Estudio del metabolismo del NADP+ en parásitos de alta incidencia en la salud pública: Explorando la NAD Quinasa de Trypanosoma cruzi
ilustraciones, diagramas, tablas
- Autores:
-
Caldas Ortega, Luisa María
- Tipo de recurso:
- Fecha de publicación:
- 2024
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/86723
- Palabra clave:
- 570 - Biología::572 - Bioquímica
570 - Biología::571 - Fisiología y temas relacionados
INFECCIONES POR PROTOZOARIOS
ORGANISMOS UNICELULARES
NICOTINAMIDA
PROTEINA QUINASA C
Protozoan diseases
Unicelullar organisms
Nicotinamide
Niacin
Protein kinase C
Protozoan parasites
NADK
NAD(P)+/NAD(P)H
Parásitos protozoarios
NADK
NAD(P)+/NAD(P)H
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_60346262bc96d129a99336c442dbb4e2 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/86723 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Estudio del metabolismo del NADP+ en parásitos de alta incidencia en la salud pública: Explorando la NAD Quinasa de Trypanosoma cruzi |
dc.title.translated.none.fl_str_mv |
Study of NADP+ metabolism in parasites of high incidence in public health: Exploring NAD kinase of Trypanosoma cruzi |
title |
Estudio del metabolismo del NADP+ en parásitos de alta incidencia en la salud pública: Explorando la NAD Quinasa de Trypanosoma cruzi |
spellingShingle |
Estudio del metabolismo del NADP+ en parásitos de alta incidencia en la salud pública: Explorando la NAD Quinasa de Trypanosoma cruzi 570 - Biología::572 - Bioquímica 570 - Biología::571 - Fisiología y temas relacionados INFECCIONES POR PROTOZOARIOS ORGANISMOS UNICELULARES NICOTINAMIDA PROTEINA QUINASA C Protozoan diseases Unicelullar organisms Nicotinamide Niacin Protein kinase C Protozoan parasites NADK NAD(P)+/NAD(P)H Parásitos protozoarios NADK NAD(P)+/NAD(P)H |
title_short |
Estudio del metabolismo del NADP+ en parásitos de alta incidencia en la salud pública: Explorando la NAD Quinasa de Trypanosoma cruzi |
title_full |
Estudio del metabolismo del NADP+ en parásitos de alta incidencia en la salud pública: Explorando la NAD Quinasa de Trypanosoma cruzi |
title_fullStr |
Estudio del metabolismo del NADP+ en parásitos de alta incidencia en la salud pública: Explorando la NAD Quinasa de Trypanosoma cruzi |
title_full_unstemmed |
Estudio del metabolismo del NADP+ en parásitos de alta incidencia en la salud pública: Explorando la NAD Quinasa de Trypanosoma cruzi |
title_sort |
Estudio del metabolismo del NADP+ en parásitos de alta incidencia en la salud pública: Explorando la NAD Quinasa de Trypanosoma cruzi |
dc.creator.fl_str_mv |
Caldas Ortega, Luisa María |
dc.contributor.advisor.spa.fl_str_mv |
Ramírez Hernández, María Helena |
dc.contributor.author.spa.fl_str_mv |
Caldas Ortega, Luisa María |
dc.contributor.researchgroup.spa.fl_str_mv |
Libbiq Un |
dc.subject.ddc.spa.fl_str_mv |
570 - Biología::572 - Bioquímica 570 - Biología::571 - Fisiología y temas relacionados |
topic |
570 - Biología::572 - Bioquímica 570 - Biología::571 - Fisiología y temas relacionados INFECCIONES POR PROTOZOARIOS ORGANISMOS UNICELULARES NICOTINAMIDA PROTEINA QUINASA C Protozoan diseases Unicelullar organisms Nicotinamide Niacin Protein kinase C Protozoan parasites NADK NAD(P)+/NAD(P)H Parásitos protozoarios NADK NAD(P)+/NAD(P)H |
dc.subject.lemb.spa.fl_str_mv |
INFECCIONES POR PROTOZOARIOS ORGANISMOS UNICELULARES NICOTINAMIDA PROTEINA QUINASA C |
dc.subject.lemb.eng.fl_str_mv |
Protozoan diseases Unicelullar organisms Nicotinamide Niacin Protein kinase C |
dc.subject.proposal.eng.fl_str_mv |
Protozoan parasites NADK NAD(P)+/NAD(P)H |
dc.subject.proposal.spa.fl_str_mv |
Parásitos protozoarios NADK NAD(P)+/NAD(P)H |
description |
ilustraciones, diagramas, tablas |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-08-13T15:45:24Z |
dc.date.available.none.fl_str_mv |
2024-08-13T15:45:24Z |
dc.date.issued.none.fl_str_mv |
2024 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/86723 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/86723 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Beaumier, C.M., Gillespie, P.M., Hotez, P.J. & Bottazzi, M.E. Transl. Res. 162, 144–155 (2013) Hotez, P.J. & Ferris, M.T. Vaccine 24, 5787–5799 (2006). McAllister MM. Successful vaccines for naturally occurring protozoal diseases of animals should guide guman vaccine research. A review of protozoal vaccines and their designs. Parasitology. 2014 Apr, 141 (5):624-40. Doi:10.1017/S0031182013002060. Epub 2014 Jan 28. PMID: 24476952; PMCID: PMC3961066 Andrews KT, Fisher G, Skinner-Adams TS. Drug repurposing and human parasitic protozoan diseases. Int J Parasitol Drugs Drug Resist. 2014;4(2):95-111. Doi:10.1016/j.ijpddr:2014.02.002 Sundar S, Singh B. Emerging therapeutic targets for treatment of leishmaniasis. Expert Opin Ther Targets [Internet]. 2018;22(6):467–86. Available from: https://doi.org/10.1080/14728222.2018.1472241 de Oliveira LFG, Pereira BAS, Gilbert B, Corrêa AL, Rocha L, Alves CR. Natural products and phytotherapy: an innovative perspective in leishmaniasis treatment. Phytochem Rev. 2017;16(2):219–33. Roatt BM, de Oliveira Cardoso JM, De Brito RCF, Coura-Vital W, de Oliveira Aguiar-Soares RD, Reis AB. Recent advances and new strategies on leishmaniasis treatment. Appl Microbiol Biotechnol. 2020;104(21):8965–77. Maldonado E, Morales-pison S, Urbina F, Solari A. Vaccine Design against Chagas Disease Focused on the Use of Nucleic Acids. 2022; Low ZY, Farouk IA, Lal SK. Drug Repositioning: New Approaches and Future Prospects for Life-Debilitating Diseases and the COVID-19 Pandemic Outbreak. Viruses. 2020 Sep 22;12(9):1058. doi: 10.3390/v12091058. PMID: 32972027; PMCID: PMC7551028. Müller J, Hemphill A. Drug target identification in protozoan parasites. Expert Opin Drug Discov. 2016 Aug;11(8):815-24. doi: 10.1080/17460441.2016.1195945. Epub 2016 Jun 16. PMID: 27238605; PMCID: PMC4983455. Justine J-L, Durette-Desset M-C. Evolution of Parasites and Host Parasite Relationships. Parasitol Today [Internet]. 2000;16(8):315. Disponible en: http://www.sciencedirect.com/science/article/pii/S0169475800017257 Vonlaufen N, Kanzok SM, Wek RC, Sullivan WJ Jr. Stress response pathways in protozoan parasites. Cell Microbiol. 2008 Dec;10(12):2387-99. doi: 10.1111/j.1462-5822.2008.01210.x. Epub 2008 Aug 1. PMID: 18647172. Becker K., Tilley L., Vennerstrom J.L., Roberts D., Rogerson S., Ginsburg H. «Oxidative stress in malaria parasite-infected erythrocytes: Host–parasite interactions». Int. J. Parasitol. 2004;34:163–189. doi: 10.1016/j.ijpara.2003.09.011. Alvarez V.E., Kosec G., Sant’Anna C., Turk V., Cazzulo J.J., Turk B. Autophagy is involved in nutritional stress response and differentiation in Trypanosoma Cruzi. J. Biol. Chem. 2008;283:3454–3464. doi: 10.1074/jbc.M708474200. Turrens J.F. Oxidative stress and antioxidant defenses: A target for the treatment of diseases caused by parasitic protozoa. Mol. Aspects Med. 2004;25:211–220. doi: 10.1016/j.mam.2004.02.021 Menna-Barreto R, Piacenza L, Garg NJ. Editorial: Protozoa and their Host: An Oxidative Relationship. Front cell infect Microbiol. 