 2008, S.Bonadiman, Daniele ; Kumar, Anjishnu ; Mittal, Arpit: Large Scale Question Paraphrase Retrieval with Smoothed Deep Metric Learning. In: Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019), 2019, S.Brill, Eric ; Dumais, Susan ; Banko, Michele: An analysis of the AskMSR questionanswering system. In: Proceedings of the ACL-02 conference on Empirical methods in natural language processing-Volume 10 Association for Computational Linguistics, 2002, S. 90 BibliographyBrokos, Georgios-Ioannis ; Liosis, Polyvios ; McDonald, Ryan ; Pappas, Dimitris ; Androutsopoulos, Ion: AUEB at BioASQ 6: Document and Snippet Retrieval. In: arXiv preprint arXiv:1809.06366 (2018)Bucher, Maxime ; Herbin, St ephane ; Jurie, Fr ed eric: Hard negative mining for metric learning based zero-shot classi cation. In: European Conference on Computer Vision Springer, 2016, S.Buscaldi, Davide ; Flores, Jorge G. ; Meza, Ivan V. ; Rodriguez, Isaac: Sopa: Random forests regression for the semantic textual similarity task. In: Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015), 2015, S.Chen, Qingyu ; Peng, Yifan ; Lu, Zhiyong: BioSentVec: creating sentence embeddings for biomedical texts. In: 2019 IEEE International Conference on Healthcare Informatics (ICHI) IEEE, 2019, S.Chen, Yueguo ; Gao, Lexi ; Shi, Shuming ; Du, Xiaoyong ; Wen, Ji-Rong: Improving context and category matching for entity search. In: Proceedings of the Twenty-Eighth AAAI Conference on Arti cial Intelligence, 2014, S.Clark, Kevin ; Khandelwal, Urvashi ; Levy, Omer ; Manning, Christopher D.: What does bert look at? an analysis of berts attention. In: arXiv preprint arXiv:1906.04341 (2019)Clarke, Charles L. ; Cormack, Gordon V. ; Lynam, Thomas R. ; Terra, Egidio L.: Question answering by passage selection. In: Advances in Open Domain Question Answering. Springer, 2008, S.Cohen, Daniel ; Croft, W B.: A Hybrid Embedding Approach to Noisy Answer Passage Retrieval. In: European Conference on Information Retrieval Springer, 2018, S.Deerwester, Scott ; Dumais, Susan T. ; Furnas, George W. ; Landauer, Thomas K. ; Harshman, Richard: Indexing by latent semantic analysis. In: Journal of the American society for information science 41 (1990), Nr. 6, S. 391Devlin, Jacob ; Chang, Ming-Wei ; Lee, Kenton ; Toutanova, Kristina: Bert: Pre-training of deep bidirectional transformers for language understanding. In: arXiv preprint arXiv:1810.04805 (2018)Dong, Li ; Wei, Furu ; Zhou, Ming ; Xu, Ke: Question Answering over Freebase with Multi-Column Convolutional Neural Networks. In: ACL Bd. 1, 2015, S. Bibliography 91Feng, Minwei ; Xiang, Bing ; Glass, Michael R. ; Wang, Lidan ; Zhou, Bowen: Applying deep learning to answer selection: A study and an open task. In: 2015 IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU) IEEE, 2015, S.Galk o, Ferenc ; Eickhoff, Carsten: Biomedical question answering via weighted neural network passage retrieval. In: European Conference on Information Retrieval Springer, 2018, S.Ganguly, Debasis ; Roy, Dwaipayan ; Mitra, Mandar ; Jones, Gareth J.: Word embedding based generalized language model for information retrieval. In: Proceed- ings of the 38th international ACM SIGIR conference on research and development in information retrieval ACM, 2015, S.Goodfellow, Ian ; Bengio, Yoshua ; Courville, Aaron ; Bengio, Yoshua: Deep learning. 1. MIT press Cambridge, 2016Gormley, Clinton ; Tong, Zachary: Elasticsearch: The De nitive Guide: A Dis- tributed Real-Time Search and Analytics Engine. 