A new proof of the Unique Factorization of Z 1 + -d 2 for d = 3, 7, 11, 19, 43, 67, 163

In this paper, we give an elementary proof of the fact that the rings are unique factorization domains for the values d = 3, 7, 11, 19, 43, 67, 163. While the result in itself is well known, our proof is new and completely elementary and uses neither the Minkowski convex body theorem, nor the Dedeki...

Full description

Autores:
Ramírez V., Victor J.
Tipo de recurso:
Article of journal
Fecha de publicación:
2016
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/66443
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/66443
http://bdigital.unal.edu.co/67471/
Palabra clave:
51 Matemáticas / Mathematics
Unique factorization domain
prime
irreducible
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_60dc2b34179c357fad89665f61416017
oai_identifier_str oai:repositorio.unal.edu.co:unal/66443
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ramírez V., Victor J.b8375e73-1dee-496d-8594-aa47ae1d475a3002019-07-03T02:08:16Z2019-07-03T02:08:16Z2016-07-01ISSN: 2357-4100https://repositorio.unal.edu.co/handle/unal/66443http://bdigital.unal.edu.co/67471/In this paper, we give an elementary proof of the fact that the rings are unique factorization domains for the values d = 3, 7, 11, 19, 43, 67, 163. While the result in itself is well known, our proof is new and completely elementary and uses neither the Minkowski convex body theorem, nor the Dedekind and Hasse theorems. Furthermore, it does not use either the theory of algebraic integers, or the theory of Noetherian rings. It only uses basic notions from the theory of commutative rings.application/pdfspaUniversidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Matemáticas - Sociedad Colombiana de Matemáticashttps://revistas.unal.edu.co/index.php/recolma/article/view/62206Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de MatemáticasRevista Colombiana de MatemáticasRamírez V., Victor J. (2016) A new proof of the Unique Factorization of Z 1 + -d 2 for d = 3, 7, 11, 19, 43, 67, 163. Revista Colombiana de Matemáticas, 50 (2). pp. 139-143. ISSN 2357-410051 Matemáticas / MathematicsUnique factorization domainprimeirreducibleA new proof of the Unique Factorization of Z 1 + -d 2 for d = 3, 7, 11, 19, 43, 67, 163Artículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTORIGINAL62206-316268-1-SM.pdfapplication/pdf346316https://repositorio.unal.edu.co/bitstream/unal/66443/1/62206-316268-1-SM.pdf52aaf986312ef4bb38e2fb3aa49167c2MD51THUMBNAIL62206-316268-1-SM.pdf.jpg62206-316268-1-SM.pdf.jpgGenerated Thumbnailimage/jpeg4755https://repositorio.unal.edu.co/bitstream/unal/66443/2/62206-316268-1-SM.pdf.jpgb48402488af4863f311a9bcf2613cab8MD52unal/66443oai:repositorio.unal.edu.co:unal/664432023-05-25 23:02:43.409Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co
dc.title.spa.fl_str_mv A new proof of the Unique Factorization of Z 1 + -d 2 for d = 3, 7, 11, 19, 43, 67, 163
title A new proof of the Unique Factorization of Z 1 + -d 2 for d = 3, 7, 11, 19, 43, 67, 163
spellingShingle A new proof of the Unique Factorization of Z 1 + -d 2 for d = 3, 7, 11, 19, 43, 67, 163
51 Matemáticas / Mathematics
Unique factorization domain
prime
irreducible
title_short A new proof of the Unique Factorization of Z 1 + -d 2 for d = 3, 7, 11, 19, 43, 67, 163
title_full A new proof of the Unique Factorization of Z 1 + -d 2 for d = 3, 7, 11, 19, 43, 67, 163
title_fullStr A new proof of the Unique Factorization of Z 1 + -d 2 for d = 3, 7, 11, 19, 43, 67, 163
title_full_unstemmed A new proof of the Unique Factorization of Z 1 + -d 2 for d = 3, 7, 11, 19, 43, 67, 163
title_sort A new proof of the Unique Factorization of Z 1 + -d 2 for d = 3, 7, 11, 19, 43, 67, 163
dc.creator.fl_str_mv Ramírez V., Victor J.
dc.contributor.author.spa.fl_str_mv Ramírez V., Victor J.
dc.subject.ddc.spa.fl_str_mv 51 Matemáticas / Mathematics
topic 51 Matemáticas / Mathematics
Unique factorization domain
prime
irreducible
dc.subject.proposal.spa.fl_str_mv Unique factorization domain
prime
irreducible
description In this paper, we give an elementary proof of the fact that the rings are unique factorization domains for the values d = 3, 7, 11, 19, 43, 67, 163. While the result in itself is well known, our proof is new and completely elementary and uses neither the Minkowski convex body theorem, nor the Dedekind and Hasse theorems. Furthermore, it does not use either the theory of algebraic integers, or the theory of Noetherian rings. It only uses basic notions from the theory of commutative rings.
publishDate 2016
dc.date.issued.spa.fl_str_mv 2016-07-01
dc.date.accessioned.spa.fl_str_mv 2019-07-03T02:08:16Z
dc.date.available.spa.fl_str_mv 2019-07-03T02:08:16Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv ISSN: 2357-4100
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/66443
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/67471/
identifier_str_mv ISSN: 2357-4100
url https://repositorio.unal.edu.co/handle/unal/66443
http://bdigital.unal.edu.co/67471/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.spa.fl_str_mv https://revistas.unal.edu.co/index.php/recolma/article/view/62206
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de Matemáticas
Revista Colombiana de Matemáticas
dc.relation.references.spa.fl_str_mv Ramírez V., Victor J. (2016) A new proof of the Unique Factorization of Z 1 + -d 2 for d = 3, 7, 11, 19, 43, 67, 163. Revista Colombiana de Matemáticas, 50 (2). pp. 139-143. ISSN 2357-4100
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Matemáticas - Sociedad Colombiana de Matemáticas
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/66443/1/62206-316268-1-SM.pdf
https://repositorio.unal.edu.co/bitstream/unal/66443/2/62206-316268-1-SM.pdf.jpg
bitstream.checksum.fl_str_mv 52aaf986312ef4bb38e2fb3aa49167c2
b48402488af4863f311a9bcf2613cab8
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090207707791360