2022 Feb 8; 12:856191. Doi: 10.3389/fcimb.2022.856191. PMID: 35211425; PMC8860965 Chandel, N. S. (2021). NADPH—the forgotten reducing equivalent. Cold Spring Harbor Perspectives in Biology, 13(6), a040550. Ying W. NAD+/NADH and NADP+NADPH in cellular functions and cell death:Regulation and biological consequences. Antioxid Redox Signal 10: 179-206, 2008. Vanlinden MR, Skoge RH, Ziegler M. Discovery , metabolism and functions of NAD and NADP. 2015;(February):9–13 Pollak N, Olle CD. The power to reduce : pyridine nucleotides – small molecules with a. 2007;218:205–18. Agledal L, Niere M, Ziegler M, Agledal L, Niere M, Ziegler M. The phosphate makes a difference : cellular functions of NADP The phosphate makes a difference : cellular functions of NADP. 2013;0002 J. H. Grose, L. Joss, S. F. Velick & J. R. Roth, “Evidence that feedback inhibition of NAD kinase controls responses to oxidative stress” Proc. Natl. Acad. Sci. U. S. A., vol. 103, no. 20, pp. 7601–7606, 2006. DOI: https://doi.org/10.1073/pnas.0602494103 C. M. Sassetti, D. H. Boyd & E. J. Rubin, “Genes required for mycobacterial growth defined by high density mutagenesis” Mol. Microbiol., vol. 48, no. 1, pp. 77–84, 2003. DOI: https://doi.org/10.1046/ j.1365-2958.2003.03425.x G. Jeelani, A. Husain, D. Sato, T. Soga, M. Suematsu & T. Nozaki, “Biochemical and functional characterization of novel NADH kinase in the enteric protozoan parasite Entamoeba histolytica” Biochimie, vol. 95, no. 2, pp. 309–319, 2013. DOI: https://doi.org/10.1016/j. biochi.2012.09.034 Jutinico Shubach, L. M., Contreras Rodríguez, L. E., García Castañeda, J. E., & Ramírez Hernández, M. H. 1, 2019, Functional identification and subcellular localization of NAD kinase in the protozoan parasite Giardia intestinalis. Rev. Colomb. Quim, Vol. 48, pp. 16-25. https://doi.org/10.15446/rev.colomb.quim.v48n1.75273 Garzón Fajardo, Gustavo Adolfo. Estudio De Un Candidato a NAD Quinasa En Lesihmania Spp. 2019. Xie, N., Zhang, L., Gao, W. et al. NAD+ metabolism: pathophysiologic mechanisms and therapeutic potential. Sig Transduct Target Ther 5, 227 (2020). https://doi.org/10.1038/s41392-020-00311-7 Begley TP, Kinsland C, Dorrestein P. The Biosynthesis of Nicotinamide Adenine Dinucleotides in Bacteria RYAN A . MEHL ,* ANDREI OSTERMAN , t. 2001;61. Ziegler M, Berger F, Ramı H. The new life of a centenarian : signalling functions of NAD ( P ). 2004;29(3). Vanlinden MR, Skoge RH, Ziegler M. Discovery , metabolism and functions of NAD and NADP. 2015;(February):9–13. Massudi H, Grant R, Guillemin GJ, Braidy N. NAD + metabolism and oxidative stress : the golden nucleotide on a crown of thorns. 2012;17(1). Nakamura M, Bhatnagar A, Sadoshima J. Overview of pyridine nucleotides review series. Circ Res. 2012;111(5):604–10. Houtkooper RH, Canto C, Wanders RJ, Auwerx J. The Secret Life of NAD ؉ : An Old Metabolite Controlling New Metabolic Signaling Pathways. 2010;31(April):194–223. He L, He T, Farrar S, Ji L, Liu T, Ma X. Antioxidants Maintain Cellular Redox Homeostasis by Elimination of Reactive Oxygen Species. Cell Physiol Biochem. 2017;44(2):532–53. Nad H, Couples NHR, Xiao W, Wang R, Handy DE, Loscalzo J. NAD(H) and NADP(H) Redox Couples and Cellular Energy Metabolism. 2018;28(3):251–72. Panday A, Sahoo MK, Osorio D, Batra S. NADPH oxidases: An overview from structure to innate immunity-associated pathologies. Cell Mol Immunol. 2015;12(1):5–23. Halliwell B, Gutteridge JMC (2015) Oxygen: boon yet bane—introducing oxygen toxicity and reactive species: In: Free radicals in biology and medicine. 5 edn. Oxford University Press, Oxford. Rabilloud T., Heller M., Rigobello M. P., Bindoli A., Aebersold R., Lunardi J. The mitochondrial antioxidant defence system and its response to oxidative stress. Proteomics. 2001;1(8):1105–1110. doi: 10.1002/16159861(200109)1:9<1105::AID-PROT1105>3.0.CO;2-M. [PubMed] [CrossRef] [Google Scholar] [Ref list] Tiganis, T. Reactive oxygen species and insulin resistance: the good, the bad and the ugly. Trends Pharmacol. Sci. 32, 82–89 (2011). Yang HC, Cheng ML, Ho HY, and Chiu DT. The microbicidal and cytoregulatory roles of NADPH oxidases. Microb Infect 13: 109–120, 2011 Pratico D. In vivo measurement of the redox state. Lipids 36Suppl: S45–S47, 2001 Amulic B, Cazalet C, Hayes GL, Metzler KD, Zychlinsky A. Neutrophil function: from mechanisms to disease. Annu Rev Immunol. (2012) 30:459–89. doi: 10.1146/annurev-immunol-020711-074942 C. Wrenger, I. Schettert, and E. Liebau, ‘Oxidative Stress in Human Infectious Diseases – Present and Current Knowledge About Its Druggability’, Drug Discovery. InTech, Jan. 23, 2013. doi: 10.5772/53758. Alexander V. Ivanov, Birke Bartosch, Maria G. Isaguliants, "Oxidative Stress in Infection and Consequent Disease", Oxidative Medicine and Cellular Longevity, vol. 2017, Article ID 3496043, 3 pages, 2017. https://doi.org/10.1155/2017/3496043 LIU, Yingying, et al. Signaling pathways of oxidative stress response: the potential therapeutic targets in gastric cancer. Frontiers in Immunology, 2023, vol. 14, p. 1139589. Justine J-L, Durette-Desset M-C. Evolution of Parasites Relationships. Parasitol Today [Internet]. 2000;16(8):315. http://www.sciencedirect.com/science/article/pii/S0169475800017257 and Host Parasite Ruggiero MA, Gordon DP, Orrell TM, Bailly N, Bourgoin T, Brusca RC, et al. A higher level classification of all living organisms. PLoS One. 2015;10(4):1-60. Jackson AP, Otto TD, Aslett M, Armstrong SD, Bringaud F, Schlacht A, et al. Kinetoplastid Phylogenomics Reveals the Evolutionary Innovations Associated with the Origins of Parasitism. Curr Biol [Internet]. 2016;26(2):161-72. Disponible en: http://dx.doi.org/10.1016/j.cub.2015.11.055 Kaufer A, Ellis J, Stark D, Barratt J. The evolution of trypanosomatid taxonomy. Parasites and Vectors. 2017;10(1):1–17. Sylvia O, Aldo S. Excavata-Kinetoplastea Trypanosomatidae Parasites and the Interaction with their Hosts. Int J Trop Dis. 2019;2(1). Isabirye M, Raju DV., Kitutu M, Yemeline V, Deckers J, J. Poesen Additional. We are IntechOpen , the world ’ s leading publisher of Open Access books Built by scientists , for scientists TOP 1 %. Intech [Internet]. 2012;13. Schmunis GA, Yadon ZE. Chagas disease: A Latin American health problem becoming a world health problem. Acta Trop [Internet]. 2010 Jul;115(1–2):14–21. Available from: https://doi.org/10.1016/j.actatropica.2009.11.003 Medina-Rincón GJ, Gallo-Bernal S, Jiménez PA, Cruz-Saavedra L, Ramírez JD, Rodríguez MJ, et al. Molecular and clinical aspects of chronic manifestations in chagas disease: A state-of-the-art review. Pathogens. 2021;10(11). Organización panamericana de la salud. Enfermedad de chagas. OPS. [citado el 12 de Mayo de 2022]. Disponible en https://www.paho.org/en/topics/chagas-disease. Lidani KCF, Andrade FA, Bavia L, Damasceno FS, Beltrame MH, Messias-Reason IJ, et al. Chagas disease: From discovery to a worldwide health problem. J Phys Oceanogr. 2019;49(6):1–13. Organización panamericana de la saud. Enfermedades desatendidas. [citado el 12 de Mayo de 2022]. Disponible en https://www.paho.org/es/temas/enfermedades-desatendidas-tropicales-transmitidas-por-vectores Olivera MJ, Porras-Villamil JF, Villar JC, Herrera EV, Buitrago G. Chagas disease-related mortality in colombia from 1979 to 2018: Temporal and spatial trends. Rev Soc Bras Med Trop. 2021;54(Ci):1–7. Ministerio del interior. Boletin epidemiologico. mininterior. 2021. [citado el 12 de Mayo de 2022]. Disponible https://www.mininterior.gov.co/wp-content/uploads/2021/12/3.16-Boletin-Epidemiologico-Noviembre-2021-2.pdf Melo, R.F.P.; Guarneri, A.A.; Silber, A.M. The Influence of Environmental Cues on the Development of Trypanosomacruzi in TriatominaeVector. Front. Cell. Infect. Microbiol. 