1. " OReilly Media, Inc.", 2015Guo, Jiafeng ; Fan, Yixing ; Ai, Qingyao ; Croft, W B.: A deep relevance matching model for ad-hoc retrieval. In: Proceedings of the 25th ACM International on Conference on Information and Knowledge Management ACM, 2016, S.Guo, Shangmin ; Zeng, Xiangrong ; He, Shizhu ; Liu, Kang ; Zhao, Jun: Which is the e ective way for gaokao: Information retrieval or neural networks? In: Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers, 2017, S.Hardy, H ; Cheah, Yu-N: Question classi cation using extreme learning machine on semantic features. In: Journal of ICT Research and Applications 7 (2013), Nr. 1, S.He, Hua ; Lin, Jimmy J.: Pairwise Word Interaction Modeling with Deep Neural Networks for Semantic Similarity Measurement. In: HLT-NAACL Bd. 1, 2016, S.He, Yun ; Zhu, Ziwei ; Zhang, Yin ; Chen, Qin ; Caverlee, James: Infusing Disease Knowledge into BERT for Health Question Answering, Medical Inference and Disease Name Recognition. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2020, S.Hermjakob, Ulf: Parsing and question classi cation for question answering. In: Pro- ceedings of the workshop on Open-domain question answering-Volume 12 Association for Computational Linguistics, 2001, S. 92 BibliographyHiemstra, Djoerd: Using language models for information retrieval. 1. Taaluitgeverij Neslia Paniculata, 2001Hoffart, Johannes ; Suchanek, Fabian M. ; Berberich, Klaus ; Weikum, Gerhard: YAGO2: A spatially and temporally enhanced knowledge base from Wikipedia. In: Arti cial Intelligence 194 (2013), S.Kaya, Mahmut ; Bilge, Hasan S.: Deep metric learning: a survey. In: Symmetry 11 (2019), Nr. 9, S. 1066Khalifa, Khalid ; Omar, Nazlia: A hybrid method using lexicon-based approach and Naive Bayes classi er for Arabic opinion question answering. In: J. Comput. Sci. 10 (2014), Nr. 10, S.Kolomiyets, Oleksandr ; Moens, Marie-Francine: A survey on question answering technology from an information retrieval perspective. In: Information Sciences 181 (2011), Nr. 24, S.Krishnamurthy, Jayant ; Kollar, Thomas: Jointly learning to parse and perceive: Connecting natural language to the physical world. In: Transactions of the Association for Computational Linguistics 1 (2013), S.Kuzi, Saar ; Shtok, Anna ; Kurland, Oren: Query expansion using word embeddings. In: Proceedings of the 25th ACM international on conference on information and knowledge management ACM, 2016, S.Le, Quoc V. ; Mikolov, Tomas: Distributed Representations of Sentences and Documents. In: ICML Bd. 14, 2014, S.Lee, Jinhyuk ; Yoon,Wonjin ; Kim, Sungdong ; Kim, Donghyeon ; Kim, Sunkyu ; So, Chan H. ; Kang, Jaewoo: BioBERT: pre-trained biomedical language representation model for biomedical text mining. In: arXiv preprint arXiv:1901.08746 (2019)Lee, Jinhyuk ; Yoon,Wonjin ; Kim, Sungdong ; Kim, Donghyeon ; Kim, Sunkyu ; So, Chan H. ; Kang, Jaewoo: BioBERT: a pre-trained biomedical language representation model for biomedical text mining. In: Bioinformatics 36 (2020), Nr. 4, S.Levenshtein, Vladimir I.: Binary codes capable of correcting deletions, insertions, and reversals. In: Soviet physics doklady Bd. 10, 1966, S.Leys, Christophe ; Ley, Christophe ; Klein, Olivier ; Bernard, Philippe ; Licata, Laurent: Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median. In: Journal of Experimental Social Psychology 49 (2013), Nr. 4, S. Bibliography 93Lin, Jimmy: An exploration of the principles underlying redundancy-based factoid question answering. In: ACM Transactions on