A new proof of the Unique Factorization of Z 1 + -d 2 for d = 3, 7, 11, 19, 43, 67, 163
In this paper, we give an elementary proof of the fact that the rings are unique factorization domains for the values d = 3, 7, 11, 19, 43, 67, 163. While the result in itself is well known, our proof is new and completely elementary and uses neither the Minkowski convex body theorem, nor the Dedeki...
- Autores:
-
Ramírez V., Victor J.
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2016
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/66443
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/66443
http://bdigital.unal.edu.co/67471/
- Palabra clave:
- 51 Matemáticas / Mathematics
Unique factorization domain
prime
irreducible
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_60dc2b34179c357fad89665f61416017 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/66443 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ramírez V., Victor J.b8375e73-1dee-496d-8594-aa47ae1d475a3002019-07-03T02:08:16Z2019-07-03T02:08:16Z2016-07-01ISSN: 2357-4100https://repositorio.unal.edu.co/handle/unal/66443http://bdigital.unal.edu.co/67471/In this paper, we give an elementary proof of the fact that the rings are unique factorization domains for the values d = 3, 7, 11, 19, 43, 67, 163. While the result in itself is well known, our proof is new and completely elementary and uses neither the Minkowski convex body theorem, nor the Dedekind and Hasse theorems. Furthermore, it does not use either the theory of algebraic integers, or the theory of Noetherian rings. It only uses basic notions from the theory of commutative rings.application/pdfspaUniversidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Matemáticas - Sociedad Colombiana de Matemáticashttps://revistas.unal.edu.co/index.php/recolma/article/view/62206Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de MatemáticasRevista Colombiana de MatemáticasRamírez V., Victor J. (2016) A new proof of the Unique Factorization of Z 1 + -d 2 for d = 3, 7, 11, 19, 43, 67, 163. Revista Colombiana de Matemáticas, 50 (2). pp. 139-143. ISSN 2357-410051 Matemáticas / MathematicsUnique factorization domainprimeirreducibleA new proof of the Unique Factorization of Z 1 + -d 2 for d = 3, 7, 11, 19, 43, 67, 163Artículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTORIGINAL62206-316268-1-SM.pdfapplication/pdf346316https://repositorio.unal.edu.co/bitstream/unal/66443/1/62206-316268-1-SM.pdf52aaf986312ef4bb38e2fb3aa49167c2MD51THUMBNAIL62206-316268-1-SM.pdf.jpg62206-316268-1-SM.pdf.jpgGenerated Thumbnailimage/jpeg4755https://repositorio.unal.edu.co/bitstream/unal/66443/2/62206-316268-1-SM.pdf.jpgb48402488af4863f311a9bcf2613cab8MD52unal/66443oai:repositorio.unal.edu.co:unal/664432023-05-25 23:02:43.409Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |
dc.title.spa.fl_str_mv |
A new proof of the Unique Factorization of Z 1 + -d 2 for d = 3, 7, 11, 19, 43, 67, 163 |
title |
A new proof of the Unique Factorization of Z 1 + -d 2 for d = 3, 7, 11, 19, 43, 67, 163 |
spellingShingle |
A new proof of the Unique Factorization of Z 1 + -d 2 for d = 3, 7, 11, 19, 43, 67, 163 51 Matemáticas / Mathematics Unique factorization domain prime irreducible |
title_short |
A new proof of the Unique Factorization of Z 1 + -d 2 for d = 3, 7, 11, 19, 43, 67, 163 |
title_full |
A new proof of the Unique Factorization of Z 1 + -d 2 for d = 3, 7, 11, 19, 43, 67, 163 |
title_fullStr |
A new proof of the Unique Factorization of Z 1 + -d 2 for d = 3, 7, 11, 19, 43, 67, 163 |
title_full_unstemmed |
A new proof of the Unique Factorization of Z 1 + -d 2 for d = 3, 7, 11, 19, 43, 67, 163 |
title_sort |
A new proof of the Unique Factorization of Z 1 + -d 2 for d = 3, 7, 11, 19, 43, 67, 163 |
dc.creator.fl_str_mv |
Ramírez V., Victor J. |
dc.contributor.author.spa.fl_str_mv |
Ramírez V., Victor J. |
dc.subject.ddc.spa.fl_str_mv |
51 Matemáticas / Mathematics |
topic |
51 Matemáticas / Mathematics Unique factorization domain prime irreducible |
dc.subject.proposal.spa.fl_str_mv |
Unique factorization domain prime irreducible |
description |
In this paper, we give an elementary proof of the fact that the rings are unique factorization domains for the values d = 3, 7, 11, 19, 43, 67, 163. While the result in itself is well known, our proof is new and completely elementary and uses neither the Minkowski convex body theorem, nor the Dedekind and Hasse theorems. Furthermore, it does not use either the theory of algebraic integers, or the theory of Noetherian rings. It only uses basic notions from the theory of commutative rings. |
publishDate |
2016 |
dc.date.issued.spa.fl_str_mv |
2016-07-01 |
dc.date.accessioned.spa.fl_str_mv |
2019-07-03T02:08:16Z |
dc.date.available.spa.fl_str_mv |
2019-07-03T02:08:16Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
ISSN: 2357-4100 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/66443 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/67471/ |
identifier_str_mv |
ISSN: 2357-4100 |
url |
https://repositorio.unal.edu.co/handle/unal/66443 http://bdigital.unal.edu.co/67471/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.spa.fl_str_mv |
https://revistas.unal.edu.co/index.php/recolma/article/view/62206 |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de Matemáticas Revista Colombiana de Matemáticas |
dc.relation.references.spa.fl_str_mv |
Ramírez V., Victor J. (2016) A new proof of the Unique Factorization of Z 1 + -d 2 for d = 3, 7, 11, 19, 43, 67, 163. Revista Colombiana de Matemáticas, 50 (2). pp. 139-143. ISSN 2357-4100 |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Matemáticas - Sociedad Colombiana de Matemáticas |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/66443/1/62206-316268-1-SM.pdf https://repositorio.unal.edu.co/bitstream/unal/66443/2/62206-316268-1-SM.pdf.jpg |
bitstream.checksum.fl_str_mv |
52aaf986312ef4bb38e2fb3aa49167c2 b48402488af4863f311a9bcf2613cab8 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090207707791360 |