2020, 10, 27. [CrossRef] [PubMed] L. Piacenza, F. Irigoín, M.N. Alvarez, G. Peluffo, M.C. Taylor, J.M. Kelly, S.R. Wilkinson, R. Radi, Mitochondrial superoxide radicals mediate programmed cell death in Trypanosoma cruzi: cytoprotective action of mitochondrial iron superoxide dismutase overexpression, Biochem J 403 (2007) 323–334. R. Mukhopadhyay, S. Dey, N. Xu, D. Gage, J. Lightbody, M. Ouellette, B.P. Rosen, Trypanothione overproduction and resistance to antimonials and arsenicals in Leishmania, Proc. Natl. Acad. Sci. U. S. A. 93 (1996) 10383–10387. M. Dormeyer, N. Reckenfelderbäumer, H. Ludemann, R.L. Krauth-Siegel, Trypanothione-dependent synthesis of deoxyribonucleotides by Trypanosoma brucei ribonucleotide reductase, J. Biol. Chem. 276 (2001) 10602–10606. Paes MC, Cosentino-Gomes D, de Souza CF, Nogueira NP, Meyer-Fernandes JR. The Role of Heme and Reactive Oxygen Species in Proliferation and Survival of Trypanosoma cruzi. J Parasitol Res. 2011;2011:174614. doi: 10.1155/2011/174614. Epub 2011 Oct 9. PMID: 22007287; PMCID: PMC3191734. S.R. Wilkinson, J.M. Kelly, The role of glutathione peroxidases in trypanosomatids, Biol. Chem. 384 (2003) 517–525. Santi AM, Murta SM. Antioxidant defence system as a rational target for Chagas Disease and leishmaniasis chemotherapy. Memórias do Instituto Oswaldo Cruz. 2022;117. Irigoín F, Cibils L, Comini MA, Wilkinson SR, Flohé L, Radi R. Insights into the redox biology of Trypanosoma cruzi: Trypanothione metabolism and oxidant detoxification. Free Radical Biology and Medicine. 2008;45(6):733–42. Parodi-Talice A, Monteiro-Goes V, Arrambide N, Avila AR, Duran R, Correa A, Dallagiovanna B, Cayota A, Krieger M, Goldenberg S et al.: Proteomic analysis of metacyclic trypomastigotes undergoing Trypanosoma cruzi metacyclogenesis. J Mass Spectrom 2007, 42:1422-1432 Maugeri DA, Cazzulo JJ: The pentose phosphate pathway in Trypanosoma cruzi. FEMS Microbiol Lett 2004, 234:117-123 Pérez-Molina JA, Pérez-Ayala A, Moreno S, Fernández-González MC, Zamora J, López-Velez R. Use of benznidazole to treat chronic Chagas’ disease: A systematic review with a meta-analysis. J Antimicrob Chemother. 2009;64(6):1139–47. Sundar S, Singh B. Emerging therapeutic targets for treatment of leishmaniasis. Expert Opin Ther Targets [Internet]. 2018;22(6):467–86. Available from: https://doi.org/10.1080/14728222.2018.1472241 De Oliveira LFG, Pereira BAS, Gilbert B, Corrêa AL, Rocha L, Alves CR. Natural products and phytotherapy: an innovative perspective in leishmaniasis treatment. Phytochem Rev. 2017;16(2):219–33. Roatt BM, de Oliveira Cardoso JM, De Brito RCF, Coura-Vital W, de Oliveira Aguiar-Soares RD, Reis AB. Recent advances and new strategies on leishmaniasis treatment. Appl Microbiol Biotechnol. 2020;104(21):8965–77. Maldonado E, Morales-pison S, Urbina F, Solari A. Vaccine Design against Chagas Disease Focused on the Use of Nucleic Acids. 2022 Lascano F, García Bournissen F, Altcheh J. Review of pharmacological options for the treatment of Chagas disease. Br J Clin Pharmacol. 2022;88(2):383–402. Magni G, Di Stefano M, Orsomando G, Raffaelli N, Ruggieri S. NAD(P) Biosynthesis Enzymes as Potential Targets for Selective Drug Design. Curr Med Chem. 2009;16(11):1372–90. Li B, Wang X, Tai L, Ma T, Shalmani A, Liu W. NAD Kinases : Metabolic Targets Controlling Redox Co-enzymes and Reducing Power Partitioning in Plant Stress and Development. 2018;9(March). Kawai S, Murata K. Structure and function of NAD kinase and NADP phosphatase: Key enzymes that regulate the intracellular balance of NAD(H) and NADP(H). Biosci Biotechnol Biochem. 2008;72(4):919–30. Ishikawa Y, Kawai-Yamada M. Physiological significance of NAD kinases in cyanobacteria. Front Plant Sci. 2019;10(June):1–8. Mori S, Kawai S, Shi F, Mikami B, Murata K. Molecular conversion of NAD kinase to NADH kinase through single amino acid residue substitution. J Biol Chem. 2005;280(25):24104–12. Mürata K. Polyphosphate-dependent nicotinamide adenine dinucleotide (NAD) kinase: A novel missing link in human mitochondria. Proc Japan Acad Ser B Phys Biol Sci. 2021;97(8):479–98. Nakamichi Y, Yoshioka A, Kawai S, Murata K. Conferring the ability to utilize inorganic polyphosphate on ATP-specific NAD kinase. Sci Rep. 2013;3:1–7. Magni G, Orsomando G, Raffaelli N. Structural and Functional Properties of NAD Kinase , a Key Enzyme in NADP Biosynthesis. 2006;(1):739–46. Grose JH, Joss L, Velick SF, Roth JR. Evidence that feedback inhibition of NAD kinase controls responses to oxidative stress. 2006;103(20). Garavaglia S, Galizzi A, Rizzi M. Allosteric regulation of Bacillus subtilis NAD kinase by quinolinic acid. J Bacteriol. 2003;185(16):4844–50. Singh R, Mailloux RJ, Puiseux-dao S, Appanna VD. Oxidative Stress Evokes a Metabolic Adaptation That Favors Increased NADPH Synthesis and Decreased NADH Production in Pseudomonas fluorescens ᰔ. 2007;189(18):6665–75. Chai MF, Chen QJ, An R, Chen YM, Chen J, Wang XC. NADK2, an Arabidopsis chloroplastic NAD kinase, plays a vital role in both chlorophyll synthesis and chloroplast protection. Plant Mol Biol. 2005;59(4):553–64. Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: A laboratory manual. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 2012. Life Technologies. Champion pET SUMO Protein Expression System. J Chem Inf Model [Internet]. 2010;5(January):1833–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15263846%0Ahttp://link.springer.com/10.100 7/978-1-4939-7366-8 Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith J a, et al. Current Protocols in Molecular Biology. Vol. 1, Molecular Biology. 2003. 146-146 p. Qiagen. The QIA expressionist, A handbook fos high-level expression and purification of 6xHis-tagged proteins [Internet]. Qiagen GmbH, Düsseldorf, Germany. 2003. Available from: http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:The+QIA+express ionist+TM#0 Bornhorst JA, Falke JJ. [16] Purification of proteins using polyhistidine affinity tags. In: Methods Enzymol [Internet]. 2000. p. 245–54. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0076687900260588 Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem [Internet]. 1976 May;72(1– 2):248–54. Available from: https://linkinghub.elsevier.com/retrieve/pii/0003269776905273 Gao, H. & Xu, X. The cyanobacterial NAD kinase gene sll1415 is required for photoheterotrophic growth and cellular redox homeostasis in Synechocystis sp. strain PCC 6803. J. Bacteriol. 194, 218– 24 (2012). Kawai, S. et al. Inorganic Polyphosphate/ATP-NAD kinase of Micrococcus flavus and Mycobacterium tuberculosis H37Rv. Biochem. Biophys. Res. Commun. 276, 57–63 (2000) Pauly, D., Chacana, P. A., Calzado, E. G., Brembs, B., & Schade, R. (2011). Igy technology: Extraction of chicken antibodies from egg yolk by polyethylene glycol (PEG) precipitation. Journal of Visualized Experiments, i(51), 2–7. https://doi.org/10.3791/3084 Chacon, Esteban. EVALUACIÓN DE UN CANDIDATO A TRANSPORTADOR DE NAD+ EN EL PARÁSITO PROTOZOARIO Trypanosoma cruzi. Tesis de Maestría. Universidad Nacional de Colombia Sede Bogotá. 2021. https://repositorio.unal.edu.co/handle/unal/81733 Sambrook J, Rusell D, editors, editors. Molecular cloning: a laboratory manual. New York: CSHL Press; 2001. [Google Scholar] Sánchez-Lancheros DM, Ospina-Giraldo LF, Ramírez-Hernández MH. Nicotinamide mononucleotide adenylyltransferase of Trypanosoma cruzi (TcNMNAT): a cytosol protein target for serine kinases. Mem Inst Oswaldo Cruz. 2016 Nov;111(11):670-675. doi: 10.1590/0074-02760160103. Epub 2016 Oct 24. PMID: 27783719; PMCID: PMC5125049. Ostos, Melissa. Aproximación a la regulación de algunas enzimas involucradas en el metabolismo del NAD+ en Giardia Duodenalis. 