Information Systems (TOIS) 25 (2007), Nr. 2, S. 6Lison, Pierre ; Kutuzov, Andrey: Rede ning context windows for word embedding models: An experimental study. In: arXiv preprint arXiv:1704.05781 (2017)Liu, Feifan ; Pennell, Deana ; Liu, Fei ; Liu, Yang: Unsupervised approaches for automatic keyword extraction using meeting transcripts. In: Proceedings of human language technologies. Bd. 1 ACL, 2009, S.Liu, Xiaodong ; Gao, Jianfeng ; He, Xiaodong ; Deng, Li ; Duh, Kevin ; Wang, Ye-Yi: Representation learning using multi-task deep neural networks for semantic classi cation and information retrieval. (2015)Loni, Babak: A survey of state-of-the-art methods on question classi cation. (2011)Lu, Jiwen ; Hu, Junlin ; Zhou, Jie: Deep metric learning for visual understanding: An overview of recent advances. In: IEEE Signal Processing Magazine 34 (2017), Nr. 6, S.Ma, Zhuang ; Collins, Michael: Noise Contrastive Estimation and Negative Sampling for Conditional Models: Consistency and Statistical E ciency. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, 2018, S.Majdoubi, Jihen ; Tmar, Mohamed ; Gargouri, Faiez: Using the MeSH thesaurus to index a medical article: combination of content, structure and semantics. In: Inter- national Conference on Knowledge-Based and Intelligent Information and Engineering Systems Springer, 2009, S.Malakasiotis, Prodromos ; Androutsopoulos, Ion ; Bernadou, Agiatis ; Chatzidiakou, Nephelie ; Papaki, Eliza ; Constantopoulos, Panos ; Pavlopoulos, Ioannis ; Krithara, Anastasia ; Almyrantis, Yannis ; Polychronopoulos, Dimitris [u. a.]: Challenge Evaluation Report 2 and Roadmap. In: BioASQ deliverable D 5 (2014)Mao, Yuqing ; Wei, Chih-Hsuan ; Lu, Zhiyong: NCBI at the 2014 BioASQ Challenge Task: Large-scale Biomedical Semantic Indexing and Question Answering. In: CLEF (Working Notes), 2014, S.Mass, Yosi ; Roitman, Haggai ; Erera, Shai ; Rivlin, Or ; Weiner, Bar ; Konopnicki, David: A Study of BERT for Non-Factoid Question-Answering under Passage Length Constraints. In: arXiv preprint arXiv:1908.06780 (2019) 94 BibliographyMcKeown, Kathleen ; Radev, Dragomir R.: Generating summaries of multiple news articles. In: Proceedings of the 18th annual international ACM SIGIR conference on Research and development in information retrieval ACM, 1995, S.Mikolov, Tomas ; Chen, Kai ; Corrado, Greg ; Dean, Je rey: E cient estimation of word representations in vector space. In: arXiv preprint arXiv:1301.3781 (2013)Mikolov, Tomas ; Corrado, Greg ; Chen, Kai ; Dean, Je rey: E cient Estimation of Word Representations in Vector Space. In: Proceedings of the International Conference on Learning Representations (ICLR 2013) (2013), S. . { ISBN 1532{ 4435Miller, Alexander ; Fisch, Adam ; Dodge, Jesse ; Karimi, Amir-Hossein ; Bordes, Antoine ; Weston, Jason: Key-Value Memory Networks for Directly Reading Documents. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, 2016, S.Mitra, Bhaskar ; Craswell, Nick: Neural text embeddings for information retrieval. In: Proceedings of the Tenth ACM International Conference on Web Search and Data Mining ACM, 2017, S.Mitra, Bhaskar ; Nalisnick, Eric ; Craswell, Nick ; Caruana, Rich: A dual embedding space model for document ranking. In: arXiv preprint arXiv:1602.01137 (2016)Moen, SPFGH ; Ananiadou, Tapio Salakoski2 S.: Distributional semantics resources for biomedical text processing. In: Proceedings of the 5th International Symposium on Languages in Biology and Medicine, Tokyo, Japan, 2013, S.Monz, Christof: Document retrieval in the context of question answering. In: Euro- pean Conference on Information Retrieval Springer, 2003, S.Narasimhan, Karthik ; Yala, Adam ; Barzilay, Regina: Improving information extraction by acquiring external evidence with reinforcement learning. In: arXiv preprint arXiv:1603.07954 (2016)Nentidis, Anastasios ; Bougiatiotis, Konstantinos ; Krithara, Anastasia ; Paliouras, Georgios: Results of the Seventh Edition of the BioASQ Challenge. In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases Springer, 2019, S.Nentidis, Anastasios ; Krithara, Anastasia ; Bougiatiotis, Konstantinos ; Paliouras, Georgios ; Kakadiaris, Ioannis: Results of the sixth edition of the BioASQ Challenge. In: Proceedings of the 6th BioASQ Workshop A challenge on Bibliography 95 large-scale biomedical semantic indexing and question answering. Brussels, Belgium : Association for Computational Linguistics, November 2018, S.Nentidis, Anastasios ; Krithara, Anastasia ; Bougiatiotis, Konstantinos ; Paliouras, Georgios ; Kakadiaris, Ioannis: Results of the sixth edition of the BioASQ Challenge. In: Proceedings of the 6th BioASQ Workshop A challenge on large-scale biomedical semantic indexing and question answering. Brussels, Belgium : Association for Computational Linguistics, November 2018, S.Neto, Joel L. ; Santos, Alexandre D. ; Kaestner, Celso A. ; Alexandre, Neto ; Santos, D [u. a.]: Document clustering and text summarization. (2000)Neumann, Mark ; King, Daniel ; Beltagy, Iz ; Ammar, Waleed: ScispaCy: Fast and Robust Models for Biomedical Natural Language Processing. In: arXiv preprint arXiv:1902.07669 (2019)NIH. PubMed Baseline Repository. 2017NIH. PubMed Baseline Repository. 2018Nogueira, Rodrigo ; Cho, Kyunghyun: Passage Re-ranking with BERT. In: arXiv preprint arXiv:1901.04085 (2019)Nogueira, Rodrigo ; Yang, Wei ; Cho, Kyunghyun ; Lin, Jimmy: Multi-stage document ranking with BERT. In: arXiv preprint arXiv:1910.14424 (2019)Noy, Natalya F. ; McGuinness, Deborah L. [u. a.]. Ontology development 101: A guide to creating your rst ontology. 2001Oh, Jong-Hoon ; Torisawa, Kentaro ; Kruengkrai, Canasai ; Iida, Ryu ; Kloetzer, Julien: Multi-column convolutional neural networks with causality-attention for why-question answering. In: Proceedings of the Tenth ACM International Conference on Web Search and Data Mining ACM, 2017, S.Othman, Nouha ; Faiz, Rim: Question answering passage retrieval and re-ranking using n-grams and SVM. In: Computaci on y Sistemas 20 (2016), Nr. 3, S.Ozyurt, Ibrahim B. ; Bandrowski, Anita ; Grethe, Je rey S.: Bio-AnswerFinder: a system to nd answers to questions from biomedical texts. In: Database 2020 (2020)Pakray, Partha ; Bhaskar, Pinaki ; Banerjee, Somnath ; Pal, Bidhan C. ; Bandyopadhyay, Sivaji ; Gelbukh, Alexander F.: A Hybrid Question Answering System based on Information Retrieval and Answer Validation. In: CLEF (Notebook Papers/Labs/Workshop), 2011 96 BibliographyPalangi, Hamid ; Deng, Li ; Shen, Yelong ; Gao, Jianfeng ; He, Xiaodong ; Chen, Jianshu ; Song, Xinying ; Ward, Rabab: Deep sentence embedding using long short-term memory networks: Analysis and application to information retrieval. In: IEEE/ACM Transactions on Audio, Speech and Language Processing (TASLP) 24 (2016), Nr. 4, S.Pappas, Dimitris ; McDonald, Ryan ; Brokos, Georgios-Ioannis ; Androutsopoulos, Ion: AUEB at BioASQ 7: document and snippet retrieval. In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases Springer, 2019, S.Peters, Matthew