2019. Tesis de Maestría. Universidad Nacional de Colombia Sede Bogotá McGinnis S, Madden TL. BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W20-5. doi: 10.1093/nar/gkh435. PMID: 15215342; PMCID: PMC441573. Sievers F, Higgins DG. Clustal Omega for making accurate alignments of many protein sequences. Protein Sci. 2018 Jan;27(1):135-145. doi: 10.1002/pro.3290. Epub 2017 Oct 30. PMID: 28884485; PMCID: PMC5734385. Quevillon E, Silventoinen V, Pillai S, et al. InterProScan: protein domains identifier. Nucleic Acids Res. 2005;33(Web Server issue):W116-W120. doi:10.1093/nar/gki442 Artimo P, Jonnalagedda M, Arnold K, et al. ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res. 2012;40(Web Server issue):W597-W603. doi:10.1093/nar/gks400 Williams CJ, Headd JJ, Moriarty NW, et al. MolProbity: More and better reference data for improved all-atom structure validation. Protein Sci. 2018;27(1):293-315. doi:10.1002/pro.3330 Chou KC, Shen HB. A new method for predicting the subcellular localization of eukaryotic proteins with both single and multiple sites: Euk-mPLoc 2.0. PLoS One. 2010 Apr 1;5(4):e9931. doi: 10.1371/journal.pone.0009931. PMID: 20368981; PMCID: PMC2848569. Thumuluri V, Almagro Armenteros JJ, Johansen AR, Nielsen H, Winther O. DeepLoc 2.0: multi-label subcellular localization prediction using protein language models. Nucleic Acids Res. 2022 Jul 5;50(W1):W228-W234. doi: 10.1093/nar/gkac278. PMID: 35489069; PMCID: PMC9252801. Michael K. Schuster and Martin Grabner formerly at: Austrian National EMBnet node. Chen, M., Zhang, W., Gou, Y., Xu, D., Wei, Y., Liu, D., ... & Xue, Y. (2023). GPS 6.0: an updated server for prediction of kinase-specific phosphorylation sites in proteins. Nucleic Acids Research, gkad383. Poon, Andy. Predicting Phosphorylation: A critique of the NetPhos program and potential alternatives. Stanford. Biochem, 2004, vol. 218, p. 582-585. Deng, W. et al. Computational prediction of methylation types of covalently modified lysine and arginine residues in proteins. Briefings in Bioinformatics 18, 647–658, https://doi.org/10.1093/bib/bbw041 (2016). DENG, Wankun, et al. GPS-PAIL: prediction of lysine acetyltransferase-specific modification sites from protein sequences. Scientific reports, 2016, vol. 6, no 1, p. 39787. WANG, Chenwei, et al. GPS-Uber: a hybrid-learning framework for prediction of general and E3-specific lysine ubiquitination sites. Briefings in Bioinformatics, 2022, vol. 23, no 2, p. bbab574. Yap KL, Kim J, Truong K, Sherman M, Yuan T, Ikura M. Calmodulin target database. J Struct Funct Genomics. 2000;1(1):8-14. doi: 10.1023/a:1011320027914. PMID: 12836676. Mruk K, Farley BM, Ritacco AW, Kobertz WR. Calmodulation meta-analysis: predicting calmodulin binding via canonical motif clustering. J Gen Physiol. 2014 Jul;144(1):105-14. doi: 10.1085/jgp.201311140. Epub 2014 Jun 16. PMID: 24935744; PMCID: PMC4076516. Kozakov D, Hall DR, Xia B, Porter KA, Padhorny D, Yueh C, Beglov D, Vajda S. The ClusPro web server for protein-protein docking. Nat Protoc. 2017 Feb;12(2):255-278. doi: 10.1038/nprot.2016.169. Epub 2017 Jan 12. PMID: 28079879; PMCID: PMC5540229. Markossian, K. A., and Kurganov, I. (2004). Protein folding, misfolding, and aggregation. Formation of inclusion bodies and aggresomes. Biochemical 69, 971–984. doi: 10.1023/b:biry.0000043539.07961.4c Malik, A. (2016). Protein fusion tags for efficient expression and purification of recombinant proteins in the periplasmic space of E. coli. 3 Biotech 6:44. doi: 10.1016/j.pep.2017.01.006 M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding,” Anal. Biochem., vol. 72, no. 1–2, pp. 248– 254, May 1976, doi: 10.1016/0003-2697(76)90527-3. WORTHEY, E. A.; MYLER, P. J. Protozoan genomes: gene identification and annotation. International journal for parasitology, 2005, vol. 35, no 5, p. 495-512. Florencia Díaz-Viraqué, Sebastián Pita, Gonzalo Greif, Rita de Cássia Moreira de Souza, Gregorio Iraola, Carlos Robello, Nanopore Sequencing Significantly Improves Genome Assembly of the Protozoan Parasite Trypanosoma cruzi, Genome Biology and Evolution, Volume 11, Issue 7, July 2019, Pages 1952–1957, https://doi.org/10.1093/gbe/evz129 Agledal, L.; Niere, M.; Ziegler, M. The Phosphate Makes a Difference: Cellular Functions of NADP. Redox Rep. 2010, 15 (1), 2–10 Li, B. B., Wang, X., Tai, L., Ma, T. T., Shalmani, A., Liu, W. T., ... & Chen, K. M. (2018). NAD kinases: metabolic targets controlling redox co-enzymes and reducing power partitioning in plant stress and development. Frontiers in Plant Science, 9, 379. Mori, S. et al. NAD-binding mode and the significance of intersubunit contact revealed by the crystal structure of Mycobacterium tuberculosis NAD kinase-NAD complex. Biochem. Biophys. Res. Commun. (2005). doi:10.1016/j.bbrc.2004.11.163 Xue B, Li L, Meroueh SO, Uversky VN, Dunker AK. Analysis of structured and intrinsically disordered regions of transmembrane proteins. Mol Biosyst. 2009 Dec;5(12):1688-1702. doi: 10.1039/B905913J. PMID: 19585006; PMCID: PMC2887740. Estaña, A., Sibille, N., Delaforge, E., Vaisset, M., Cortés, J., & Bernadó, P. (2019). Realistic ensemble models of intrinsically disordered proteins using a structure-encoding coil database. Structure, 27(2), 381-391. Li, F., Wu, C. & Wang, G. Targeting NAD Metabolism for the Therapy of Age-Related Neurodegenerative Diseases. Neurosci. Bull. 40, 218–240 (2024). https://doi.org/10.1007/s12264-023-01072-3 Gomez, Laura & Luarte, Alejandro & Ponce, Daniela & Bruna Jara, Bárbara & Behrens, Maria. (2021). Analyzing Olfactory Neuron Precursors Non-Invasively Isolated through NADH FLIM as a Potential Tool to Study Oxidative Stress in Alzheimer’s Disease. International Journal of Molecular Sciences. 22. 6311. 10.3390/ijms22126311. Marcet, Ismael & Laca, A. & Paredes, Benjamín & Díaz, Mario. (2011). IgY isolation from a watery by-product obtained from an egg yolk fractionation process. Food and Bioproducts Processing - FOOD BIOPROD PROCESS. 89. 87-91.10.1016/j.fbp.2010.04.006. Esch KJ, Petersen CA. Transmission and epidemiology of zoonotic protozoal diseases of companion animals. Clin Microbiol Rev. 2013 Jan;26(1):58-85. doi: 10.1128/CMR.00067-12. PMID: 23297259; PMCID: PMC3553666. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
ix, 73 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Maestría en Ciencias - Bioquímica |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/86723/3/license.txt https://repositorio.unal.edu.co/bitstream/unal/86723/4/1000514672.2024.pdf https://repositorio.unal.edu.co/bitstream/unal/86723/5/1000514672.2024.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a 2c3735fb11c07d39301b991c74ad499a c71bfe0b748f130b0cc88d9995ba503b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090191678210048 |
spelling |
Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ramírez Hernández, María Helena3cd22161e24a39009214e3120ed6f39bCaldas Ortega, Luisa María6d22748533825e6137d50fa6f19a6731Libbiq Un2024-08-13T15:45:24Z2024-08-13T15:45:24Z2024https://repositorio.unal.edu.co/handle/unal/86723Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, tablasLos parásitos protozoarios son organismos eucariotas unicelulares causantes de gran variedad de enfermedades que afectan a cientos de millones de personas alrededor del mundo, constituyendo un desafío para la salud pública. Los tratamientos empleados actualmente presentan limitaciones a nivel de eficacia, seguridad y costo. En ese sentido, es necesario identificar nuevos blancos terapéuticos en las vías metabólicas esenciales para la supervivencia de los parásitos. El dinucleótido de adenina y nicotinamida (NAD+/NADH) y su forma fosforilada (NADP+/NADPH) son moléculas esenciales para la viabilidad y proliferación celular. La NAD quinasa es la única enzima capaz de generar NADP de novo y ha sido descrita y caracterizada en varias especies de eucariotas, arqueas y bacterias. En este trabajo se estudió la NAD quinasa de protozoarios de relevancia en la salud pública, mediante la generación de la proteína recombinante NAD quinasa de Trypanosoma cruzi (6xHis-SUMO-tTcNADK). Esta proteína permitió realizar los primeros ensayos para determinar la actividad enzimática, así como el desarrollo de una herramienta inmunológica esencial para establecer la localización citoplasmática de la proteína mediante técnicas de inmunodetección en epimastigotes. También fue posible analizar computacionalmente al candidato TcNADK en términos de predicción de sitios de escisión proteolítica, modificaciones covalentes e interacción proteína-proteína. Finalmente, en un análisis in silico se identificaron 18 secuencias candidatas a NADK en otras 16 especies de parásitos protozoarios, secuencias que codificarían para proteínas en su mayoría hidrofílicas con pesos moleculares que oscilan entre 21kDa y 195kDa, y que presentan los dominios y plegamientos característicos de las NAD quinasas, así como características únicas que serían relevantes para establecer blancos farmacológicos y entender la diversidad estructural de estas proteínas centrales en el metabolismo celular (Texto tomado de la fuente).Protozoan parasites are single-celled eukaryotic organisms that cause a variety of diseases affecting hundreds of millions of people around the world, posing a public health challenge. The treatments currently used are limited in terms of efficacy, safety and cost. In this sense, it is necessary to identify new therapeutic targets in the metabolic pathways essential for the survival of parasites. Adenine nicotinamide dinucleotide (NAD+/NADH) and its phosphorylated form (NADP+/NADPH) are essential molecules for cell viability and proliferation. NAD kinase is the only enzyme capable of generating de novo NADP and has been described and characterized in several species of eukaryotes, archaea and bacteria. In this work, the NAD kinase of protozoa of relevance in public health was studied, through the generation of the recombinant protein NAD kinase of Trypanosoma cruzi (6xHis-SUMO-tTcNADK). This protein allowed the first tests to figure out the enzyme activity, as well as the development of an essential immunological tool to establish the cytoplasmic localization of the protein by means of immunodetection techniques in epimastigotes. It was also possible to computationally analyze the TcNADK candidate in terms of prediction of proteolytic cleavage sites, covalent modifications and protein-protein interaction. Finally, an in silico analysis identified 18 NADK candidate sequences in 16 other protozoan parasite species, sequences that would code for mostly hydrophilic proteins with molecular weights ranging from 21kDa to 195kDa, and presenting the characteristic domains and folds of NAD kinases, as well as unique characteristics that would be relevant to establish pharmacological targets and understand the structural diversity of these central proteins in cell metabolism.Incluye ilustraciones, imágenes y tablasMaestríaMagíster en Ciencias - BioquímicaA partir de 100ng de ADN genómico de Trypanosoma cruzi cepa CL BRENER Esmerilado like se llevó a cabo la amplificación del gen completo (tcnadk) que codifica para el candidato a NAD quinasa, así como de una forma truncada correspondiente al dominio catalítico (ttcnadk) mediante PCR en tiempo final (Figura 5-1). El gen completo se amplificó empleando 1U de Phusion DNA polimerasa (Invitrogen) bajo la siguiente condición de reacción: 0.5μM primer directo y reverso, 0.2mM dNTPs, 1,25mM MgCl2, Buffer HF 1X, 0.2U de Phusion polimerasa; y el perfil térmico estandarizado. En el caso del dominio catalítico, la amplificación se ejecutó con la DNA polimerasa de Thermus aquaticus (Tabla 5-1) con 0.2 μM primer reverso y directo, 2 mM, dNTPs, 2mM MgCl2, Buffer de PCR 1X (20mM Tris-HCl pH 8.8, 10mM KCl, 0.1% (v/v) Triton X-100, 0.1 mg/ml de BSA) y agua DEPC. Los productos de PCR fueron visualizados mediante electroforesis de agarosa al 1% en buffer TBE (TrisBorato-EDTA).Metabolismo energético de parásitos protozoariosix, 73 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - BioquímicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá570 - Biología::572 - Bioquímica570 - Biología::571 - Fisiología y temas relacionadosINFECCIONES POR PROTOZOARIOSORGANISMOS UNICELULARESNICOTINAMIDAPROTEINA QUINASA CProtozoan diseasesUnicelullar organismsNicotinamideNiacinProtein kinase CProtozoan parasitesNADKNAD(P)+/NAD(P)HParásitos protozoariosNADKNAD(P)+/NAD(P)HEstudio del metabolismo del NADP+ en parásitos de alta incidencia en la salud pública: Explorando la NAD Quinasa de Trypanosoma cruziStudy of NADP+ metabolism in parasites of high incidence in public health: Exploring NAD kinase of Trypanosoma cruziTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMBeaumier, C.M., Gillespie, P.M., Hotez, P.J. & Bottazzi, M.E. Transl. Res. 162, 144–155 (2013)Hotez, P.J. & Ferris, M.T. Vaccine 24, 5787–5799 (2006).McAllister MM. Successful vaccines for naturally occurring protozoal diseases of animals should guide guman vaccine research. A review of protozoal vaccines and their designs. Parasitology. 2014 Apr, 141 (5):624-40. Doi:10.1017/S0031182013002060. Epub 2014 Jan 28. PMID: 24476952; PMCID: PMC3961066Andrews KT, Fisher G, Skinner-Adams TS. Drug repurposing and human parasitic protozoan diseases. Int J Parasitol Drugs Drug Resist. 2014;4(2):95-111. Doi:10.1016/j.ijpddr:2014.02.002Sundar S, Singh B. Emerging therapeutic targets for treatment of leishmaniasis. Expert Opin Ther Targets [Internet]. 2018;22(6):467–86. Available from: https://doi.org/10.1080/14728222.2018.1472241de Oliveira LFG, Pereira BAS, Gilbert B, Corrêa AL, Rocha L, Alves CR. Natural products and phytotherapy: an innovative perspective in leishmaniasis treatment. Phytochem Rev. 2017;16(2):219–33.Roatt BM, de Oliveira Cardoso JM, De Brito RCF, Coura-Vital W, de Oliveira Aguiar-Soares RD, Reis AB. Recent advances and new strategies on leishmaniasis treatment. Appl Microbiol Biotechnol. 2020;104(21):8965–77.Maldonado E, Morales-pison S, Urbina F, Solari A. Vaccine Design against Chagas Disease Focused on the Use of Nucleic Acids. 2022;Low ZY, Farouk IA, Lal SK. Drug Repositioning: New Approaches and Future Prospects for Life-Debilitating Diseases and the COVID-19 Pandemic Outbreak. Viruses. 2020 Sep 22;12(9):1058. doi: 10.3390/v12091058. PMID: 32972027; PMCID: PMC7551028.Müller J, Hemphill A. Drug target identification in protozoan parasites. Expert Opin Drug Discov. 2016 Aug;11(8):815-24. doi: 10.1080/17460441.2016.1195945. Epub 2016 Jun 16. PMID: 27238605; PMCID: PMC4983455.Justine J-L, Durette-Desset M-C. Evolution of Parasites and Host Parasite Relationships. Parasitol Today [Internet]. 2000;16(8):315. Disponible en: http://www.sciencedirect.com/science/article/pii/S0169475800017257Vonlaufen N, Kanzok SM, Wek RC, Sullivan WJ Jr. Stress response pathways in protozoan parasites. Cell Microbiol. 2008 Dec;10(12):2387-99. doi: 10.1111/j.1462-5822.2008.01210.x. Epub 2008 Aug 1. PMID: 18647172.Becker K., Tilley L., Vennerstrom J.L., Roberts D., Rogerson S., Ginsburg H. «Oxidative stress in malaria parasite-infected erythrocytes: Host–parasite interactions». Int. J. Parasitol. 2004;34:163–189. doi: 10.1016/j.ijpara.2003.09.011.Alvarez V.E., Kosec G., Sant’Anna C., Turk V., Cazzulo J.J., Turk B. Autophagy is involved in nutritional stress response and differentiation in Trypanosoma Cruzi. J. Biol. Chem. 2008;283:3454–3464. doi: 10.1074/jbc.M708474200.Turrens J.F. Oxidative stress and antioxidant defenses: A target for the treatment of diseases caused by parasitic protozoa. Mol. Aspects Med. 2004;25:211–220. doi: 10.1016/j.mam.2004.02.021Menna-Barreto R, Piacenza L, Garg NJ. Editorial: Protozoa and their Host: An Oxidative Relationship. Front cell infect Microbiol. 2022 Feb 8; 12:856191. Doi: 10.3389/fcimb.2022.856191. PMID: 35211425; PMC8860965Chandel, N. S. (2021). NADPH—the forgotten reducing equivalent. Cold Spring Harbor Perspectives in Biology, 13(6), a040550.Ying W. NAD+/NADH and NADP+NADPH in cellular functions and cell death:Regulation and biological consequences. Antioxid Redox Signal 10: 179-206, 2008.Vanlinden MR, Skoge RH, Ziegler M. Discovery , metabolism and functions of NAD and NADP. 2015;(February):9–13Pollak N, Olle CD. The power to reduce : pyridine nucleotides – small molecules with a. 2007;218:205–18.Agledal L, Niere M, Ziegler M, Agledal L, Niere M, Ziegler M. The phosphate makes a difference : cellular functions of NADP The phosphate makes a difference : cellular functions of NADP. 2013;0002J. H. Grose, L. Joss, S. F. Velick & J. R. Roth, “Evidence that feedback inhibition of NAD kinase controls responses to oxidative stress” Proc. Natl. Acad. Sci. U. S. A., vol. 103, no. 20, pp. 7601–7606, 2006. DOI: https://doi.org/10.1073/pnas.0602494103C. M. Sassetti, D. H. Boyd & E. J. Rubin, “Genes required for mycobacterial growth defined by high density mutagenesis” Mol. Microbiol., vol. 48, no. 1, pp. 77–84, 2003. DOI: https://doi.org/10.1046/ j.1365-2958.2003.03425.xG. Jeelani, A. Husain, D. Sato, T. Soga, M. Suematsu & T. Nozaki, “Biochemical and functional characterization of novel NADH kinase in the enteric protozoan parasite Entamoeba histolytica” Biochimie, vol. 95, no. 2, pp. 309–319, 2013. DOI: https://doi.org/10.1016/j. biochi.2012.09.034Jutinico Shubach, L. M., Contreras Rodríguez, L. E., García Castañeda, J. E., & Ramírez Hernández, M. H. 1, 2019, Functional identification and subcellular localization of NAD kinase in the protozoan parasite Giardia intestinalis. Rev. Colomb. Quim, Vol. 48, pp. 16-25. https://doi.org/10.15446/rev.colomb.quim.v48n1.75273Garzón Fajardo, Gustavo Adolfo. Estudio De Un Candidato a NAD Quinasa En Lesihmania Spp. 2019.Xie, N., Zhang, L., Gao, W. et al. NAD+ metabolism: pathophysiologic mechanisms and therapeutic potential. Sig Transduct Target Ther 5, 227 (2020). https://doi.org/10.1038/s41392-020-00311-7Begley TP, Kinsland C, Dorrestein P. The Biosynthesis of Nicotinamide Adenine Dinucleotides in Bacteria RYAN A . MEHL ,* ANDREI OSTERMAN , t. 2001;61.Ziegler M, Berger F, Ramı H. The new life of a centenarian : signalling functions of NAD ( P ). 2004;29(3).Vanlinden MR, Skoge RH, Ziegler M. Discovery , metabolism and functions of NAD and NADP. 2015;(February):9–13.Massudi H, Grant R, Guillemin GJ, Braidy N. NAD + metabolism and oxidative stress : the golden nucleotide on a crown of thorns. 2012;17(1).Nakamura M, Bhatnagar A, Sadoshima J. Overview of pyridine nucleotides review series. Circ Res. 2012;111(5):604–10.Houtkooper RH, Canto C, Wanders RJ, Auwerx J. The Secret Life of NAD ؉ : An Old Metabolite Controlling New Metabolic Signaling Pathways. 2010;31(April):194–223.He L, He T, Farrar S, Ji L, Liu T, Ma X. Antioxidants Maintain Cellular Redox Homeostasis by Elimination of Reactive Oxygen Species. Cell Physiol Biochem. 2017;44(2):532–53.Nad H, Couples NHR, Xiao W, Wang R, Handy DE, Loscalzo J. NAD(H) and NADP(H) Redox Couples and Cellular Energy Metabolism. 2018;28(3):251–72.Panday A, Sahoo MK, Osorio D, Batra S. NADPH oxidases: An overview from structure to innate immunity-associated pathologies. Cell Mol Immunol. 2015;12(1):5–23.Halliwell B, Gutteridge JMC (2015) Oxygen: boon yet bane—introducing oxygen toxicity and reactive species: In: Free radicals in biology and medicine. 5 edn. Oxford University Press, Oxford.Rabilloud T., Heller M., Rigobello M. P., Bindoli A., Aebersold R., Lunardi J. The mitochondrial antioxidant defence system and its response to oxidative stress. Proteomics. 2001;1(8):1105–1110. doi: 10.1002/16159861(200109)1:9<1105::AID-PROT1105>3.0.CO;2-M. [PubMed] [CrossRef] [Google Scholar] [Ref list]Tiganis, T. Reactive oxygen species and insulin resistance: the good, the bad and the ugly. Trends Pharmacol. Sci. 32, 82–89 (2011).Yang HC, Cheng ML, Ho HY, and Chiu DT. The microbicidal and cytoregulatory roles of NADPH oxidases. Microb Infect 13: 109–120, 2011Pratico D. In vivo measurement of the redox state. Lipids 36Suppl: S45–S47, 2001Amulic B, Cazalet C, Hayes GL, Metzler KD, Zychlinsky A. Neutrophil function: from mechanisms to disease. Annu Rev Immunol. (2012) 30:459–89. doi: 10.1146/annurev-immunol-020711-074942C. Wrenger, I. Schettert, and E. Liebau, ‘Oxidative Stress in Human Infectious Diseases – Present and Current Knowledge About Its Druggability’, Drug Discovery. InTech, Jan. 23, 2013. doi: 10.5772/53758.Alexander V. Ivanov, Birke Bartosch, Maria G. Isaguliants, "Oxidative Stress in Infection and Consequent Disease", Oxidative Medicine and Cellular Longevity, vol. 2017, Article ID 3496043, 3 pages, 2017. https://doi.org/10.1155/2017/3496043LIU, Yingying, et al. Signaling pathways of oxidative stress response: the potential therapeutic targets in gastric cancer. Frontiers in Immunology, 2023, vol. 14, p. 1139589.Justine J-L, Durette-Desset M-C. Evolution of Parasites Relationships. Parasitol Today [Internet]. 2000;16(8):315. http://www.sciencedirect.com/science/article/pii/S0169475800017257 and Host ParasiteRuggiero MA, Gordon DP, Orrell TM, Bailly N, Bourgoin T, Brusca RC, et al. A higher level classification of all living organisms. PLoS One. 2015;10(4):1-60.Jackson AP, Otto TD, Aslett M, Armstrong SD, Bringaud F, Schlacht A, et al. Kinetoplastid Phylogenomics Reveals the Evolutionary Innovations Associated with the Origins of Parasitism. Curr Biol [Internet]. 2016;26(2):161-72. Disponible en: http://dx.doi.org/10.1016/j.cub.2015.11.055Kaufer A, Ellis J, Stark D, Barratt J. The evolution of trypanosomatid taxonomy. Parasites and Vectors. 2017;10(1):1–17.Sylvia O, Aldo S. Excavata-Kinetoplastea Trypanosomatidae Parasites and the Interaction with their Hosts. Int J Trop Dis. 2019;2(1).Isabirye M, Raju DV., Kitutu M, Yemeline V, Deckers J, J. Poesen Additional. We are IntechOpen , the world ’ s leading publisher of Open Access books Built by scientists , for scientists TOP 1 %. Intech [Internet]. 2012;13.Schmunis GA, Yadon ZE. Chagas disease: A Latin American health problem becoming a world health problem. Acta Trop [Internet]. 2010 Jul;115(1–2):14–21. Available from: https://doi.org/10.1016/j.actatropica.2009.11.003Medina-Rincón GJ, Gallo-Bernal S, Jiménez PA, Cruz-Saavedra L, Ramírez JD, Rodríguez MJ, et al. Molecular and clinical aspects of chronic manifestations in chagas disease: A state-of-the-art review. Pathogens. 2021;10(11).Organización panamericana de la salud. Enfermedad de chagas. OPS. [citado el 12 de Mayo de 2022]. Disponible en https://www.paho.org/en/topics/chagas-disease.Lidani KCF, Andrade FA, Bavia L, Damasceno FS, Beltrame MH, Messias-Reason IJ, et al. Chagas disease: From discovery to a worldwide health problem. J Phys Oceanogr. 