E. ; Neumann, Mark ; Iyyer, Mohit ; Gardner, Matt ; Clark, Christopher ; Lee, Kenton ; Zettlemoyer, Luke: Deep contextualized word representations. In: arXiv preprint arXiv:1802.05365 (2018)Pineda-Vargas, M onica ; Rosso-Mateus, Andr es ; Gonz alez, Fabio A. ; Montes-y G omez, Manuel: A Mixed Information Source Approach for Biomedical Question Answering: MindLab at BioASQ 7B. In: Cellier, Peggy (Hrsg.) ; Driessens, Kurt (Hrsg.): Machine Learning and Knowledge Discovery in Databases. Cham : Springer International Publishing, 2020, S.Pizzato, Luiz A. ; Moll a, Diego: Indexing on semantic roles for question answering. In: Coling 2008: Proceedings of the 2nd workshop on Information Retrieval for Question Answering, 2008, S.Ponte, Jay M. ; Croft, W B.: A language modeling approach to information retrieval. In: Proceedings of the 21st annual international ACM SIGIR conference on Research and development in information retrieval, 1998, S.Radford, Alec ; Narasimhan, Karthik ; Salimans, Tim ; Sutskever, Ilya. Im- proving language understanding by generative pre-training. 2018Rajpurkar, Pranav ; Zhang, Jian ; Lopyrev, Konstantin ; Liang, Percy: SQuAD: 100,000+ Questions for Machine Comprehension of Text. (2016), S.Ramage, Daniel ; Rafferty, Anna N. ; Manning, Christopher D.: Random walks for text semantic similarity. In: Proceedings of the 2009 workshop on graph-based methods for natural language processing Association for Computational Linguistics, 2009, S.Riezler, Stefan ; Vasserman, Alexander ; Tsochantaridis, Ioannis ; Mittal, Vibhu ; Liu, Yi: Statistical machine translation for query expansion in answer retrieval. In: ACL, 2007 Bibliography 97Robertson, Stephen ; Zaragoza, Hugo: The probabilistic relevance framework: BM25 and beyond. 1. Now Publishers Inc, 2009Rosso-Mateus, Andres ; Montes-y Gomez, Manuel ; Rosso, Paolo ; Gonzalez, Fabio A.: Deep fusion of multiple term-similarity measures for biomedical passage retrieval. In: Journal of Intelligent and Fuzzy Systems 39, Nr. 2, S.Rosso-Mateus, Andr es ; Gonz alez, Fabio A. ; Montes-y G omez, Manuel: A Shallow Convolutional Neural Network Architecture for Open Domain Question Answering. In: Colombian Conference on Computing Springer, 2017, S.Rosso-Mateus, Andr es ; Gonz alez, Fabio A. ; Montes-y G omez, Manuel: A Two-Step Neural Network Approach to Passage Retrieval for Open Domain Question Answering. In: Iberoamerican Congress on Pattern Recognition Springer, 2017, S.Rosso-Mateus, Andr es ; Gonz alez, Fabio A. ; Montes, Manuel: Mindlab neural network approach at bioasq 6b. In: Proceedings of the 6th BioASQ Workshop A challenge on large-scale biomedical semantic indexing and question answering, 2018, S.Rosso-Mateus Andr es, Fabio A. G.: A Deep Metric Learning Method for Biomedical Passage Retrieval. (2020)Rubin, Daniel L. ; Lewis, Suzanna E. ; Mungall, Chris J. ; Misra, Sima ; Westerfield, Monte ; Ashburner, Michael ; Sim, Ida ; Chute, Christopher G. ; Storey, Margaret-Anne ; Smith, Barry [u. a.]: National center for biomedical ontology: advancing biomedicine through structured organization of scienti c knowledge. In: Omics: a journal of integrative biology 10 (2006), Nr. 2, S.Rybinski, Maciej ; Xu, Jerry ; Karimi, Sarvnaz: Clinical trial search: Using biomedical language understanding models for re-ranking. In: Journal of Biomedical Infor- matics 109 (2020), S. 103530Rydning, David Reinsel-John Gantz-John: The digitization of the world from edge to core. In: Framingham: International Data Corporation (2018)Salakhutdinov, Ruslan ; Hinton, Geo rey: Semantic hashing. In: International Journal of Approximate Reasoning 50 (2009), Nr. 7, S.Schroff, Florian ; Kalenichenko, Dmitry ; Philbin, James: Facenet: A uni ed embedding for face recognition and clustering. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, S. 98 BibliographySeveryn, Aliaksei ; Moschitti, Alessandro: Learning to rank short text pairs with convolutional deep neural networks. In: Proceedings of the 38th international ACM SIGIR conference on research and development in information retrieval, 2015, S. 373{ 382SHATKAY, HAGIT ; FELDMAN, RONEN: Mining the Biomedical Literature in the Genomic Era: An Overview. In: JOURNAL OF COMPUTATIONAL BIOLOGY 10 (2003), Nr. 6Shen, Yelong ; He, Xiaodong ; Gao, Jianfeng ; Deng, Li ; Mesnil, Gr egoire: A latent semantic model with convolutional-pooling structure for information retrieval. In: Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management ACM, 2014, S.Silva, Joao ; Coheur, Lu sa ; Mendes, Ana C. ; Wichert, Andreas: From symbolic to sub-symbolic information in question classi cation. In: Arti cial Intelligence Review 35 (2011), Nr. 2, S.Socher, Richard ; Manning, Christopher D. ; Ng, Andrew Y.: Learning continuous phrase representations and syntactic parsing with recursive neural networks. In: Proceedings of the NIPS-2010 Deep Learning and Unsupervised Feature Learning Workshop Bd. 2010, 2010, S.Soldaini, Luca ; Goharian, Nazli: Quickumls: a fast, unsupervised approach for medical concept extraction. In: MedIR workshop, sigir, 2016Srihari, Rohini ; Li, Wei: Information Extraction Supported Question Answering. (1999)Srivastava, Nitish ; Hinton, Geo rey E. ; Krizhevsky, Alex ; Sutskever, Ilya ; Salakhutdinov, Ruslan: Dropout: a simple way to prevent neural networks from over tting. In: Journal of Machine Learning Research 15 (2014), Nr. 1, S.Steinberger, Josef ; Jezek, Karel: Using latent semantic analysis in text summarization and summary evaluation. In: Proc. ISIM 4 (2004), S.Surdeanu, Mihai ; Ciaramita, Massimiliano ; Zaragoza, Hugo: Learning to rank answers to non-factoid questions from web collections. In: Computational linguistics 37 (2011), Nr. 2, S.Tan, Ming ; Xiang, Bing ; Zhou, Bowen: LSTM-based Deep Learning Models for non-factoid answer selection. CoRR abs/1511.04108 (2015). In: arXiv preprint arXiv:1511.04108 (2015) Bibliography 99Tay, Yi ; Tuan, Luu A. ; Hui, Siu C.: Hyperbolic representation learning for fast and e cient neural question answering. In: Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, 2018, S.Telukuntla, Sai K. ; Kapri, Aditya ; Zadrozny, Wlodek: UNCC biomedical semantic question answering systems. BioASQ: Task-7B, Phase-B. In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases Springer, 2019, S.Tsatsaronis, George ; Balikas, Georgios ; Malakasiotis, Prodromos ; Partalas, Ioannis ; Zschunke, Matthias ; Alvers, Michael R. ; Weissenborn, Dirk ; Krithara, Anastasia ; Petridis, Sergios ; Polychronopoulos, Dimitris ; Almirantis, Yannis ; Pavlopoulos, John ; Baskiotis, Nicolas ; Gallinari, Patrick ; Arti eres, Thierry ; Ngomo, Axel-Cyrille N. ; Heino, Norman ; Gaussier, Eric ; Barrio-Alvers, Liliana ; Schroeder, Michael ; Androutsopoulos, Ion ; Paliouras, Georgios: An overview of the BIOASQ large-scale biomedical semantic indexing and question answering competition. In: BMC Bioinformatics 16 (2015), Nr. 1, S. 138. { ISBN 14712105 (Electronic)Tsatsaronis, George ; Balikas, Georgios ; Malakasiotis, Prodromos ; Partalas, Ioannis ; Zschunke, Matthias ; Alvers, Michael R. ; Weissenborn, Dirk ; Krithara, Anastasia ; Petridis, Sergios ; Polychronopoulos, Dimitris ; Almirantis, Yannis ; Pavlopoulos, John ; Baskiotis, Nicolas ; Gallinari, Patrick ; Arti eres, Thierry ; Ngomo, Axel-Cyrille N. ; Heino, Norman ; Gaussier, Eric ; Barrio-Alvers, Liliana ; Schroeder, Michael ; Androutsopoulos, Ion ; Paliouras, Georgios: An overview of the BIOASQ large-scale biomedical semantic indexing and question answering competition. In: BMC Bioinformatics 16 (2015), Nr. 1, S. 138. { ISBN 14712105 (Electronic)Tsatsaronis, George ; Schroeder, Michael ; Paliouras, Georgios ; Almirantis, Yannis ; Androutsopoulos, Ion ; Gaussier, Eric ; Gallinari, Patrick ; Artieres, Thierry ; Alvers, Michael R. ; Zschunke, Matthias [u. a.]: BioASQ: A Challenge on Large-Scale Biomedical Semantic Indexing and Question Answering. In: AAAI fall symposium: Information retrieval and knowledge discovery in biomedical text, 2012Tymoshenko, Kateryna ; Bonadiman, Daniele ; Moschitti, Alessandro: Convolutional neural networks vs. convolution kernels: Feature engineering for answer sentence reranking. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2016, S. 100 BibliographyUnger, Christina ; B uhmann, Lorenz ; Lehmann, Jens ; Ngonga Ngomo, Axel- Cyrille ; Gerber, Daniel ; Cimiano, Philipp: Template-based question answering over RDF data. In: Proceedings of the 21st international conference on World Wide Web ACM, 2012, S.Van-Tu, Nguyen ; Anh-Cuong, Le: Improving question classi cation by feature extraction and selection. In: Indian Journal of Science and Technology 9 (2016), Nr. 17Vaswani, Ashish ; Shazeer, Noam ; Parmar, Niki ; Uszkoreit, Jakob ; Jones, Llion ; Gomez, Aidan N. ; Kaiser, Lukasz ; Polosukhin, Illia: Attention is All you Need. In: Advances in Neural Information Processing Systems, 2017, S.Veyseh, Amir Pouran B.: Cross-lingual question answering using common semantic space. In: Proceedings of TextGraphs-10: the workshop on graph-based methods for natural language processing, 2016, S.Voorhees, Ellen M. [u. a.]: The TREC-8 question answering track report. In: Trec Bd. 99, 1999, S.Wang, Di ; Nyberg, Eric: A long short-term memory model for answer sentence selection in question answering. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 2: Short Papers), 2015, S.Wang, Mengqiu ; Smith, Noah A. ; Mitamura, Teruko: What is the Jeopardy Model? A Quasi-Synchronous Grammar for QA. 7 (2007), S.Weston, Jason ; Bordes, Antoine ; Chopra, Sumit ; Rush, Alexander M. ; van Merri enboer, Bart ; Joulin, Armand ; Mikolov, Tomas: Towards aicomplete question answering: A set of prerequisite toy tasks. In: arXiv preprint arXiv:1502.05698 (2015)Wu, Zhibiao ; Palmer, Martha: Verbs semantics and lexical selection. In: 32nd Proceedings ACL Bd. 1 Association for Computational Linguistics, 1994, S.Xu, Kun ; Reddy, Siva ; Feng, Yansong ; Huang, Songfang ; Zhao, Dongyan: Question answering on freebase via relation extraction and textual evidence. In: arXiv preprint arXiv:1603.00957 (2016)Yahya, Mohamed ; Berberich, Klaus ; Elbassuoni, Shady ; Ramanath, Maya ; Tresp, Volker ; Weikum, Gerhard: Natural language questions for the web of data. In: Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning Association for Computational Linguistics, 2012, S. Bibliography 101Yang, Hui ; Chua, Tat-Seng ; Wang, Shuguang ; Koh, Chun-Keat: Structured use of external knowledge for event-based open domain question answering. In: Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval ACM, 2003, S.Yang, Liu ; Ai, Qingyao ; Guo, Jiafeng ; Croft, W B.: anmm: Ranking short answer texts with attention-based neural matching model. In: Proceedings of the 25th ACM International on Conference on Information and Knowledge Management ACM, 2016, S.Yang, Runqi ; Zhang, Jianhai ; Gao, Xing ; Ji, Feng ; Chen, Haiqing: Simple and E ective Text Matching with Richer Alignment Features. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Florence, Italy : Association for Computational Linguistics, Juli 2019, S.Yang, Wei ; Xie, Yuqing ; Lin, Aileen ; Li, Xingyu ; Tan, Luchen ; Xiong, Kun ; Li, Ming ; Lin, Jimmy: End-to-End Open-Domain Question Answering with BERTserini. In: NAACL-HLT (Demonstrations), 2019Yang, Yi ; Yih, Wen-tau ; Meek, Christopher: WikiQA: A Challenge Dataset for Open-Domain Question Answering. In: EMNLP Citeseer, 2015, S.Yih, Scott Wen-tau ; Chang, Ming-Wei ; He, Xiaodong ; Gao, Jianfeng: Semantic parsing via staged query graph generation: Question answering with knowledge base. (2015)Yin, Wenpeng ; Sch utze, Hinrich ; Xiang, Bing ; Zhou, Bowen: Abcnn: Attentionbased convolutional neural network for modeling sentence pairs. In: Transactions of the Association for Computational Linguistics 4 (2016), S.Yoon, Seunghyun ; Dernoncourt, Franck ; Kim, Doo S. ; Bui, Trung ; Jung, Kyomin: A compare-aggregate model with latent clustering for answer selection. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, 2019, S.Yu, Lei ; Hermann, Karl M. ; Blunsom, Phil ; Pulman, Stephen: Deep learning for answer sentence selection. In: arXiv preprint arXiv:1412.1632 (2014)Yu, Lei ; Hermann, Karl M. ; Blunsom, Phil ; Pulman, Stephen: Deep learning for answer sentence selection. In: NIPS deep learning workshop (2014)Yujian, Li ; Bo, Liu: A normalized Levenshtein distance metric. In: IEEE transac- tions on pattern analysis and machine intelligence 29 (2007), Nr. 6, S. 102 BibliographyZadeh, Lot A.: From search engines to question answering systems|The problems of world knowledge, relevance, deduction and precisiation. In: Capturing Intelligence 1 (2006), S.Zhai, Chengxiang ; Lafferty, John. A study of smoothing methods for language models applied to Ad Hoc information retrieval. 2001Zhang, Dell ; Lee, Wee S.: Question classi cation using support vector machines. In: Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval ACM, 2003, S.Zheng, Guoqing ; Callan, Jamie: Learning to reweight terms with distributed representations. In: Proceedings of the 38th international ACM SIGIR conference on research and development in information retrieval ACM, 2015, S.LICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79562/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51ORIGINAL79958715.2021.pdf79958715.2021.pdfTesis de Doctorado en Ingeniería - Sistemas y computaciónapplication/pdf6786432https://repositorio.unal.edu.co/bitstream/unal/79562/2/79958715.2021.pdfac72dbffe46516945262ba1897a9af0fMD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8908https://repositorio.unal.edu.co/bitstream/unal/79562/3/license_rdf0175ea4a2d4caec4bbcc37e300941108MD53THUMBNAIL79958715.2021.pdf.jpg79958715.2021.pdf.jpgGenerated Thumbnailimage/jpeg4580https://repositorio.unal.edu.co/bitstream/unal/79562/4/79958715.2021.pdf.jpgd8ea9fdddb2d3137cb70ec929dca885cMD54unal/79562oai:repositorio.unal.edu.co:unal/795622024-07-19 23:32:41.946Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg== |