2019;49(6):1–13.Organización panamericana de la saud. Enfermedades desatendidas. [citado el 12 de Mayo de 2022]. Disponible en https://www.paho.org/es/temas/enfermedades-desatendidas-tropicales-transmitidas-por-vectoresOlivera MJ, Porras-Villamil JF, Villar JC, Herrera EV, Buitrago G. Chagas disease-related mortality in colombia from 1979 to 2018: Temporal and spatial trends. Rev Soc Bras Med Trop. 2021;54(Ci):1–7.Ministerio del interior. Boletin epidemiologico. mininterior. 2021. [citado el 12 de Mayo de 2022]. Disponible https://www.mininterior.gov.co/wp-content/uploads/2021/12/3.16-Boletin-Epidemiologico-Noviembre-2021-2.pdfMelo, R.F.P.; Guarneri, A.A.; Silber, A.M. The Influence of Environmental Cues on the Development of Trypanosomacruzi in TriatominaeVector. Front. Cell. Infect. Microbiol. 2020, 10, 27. [CrossRef] [PubMed]L. Piacenza, F. Irigoín, M.N. Alvarez, G. Peluffo, M.C. Taylor, J.M. Kelly, S.R. Wilkinson, R. Radi, Mitochondrial superoxide radicals mediate programmed cell death in Trypanosoma cruzi: cytoprotective action of mitochondrial iron superoxide dismutase overexpression, Biochem J 403 (2007) 323–334.R. Mukhopadhyay, S. Dey, N. Xu, D. Gage, J. Lightbody, M. Ouellette, B.P. Rosen, Trypanothione overproduction and resistance to antimonials and arsenicals in Leishmania, Proc. Natl. Acad. Sci. U. S. A. 93 (1996) 10383–10387.M. Dormeyer, N. Reckenfelderbäumer, H. Ludemann, R.L. Krauth-Siegel, Trypanothione-dependent synthesis of deoxyribonucleotides by Trypanosoma brucei ribonucleotide reductase, J. Biol. Chem. 276 (2001) 10602–10606.Paes MC, Cosentino-Gomes D, de Souza CF, Nogueira NP, Meyer-Fernandes JR. The Role of Heme and Reactive Oxygen Species in Proliferation and Survival of Trypanosoma cruzi. J Parasitol Res. 2011;2011:174614. doi: 10.1155/2011/174614. Epub 2011 Oct 9. PMID: 22007287; PMCID: PMC3191734.S.R. Wilkinson, J.M. Kelly, The role of glutathione peroxidases in trypanosomatids, Biol. Chem. 384 (2003) 517–525.Santi AM, Murta SM. Antioxidant defence system as a rational target for Chagas Disease and leishmaniasis chemotherapy. Memórias do Instituto Oswaldo Cruz. 2022;117.Irigoín F, Cibils L, Comini MA, Wilkinson SR, Flohé L, Radi R. Insights into the redox biology of Trypanosoma cruzi: Trypanothione metabolism and oxidant detoxification. Free Radical Biology and Medicine. 2008;45(6):733–42.Parodi-Talice A, Monteiro-Goes V, Arrambide N, Avila AR, Duran R, Correa A, Dallagiovanna B, Cayota A, Krieger M, Goldenberg S et al.: Proteomic analysis of metacyclic trypomastigotes undergoing Trypanosoma cruzi metacyclogenesis. J Mass Spectrom 2007, 42:1422-1432Maugeri DA, Cazzulo JJ: The pentose phosphate pathway in Trypanosoma cruzi. FEMS Microbiol Lett 2004, 234:117-123Pérez-Molina JA, Pérez-Ayala A, Moreno S, Fernández-González MC, Zamora J, López-Velez R. Use of benznidazole to treat chronic Chagas’ disease: A systematic review with a meta-analysis. J Antimicrob Chemother. 2009;64(6):1139–47.Sundar S, Singh B. Emerging therapeutic targets for treatment of leishmaniasis. Expert Opin Ther Targets [Internet]. 2018;22(6):467–86. Available from: https://doi.org/10.1080/14728222.2018.1472241De Oliveira LFG, Pereira BAS, Gilbert B, Corrêa AL, Rocha L, Alves CR. Natural products and phytotherapy: an innovative perspective in leishmaniasis treatment. Phytochem Rev. 2017;16(2):219–33.Roatt BM, de Oliveira Cardoso JM, De Brito RCF, Coura-Vital W, de Oliveira Aguiar-Soares RD, Reis AB. Recent advances and new strategies on leishmaniasis treatment. Appl Microbiol Biotechnol. 2020;104(21):8965–77.Maldonado E, Morales-pison S, Urbina F, Solari A. Vaccine Design against Chagas Disease Focused on the Use of Nucleic Acids. 2022Lascano F, García Bournissen F, Altcheh J. Review of pharmacological options for the treatment of Chagas disease. Br J Clin Pharmacol. 2022;88(2):383–402.Magni G, Di Stefano M, Orsomando G, Raffaelli N, Ruggieri S. NAD(P) Biosynthesis Enzymes as Potential Targets for Selective Drug Design. Curr Med Chem. 2009;16(11):1372–90.Li B, Wang X, Tai L, Ma T, Shalmani A, Liu W. NAD Kinases : Metabolic Targets Controlling Redox Co-enzymes and Reducing Power Partitioning in Plant Stress and Development. 2018;9(March).Kawai S, Murata K. Structure and function of NAD kinase and NADP phosphatase: Key enzymes that regulate the intracellular balance of NAD(H) and NADP(H). Biosci Biotechnol Biochem. 2008;72(4):919–30.Ishikawa Y, Kawai-Yamada M. Physiological significance of NAD kinases in cyanobacteria. Front Plant Sci. 2019;10(June):1–8.Mori S, Kawai S, Shi F, Mikami B, Murata K. Molecular conversion of NAD kinase to NADH kinase through single amino acid residue substitution. J Biol Chem. 2005;280(25):24104–12.Mürata K. Polyphosphate-dependent nicotinamide adenine dinucleotide (NAD) kinase: A novel missing link in human mitochondria. Proc Japan Acad Ser B Phys Biol Sci. 2021;97(8):479–98.Nakamichi Y, Yoshioka A, Kawai S, Murata K. Conferring the ability to utilize inorganic polyphosphate on ATP-specific NAD kinase. Sci Rep. 2013;3:1–7.Magni G, Orsomando G, Raffaelli N. Structural and Functional Properties of NAD Kinase , a Key Enzyme in NADP Biosynthesis. 2006;(1):739–46.Grose JH, Joss L, Velick SF, Roth JR. Evidence that feedback inhibition of NAD kinase controls responses to oxidative stress. 2006;103(20).Garavaglia S, Galizzi A, Rizzi M. Allosteric regulation of Bacillus subtilis NAD kinase by quinolinic acid. J Bacteriol. 2003;185(16):4844–50.Singh R, Mailloux RJ, Puiseux-dao S, Appanna VD. Oxidative Stress Evokes a Metabolic Adaptation That Favors Increased NADPH Synthesis and Decreased NADH Production in Pseudomonas fluorescens ᰔ. 2007;189(18):6665–75.Chai MF, Chen QJ, An R, Chen YM, Chen J, Wang XC. NADK2, an Arabidopsis chloroplastic NAD kinase, plays a vital role in both chlorophyll synthesis and chloroplast protection. Plant Mol Biol. 2005;59(4):553–64.Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: A laboratory manual. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 2012.Life Technologies. Champion pET SUMO Protein Expression System. J Chem Inf Model [Internet]. 2010;5(January):1833–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15263846%0Ahttp://link.springer.com/10.100 7/978-1-4939-7366-8Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith J a, et al. Current Protocols in Molecular Biology. Vol. 1, Molecular Biology. 2003. 146-146 p.Qiagen. The QIA expressionist, A handbook fos high-level expression and purification of 6xHis-tagged proteins [Internet]. Qiagen GmbH, Düsseldorf, Germany. 2003. Available from: http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:The+QIA+express ionist+TM#0Bornhorst JA, Falke JJ. [16] Purification of proteins using polyhistidine affinity tags. In: Methods Enzymol [Internet]. 2000. p. 245–54. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0076687900260588Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem [Internet]. 1976 May;72(1– 2):248–54. Available from: https://linkinghub.elsevier.com/retrieve/pii/0003269776905273Gao, H. & Xu, X. The cyanobacterial NAD kinase gene sll1415 is required for photoheterotrophic growth and cellular redox homeostasis in Synechocystis sp. strain PCC 6803. J. Bacteriol. 194, 218– 24 (2012).Kawai, S. et al. Inorganic Polyphosphate/ATP-NAD kinase of Micrococcus flavus and Mycobacterium tuberculosis H37Rv. Biochem. Biophys. Res. Commun. 276, 57–63 (2000)Pauly, D., Chacana, P. A., Calzado, E. G., Brembs, B., & Schade, R. (2011). Igy technology: Extraction of chicken antibodies from egg yolk by polyethylene glycol (PEG) precipitation. Journal of Visualized Experiments, i(51), 2–7. https://doi.org/10.3791/3084Chacon, Esteban. EVALUACIÓN DE UN CANDIDATO A TRANSPORTADOR DE NAD+ EN EL PARÁSITO PROTOZOARIO Trypanosoma cruzi. Tesis de Maestría. Universidad Nacional de Colombia Sede Bogotá. 2021. https://repositorio.unal.edu.co/handle/unal/81733Sambrook J, Rusell D, editors, editors. Molecular cloning: a laboratory manual. New York: CSHL Press; 2001. [Google Scholar]Sánchez-Lancheros DM, Ospina-Giraldo LF, Ramírez-Hernández MH. Nicotinamide mononucleotide adenylyltransferase of Trypanosoma cruzi (TcNMNAT): a cytosol protein target for serine kinases. Mem Inst Oswaldo Cruz. 2016 Nov;111(11):670-675. doi: 10.1590/0074-02760160103. Epub 2016 Oct 24. PMID: 27783719; PMCID: PMC5125049.Ostos, Melissa. Aproximación a la regulación de algunas enzimas involucradas en el metabolismo del NAD+ en Giardia Duodenalis. 2019. Tesis de Maestría. Universidad Nacional de Colombia Sede BogotáMcGinnis S, Madden TL. BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W20-5. doi: 10.1093/nar/gkh435. PMID: 15215342; PMCID: PMC441573.Sievers F, Higgins DG. Clustal Omega for making accurate alignments of many protein sequences. Protein Sci. 2018 Jan;27(1):135-145. doi: 10.1002/pro.3290. Epub 2017 Oct 30. PMID: 28884485; PMCID: PMC5734385.Quevillon E, Silventoinen V, Pillai S, et al. InterProScan: protein domains identifier. Nucleic Acids Res. 2005;33(Web Server issue):W116-W120. doi:10.1093/nar/gki442Artimo P, Jonnalagedda M, Arnold K, et al. ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res. 2012;40(Web Server issue):W597-W603. doi:10.1093/nar/gks400Williams CJ, Headd JJ, Moriarty NW, et al. MolProbity: More and better reference data for improved all-atom structure validation. Protein Sci. 2018;27(1):293-315. doi:10.1002/pro.3330Chou KC, Shen HB. A new method for predicting the subcellular localization of eukaryotic proteins with both single and multiple sites: Euk-mPLoc 2.0. PLoS One. 2010 Apr 1;5(4):e9931. doi: 10.1371/journal.pone.0009931. PMID: 20368981; PMCID: PMC2848569.Thumuluri V, Almagro Armenteros JJ, Johansen AR, Nielsen H, Winther O. DeepLoc 2.0: multi-label subcellular localization prediction using protein language models. Nucleic Acids Res. 2022 Jul 5;50(W1):W228-W234. doi: 10.1093/nar/gkac278. PMID: 35489069; PMCID: PMC9252801.Michael K. Schuster and Martin Grabner formerly at: Austrian National EMBnet node.Chen, M., Zhang, W., Gou, Y., Xu, D., Wei, Y., Liu, D., ... & Xue, Y. (2023). GPS 6.0: an updated server for prediction of kinase-specific phosphorylation sites in proteins. Nucleic Acids Research, gkad383.Poon, Andy. Predicting Phosphorylation: A critique of the NetPhos program and potential alternatives. Stanford. Biochem, 2004, vol. 218, p. 582-585.Deng, W. et al. Computational prediction of methylation types of covalently modified lysine and arginine residues in proteins. Briefings in Bioinformatics 18, 647–658, https://doi.org/10.1093/bib/bbw041 (2016).DENG, Wankun, et al. GPS-PAIL: prediction of lysine acetyltransferase-specific modification sites from protein sequences. Scientific reports, 2016, vol. 6, no 1, p. 39787.WANG, Chenwei, et al. GPS-Uber: a hybrid-learning framework for prediction of general and E3-specific lysine ubiquitination sites. Briefings in Bioinformatics, 2022, vol. 23, no 2, p. bbab574.Yap KL, Kim J, Truong K, Sherman M, Yuan T, Ikura M. Calmodulin target database. J Struct Funct Genomics. 2000;1(1):8-14. doi: 10.1023/a:1011320027914. PMID: 12836676.Mruk K, Farley BM, Ritacco AW, Kobertz WR. Calmodulation meta-analysis: predicting calmodulin binding via canonical motif clustering. J Gen Physiol. 2014 Jul;144(1):105-14. doi: 10.1085/jgp.201311140. Epub 2014 Jun 16. PMID: 24935744; PMCID: PMC4076516.Kozakov D, Hall DR, Xia B, Porter KA, Padhorny D, Yueh C, Beglov D, Vajda S. The ClusPro web server for protein-protein docking. Nat Protoc. 2017 Feb;12(2):255-278. doi: 10.1038/nprot.2016.169. Epub 2017 Jan 12. PMID: 28079879; PMCID: PMC5540229.Markossian, K. A., and Kurganov, I. (2004). Protein folding, misfolding, and aggregation. Formation of inclusion bodies and aggresomes. Biochemical 69, 971–984. doi: 10.1023/b:biry.0000043539.07961.4cMalik, A. (2016). Protein fusion tags for efficient expression and purification of recombinant proteins in the periplasmic space of E. coli. 3 Biotech 6:44. doi: 10.1016/j.pep.2017.01.006M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding,” Anal. Biochem., vol. 72, no. 1–2, pp. 248– 254, May 1976, doi: 10.1016/0003-2697(76)90527-3.WORTHEY, E. A.; MYLER, P. J. Protozoan genomes: gene identification and annotation. International journal for parasitology, 2005, vol. 35, no 5, p. 495-512.Florencia Díaz-Viraqué, Sebastián Pita, Gonzalo Greif, Rita de Cássia Moreira de Souza, Gregorio Iraola, Carlos Robello, Nanopore Sequencing Significantly Improves Genome Assembly of the Protozoan Parasite Trypanosoma cruzi, Genome Biology and Evolution, Volume 11, Issue 7, July 2019, Pages 1952–1957, https://doi.org/10.1093/gbe/evz129Agledal, L.; Niere, M.; Ziegler, M. The Phosphate Makes a Difference: Cellular Functions of NADP. Redox Rep. 2010, 15 (1), 2–10Li, B. B., Wang, X., Tai, L., Ma, T. T., Shalmani, A., Liu, W. T., ... & Chen, K. M. (2018). NAD kinases: metabolic targets controlling redox co-enzymes and reducing power partitioning in plant stress and development. Frontiers in Plant Science, 9, 379.Mori, S. et al. NAD-binding mode and the significance of intersubunit contact revealed by the crystal structure of Mycobacterium tuberculosis NAD kinase-NAD complex. Biochem. Biophys. Res. Commun. (2005). doi:10.1016/j.bbrc.2004.11.163Xue B, Li L, Meroueh SO, Uversky VN, Dunker AK. Analysis of structured and intrinsically disordered regions of transmembrane proteins. Mol Biosyst. 2009 Dec;5(12):1688-1702. doi: 10.1039/B905913J. PMID: 19585006; PMCID: PMC2887740.Estaña, A., Sibille, N., Delaforge, E., Vaisset, M., Cortés, J., & Bernadó, P. (2019). Realistic ensemble models of intrinsically disordered proteins using a structure-encoding coil database. Structure, 27(2), 381-391.Li, F., Wu, C. & Wang, G. Targeting NAD Metabolism for the Therapy of Age-Related Neurodegenerative Diseases. Neurosci. Bull. 40, 218–240 (2024). https://doi.org/10.1007/s12264-023-01072-3Gomez, Laura & Luarte, Alejandro & Ponce, Daniela & Bruna Jara, Bárbara & Behrens, Maria. (2021). Analyzing Olfactory Neuron Precursors Non-Invasively Isolated through NADH FLIM as a Potential Tool to Study Oxidative Stress in Alzheimer’s Disease. International Journal of Molecular Sciences. 22. 6311. 10.3390/ijms22126311.Marcet, Ismael & Laca, A. & Paredes, Benjamín & Díaz, Mario. (2011). IgY isolation from a watery by-product obtained from an egg yolk fractionation process. Food and Bioproducts Processing - FOOD BIOPROD PROCESS. 89. 87-91.10.1016/j.fbp.2010.04.006.Esch KJ, Petersen CA. Transmission and epidemiology of zoonotic protozoal diseases of companion animals. Clin Microbiol Rev. 2013 Jan;26(1):58-85. doi: 10.1128/CMR.00067-12. PMID: 23297259; PMCID: PMC3553666.EstudiantesInvestigadoresMaestrosPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86723/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53ORIGINAL1000514672.2024.pdf1000514672.2024.pdfTesis de Maestría en Bioquímicaapplication/pdf2653619https://repositorio.unal.edu.co/bitstream/unal/86723/4/1000514672.2024.pdf2c3735fb11c07d39301b991c74ad499aMD54THUMBNAIL1000514672.2024.pdf.jpg1000514672.2024.pdf.jpgGenerated Thumbnailimage/jpeg5619https://repositorio.unal.edu.co/bitstream/unal/86723/5/1000514672.2024.pdf.jpgc71bfe0b748f130b0cc88d9995ba503bMD55unal/86723oai:repositorio.unal.edu.co:unal/867232024-08-13 23:25:35.555Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |