Efecto del protocolo de vitrificación y sistemas de empaque sobre la tasa de supervivencia de embriones ovinos obtenidos in vivo
diagramas, ilustraciones a color, fotografías, tablas
- Autores:
-
González Mendoza, Daniel Fernando
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/79502
- Palabra clave:
- 630 - Agricultura y tecnologías relacionadas::636 - Producción animal
Criopreservación
Cryopreservation
Vitrificación
Vitrification
Ovinos
Sheep
Criopreservación
Ovejas
Vitrificación
Pajilla Abierta (OPS)
Pajilla 0,25.
Cryopreservation
Sheep
Ultra-Fast Freezing
Open Straw (OPS)
Straw 0,25 cc
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_5fe8226c2c1918ba4b1b7d26d69c64af |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/79502 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Efecto del protocolo de vitrificación y sistemas de empaque sobre la tasa de supervivencia de embriones ovinos obtenidos in vivo |
dc.title.translated.eng.fl_str_mv |
Effect of vitrification protocol and packaging system on the survival rate of in vivo derived ovine embryos |
title |
Efecto del protocolo de vitrificación y sistemas de empaque sobre la tasa de supervivencia de embriones ovinos obtenidos in vivo |
spellingShingle |
Efecto del protocolo de vitrificación y sistemas de empaque sobre la tasa de supervivencia de embriones ovinos obtenidos in vivo 630 - Agricultura y tecnologías relacionadas::636 - Producción animal Criopreservación Cryopreservation Vitrificación Vitrification Ovinos Sheep Criopreservación Ovejas Vitrificación Pajilla Abierta (OPS) Pajilla 0,25. Cryopreservation Sheep Ultra-Fast Freezing Open Straw (OPS) Straw 0,25 cc |
title_short |
Efecto del protocolo de vitrificación y sistemas de empaque sobre la tasa de supervivencia de embriones ovinos obtenidos in vivo |
title_full |
Efecto del protocolo de vitrificación y sistemas de empaque sobre la tasa de supervivencia de embriones ovinos obtenidos in vivo |
title_fullStr |
Efecto del protocolo de vitrificación y sistemas de empaque sobre la tasa de supervivencia de embriones ovinos obtenidos in vivo |
title_full_unstemmed |
Efecto del protocolo de vitrificación y sistemas de empaque sobre la tasa de supervivencia de embriones ovinos obtenidos in vivo |
title_sort |
Efecto del protocolo de vitrificación y sistemas de empaque sobre la tasa de supervivencia de embriones ovinos obtenidos in vivo |
dc.creator.fl_str_mv |
González Mendoza, Daniel Fernando |
dc.contributor.advisor.none.fl_str_mv |
Jiménez Escobar, Claudia Zambrano, Jorge |
dc.contributor.author.none.fl_str_mv |
González Mendoza, Daniel Fernando |
dc.contributor.researchgroup.spa.fl_str_mv |
Reproducción Animal y Salud de Hato |
dc.subject.ddc.spa.fl_str_mv |
630 - Agricultura y tecnologías relacionadas::636 - Producción animal |
topic |
630 - Agricultura y tecnologías relacionadas::636 - Producción animal Criopreservación Cryopreservation Vitrificación Vitrification Ovinos Sheep Criopreservación Ovejas Vitrificación Pajilla Abierta (OPS) Pajilla 0,25. Cryopreservation Sheep Ultra-Fast Freezing Open Straw (OPS) Straw 0,25 cc |
dc.subject.agrovoc.none.fl_str_mv |
Criopreservación Cryopreservation Vitrificación Vitrification Ovinos Sheep |
dc.subject.proposal.spa.fl_str_mv |
Criopreservación Ovejas Vitrificación Pajilla Abierta (OPS) Pajilla 0,25. |
dc.subject.proposal.eng.fl_str_mv |
Cryopreservation Sheep Ultra-Fast Freezing Open Straw (OPS) Straw 0,25 cc |
description |
diagramas, ilustraciones a color, fotografías, tablas |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020-11-13 |
dc.date.accessioned.none.fl_str_mv |
2021-05-11T20:10:30Z |
dc.date.available.none.fl_str_mv |
2021-05-11T20:10:30Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/79502 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/79502 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Abecia, J. A., Forcada, F., Palacín, I., Sánchez-Prieto, L., Sosa, C., Fernández-Foren, A., & Meikle, A. (2015). Undernutrition affects embryo quality of superovulated ewes. Zygote, 23(1), 116–124. https://doi.org/10.1017/S096719941300035X Abubakar, A. A., Andeshi, R. A., Yakubu, A. S., Lawal, F. M., & Adamu, U. (2014). Comparative Evaluation of Midventral and Flank Laparotomy Approaches in Goat. Journal of Veterinary Medicine, 2014, 1–6. https://doi.org/10.1155/2014/920191 Aké-lópez, J. R., Centurión-castro, F. G., Magaña-monforte, J. G., & Aké-villanueva, J. R. (2014). Efecto del progestágeno y de la dosis de gonadotropina corionica equina en la sincronización del estro y tasa de gestación en ovejas Pelibuey inseminadas por laparoscopia. Ecosistemas y Recursos Agropecuarios, 1(3), 261–268. Akiyama, K., Kobayashi, J., Sato, Y., Sata, R., Ohashi, M., Sasaki, E., Oda, Y., Ogawa, Y., Ueda, S., Nabenishi, H., & matoba, S. (2010). Calf production from vitrified bovine sexed embryos following in-straw dilution. Animal Science Journal, 81(4), 461–466. https://doi.org/10.1111/j.1740-0929.2010.00763.x Almodin, C. G., Minguetti-Camara, V. C., Paixao, C. L., & Pereira, P. C. (2010). Embryo development and gestation using fresh and vitrified oocytes. Human Reproduction, 25(5), 1192–1198. https://doi.org/10.1093/humrep/deq042 Arévalo Garay, Á., & Correa Assmus, G. (2013). Tecnología en la ovinocultura colombiana: estado del arte. Ciencia Animal, 6, 125–142. Asgari, V., Hosseini, S. M., Ostadhosseini, S., Hajian, M., Azhdari, Z. T., Mosaie, M., & Nasr-Esfahani, M. H. (2012). Specific activation requirements of in vitro-matured sheep oocytes following vitrification-warming. Molecular Reproduction and Development, 79(7), 434–444. https://doi.org/10.1002/mrd.22047 Baril, G., Traldi, a. L., Cognié, Y., Leboeuf, B., Beckers, J. F., & Mermillod, P. (2001). Successful direct transfer of vitrified sheep embryos. Theriogenology, 56(2), 299–305. https://doi.org/10.1016/S0093-691X(01)00564-7 Bartlewski, P. M., Seaton, P., Franco Oliveira, M. E., Kridli, R. T., Murawski, M., & Schwarz, T. (2016). Intrinsic determinants and predictors of superovulatory yields in sheep: Circulating concentrations of reproductive hormones, ovarian status, and antral follicular blood flow. Theriogenology, 86(1), 130–143. https://doi.org/10.1016/j.theriogenology.2016.04.024 Bartlewski, P. M., Seaton, P., Szpila, P., Oliveira, M. E. F., Murawski, M., Schwarz, T., Kridli, R. T., & Zieba, D. A. (2015). Comparison of the effects of pretreatment with Veramix sponge (medroxyprogesterone acetate) or CIDR (natural progesterone) in combination with an injection of estradiol-17β on ovarian activity, endocrine profiles, and embryo yields in cyclic ewes superovu. Theriogenology, 84(7), 1225–1237. https://doi.org/10.1016/j.theriogenology.2015.07.002 Bergstein-Galan, T. G., Weiss, R. R., Kozicki, L. E., Bortoleto, C. T., Lara, N. S. S., & Aschenbrenner, G. A. (2020). EFFECT OF FLUNIXIN MEGLUMINE AND hCG AT COMMERCIAL PROGRAMS FOR MULTIPLE OVULATION AND EMBRYO TRANSFER (MOET) IN SHEEP. Archives of Veterinary Science, 5(1), 56–66. www.ser.ufpr.br/veterinary Bergstein-Galan, Tácia Gomes, Weiss, R. R., & Kozicki, L. E. (2019). Effect of semen and donor factors on multiple ovulation and embryo transfer (MOET) in sheep. Reproduction in Domestic Animals, 54(2), 401–407. https://doi.org/10.1111/rda.13381 Bettencourt, E. M., Bettencourt, C. M., Silva, J. C. e., Ferreira, P., Manito, C. I., Matos, C. M., Romão, R. J., & Rocha, A. (2008). Effect of season and gonadotrophin preparation on superovulatory response and embryo quality in Portuguese Black Merinos. Small Ruminant Research, 74(1–3), 134–139. https://doi.org/10.1016/j.smallrumres.2007.05.001 Bettencourt, E. M. V., Bettencourt, C. M., Silva, J. N. C. E., Ferreira, P., de Matos, C. P., Oliveira, E., Romão, R. J., Rocha, A., & Sousa, M. (2009). Ultrastructural characterization of fresh and cryopreserved in vivo produced ovine embryos. Theriogenology, 71(6), 947–958. https://doi.org/10.1016/j.theriogenology.2008.10.019 Bhat, M. H., Sharma, V., Khan, F. A., Naykoo, N. A., Yaqoob, S. H., Vajta, G., Khan, H. M., Fazili, M. R., Ganai, N. A., & Shah, R. A. (2015). Open pulled straw vitrification and slow freezing of sheep IVF embryos using different cryoprotectants. Reproduction, Fertility and Development, 27(8), 1175–1180. https://doi.org/10.1071/RD14024 Bielanski, A., & Vajta, G. (2009). Risk of contamination of germplasm during cryopreservation and cryobanking in IVF units. In Human Reproduction (Vol. 24, Issue 10, pp. 2457–2467). Oxford University Press. https://doi.org/10.1093/humrep/dep117 Blanco, M. R., Simonetti, L., & Rivera, O. E. (2003). Embryo production and progesterone profiles in ewes superovulated with different hormonal treatments. Small Ruminant Research, 47(3), 183–191. https://doi.org/10.1016/S0921-4488(02)00245-6 Bottrel, M., Hidalgo, M., Mogas, T., Pereira, B., Ortiz, I., Díaz-Jiménez, M., Consuegra, C., Morató, R., & Dorado, J. (2020). One-step warming does not affect the in vitro viability and cryosurvival of cryotop-vitrified donkey embryos. Theriogenology, 152, 47–52. https://doi.org/10.1016/j.theriogenology.2020.04.026 Brasil, O. O., Moreira, N. H., Santos, G., Silva, B. D. M., Mariante, A. S., & Ramos, A. F. (2016). Superovulatory and embryo yielding in sheep using increased exposure time to progesterone associated with a GnRH agonist. Small Ruminant Research, 136, 54–58. https://doi.org/10.1016/j.smallrumres.2016.01.005 Bruno-Galarraga, M., Cueto, M., Gibbons, A., Pereyra-Bonnet, F., Subiabre, M., & González-Bulnes, A. (2015). Preselection of high and low ovulatory responders in sheep multiple ovulation and embryo transfer programs. Theriogenology, 84(5), 784–790. https://doi.org/10.1016/j.theriogenology.2015.05.011 Caamaño, J. N., Gómez, E., Trigal, B., Muñoz, M., Carrocera, S., Martín, D., & Díez, C. (2015). Survival of vitrified invitro-produced bovine embryos after a one-step warming in-straw cryoprotectant dilution procedure. Theriogenology, 83(5), 881–890. https://doi.org/10.1016/j.theriogenology.2014.11.021 Chian, R. C., Son, W. Y., Huang, J. Y., Cui, S. J., Buckett, W. M., & Tan, S. L. (2005). High survival rates and pregnancies of human oocytes following vitrification: preliminary report. Fertility and Sterility, 84, S26, 2005. https://doi.org/https://doi.org/10.1016/j.fertnstert.2005.07.086 Cocero, M., Aguilar., B., Alabart, J. L., Olivera, J., & Folch, J. (2000). FACTORES QUE AFECTAN AL RENDIMIENTO DE LA T.E.CONGELADOS EN EL PROGRAMA GENÉTICO DE OVIARAGON. 760–762. Cognie, Y. (1999). State of the art in sheep-goat embryo transfer. Theriogenology, 51(1), 105–116. https://doi.org/10.1016/S0093-691X(98)00235-0 Contreras-Solis, I., Diaz, T., Lopez, G., Caigua, A., Lopez-Sebastian, A., & Gonzalez-Bulnes, A. (2008). Systemic and intraovarian effects of corpus luteum on follicular dynamics during estrous cycle in hair breed sheep. Animal Reproduction Science, 104(1), 47–55. https://doi.org/10.1016/j.anireprosci.2007.01.021 Cortés-Reyes, É., Rubio-Romero, J. A., & Gaitán-Duarte, H. (2010). Statistical methods for evaluating diagnostic test agreement and reproducibility. Revista Colombiana de Obstetricia y Ginecologia, 61(3), 247–255. https://doi.org/10.18597/rcog.271 Crilly, J. P., Politis, A. P., & Hamer, K. (2017). Use of ultrasonographic examination in sheep veterinary practice. Small Ruminant Research, 152(July), 166–173. https://doi.org/10.1016/j.smallrumres.2016.12.021 Cuadro, F., dos Santos-Neto, P. C., Pinczak, A., Barrera, N., Crispo, M., & Menchaca, A. (2018). Serum progesterone concentrations during FSH superstimulation of the first follicular wave affect embryo production in sheep. Animal Reproduction Science, 196, 205–210. https://doi.org/10.1016/j.anireprosci.2018.08.011 Cueto, M. I., Gibbons, A. E., Pereyra-Bonnet, F., Silvestre, P., & González-Bulnes, A. (2011a). Effects of Season and Superovulatory Treatment on Embryo Yields in Fine-Wool Merinos Maintained Under Field Conditions. Reproduction in Domestic Animals, 46(5), 770–775. https://doi.org/10.1111/j.1439-0531.2010.01738.x D’Alessandro, A. G., & Martemucci, G. (2016). Superovulatory response to gonadotrophin FSH/LH treatment and effect of progestin supplement to recipients on survival of transferred vitrified embryos in goats. Theriogenology, 85(2), 296–301. https://doi.org/10.1016/j.theriogenology.2015.09.038 Dalcin, L., Silva, R. C., Paulini, F., Silva, B. D. M., Neves, J. P., & Lucci, C. M. (2013). Cytoskeleton structure, pattern of mitochondrial activity and ultrastructure of frozen or vitrified sheep embryos. Cryobiology, 67(2), 137–145. https://doi.org/10.1016/j.cryobiol.2013.05.012 de Araújo-Lemos, P. F. B., de Freitas Neto, L. M., de Melo, J. V., Moura, M. T., Lima, P. F., & Oliveira, M. a. L. (2014). Comparison of different cryoprotectant regimes for vitrification of ovine embryos produced in vivo. Small Ruminant Research, 119(1–3), 100–106. https://doi.org/10.1016/j.smallrumres.2014.02.013 de Araújo-Lemos, P. F. B., Freitas Neto, L. M., Moura, M. T., Melo, J. V., Lima, P. F., & De Oliveira, M. A. L. (2015). Comparison of vitrification and conventional freezing for cryopreservation of caprine embryos. Zygote, 23(4), 594–602. https://doi.org/10.1017/S0967199414000215 De Paula, W. B. M., Agip, A. N. A., Missirlis, F., Ashworth, R., Vizcay-Barrena, G., Lucas, C. H., & Allen, J. F. (2013). Female and male gamete mitochondria are distinct and complementary in transcription, structure, and genome function. Genome Biology and Evolution, 5(10), 1969–1977. https://doi.org/10.1093/gbe/evt147 Dobrinsky, J. R. (2001). Cryopreservation of swine embryos: a chilly past with a vitrifying future. Theriogenology, 56(1), 1333–1344. https://doi.org/https://doi.org/10.1016/S0093-691X(01)00634-3 dos Santos-Neto, P. C., Cuadro, F., Barrera, N., Crispo, M., & Menchaca, A. (2017). Embryo survival and birth rate after minimum volume vitrification or slow freezing of in vivo and in vitro produced ovine embryos. Cryobiology, 78, 8–14. https://doi.org/10.1016/j.cryobiol.2017.08.002 dos Santos Neto, P. C., Vilariño, M., Barrera, N., Cuadro, F., Crispo, M., & Menchaca, A. (2015). Cryotolerance of Day 2 or Day 6 in vitro produced ovine embryos after vitrification by Cryotop or Spatula methods. Cryobiology, 70(1), 17–22. https://doi.org/10.1016/j.cryobiol.2014.11.001 Elliott, G. D., Wang, S., & Fuller, B. J. (2017). Cryoprotectants: A review of the actions and applications of cryoprotective solutes that modulate cell recovery from ultra-low temperatures. Cryobiology, 76, 74–91. https://doi.org/10.1016/j.cryobiol.2017.04.004 Fernandez, J., Bruno- Galarraga, M. M., Soto, A. T., de la Sota, R. L., Cueto, M. I., Lacau, I. M., & Gibbons, A. E. (2018). Hormonal therapeutic strategy on the induction of accessory corpora lutea in relation to follicle size and on the increase of progesterone in sheep. Theriogenology, 105, 184–188. https://doi.org/10.1016/j.theriogenology.2017.09.020 Figueira, L. M., Alves, N. G., Batista, R. I. T. P., Brair, V. L., Lima, R. R., Oliveira, M. E. F., Fonseca, J. F., & Souza-Fabjan, J. M. G. (2019). Pregnancy rate after fixed-time transfer of cryopreserved embryos collected by non-surgical route in Lacaune sheep. Reproduction in Domestic Animals, 54(11), 1493–1496. https://doi.org/10.1111/rda.13550 Figueira, L. M., Alves, N. G., Maia, A. L. R. e. S., Souza-Fabjan, J. M. G. de, Batista, R. I. T. P., Morais, M. C. da C., Lima, R. R. de, Oliveira, M. E. F., & Fonseca, J. F. da. (2020). Embryo yield and quality are associated with progestogen treatment during superovulation protocol in lactating Lacaune ewes. Theriogenology, 155, 132–138. https://doi.org/10.1016/j.theriogenology.2020.06.004 Figueira, L. M., Alves, N. G., Souza-Fabjan, J. M. G., Oliveira, M. E. F., Lima, R. R., Souza, G. N., & Fonseca, J. F. (2020). Preovulatory follicular dynamics, ovulatory response and embryo yield in Lacaune ewes subjected to synchronous estrus induction protocols and non-surgical embryo recovery. In Theriogenology (Vol. 145). Elsevier Inc. https://doi.org/10.1016/j.theriogenology.2019.11.004 Fonseca, J. F., Oliveira, M. E. F., Brandão, F. Z., Batista, R. I. T. P., Garcia, A. R., Bartlewski, P. M., & Souza-Fabjan, J. M. G. (2019). Non-surgical embryo transfer in goats and sheep: The Brazilian experience. Reproduction, Fertility and Development, 31(1), 17–26. https://doi.org/10.1071/RD18324 Forcada, F., Amer-Meziane, M. A., Abecia, J. A., Maurel, M. C., Cebrián-Pérez, J. A., Muiño-Blanco, T., Asenjo, B., Vázquez, M. I., & Casao, A. (2011). Repeated superovulation using a simplified FSH/eCG treatment for in vivo embryo production in sheep. Theriogenology, 75(4), 769–776. https://doi.org/10.1016/j.theriogenology.2010.10.019 Forcada, F., Sánchez-Prieto, L., Casao, A., Palacín, I., Cebrián-Pérez, J. A., Muiño-Blanco, T., & Abecia, J. A. (2012). Use of laparoscopic intrauterine insemination associated with a simplified superovulation treatment for in vivo embryo production in sheep: A preliminary report. Animal Production Science, 52(12), 1111–1116. https://doi.org/10.1071/AN12129 Garcia-Dominguez, X., Marco-Jimenez, F., Viudes-de-Castro, M. P., & Vicente, J. S. (2019). Minimally invasive embryo transfer and embryo vitrification at the optimal embryo stage in rabbit model. Journal of Visualized Experiments, 2019(147). https://doi.org/10.3791/58055 García, J. I., Noriega-Portella, L., & Noriega-Hoces, L. (2011). Efficacy of oocyte vitrification combined with blastocyst stage transfer in an egg donation program. Human Reproduction, 26(4), 782–790. https://doi.org/10.1093/humrep/der008 Garcia Kako Rodriguez, M., Serpa Maciel, G., Ramirez Uscategui, R. A., Correia Santos, V. J., Perecin Nociti, R., Del Aguila da Silva, P., Rossi Feliciano, M. A., Zandonadi Brandão, F., Ferreira Fonseca, J., & Franco Oliveira, M. E. (2019). Early luteal development in Santa Inês ewes superovulated with reduced doses of porcine follicle-stimulating hormone. Reproduction in Domestic Animals, 54(3), 456–463. https://doi.org/10.1111/rda.13374 Gibbons, A., Cueto, M. I., & Pereyra Bonnet, F. (2011). A simple vitrification technique for sheep and goat embryo cryopreservation. Small Ruminant Research, 95(1), 61–64. https://doi.org/10.1016/j.smallrumres.2010.08.007 Gibbons, Alejandro, Bruno-Galarraga, M., Fernandez, J., Gonzalez-Bulnes, A., & Cueto, M. (2019). Vitrified embryo transfer in Merino sheep under extensive conditions. Animal Reproduction, 16(2), 297–301. https://doi.org/10.21451/1984-3143-AR2018-0108 Gomes Bergstein-Galan, T., Romualdo Weiss, R., Kozicki, L. E., Bortoleto, C. T., Santana, N., Lara, S., & Aschenbrenner, G. A. (2020). EFFECT OF FLUNIXIN MEGLUMINE AND hCG AT COMMERCIAL PROGRAMS FOR MULTIPLE OVULATION AND EMBRYO TRANSFER (MOET) IN SHEEP (Efeito do flunixin meglumine e hCG em programas comerciais de múltipla ovulação e transferência de embriões (MOTE) em ovinos) (Issue 1). www.ser.ufpr.br/veterinary González-Bulnes, A., Baird, D. T., Campbell, B. K., Cocero, M. J., García-García, R. M., Inskeep, E. K., López-Sebastián, A., McNeilly, A. S., Santiago-Moreno, J., Souza, C. J. H., & Veiga-López, A. (2004). Multiple factors affecting the efficiency of multiple ovulation and embryo transfer in sheep and goats. Reproduction, Fertility and Development, 16(4), 421–435. https://doi.org/10.1071/RD04033 Gratwohl, A. (2010). Thomas’TM Hematopoietic Cell Transplantation. In European Journal of Haematology (Vol. 84, Issue 1, pp. 95–95). John Wiley & Sons, Inc. https://doi.org/10.1111/j.1600-0609.2009.01360.x Green, R., Santos, B., Sicherle, C., Landim-Alvarenga, F., & Bicudo, S. (2009). Viability of OPS vitrified sheep embryos after direct transfer. Reproduction in Domestic Animals, 44(3), 406–410. https://doi.org/10.1111/j.1439-0531.2008.01088.x Grizelj, J., Vince, S., Samardžija, M., de Bulnes, A. G., Dovenski, T., Turmalaj, L., & Ževrnja, B. (2013). Use of ultrasonography to detect ovarian response in goats submitted to multiple ovulation and embryo transfer program. Veterinarski Arhiv, 83(2), 125–134. Ha, A. N., Lee, S. R., Jeon, J. S., Park, H. S., Lee, S. H., Jin, J. I., Sessions, B. R., Wang, Z., White, K. L., & Kong, I. K. (2014). Development of a modified straw method for vitrification of in vitro-produced bovine blastocysts and various genes expression in between the methods. Cryobiology, 68(1), 57–64. https://doi.org/10.1016/j.cryobiol.2013.11.007 Hamawaki, A., Kuwayama, M., & Hamano, S. (1999). Minimum volume cooling method for bovine blastocyst vitrification. Theriogenology, C(4), 38. Herrera-Camacho, J., Aké-López, J. R., Ku-Vera, J. C., Williams, G. L., & Quintal-Franco, J. A. (2008). Respuesta ovulatoria, estado de desarrollo y calidad de embriones de ovejas Pelibuey superovuladas suplementadas con ácidos grasos poliinsaturados. Tecnica Pecuaria En Mexico, 46(2), 107–117. Hosseini, S. M., Asgari, V., Ostadhosseini, S., Hajian, M., Piryaei, A., Najarasl, M., & Nasr-Esfahani, M. H. (2012). Potential applications of sheep oocytes as affected by vitrification and in vitro aging. Theriogenology, 77(9), 1741–1753. https://doi.org/10.1016/j.theriogenology.2011.12.005 Inui, H., Mizuno, J., Kikuchi, E., Noguchi, K., Tanji, Y., Hamabata, M., Kotsuzumi, C., Komiyama, M., Noguchi, Y., & Tamura, M. (2019). Safer Vitrification of Mouse and Human Embryos Using the Novel Cryoroom Vitrification System for Assisted Reproductive Technology. Cryo Letters, 40(1), 1–10. Isachenko, V., Folch, J., Isachenko, E., Nawroth, F., Krivokharchenko, A., Vajta, G., Dattena, M., & Alabart, J. L. (2003). Double vitrification of rat embryos at different developmental stages using an identical protocol. Theriogenology, 60(3), 445–452. https://doi.org/10.1016/S0093-691X(03)00039-6 Juárez-Pérez, A., Domínguez-Rebolledo, Á., Pinzón-López, L., Aguilar-Urquizo, E., Ortíz-de la Rosa, B., & Ramón-Ugalde, J. P. (2018). Embriones ovinos vitrificados mediante una técnica “one step” producidos en dos estaciones. Agroproductividad, 11, 121–126. https://doi.org/https://doi.org/10.32854/agrop.v11i10.1255 Khunmanee, S., Tharasanit, T., Suwimonteerabutr, J., Panyaboriban, S., Techakumphu, M., & Swangchan-Uthai, T. (2020). On-farm lambing outcomes after transfer of vitrified and slow frozen embryos. Animal Reproduction Science, 216, 106467. https://doi.org/10.1016/j.anireprosci.2020.106467 Kopeika, J., Thornhill, A., & Khalaf, Y. (2015). The effect of cryopreservation on the genome of gametes and embryos: Principles of cryobiology and critical appraisal of the evidence. Human Reproduction Update, 21(2), 209–227. https://doi.org/10.1093/humupd/dmu063 Kruse, S. (2012). Vitrification of in-vitro and in vivo- produced bovine embryos for direct transfer (Vol. 3, Issue September) [Colorado State University]. https://doi.org/10.19641/j.cnki.42-1290/f.2012.03.022 Kuwayama, M. (2007). Highly efficient vitrification for cryopreservation of human oocytes and embryos: The Cryotop method. Theriogenology, 67(1), 73–80. https://doi.org/10.1016/j.theriogenology.2006.09.014 Kuwayama, M., Vajta, G., Kato, O., & Leibo, S. P. (2005). Highly efficient vitrification method for cryopreservation of human oocytes. Reproductive BioMedicine Online, 11(3), 300–308. https://doi.org/10.1016/S1472-6483(10)60837-1 Lane, M., Schoolcraft, W. B., Gardner, D. K., & Phil, D. (1999). Vitrification of mouse and human blastocysts using a novel cryoloop container-less technique. Fertility and Sterility, 72(6), 1073–1078. https://doi.org/10.1016/S0015-0282(99)00418-5 Ledda, S., Kelly, J. M., Nieddu, S., Bebbere, D., Ariu, F., Bogliolo, L., Natan, D., & Arav, A. (2019). High in vitro survival rate of sheep in vitro produced blastocysts vitrified with a new method and device. Journal of Animal Science and Biotechnology, 10(1), 1–10. https://doi.org/10.1186/s40104-019-0390-1 Leibo, S. P., & Pool, T. B. (2011). The principal variables of cryopreservation: Solutions, temperatures, and rate changes. Fertility and Sterility, 96(2), 269–276. https://doi.org/10.1016/j.fertnstert.2011.06.065 Li, Q. Y., Guan, H., Hou, J., An, X. R., & Chen, Y. F. (2008). Technical note: Transfer of ovine embryos through a simplified mini-laparotomy technique. Journal of Animal Science, 86(11), 3224–3227. https://doi.org/10.2527/jas.2008-0846 Liebermann, J., Tucker, M. J., Graham, J. R., Han, T., Davis, A., & Levy, M. J. (2002). Blastocyst development after vitrification of multipronuclear zygotes using the Flexipet denuding pipette. Reproductive Biomedicine Online, 4(2), 146–150. https://doi.org/10.1016/S1472-6483(10)61932-3 Loiola Filho, J. B., Monte, A. P. O. do, Souza, T. T. D. S., Miranda, M. D. S., Magalhães, L. C., Barros, C. H. S. C., Silva, A. A. D. A., Santos, A. O., Guimarães, A. D. S. L., Costa, J. M. da S., Cruz, R. B., Cordeiro, M. F., & Lopes Júnior, E. S. (2015). Effect of pFSH dose reduction on in vivo embryo production in Dorper ewes. Semina: Ciências Agrárias, 36(6Supl2), 4215. https://doi.org/10.5433/1679-0359.2015v36n6sup2p4215 López, J. S., Ramón-Ugalde, J. P., Barroso-Padilla, J. de J., Gutiérrez-Gutiérrez, A. M., Fierro, R., & Piña-Aguilar, R. E. (2013). Superovulation, in vivo embryo recovery and cryopreservation for Aoudad (Ammotragus lervia) females using osmotic pumps and vitrification: A preliminary experience and its implications for conservation. Tropical Conservation Science, 6(1), 149–157. https://doi.org/10.1177/194008291300600105 Luna-Palomera, C., Macías-Cruz, U., & Sánchez-Dávila, F. (2019). Superovulatory response and embryo quality in Katahdin ewes treated with FSH or FSH plus eCG during non-breeding season. Tropical Animal Health and Production, 51(5), 1283–1288. https://doi.org/10.1007/s11250-019-01801-9 Maciel, G. S., Rodriguez, M. G. K., Santos, V. J. C., Uscategui, R. A. R., Nociti, R. P., Maronezi, M. C., Oliveira, C. S., Feliciano, M. A. R., Vicente, W. R. R., da Fonseca, J. F., & Oliveira, M. E. F. (2019). Follicular dynamics and in vivo embryo production in Santa Inês ewes treated with smaller doses of pFSH. Animal Reproduction Science, 209(February), 106137. https://doi.org/10.1016/j.anireprosci.2019.106137 Marco-Jiménez, F., Jiménez-Trigos, E., Almela-Miralles, V., & Vicente, J. S. (2016). Development of cheaper embryo vitrification device using the minimum volume method. PLoS ONE, 11(2). https://doi.org/10.1371/journal.pone.0148661 Martínez-Rojero, R., Mejía-Villanueva, O., Zarco-Quintero, L., Mastache-Lagunas, A., Reyna-Santamaría, L., Martínez-Rojero, R., Mejía-Villanueva, O., Zarco-Quintero, L., Mastache-Lagunas, A., & Reyna-Santamaría, L. (2017). Evaluación de un protocolo de superovulación para transferencia de embriones en ovejas Criollas de la Montaña de Guerrero./ Evaluation of a superovulation protocol for embryo transfer in Creole ewes from the Guerrero Mountain. Abanico Veterinario, 7(3), 30–36. https://doi.org/10.21929/abavet2017.73.3 Martinez, A. G., & Matkovic, M. (1998). CRYOPRESERVATION OF OVINE EMBRYOS: SLOW FREEZING AND VITRIFICATION. Theriogenology, 49(1084), 1039–1049. Martino, A., Songsasen, N., & Leibo, S. P. (1996). Development into Blastocysts of Bovine Oocytes Cryopreserved by Ultra-Rapid Cooling1. Biology of Reproduction, 54(5), 1059–1069. https://doi.org/10.1095/biolreprod54.5.1059 Massip’, A., Van Der Zwalmen, P., Scheffen, B., & Ectors, F. (1989). Some Significant Steps in the Cryopreservation of Mammalian Embryos with a Note on a Vitrification Procedure 2. In Animal Reproduction Science (Vol. 19). Matsumoto, H., Jiang, J. Y., Tanaka, T., Sasada, H., & Sato, E. (2001). Vitrification of large quantities of immature bovine oocytes using nylon mesh. Cryobiology, 42(2), 139–144. https://doi.org/10.1006/cryo.2001.2309 Mayorg, I., Maraa, L., Sannaa, D., Stellettab, C., Morganteb, M., Casua, S., & Dattenaa, M. (2011). Good quality sheep embryos produced by superovulation treatment without the use of progesterone devices. Theriogenology, 75(9), 1661–1668. https://doi.org/10.1016/j.theriogenology.2010.12.029 Maza-Ramos, N. S., Martínez-Tinajero, J. J., Izaguirre-Flores, F., Aguirre-Medina, J. F., Ley de Coss, A., & Martínez-Priego, G. (2017). PRODUCCION, CALIDAD Y DESARROLLO DE EMBRIONES EN OVEJAS PELIBUEY ALIMENTADAS CON Clitoria ternatea L., EN CONDICIONES TROPICALES. AGROProductividad, 10(2), 72–78. Meikle, M. N., Schlapp, G., Menchaca, A., & Crispo, M. (2018). Minimum volume Spatula MVD vitrification method improves embryo survival compared to traditional slow freezing, both for in vivo and in vitro produced mice embryos. Cryobiology, 84, 77–81. https://doi.org/10.1016/j.cryobiol.2018.07.005 Meraï, A., Dattena, M., Casu, S., Rekik, M., & Lassoued, N. (2017). High-milking sheep have a lower ovulation rate and tend to yield fewer embryos in response to superovulation and intrauterine artificial insemination. Reproduction in Domestic Animals, 52(5), 814–818. https://doi.org/10.1111/rda.12983 Merry, D. A., Bondioli, K. R., Allen, R. L., & Wright, R. W. (1984). One-step sucrose dilution of frozen-thawed sheep embryos. Theriogenology, 22(4), 433–443. Momozawa, K., Matsuzawa, A., Tokunaga, Y., Abe, S., Koyanagi, Y., Kurita, M., Nakano, M., & Miyake, T. (2017). Efficient vitrification of mouse embryos using the Kitasato Vitrification System as a novel vitrification device. Reproductive Biology and Endocrinology, 15(1). https://doi.org/10.1186/s12958-017-0249-2 Moore, S. G., & Hasler, J. F. (2017). A 100-Year Review: Reproductive technologies in dairy science. Journal of Dairy Science, 100(12), 10314–10331. https://doi.org/10.3168/jds.2017-13138 Morató, R., & Mogas, T. (2014). New device for the vitrification and in-straw warming of in vitro produced bovine embryos. Cryobiology, 68(2), 288–293. https://doi.org/10.1016/j.cryobiol.2014.02.010 Mpebe, N. A., Gonzalez-Bulnes, A., & Lehloenya, K. C. (2018). Effect of breed and follicular status on response to superovulation in south african goats. Journal of Applied Animal Research, 46(1), 141–145. https://doi.org/10.1080/09712119.2016.1277530 Navarrete-Sierra, L. F., Cruz-Tamayo, A. A., González-Parra, E. I., Piña-Aguilar, R. E., Sangines-García, J. R., Toledo-López, V., & Ramón-Ugalde, J. P. (2008). Efecto de la aplicación de la hormona de crecimiento recombinante (rbST) sobre la respuesta superovulatoria y la viabilidad embrionaria en ovejas de pelo. Revista Cientifica de La Facultad de Ciencias Veterinarias de La Universidad Del Zulia, 18(2), 175–179. Oliveira, M. E.F., Bartlewski, P. M., Jankowski, N., Padilha-Nakaghi, L. C., Oliveira, L. G., Bicudo, S. D., Fonseca, J. F., & Vicente, W. R. R. (2017). Relationship of antral follicular blood flow velocity to superovulatory responses in ewes. Animal Reproduction Science, 182, 48–55. https://doi.org/10.1016/j.anireprosci.2017.04.009 Oliveira, M. E.F., Fonseca, J. F., Vicente, W. R. R., Rodrigues, N. N., Vergani, G. B., Souza-Fabjan, J. M. G., Jamieson, M., Cristescu, A., Murawski, M., & Bartlewski, P. M. (2019). Are the spectral Doppler indices of ovarian arteries indicative of antral follicular development and predictive of ovulatory responses and embryo yields in superovulated ewes? Reproductive Biology, 19(4), 394–403. https://doi.org/10.1016/j.repbio.2019.11.004 Oliveira, M. E.F., Zambrini, F. N., Souza-Fabjan, J. M. G., Bartlewski, P. M., Guimarães, J. D., Brandão, F. Z., & Fonseca, J. F. (2020). Repeated trans-cervical embryo recoveries in Santa inês ewes subjected to short- or long-term superovulatory treatment regimens. Animal Reproduction Science, 217. https://doi.org/10.1016/j.anireprosci.2020.106469 Oliveira, Maria E.F., Feliciano, M. A. R., D’Amato, C. C., Oliveira, L. G., Bicudo, S. D., Fonseca, J. F., Vicente, W. R. R., Visco, E., & Bartlewski, P. M. (2014). Correlations between ovarian follicular blood flow and superovulatory responses in ewes. Animal Reproduction Science, 144(1–2), 30–37. https://doi.org/10.1016/j.anireprosci.2013.10.012 Ortega, R. M. M., Pendás, L. C. T., Ortega, M. M., Abreu, A. P., & Cánovas, A. M. (2009). El coeficiente de correlacion de los rangos de spearman caracterizacion. Revista Habanera de Ciencias Medicas, 8(2). Panagiotidis, Y., Vanderzwalmen, P., Prapas, Y., Kasapi, E., Goudakou, M., Papatheodorou, A., Passadaki, T., Petousis, S., Nikolettos, N., Veletza, S., Prapas, N., & Maroulis, G. (2013). Open versus closed vitrification of blastocysts from an oocyte-donation programme: A prospective randomized study. Reproductive BioMedicine Online, 26(5), 470–476. https://doi.org/10.1016/j.rbmo.2013.01.016 Panyaboriban, S., Suwimonteerabutr, J., Swangchan-Uthai, T., Tharasanit, T., Suthikrai, W., Suadsong, S., & Techakumphu, M. (2018). A simplified superovulation protocol using splitsingle administration of Folltropin®-V in hyaluronan: Application to purebred sheep. Veterinarni Medicina, 63(7), 321–328. https://doi.org/10.17221/52/2016-VETMED Paramio, M. T., & Izquierdo, D. (2014). Current status of in vitro embryo production in sheep and goats. Reproduction in Domestic Animals, 49(s4), 37–48. https://doi.org/10.1111/rda.12334 Parmegiani, L., Cognigni, G. E., Bernardi, S., Cuomo, S., Ciampaglia, W., Infante, F. E., Tabarelli De Fatis, C., Arnone, A., MacCarini, A. M., & Filicori, M. (2011). Efficiency of aseptic open vitrification and hermetical cryostorage of human oocytes. Reproductive BioMedicine Online, 23(4), 505–512. https://doi.org/10.1016/j.rbmo.2011.07.003 Parmegiani, Lodovico, Accorsi, A., Bernardi, S., Arnone, A., Cognigni, G. E., & Filicori, M. (2012). A reliable procedure for decontamination before thawing of human specimens cryostored in liquid nitrogen: Three washes with sterile liquid nitrogen (SLN2). Fertility and Sterility, 98(4), 870–875. https://doi.org/10.1016/j.fertnstert.2012.06.028 Passmore, L. A., & Russo, C. J. (2016). Europe PMC Funders Group Specimen preparation for high-resolution cryo-EM. 51–86. https://doi.org/10.1016/bs.mie.2016.04.011.Specimen Pereira, R. M., Mesquita, P., Batista, M., Baptista, M. C., Barbas, J. P., Pimenta, J., Santos, I. C., Marques, M. R., Vasques, M. I., Silva Pereira, M., Santos Silva, F., Oliveira Sousa, M. C., Fontes, C. M. G., Horta, A. E. M., Prates, J. A. M., & Marques, C. C. (2009). Doppel gene polymorphisms in Portuguese sheep breeds: Insights on ram fertility. Animal Reproduction Science, 114(1–3), 157–166. https://doi.org/10.1016/j.anireprosci.2008.10.003 Prellwitz, L., Zambrini, F. N., Guimarães, J. D., de Sousa, M. A. P., Oliveira, M. E. F., Garcia, A. R., Esteves, S. N., Bartlewski, P. M., Souza-Fabjan, J. M. G., & Fonseca, J. F. (2019). Comparison of the intravenous and intravaginal route of oxytocin administration for cervical dilation protocol and non-surgical embryo recovery in oestrous-induced Santa Inês ewes. Reproduction in Domestic Animals, 54(9), 1230–1235. https://doi.org/10.1111/rda.13499 Quan, F., Zhang, Z., An, Z., Hua, S., Zhao, X., & Zhang, Y. (2011). Multiple Factors Affecting Superovulation in Poll Dorset in China. Reproduction in Domestic Animals, 46(1), 39–44. https://doi.org/10.1111/j.1439-0531.2009.01551.x Rebolledo, Á. D., Manzanero, G. V., Romero, A. A., Franco, J. Q., Rodriguez, J. B., Lorca, J. R., & Ugalde, J. R. (2017). Follicular population at the onset of a superovulatory treatment and ovarian response in hair ewes. Romanian Biotechnological Letters, 22(2), 12427–12431. Rodriguez-Villamil, P., Ongaratto, F. L., Fernandez Taranco, M., & Bó, G. A. (2014). Solid-surface vitrification and in-straw dilution after warming of in vitro-produced bovine embryos. Reproduction in Domestic Animals, 49(1), 79–84. https://doi.org/10.1111/rda.12229 Romão, R., Bettencourt, E., Pereira, R. M. L. N., Marques, C. C., Baptista, M. C., Barbas, J. P., Oliveira, E., Bettencourt, C., & Sousa, M. (2016). Ultrastructural Characterization of Fresh and Vitrified In Vitro- and In Vivo-Produced Sheep Embryos. Journal of Veterinary Medicine Series C: Anatomia Histologia Embryologia, 45(3), 231–239. https://doi.org/10.1111/ahe.12191 Romão, R., Marques, C. C., Baptista, M. C., Barbas, J. P., Horta, A. E. M., Carolino, N., Bettencourt, E., & Pereira, R. M. (2015). Cryopreservation of invitro-produced sheep embryos: Effects of different protocols of lipid reduction. Theriogenology, 84(1), 118–126. https://doi.org/10.1016/j.theriogenology.2015.02.019 Sang, T. S., Sung, K. J., Hong, S. Y., Ok, K. L., Yhong, H. S., Won, I. C., Doo, S. L., Gwan, S. L., Jong, K. C., & Young, W. L. (2008). Laparoscopy vs. laparotomy for embryo transfer to produce transgenic goats (Capra hircus). Journal of Veterinary Science, 9(1), 103–107. https://doi.org/10.4142/jvs.2008.9.1.103 Saragusty, J., & Arav, A. (2011). Current progress in oocyte and embryo cryopreservation by slow freezing and vitrification. Reproduction, 141(1), 1–19. https://doi.org/10.1530/REP-10-0236 Shi, J. M., Yi, J. Y., Tian, X. Z., Wang, F., Lian, Z. X., Han, H. Bin, Fu, J. C., Lv, W. F., & Liu, G. S. (2015). Effects of seasonal changes on the ovulation rate and embryo quality in superovulated Black Suffolk ewes. Neuroendocrinology Letters, 36(4), 330–336. Simonetti, L., Forcada, F., Rivera, O. E., Carou, N., Alberio, R. H., Abecia, J. A., & Palacin, I. (2008). Simplified superovulatory treatments in Corriedale ewes. Animal Reproduction Science, 104(2–4), 227–237. https://doi.org/10.1016/j.anireprosci.2007.01.020 Skidmore, J. A., Schoevers, E., & Stout, T. A. E. (2009). Effect of different methods of cryopreservation on the cytoskeletal integrity of dromedary camel (Camelus dromedarius) embryos. Animal Reproduction Science, 113(1–4), 196–204. https://doi.org/10.1016/j.anireprosci.2008.07.006 Stringfellow, D. A., & Givens, D. (2010). Manual of the International Embryo Transfer Society (D. A. Stringfellow & M. D. Givens (eds.); 4th editio, p. 202). Stubbs, C., Bailey, T. L., Murray, K., & Gibson, M. I. (2020). Polyampholytes as Emerging Macromolecular Cryoprotectants. Biomacromolecules, 21(1), 7–17. https://doi.org/10.1021/acs.biomac.9b01053 Sun, X., Li, Z., Yi, Y., Chen, J., Leno, G. H., & Engelhardt, J. F. (2008). Efficient Term Development of Vitrified Ferret Embryos Using a Novel Pipette Chamber Technique1. Biology of Reproduction, 79(5), 832–840. https://doi.org/10.1095/biolreprod.107.067371 Talwar, P., & Prakash, V. (2015). Vitrification in Assisted Reproduction. Vitrification in Assisted Reproduction, 51–63. https://doi.org/10.1007/978-81-322-1527-1 Taniguchi, M., Ikeda, A., Arikawa, E., Wongsrikeao, P., Agung, B., Naoi, H., Nagai, T., & Otoi, T. (2007). EffTaniguchi, M., Ikeda, A., Arikawa, E., Wongsrikeao, P., Agung, B., Naoi, H., Nagai, T., & Otoi, T. (2007). Effect of cryoprotectant composition on in vitro viability of in vitro fertilized and cloned bovine embryos following vitrification and in-straw . Journal of Reproduction and Development, 53(4), 963–969. https://doi.org/10.1262/jrd.18175 Torres-Zapata, S., Luna-Palomera, C., Aguilar-Cabrales, J. A., Peralta-Torres, J. A., Aké-López, J. R., Sánchez-Dávila, F., & Abad-Zavaleta, J. (2016). Ovulatory response and embryo quality in Katahdin ewes supplemented with palm oil. South African Journal of Animal Sciences, 46(3), 261–268. https://doi.org/10.4314/sajas. v46i3.5 Torres, S., & Sevellec, C. (1987). Repeated superovulation and surgical recovery of embryos in the ewe. Reproduction Nutrition Developpement, 27(4), 859–863. https://doi.org/10.1051/rnd:19870612 Truong, T. T., & Gardner, D. K. (2020). Antioxidants increase blastocyst cryosurvival and viability post-vitrification. Human Reproduction, 35(1), 12–23. https://doi.org/10.1093/humrep/dez243 Tsang, W. H., & Chow, K. L. (2009). Mouse embryo cryopreservation utilizing a novel high-capacity vitrification spatula. BioTechniques, 46(7), 550–552. https://doi.org/10.2144/000113125 Vajta, G, Murphy, C. N., & Machaty, Z. (1999). In-straw dilution of bovine blastocysts after vitrification with the method. Veterinary Record, 144, 180–181. Vajta, Gábor, & Nagy, Z. P. (2006). Are programmable freezers still needed in the embryo laboratory? Review on vitrification. Reproductive Biomedicine Online, 12(6), 779–796. https://doi.org/10.1016/S1472-6483(10)61091-7 Varago, F. C., Moutacas, V. S., Carvalho, B. C., Serapião, R. V., Vieira, F., Chiarini-Garcia, H., Brandão, F. Z., Camargo, L. S., Henry, M., & Lagares, M. A. (2014). Comparison of conventional freezing and vitrification with dimethylformamide and ethylene glycol for cryopreservation of ovine embryos. Reproduction in Domestic Animals, 49(5), 839–844. https://doi.org/10.1111/rda.12376 Vargas Reyes, J. N., & Chacón Jaramillo, L. (2016). Cryopreservation method and composition of the vitrification solution affect viability of in vitro bovine embryos. Revista Colombiana de Ciencias Pecuarias, 29(2), 130–137. https://doi.org/10.17533/udea.rccp.v29n2a06 Viana, J. (2019). Embryo Technology Newsletter. Embryo Tecnology Newsletter, v.36, n.4, 2019, 36(4). Willadsen, S. M., Polge, C., Rowson, L. E. A., & Moor, R. M. (1976). Deep freezing of sheep embryos. Journal of Reproduction and Fertility, 46(1), 151–154. https://doi.org/10.1530/jrf.0.0460151 Yavin, S., & Arav, A. (2007). Measurement of essential physical properties of vitrification solutions. Theriogenology, 67(1), 81–89. https://doi.org/10.1016/j.theriogenology.2006.09.029 Youngs, C. R. (2011). Cryopreservation of preimplantation embryos of cattle, sheep, and goats. Journal of Visualized Experiments, 54, 2–5. https://doi.org/10.3791/2764 Yu, X. L., Deng, W., Liu, F. J., Li, Y. H., Li, X. X., Zhang, Y. L., & Zan, L. S. (2010). Closed pulled straw vitrification of in vitro-produced and in vivo-produced bovine embryos. Theriogenology, 73(4), 474–479. https://doi.org/10.1016/j.theriogenology.2009.10.004 Zhou, Y., Fu, X., Zhou, G., Jia, B., Fang, Y., Hou, Y., & Zhu, S. (2014). An efficient method for the sanitary vitrification of bovine oocytes in straws. Journal of Animal Science and Biotechnology, 5(1), 1–7. https://doi.org/10.1186/2049-1891-5-19 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
1 recurso en línea (108 páginas) |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Medicina Veterinaria y de Zootecnia - Maestría en Salud y Producción Animal |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Medicina Veterinaria y de Zootecnia |
dc.publisher.place.spa.fl_str_mv |
Bogotá |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/79502/4/2949613899.2020.pdf https://repositorio.unal.edu.co/bitstream/unal/79502/2/license.txt https://repositorio.unal.edu.co/bitstream/unal/79502/3/license_rdf https://repositorio.unal.edu.co/bitstream/unal/79502/5/2949613899.2020.pdf.jpg |
bitstream.checksum.fl_str_mv |
e11876f2c8866771e397eac3c6e11ba0 cccfe52f796b7c63423298c2d3365fc6 4460e5956bc1d1639be9ae6146a50347 57ba60e44b64f5bcdf6da9142adfb473 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089653343485952 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Jiménez Escobar, Claudiaf813567a35b606404b1676a988af6d79Zambrano, Jorge179e9da4e31ffe8da3fbc2ce59023ce9González Mendoza, Daniel Fernandoad82b8eb0b32a0bf6f4f283226bb7f72Reproducción Animal y Salud de Hato2021-05-11T20:10:30Z2021-05-11T20:10:30Z2020-11-13https://repositorio.unal.edu.co/handle/unal/79502Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/diagramas, ilustraciones a color, fotografías, tablasLa presente investigación tuvo como fin evaluar metodologías que faciliaran el proceso de vitrificación de embriones ovinos y la eliminación de potenciales contaminantes, comparando dos sistemas de empaque (abierto y cerrado) ya que el uso de empaques abiertos se consideran un riesgo de bioseguridad en este tipo de biotecnología reproductiva. Para este fin, se seleccionaron 25 ovejas trihibridas adultas en buenas condiciones sanitarias y nutricionales, cruces de razas Katahdin, Pelibuey y Dorset entre el primero y sexto parto. Se sincronizaron un grupo de cinco ovejas, cada 7 días durante cinco semanas mediante esponjas vaginales impregnadas con 60mg de Acetato Medroxiprogesterona por 13 días; además, se realizó un tratamiento de superovulación entre el día 11 al 14 de tratamiento con 160mg de Hormona Folículo Estimulante porcina (pFSH) en ocho dosis decrecientes, cada 12h paralelamente con la remoción del dispositivo vaginal en el día 13. Por otro lado, se realizó detección de celo con un macho vasectomizado y monta natural controlada, al día siete de esta se realizó recolección de embriones por medio de laparotomía. Subsiguientemente se evaluaron y clasificaron los embriones de acuerdo con las pautas de la Sociedad Internacional de Transferencia de Embriones, y se procedió a realizar criopreservación de sólo embriones categorizados como buenos y excelentes. Se obtuvieron 222 embriones de los cuales se criopreservaron 220, tomando un primer grupo (n=110, 50%) que se vitrificó mediante empaque Abierto (open-pulled Straw, OPS) y el segundo tratamiento experimental (n=110, 50%) se vitrificó a través del método cerrado con pajillas de 0.25cc. Ambos tratamientos divididos equitativamente por etapa de desarrollo y tipo de empaque. Se desvitrificaron 160 embriones, de los 220 congelados, ochenta por cada método de vitrificación los cuales fueron cultivados en una incubadora con 5% de CO2 en aire a 39° C por 72 horas, determinando el porcentaje de embriones reexpandidos a 24, 48 y 72 horas post desvitrificación y su tasa de eclosión, obteniendo una viabilidad del 72,6% (n= 80) para los embriones vitrificados por OPS y del 67,6% (n=80) para los embriones vitrificados por pajilla. Posteriormente se compararon las tasas de supervivencia embrionaria con la prueba de chi-cuadrado con un p-valor 0,49, concluyendo que no existe dependencia o asociación entre la variable (supervivencia) y el factor (empaque); las diferencias significativas se tomaron con un p<0,05. Finalmente, con este estudio se logró aplicar con éxito biotecnologías reproductivas como la ultrasonografía, laparoscopia, sincronización, superovulación, transferencia de embriones y criopreservación de embriones por medio de la vitrificación con dos sistemas de empaque en ovejas trihibridas bajo nuestras condiciones ambientales y de manejo. Considerando que el empaque cerrado es mejor en términos de bioseguridad y que no hubo diferencias con el sistema OPS, se recomienda trabajar el sistema cerrado para vitrificar embriones ovinos.The purpose of this research was to evaluate two different packaging systems to cryopreserve ovine embryos avoiding potential contaminants in vitrification processes related to the use of open packages such as the open-pulled straw system, which is considered to be unsuitable for use in commercial embryo cryopreservation. For this purpose, 25 adult trihybrid ewes (crosses of Katahdin, Pelibuey and Dorset) in good sanitary and nutritional conditions were selected between the first and sixth lambing. Groups of five ewes were synchronized every 7 days for five weeks with intravaginal pessaries impregnated with 60mg of Medroxyprogesterone Acetate for 13 days. In addition, a superovulation treatment was performed between the 11th and 14th day of treatment with 160mg of porcine Follicle-Stimulating Hormone (pFSH) in eight decreasing doses every 12h. Controlled natural breeding was performed after estrus detection with a vasectomized male; seven days after natural breeding, embryo collection was performed by means of laparotomy. Subsequently, the embryos were evaluated and classified according to the guidelines of the International Embryo Transfer Society and only embryos categorized as excellent and good were used in cryopreservation treatments. From the 222 embryos obtained, 220 were cryopreserved; embryos were divided in two treatment groups: first group (n=110, 50%) which were vitrified in open-pulled straws (OPS) and the second group (n=110, 50%) were vitrified in 0.25cc straws. Both treatments were equally divided by developmental stage and type of packaging. For survival evaluation, 160 of the 220 embryos were devitrified, eighty by each method of packaging. These were immediately cultured in an incubator with 5% CO2 in air at 39° C for 72 hours, determining a percentage of embryos re-expanded at 24, 48 and 72 hours post-devitrification and the hatching rate. A viability of 72.6% (n=80) for the embryos vitrified by OPS and 67.6% (n=80) for the embryos vitrified by straw were obtained. Embryo survival rates were not significantly different among the two packaging methods (chi-square test) with a pvalue of 0.49. Finally, with this study, reproductive biotechnologies such as ultrasonography, laparoscopy, synchronization, superovulation, embryo transfer, and cryopreservation of embryos through vitrification with two packing systems were successfully applied in trihybrid ewes. Considering that a closed packaging system is safer in terms of biosecurity and that there were no significant differences in survival rates compared to the OPS system, we recommend to freeze sheep embryos with closed techniques such as the use of 0.25 cc straws.Maestría1 recurso en línea (108 páginas)application/pdfspaUniversidad Nacional de ColombiaBogotá - Medicina Veterinaria y de Zootecnia - Maestría en Salud y Producción AnimalFacultad de Medicina Veterinaria y de ZootecniaBogotáUniversidad Nacional de Colombia - Sede Bogotá630 - Agricultura y tecnologías relacionadas::636 - Producción animalCriopreservaciónCryopreservationVitrificaciónVitrificationOvinosSheepCriopreservaciónOvejasVitrificaciónPajilla Abierta (OPS)Pajilla 0,25.CryopreservationSheepUltra-Fast FreezingOpen Straw (OPS)Straw 0,25 ccEfecto del protocolo de vitrificación y sistemas de empaque sobre la tasa de supervivencia de embriones ovinos obtenidos in vivoEffect of vitrification protocol and packaging system on the survival rate of in vivo derived ovine embryosTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAbecia, J. A., Forcada, F., Palacín, I., Sánchez-Prieto, L., Sosa, C., Fernández-Foren, A., & Meikle, A. (2015). Undernutrition affects embryo quality of superovulated ewes. Zygote, 23(1), 116–124. https://doi.org/10.1017/S096719941300035XAbubakar, A. A., Andeshi, R. A., Yakubu, A. S., Lawal, F. M., & Adamu, U. (2014). Comparative Evaluation of Midventral and Flank Laparotomy Approaches in Goat. Journal of Veterinary Medicine, 2014, 1–6. https://doi.org/10.1155/2014/920191Aké-lópez, J. R., Centurión-castro, F. G., Magaña-monforte, J. G., & Aké-villanueva, J. R. (2014). Efecto del progestágeno y de la dosis de gonadotropina corionica equina en la sincronización del estro y tasa de gestación en ovejas Pelibuey inseminadas por laparoscopia. Ecosistemas y Recursos Agropecuarios, 1(3), 261–268.Akiyama, K., Kobayashi, J., Sato, Y., Sata, R., Ohashi, M., Sasaki, E., Oda, Y., Ogawa, Y., Ueda, S., Nabenishi, H., & matoba, S. (2010). Calf production from vitrified bovine sexed embryos following in-straw dilution. Animal Science Journal, 81(4), 461–466. https://doi.org/10.1111/j.1740-0929.2010.00763.xAlmodin, C. G., Minguetti-Camara, V. C., Paixao, C. L., & Pereira, P. C. (2010). Embryo development and gestation using fresh and vitrified oocytes. Human Reproduction, 25(5), 1192–1198. https://doi.org/10.1093/humrep/deq042Arévalo Garay, Á., & Correa Assmus, G. (2013). Tecnología en la ovinocultura colombiana: estado del arte. Ciencia Animal, 6, 125–142.Asgari, V., Hosseini, S. M., Ostadhosseini, S., Hajian, M., Azhdari, Z. T., Mosaie, M., & Nasr-Esfahani, M. H. (2012). Specific activation requirements of in vitro-matured sheep oocytes following vitrification-warming. Molecular Reproduction and Development, 79(7), 434–444. https://doi.org/10.1002/mrd.22047Baril, G., Traldi, a. L., Cognié, Y., Leboeuf, B., Beckers, J. F., & Mermillod, P. (2001). Successful direct transfer of vitrified sheep embryos. Theriogenology, 56(2), 299–305. https://doi.org/10.1016/S0093-691X(01)00564-7Bartlewski, P. M., Seaton, P., Franco Oliveira, M. E., Kridli, R. T., Murawski, M., & Schwarz, T. (2016). Intrinsic determinants and predictors of superovulatory yields in sheep: Circulating concentrations of reproductive hormones, ovarian status, and antral follicular blood flow. Theriogenology, 86(1), 130–143. https://doi.org/10.1016/j.theriogenology.2016.04.024Bartlewski, P. M., Seaton, P., Szpila, P., Oliveira, M. E. F., Murawski, M., Schwarz, T., Kridli, R. T., & Zieba, D. A. (2015). Comparison of the effects of pretreatment with Veramix sponge (medroxyprogesterone acetate) or CIDR (natural progesterone) in combination with an injection of estradiol-17β on ovarian activity, endocrine profiles, and embryo yields in cyclic ewes superovu. Theriogenology, 84(7), 1225–1237. https://doi.org/10.1016/j.theriogenology.2015.07.002Bergstein-Galan, T. G., Weiss, R. R., Kozicki, L. E., Bortoleto, C. T., Lara, N. S. S., & Aschenbrenner, G. A. (2020). EFFECT OF FLUNIXIN MEGLUMINE AND hCG AT COMMERCIAL PROGRAMS FOR MULTIPLE OVULATION AND EMBRYO TRANSFER (MOET) IN SHEEP. Archives of Veterinary Science, 5(1), 56–66. www.ser.ufpr.br/veterinaryBergstein-Galan, Tácia Gomes, Weiss, R. R., & Kozicki, L. E. (2019). Effect of semen and donor factors on multiple ovulation and embryo transfer (MOET) in sheep. Reproduction in Domestic Animals, 54(2), 401–407. https://doi.org/10.1111/rda.13381Bettencourt, E. M., Bettencourt, C. M., Silva, J. C. e., Ferreira, P., Manito, C. I., Matos, C. M., Romão, R. J., & Rocha, A. (2008). Effect of season and gonadotrophin preparation on superovulatory response and embryo quality in Portuguese Black Merinos. Small Ruminant Research, 74(1–3), 134–139. https://doi.org/10.1016/j.smallrumres.2007.05.001Bettencourt, E. M. V., Bettencourt, C. M., Silva, J. N. C. E., Ferreira, P., de Matos, C. P., Oliveira, E., Romão, R. J., Rocha, A., & Sousa, M. (2009). Ultrastructural characterization of fresh and cryopreserved in vivo produced ovine embryos. Theriogenology, 71(6), 947–958. https://doi.org/10.1016/j.theriogenology.2008.10.019Bhat, M. H., Sharma, V., Khan, F. A., Naykoo, N. A., Yaqoob, S. H., Vajta, G., Khan, H. M., Fazili, M. R., Ganai, N. A., & Shah, R. A. (2015). Open pulled straw vitrification and slow freezing of sheep IVF embryos using different cryoprotectants. Reproduction, Fertility and Development, 27(8), 1175–1180. https://doi.org/10.1071/RD14024Bielanski, A., & Vajta, G. (2009). Risk of contamination of germplasm during cryopreservation and cryobanking in IVF units. In Human Reproduction (Vol. 24, Issue 10, pp. 2457–2467). Oxford University Press. https://doi.org/10.1093/humrep/dep117Blanco, M. R., Simonetti, L., & Rivera, O. E. (2003). Embryo production and progesterone profiles in ewes superovulated with different hormonal treatments. Small Ruminant Research, 47(3), 183–191. https://doi.org/10.1016/S0921-4488(02)00245-6Bottrel, M., Hidalgo, M., Mogas, T., Pereira, B., Ortiz, I., Díaz-Jiménez, M., Consuegra, C., Morató, R., & Dorado, J. (2020). One-step warming does not affect the in vitro viability and cryosurvival of cryotop-vitrified donkey embryos. Theriogenology, 152, 47–52. https://doi.org/10.1016/j.theriogenology.2020.04.026Brasil, O. O., Moreira, N. H., Santos, G., Silva, B. D. M., Mariante, A. S., & Ramos, A. F. (2016). Superovulatory and embryo yielding in sheep using increased exposure time to progesterone associated with a GnRH agonist. Small Ruminant Research, 136, 54–58. https://doi.org/10.1016/j.smallrumres.2016.01.005Bruno-Galarraga, M., Cueto, M., Gibbons, A., Pereyra-Bonnet, F., Subiabre, M., & González-Bulnes, A. (2015). Preselection of high and low ovulatory responders in sheep multiple ovulation and embryo transfer programs. Theriogenology, 84(5), 784–790. https://doi.org/10.1016/j.theriogenology.2015.05.011Caamaño, J. N., Gómez, E., Trigal, B., Muñoz, M., Carrocera, S., Martín, D., & Díez, C. (2015). Survival of vitrified invitro-produced bovine embryos after a one-step warming in-straw cryoprotectant dilution procedure. Theriogenology, 83(5), 881–890. https://doi.org/10.1016/j.theriogenology.2014.11.021Chian, R. C., Son, W. Y., Huang, J. Y., Cui, S. J., Buckett, W. M., & Tan, S. L. (2005). High survival rates and pregnancies of human oocytes following vitrification: preliminary report. Fertility and Sterility, 84, S26, 2005. https://doi.org/https://doi.org/10.1016/j.fertnstert.2005.07.086Cocero, M., Aguilar., B., Alabart, J. L., Olivera, J., & Folch, J. (2000). FACTORES QUE AFECTAN AL RENDIMIENTO DE LA T.E.CONGELADOS EN EL PROGRAMA GENÉTICO DE OVIARAGON. 760–762.Cognie, Y. (1999). State of the art in sheep-goat embryo transfer. Theriogenology, 51(1), 105–116. https://doi.org/10.1016/S0093-691X(98)00235-0 Contreras-Solis, I., Diaz, T., Lopez, G., Caigua, A., Lopez-Sebastian, A., & Gonzalez-Bulnes, A. (2008). Systemic and intraovarian effects of corpus luteum on follicular dynamics during estrous cycle in hair breed sheep. Animal Reproduction Science, 104(1), 47–55. https://doi.org/10.1016/j.anireprosci.2007.01.021Cortés-Reyes, É., Rubio-Romero, J. A., & Gaitán-Duarte, H. (2010). Statistical methods for evaluating diagnostic test agreement and reproducibility. Revista Colombiana de Obstetricia y Ginecologia, 61(3), 247–255. https://doi.org/10.18597/rcog.271Crilly, J. P., Politis, A. P., & Hamer, K. (2017). Use of ultrasonographic examination in sheep veterinary practice. Small Ruminant Research, 152(July), 166–173. https://doi.org/10.1016/j.smallrumres.2016.12.021Cuadro, F., dos Santos-Neto, P. C., Pinczak, A., Barrera, N., Crispo, M., & Menchaca, A. (2018). Serum progesterone concentrations during FSH superstimulation of the first follicular wave affect embryo production in sheep. Animal Reproduction Science, 196, 205–210. https://doi.org/10.1016/j.anireprosci.2018.08.011Cueto, M. I., Gibbons, A. E., Pereyra-Bonnet, F., Silvestre, P., & González-Bulnes, A. (2011a). Effects of Season and Superovulatory Treatment on Embryo Yields in Fine-Wool Merinos Maintained Under Field Conditions. Reproduction in Domestic Animals, 46(5), 770–775. https://doi.org/10.1111/j.1439-0531.2010.01738.xD’Alessandro, A. G., & Martemucci, G. (2016). Superovulatory response to gonadotrophin FSH/LH treatment and effect of progestin supplement to recipients on survival of transferred vitrified embryos in goats. Theriogenology, 85(2), 296–301. https://doi.org/10.1016/j.theriogenology.2015.09.038Dalcin, L., Silva, R. C., Paulini, F., Silva, B. D. M., Neves, J. P., & Lucci, C. M. (2013). Cytoskeleton structure, pattern of mitochondrial activity and ultrastructure of frozen or vitrified sheep embryos. Cryobiology, 67(2), 137–145. https://doi.org/10.1016/j.cryobiol.2013.05.012de Araújo-Lemos, P. F. B., de Freitas Neto, L. M., de Melo, J. V., Moura, M. T., Lima, P. F., & Oliveira, M. a. L. (2014). Comparison of different cryoprotectant regimes for vitrification of ovine embryos produced in vivo. Small Ruminant Research, 119(1–3), 100–106. https://doi.org/10.1016/j.smallrumres.2014.02.013de Araújo-Lemos, P. F. B., Freitas Neto, L. M., Moura, M. T., Melo, J. V., Lima, P. F., & De Oliveira, M. A. L. (2015). Comparison of vitrification and conventional freezing for cryopreservation of caprine embryos. Zygote, 23(4), 594–602. https://doi.org/10.1017/S0967199414000215De Paula, W. B. M., Agip, A. N. A., Missirlis, F., Ashworth, R., Vizcay-Barrena, G., Lucas, C. H., & Allen, J. F. (2013). Female and male gamete mitochondria are distinct and complementary in transcription, structure, and genome function. Genome Biology and Evolution, 5(10), 1969–1977. https://doi.org/10.1093/gbe/evt147Dobrinsky, J. R. (2001). Cryopreservation of swine embryos: a chilly past with a vitrifying future. Theriogenology, 56(1), 1333–1344. https://doi.org/https://doi.org/10.1016/S0093-691X(01)00634-3dos Santos-Neto, P. C., Cuadro, F., Barrera, N., Crispo, M., & Menchaca, A. (2017). Embryo survival and birth rate after minimum volume vitrification or slow freezing of in vivo and in vitro produced ovine embryos. Cryobiology, 78, 8–14. https://doi.org/10.1016/j.cryobiol.2017.08.002dos Santos Neto, P. C., Vilariño, M., Barrera, N., Cuadro, F., Crispo, M., & Menchaca, A. (2015). Cryotolerance of Day 2 or Day 6 in vitro produced ovine embryos after vitrification by Cryotop or Spatula methods. Cryobiology, 70(1), 17–22. https://doi.org/10.1016/j.cryobiol.2014.11.001Elliott, G. D., Wang, S., & Fuller, B. J. (2017). Cryoprotectants: A review of the actions and applications of cryoprotective solutes that modulate cell recovery from ultra-low temperatures. Cryobiology, 76, 74–91. https://doi.org/10.1016/j.cryobiol.2017.04.004Fernandez, J., Bruno- Galarraga, M. M., Soto, A. T., de la Sota, R. L., Cueto, M. I., Lacau, I. M., & Gibbons, A. E. (2018). Hormonal therapeutic strategy on the induction of accessory corpora lutea in relation to follicle size and on the increase of progesterone in sheep. Theriogenology, 105, 184–188. https://doi.org/10.1016/j.theriogenology.2017.09.020Figueira, L. M., Alves, N. G., Batista, R. I. T. P., Brair, V. L., Lima, R. R., Oliveira, M. E. F., Fonseca, J. F., & Souza-Fabjan, J. M. G. (2019). Pregnancy rate after fixed-time transfer of cryopreserved embryos collected by non-surgical route in Lacaune sheep. Reproduction in Domestic Animals, 54(11), 1493–1496. https://doi.org/10.1111/rda.13550Figueira, L. M., Alves, N. G., Maia, A. L. R. e. S., Souza-Fabjan, J. M. G. de, Batista, R. I. T. P., Morais, M. C. da C., Lima, R. R. de, Oliveira, M. E. F., & Fonseca, J. F. da. (2020). Embryo yield and quality are associated with progestogen treatment during superovulation protocol in lactating Lacaune ewes. Theriogenology, 155, 132–138. https://doi.org/10.1016/j.theriogenology.2020.06.004Figueira, L. M., Alves, N. G., Souza-Fabjan, J. M. G., Oliveira, M. E. F., Lima, R. R., Souza, G. N., & Fonseca, J. F. (2020). Preovulatory follicular dynamics, ovulatory response and embryo yield in Lacaune ewes subjected to synchronous estrus induction protocols and non-surgical embryo recovery. In Theriogenology (Vol. 145). Elsevier Inc. https://doi.org/10.1016/j.theriogenology.2019.11.004Fonseca, J. F., Oliveira, M. E. F., Brandão, F. Z., Batista, R. I. T. P., Garcia, A. R., Bartlewski, P. M., & Souza-Fabjan, J. M. G. (2019). Non-surgical embryo transfer in goats and sheep: The Brazilian experience. Reproduction, Fertility and Development, 31(1), 17–26. https://doi.org/10.1071/RD18324Forcada, F., Amer-Meziane, M. A., Abecia, J. A., Maurel, M. C., Cebrián-Pérez, J. A., Muiño-Blanco, T., Asenjo, B., Vázquez, M. I., & Casao, A. (2011). Repeated superovulation using a simplified FSH/eCG treatment for in vivo embryo production in sheep. Theriogenology, 75(4), 769–776. https://doi.org/10.1016/j.theriogenology.2010.10.019Forcada, F., Sánchez-Prieto, L., Casao, A., Palacín, I., Cebrián-Pérez, J. A., Muiño-Blanco, T., & Abecia, J. A. (2012). Use of laparoscopic intrauterine insemination associated with a simplified superovulation treatment for in vivo embryo production in sheep: A preliminary report. Animal Production Science, 52(12), 1111–1116. https://doi.org/10.1071/AN12129Garcia-Dominguez, X., Marco-Jimenez, F., Viudes-de-Castro, M. P., & Vicente, J. S. (2019). Minimally invasive embryo transfer and embryo vitrification at the optimal embryo stage in rabbit model. Journal of Visualized Experiments, 2019(147). https://doi.org/10.3791/58055García, J. I., Noriega-Portella, L., & Noriega-Hoces, L. (2011). Efficacy of oocyte vitrification combined with blastocyst stage transfer in an egg donation program. Human Reproduction, 26(4), 782–790. https://doi.org/10.1093/humrep/der008Garcia Kako Rodriguez, M., Serpa Maciel, G., Ramirez Uscategui, R. A., Correia Santos, V. J., Perecin Nociti, R., Del Aguila da Silva, P., Rossi Feliciano, M. A., Zandonadi Brandão, F., Ferreira Fonseca, J., & Franco Oliveira, M. E. (2019). Early luteal development in Santa Inês ewes superovulated with reduced doses of porcine follicle-stimulating hormone. Reproduction in Domestic Animals, 54(3), 456–463. https://doi.org/10.1111/rda.13374Gibbons, A., Cueto, M. I., & Pereyra Bonnet, F. (2011). A simple vitrification technique for sheep and goat embryo cryopreservation. Small Ruminant Research, 95(1), 61–64. https://doi.org/10.1016/j.smallrumres.2010.08.007Gibbons, Alejandro, Bruno-Galarraga, M., Fernandez, J., Gonzalez-Bulnes, A., & Cueto, M. (2019). Vitrified embryo transfer in Merino sheep under extensive conditions. Animal Reproduction, 16(2), 297–301. https://doi.org/10.21451/1984-3143-AR2018-0108 Gomes Bergstein-Galan, T., Romualdo Weiss, R., Kozicki, L. E., Bortoleto, C. T., Santana, N., Lara, S., & Aschenbrenner, G. A. (2020). EFFECT OF FLUNIXIN MEGLUMINE AND hCG AT COMMERCIAL PROGRAMS FOR MULTIPLE OVULATION AND EMBRYO TRANSFER (MOET) IN SHEEP (Efeito do flunixin meglumine e hCG em programas comerciais de múltipla ovulação e transferência de embriões (MOTE) em ovinos) (Issue 1). www.ser.ufpr.br/veterinaryGonzález-Bulnes, A., Baird, D. T., Campbell, B. K., Cocero, M. J., García-García, R. M., Inskeep, E. K., López-Sebastián, A., McNeilly, A. S., Santiago-Moreno, J., Souza, C. J. H., & Veiga-López, A. (2004). Multiple factors affecting the efficiency of multiple ovulation and embryo transfer in sheep and goats. Reproduction, Fertility and Development, 16(4), 421–435. https://doi.org/10.1071/RD04033Gratwohl, A. (2010). Thomas’TM Hematopoietic Cell Transplantation. In European Journal of Haematology (Vol. 84, Issue 1, pp. 95–95). John Wiley & Sons, Inc. https://doi.org/10.1111/j.1600-0609.2009.01360.xGreen, R., Santos, B., Sicherle, C., Landim-Alvarenga, F., & Bicudo, S. (2009). Viability of OPS vitrified sheep embryos after direct transfer. Reproduction in Domestic Animals, 44(3), 406–410. https://doi.org/10.1111/j.1439-0531.2008.01088.xGrizelj, J., Vince, S., Samardžija, M., de Bulnes, A. G., Dovenski, T., Turmalaj, L., & Ževrnja, B. (2013). Use of ultrasonography to detect ovarian response in goats submitted to multiple ovulation and embryo transfer program. Veterinarski Arhiv, 83(2), 125–134.Ha, A. N., Lee, S. R., Jeon, J. S., Park, H. S., Lee, S. H., Jin, J. I., Sessions, B. R., Wang, Z., White, K. L., & Kong, I. K. (2014). Development of a modified straw method for vitrification of in vitro-produced bovine blastocysts and various genes expression in between the methods. Cryobiology, 68(1), 57–64. https://doi.org/10.1016/j.cryobiol.2013.11.007Hamawaki, A., Kuwayama, M., & Hamano, S. (1999). Minimum volume cooling method for bovine blastocyst vitrification. Theriogenology, C(4), 38.Herrera-Camacho, J., Aké-López, J. R., Ku-Vera, J. C., Williams, G. L., & Quintal-Franco, J. A. (2008). Respuesta ovulatoria, estado de desarrollo y calidad de embriones de ovejas Pelibuey superovuladas suplementadas con ácidos grasos poliinsaturados. Tecnica Pecuaria En Mexico, 46(2), 107–117.Hosseini, S. M., Asgari, V., Ostadhosseini, S., Hajian, M., Piryaei, A., Najarasl, M., & Nasr-Esfahani, M. H. (2012). Potential applications of sheep oocytes as affected by vitrification and in vitro aging. Theriogenology, 77(9), 1741–1753. https://doi.org/10.1016/j.theriogenology.2011.12.005Inui, H., Mizuno, J., Kikuchi, E., Noguchi, K., Tanji, Y., Hamabata, M., Kotsuzumi, C., Komiyama, M., Noguchi, Y., & Tamura, M. (2019). Safer Vitrification of Mouse and Human Embryos Using the Novel Cryoroom Vitrification System for Assisted Reproductive Technology. Cryo Letters, 40(1), 1–10.Isachenko, V., Folch, J., Isachenko, E., Nawroth, F., Krivokharchenko, A., Vajta, G., Dattena, M., & Alabart, J. L. (2003). Double vitrification of rat embryos at different developmental stages using an identical protocol. Theriogenology, 60(3), 445–452. https://doi.org/10.1016/S0093-691X(03)00039-6Juárez-Pérez, A., Domínguez-Rebolledo, Á., Pinzón-López, L., Aguilar-Urquizo, E., Ortíz-de la Rosa, B., & Ramón-Ugalde, J. P. (2018). Embriones ovinos vitrificados mediante una técnica “one step” producidos en dos estaciones. Agroproductividad, 11, 121–126. https://doi.org/https://doi.org/10.32854/agrop.v11i10.1255Khunmanee, S., Tharasanit, T., Suwimonteerabutr, J., Panyaboriban, S., Techakumphu, M., & Swangchan-Uthai, T. (2020). On-farm lambing outcomes after transfer of vitrified and slow frozen embryos. Animal Reproduction Science, 216, 106467. https://doi.org/10.1016/j.anireprosci.2020.106467Kopeika, J., Thornhill, A., & Khalaf, Y. (2015). The effect of cryopreservation on the genome of gametes and embryos: Principles of cryobiology and critical appraisal of the evidence. Human Reproduction Update, 21(2), 209–227. https://doi.org/10.1093/humupd/dmu063Kruse, S. (2012). Vitrification of in-vitro and in vivo- produced bovine embryos for direct transfer (Vol. 3, Issue September) [Colorado State University]. https://doi.org/10.19641/j.cnki.42-1290/f.2012.03.022Kuwayama, M. (2007). Highly efficient vitrification for cryopreservation of human oocytes and embryos: The Cryotop method. Theriogenology, 67(1), 73–80. https://doi.org/10.1016/j.theriogenology.2006.09.014Kuwayama, M., Vajta, G., Kato, O., & Leibo, S. P. (2005). Highly efficient vitrification method for cryopreservation of human oocytes. Reproductive BioMedicine Online, 11(3), 300–308. https://doi.org/10.1016/S1472-6483(10)60837-1Lane, M., Schoolcraft, W. B., Gardner, D. K., & Phil, D. (1999). Vitrification of mouse and human blastocysts using a novel cryoloop container-less technique. Fertility and Sterility, 72(6), 1073–1078. https://doi.org/10.1016/S0015-0282(99)00418-5Ledda, S., Kelly, J. M., Nieddu, S., Bebbere, D., Ariu, F., Bogliolo, L., Natan, D., & Arav, A. (2019). High in vitro survival rate of sheep in vitro produced blastocysts vitrified with a new method and device. Journal of Animal Science and Biotechnology, 10(1), 1–10. https://doi.org/10.1186/s40104-019-0390-1Leibo, S. P., & Pool, T. B. (2011). The principal variables of cryopreservation: Solutions, temperatures, and rate changes. Fertility and Sterility, 96(2), 269–276. https://doi.org/10.1016/j.fertnstert.2011.06.065Li, Q. Y., Guan, H., Hou, J., An, X. R., & Chen, Y. F. (2008). Technical note: Transfer of ovine embryos through a simplified mini-laparotomy technique. Journal of Animal Science, 86(11), 3224–3227. https://doi.org/10.2527/jas.2008-0846Liebermann, J., Tucker, M. J., Graham, J. R., Han, T., Davis, A., & Levy, M. J. (2002). Blastocyst development after vitrification of multipronuclear zygotes using the Flexipet denuding pipette. Reproductive Biomedicine Online, 4(2), 146–150. https://doi.org/10.1016/S1472-6483(10)61932-3Loiola Filho, J. B., Monte, A. P. O. do, Souza, T. T. D. S., Miranda, M. D. S., Magalhães, L. C., Barros, C. H. S. C., Silva, A. A. D. A., Santos, A. O., Guimarães, A. D. S. L., Costa, J. M. da S., Cruz, R. B., Cordeiro, M. F., & Lopes Júnior, E. S. (2015). Effect of pFSH dose reduction on in vivo embryo production in Dorper ewes. Semina: Ciências Agrárias, 36(6Supl2), 4215. https://doi.org/10.5433/1679-0359.2015v36n6sup2p4215López, J. S., Ramón-Ugalde, J. P., Barroso-Padilla, J. de J., Gutiérrez-Gutiérrez, A. M., Fierro, R., & Piña-Aguilar, R. E. (2013). Superovulation, in vivo embryo recovery and cryopreservation for Aoudad (Ammotragus lervia) females using osmotic pumps and vitrification: A preliminary experience and its implications for conservation. Tropical Conservation Science, 6(1), 149–157. https://doi.org/10.1177/194008291300600105Luna-Palomera, C., Macías-Cruz, U., & Sánchez-Dávila, F. (2019). Superovulatory response and embryo quality in Katahdin ewes treated with FSH or FSH plus eCG during non-breeding season. Tropical Animal Health and Production, 51(5), 1283–1288. https://doi.org/10.1007/s11250-019-01801-9Maciel, G. S., Rodriguez, M. G. K., Santos, V. J. C., Uscategui, R. A. R., Nociti, R. P., Maronezi, M. C., Oliveira, C. S., Feliciano, M. A. R., Vicente, W. R. R., da Fonseca, J. F., & Oliveira, M. E. F. (2019). Follicular dynamics and in vivo embryo production in Santa Inês ewes treated with smaller doses of pFSH. Animal Reproduction Science, 209(February), 106137. https://doi.org/10.1016/j.anireprosci.2019.106137Marco-Jiménez, F., Jiménez-Trigos, E., Almela-Miralles, V., & Vicente, J. S. (2016). Development of cheaper embryo vitrification device using the minimum volume method. PLoS ONE, 11(2). https://doi.org/10.1371/journal.pone.0148661Martínez-Rojero, R., Mejía-Villanueva, O., Zarco-Quintero, L., Mastache-Lagunas, A., Reyna-Santamaría, L., Martínez-Rojero, R., Mejía-Villanueva, O., Zarco-Quintero, L., Mastache-Lagunas, A., & Reyna-Santamaría, L. (2017). Evaluación de un protocolo de superovulación para transferencia de embriones en ovejas Criollas de la Montaña de Guerrero./ Evaluation of a superovulation protocol for embryo transfer in Creole ewes from the Guerrero Mountain. Abanico Veterinario, 7(3), 30–36. https://doi.org/10.21929/abavet2017.73.3Martinez, A. G., & Matkovic, M. (1998). CRYOPRESERVATION OF OVINE EMBRYOS: SLOW FREEZING AND VITRIFICATION. Theriogenology, 49(1084), 1039–1049.Martino, A., Songsasen, N., & Leibo, S. P. (1996). Development into Blastocysts of Bovine Oocytes Cryopreserved by Ultra-Rapid Cooling1. Biology of Reproduction, 54(5), 1059–1069. https://doi.org/10.1095/biolreprod54.5.1059Massip’, A., Van Der Zwalmen, P., Scheffen, B., & Ectors, F. (1989). Some Significant Steps in the Cryopreservation of Mammalian Embryos with a Note on a Vitrification Procedure 2. In Animal Reproduction Science (Vol. 19).Matsumoto, H., Jiang, J. Y., Tanaka, T., Sasada, H., & Sato, E. (2001). Vitrification of large quantities of immature bovine oocytes using nylon mesh. Cryobiology, 42(2), 139–144. https://doi.org/10.1006/cryo.2001.2309Mayorg, I., Maraa, L., Sannaa, D., Stellettab, C., Morganteb, M., Casua, S., & Dattenaa, M. (2011). Good quality sheep embryos produced by superovulation treatment without the use of progesterone devices. Theriogenology, 75(9), 1661–1668. https://doi.org/10.1016/j.theriogenology.2010.12.029Maza-Ramos, N. S., Martínez-Tinajero, J. J., Izaguirre-Flores, F., Aguirre-Medina, J. F., Ley de Coss, A., & Martínez-Priego, G. (2017). PRODUCCION, CALIDAD Y DESARROLLO DE EMBRIONES EN OVEJAS PELIBUEY ALIMENTADAS CON Clitoria ternatea L., EN CONDICIONES TROPICALES. AGROProductividad, 10(2), 72–78.Meikle, M. N., Schlapp, G., Menchaca, A., & Crispo, M. (2018). Minimum volume Spatula MVD vitrification method improves embryo survival compared to traditional slow freezing, both for in vivo and in vitro produced mice embryos. Cryobiology, 84, 77–81. https://doi.org/10.1016/j.cryobiol.2018.07.005Meraï, A., Dattena, M., Casu, S., Rekik, M., & Lassoued, N. (2017). High-milking sheep have a lower ovulation rate and tend to yield fewer embryos in response to superovulation and intrauterine artificial insemination. Reproduction in Domestic Animals, 52(5), 814–818. https://doi.org/10.1111/rda.12983Merry, D. A., Bondioli, K. R., Allen, R. L., & Wright, R. W. (1984). One-step sucrose dilution of frozen-thawed sheep embryos. Theriogenology, 22(4), 433–443.Momozawa, K., Matsuzawa, A., Tokunaga, Y., Abe, S., Koyanagi, Y., Kurita, M., Nakano, M., & Miyake, T. (2017). Efficient vitrification of mouse embryos using the Kitasato Vitrification System as a novel vitrification device. Reproductive Biology and Endocrinology, 15(1). https://doi.org/10.1186/s12958-017-0249-2Moore, S. G., & Hasler, J. F. (2017). A 100-Year Review: Reproductive technologies in dairy science. Journal of Dairy Science, 100(12), 10314–10331. https://doi.org/10.3168/jds.2017-13138Morató, R., & Mogas, T. (2014). New device for the vitrification and in-straw warming of in vitro produced bovine embryos. Cryobiology, 68(2), 288–293. https://doi.org/10.1016/j.cryobiol.2014.02.010Mpebe, N. A., Gonzalez-Bulnes, A., & Lehloenya, K. C. (2018). Effect of breed and follicular status on response to superovulation in south african goats. Journal of Applied Animal Research, 46(1), 141–145. https://doi.org/10.1080/09712119.2016.1277530Navarrete-Sierra, L. F., Cruz-Tamayo, A. A., González-Parra, E. I., Piña-Aguilar, R. E., Sangines-García, J. R., Toledo-López, V., & Ramón-Ugalde, J. P. (2008). Efecto de la aplicación de la hormona de crecimiento recombinante (rbST) sobre la respuesta superovulatoria y la viabilidad embrionaria en ovejas de pelo. Revista Cientifica de La Facultad de Ciencias Veterinarias de La Universidad Del Zulia, 18(2), 175–179.Oliveira, M. E.F., Bartlewski, P. M., Jankowski, N., Padilha-Nakaghi, L. C., Oliveira, L. G., Bicudo, S. D., Fonseca, J. F., & Vicente, W. R. R. (2017). Relationship of antral follicular blood flow velocity to superovulatory responses in ewes. Animal Reproduction Science, 182, 48–55. https://doi.org/10.1016/j.anireprosci.2017.04.009Oliveira, M. E.F., Fonseca, J. F., Vicente, W. R. R., Rodrigues, N. N., Vergani, G. B., Souza-Fabjan, J. M. G., Jamieson, M., Cristescu, A., Murawski, M., & Bartlewski, P. M. (2019). Are the spectral Doppler indices of ovarian arteries indicative of antral follicular development and predictive of ovulatory responses and embryo yields in superovulated ewes? Reproductive Biology, 19(4), 394–403. https://doi.org/10.1016/j.repbio.2019.11.004Oliveira, M. E.F., Zambrini, F. N., Souza-Fabjan, J. M. G., Bartlewski, P. M., Guimarães, J. D., Brandão, F. Z., & Fonseca, J. F. (2020). Repeated trans-cervical embryo recoveries in Santa inês ewes subjected to short- or long-term superovulatory treatment regimens. Animal Reproduction Science, 217. https://doi.org/10.1016/j.anireprosci.2020.106469Oliveira, Maria E.F., Feliciano, M. A. R., D’Amato, C. C., Oliveira, L. G., Bicudo, S. D., Fonseca, J. F., Vicente, W. R. R., Visco, E., & Bartlewski, P. M. (2014). Correlations between ovarian follicular blood flow and superovulatory responses in ewes. Animal Reproduction Science, 144(1–2), 30–37. https://doi.org/10.1016/j.anireprosci.2013.10.012Ortega, R. M. M., Pendás, L. C. T., Ortega, M. M., Abreu, A. P., & Cánovas, A. M. (2009). El coeficiente de correlacion de los rangos de spearman caracterizacion. Revista Habanera de Ciencias Medicas, 8(2).Panagiotidis, Y., Vanderzwalmen, P., Prapas, Y., Kasapi, E., Goudakou, M., Papatheodorou, A., Passadaki, T., Petousis, S., Nikolettos, N., Veletza, S., Prapas, N., & Maroulis, G. (2013). Open versus closed vitrification of blastocysts from an oocyte-donation programme: A prospective randomized study. Reproductive BioMedicine Online, 26(5), 470–476. https://doi.org/10.1016/j.rbmo.2013.01.016Panyaboriban, S., Suwimonteerabutr, J., Swangchan-Uthai, T., Tharasanit, T., Suthikrai, W., Suadsong, S., & Techakumphu, M. (2018). A simplified superovulation protocol using splitsingle administration of Folltropin®-V in hyaluronan: Application to purebred sheep. Veterinarni Medicina, 63(7), 321–328. https://doi.org/10.17221/52/2016-VETMEDParamio, M. T., & Izquierdo, D. (2014). Current status of in vitro embryo production in sheep and goats. Reproduction in Domestic Animals, 49(s4), 37–48. https://doi.org/10.1111/rda.12334Parmegiani, L., Cognigni, G. E., Bernardi, S., Cuomo, S., Ciampaglia, W., Infante, F. E., Tabarelli De Fatis, C., Arnone, A., MacCarini, A. M., & Filicori, M. (2011). Efficiency of aseptic open vitrification and hermetical cryostorage of human oocytes. Reproductive BioMedicine Online, 23(4), 505–512. https://doi.org/10.1016/j.rbmo.2011.07.003Parmegiani, Lodovico, Accorsi, A., Bernardi, S., Arnone, A., Cognigni, G. E., & Filicori, M. (2012). A reliable procedure for decontamination before thawing of human specimens cryostored in liquid nitrogen: Three washes with sterile liquid nitrogen (SLN2). Fertility and Sterility, 98(4), 870–875. https://doi.org/10.1016/j.fertnstert.2012.06.028Passmore, L. A., & Russo, C. J. (2016). Europe PMC Funders Group Specimen preparation for high-resolution cryo-EM. 51–86. https://doi.org/10.1016/bs.mie.2016.04.011.SpecimenPereira, R. M., Mesquita, P., Batista, M., Baptista, M. C., Barbas, J. P., Pimenta, J., Santos, I. C., Marques, M. R., Vasques, M. I., Silva Pereira, M., Santos Silva, F., Oliveira Sousa, M. C., Fontes, C. M. G., Horta, A. E. M., Prates, J. A. M., & Marques, C. C. (2009). Doppel gene polymorphisms in Portuguese sheep breeds: Insights on ram fertility. Animal Reproduction Science, 114(1–3), 157–166. https://doi.org/10.1016/j.anireprosci.2008.10.003Prellwitz, L., Zambrini, F. N., Guimarães, J. D., de Sousa, M. A. P., Oliveira, M. E. F., Garcia, A. R., Esteves, S. N., Bartlewski, P. M., Souza-Fabjan, J. M. G., & Fonseca, J. F. (2019). Comparison of the intravenous and intravaginal route of oxytocin administration for cervical dilation protocol and non-surgical embryo recovery in oestrous-induced Santa Inês ewes. Reproduction in Domestic Animals, 54(9), 1230–1235. https://doi.org/10.1111/rda.13499Quan, F., Zhang, Z., An, Z., Hua, S., Zhao, X., & Zhang, Y. (2011). Multiple Factors Affecting Superovulation in Poll Dorset in China. Reproduction in Domestic Animals, 46(1), 39–44. https://doi.org/10.1111/j.1439-0531.2009.01551.xRebolledo, Á. D., Manzanero, G. V., Romero, A. A., Franco, J. Q., Rodriguez, J. B., Lorca, J. R., & Ugalde, J. R. (2017). Follicular population at the onset of a superovulatory treatment and ovarian response in hair ewes. Romanian Biotechnological Letters, 22(2), 12427–12431.Rodriguez-Villamil, P., Ongaratto, F. L., Fernandez Taranco, M., & Bó, G. A. (2014). Solid-surface vitrification and in-straw dilution after warming of in vitro-produced bovine embryos. Reproduction in Domestic Animals, 49(1), 79–84. https://doi.org/10.1111/rda.12229Romão, R., Bettencourt, E., Pereira, R. M. L. N., Marques, C. C., Baptista, M. C., Barbas, J. P., Oliveira, E., Bettencourt, C., & Sousa, M. (2016). Ultrastructural Characterization of Fresh and Vitrified In Vitro- and In Vivo-Produced Sheep Embryos. Journal of Veterinary Medicine Series C: Anatomia Histologia Embryologia, 45(3), 231–239. https://doi.org/10.1111/ahe.12191Romão, R., Marques, C. C., Baptista, M. C., Barbas, J. P., Horta, A. E. M., Carolino, N., Bettencourt, E., & Pereira, R. M. (2015). Cryopreservation of invitro-produced sheep embryos: Effects of different protocols of lipid reduction. Theriogenology, 84(1), 118–126. https://doi.org/10.1016/j.theriogenology.2015.02.019Sang, T. S., Sung, K. J., Hong, S. Y., Ok, K. L., Yhong, H. S., Won, I. C., Doo, S. L., Gwan, S. L., Jong, K. C., & Young, W. L. (2008). Laparoscopy vs. laparotomy for embryo transfer to produce transgenic goats (Capra hircus). Journal of Veterinary Science, 9(1), 103–107. https://doi.org/10.4142/jvs.2008.9.1.103Saragusty, J., & Arav, A. (2011). Current progress in oocyte and embryo cryopreservation by slow freezing and vitrification. Reproduction, 141(1), 1–19. https://doi.org/10.1530/REP-10-0236Shi, J. M., Yi, J. Y., Tian, X. Z., Wang, F., Lian, Z. X., Han, H. Bin, Fu, J. C., Lv, W. F., & Liu, G. S. (2015). Effects of seasonal changes on the ovulation rate and embryo quality in superovulated Black Suffolk ewes. Neuroendocrinology Letters, 36(4), 330–336.Simonetti, L., Forcada, F., Rivera, O. E., Carou, N., Alberio, R. H., Abecia, J. A., & Palacin, I. (2008). Simplified superovulatory treatments in Corriedale ewes. Animal Reproduction Science, 104(2–4), 227–237. https://doi.org/10.1016/j.anireprosci.2007.01.020Skidmore, J. A., Schoevers, E., & Stout, T. A. E. (2009). Effect of different methods of cryopreservation on the cytoskeletal integrity of dromedary camel (Camelus dromedarius) embryos. Animal Reproduction Science, 113(1–4), 196–204. https://doi.org/10.1016/j.anireprosci.2008.07.006Stringfellow, D. A., & Givens, D. (2010). Manual of the International Embryo Transfer Society (D. A. Stringfellow & M. D. Givens (eds.); 4th editio, p. 202).Stubbs, C., Bailey, T. L., Murray, K., & Gibson, M. I. (2020). Polyampholytes as Emerging Macromolecular Cryoprotectants. Biomacromolecules, 21(1), 7–17. https://doi.org/10.1021/acs.biomac.9b01053Sun, X., Li, Z., Yi, Y., Chen, J., Leno, G. H., & Engelhardt, J. F. (2008). Efficient Term Development of Vitrified Ferret Embryos Using a Novel Pipette Chamber Technique1. Biology of Reproduction, 79(5), 832–840. https://doi.org/10.1095/biolreprod.107.067371Talwar, P., & Prakash, V. (2015). Vitrification in Assisted Reproduction. Vitrification in Assisted Reproduction, 51–63. https://doi.org/10.1007/978-81-322-1527-1Taniguchi, M., Ikeda, A., Arikawa, E., Wongsrikeao, P., Agung, B., Naoi, H., Nagai, T., & Otoi, T. (2007). EffTaniguchi, M., Ikeda, A., Arikawa, E., Wongsrikeao, P., Agung, B., Naoi, H., Nagai, T., & Otoi, T. (2007). Effect of cryoprotectant composition on in vitro viability of in vitro fertilized and cloned bovine embryos following vitrification and in-straw . Journal of Reproduction and Development, 53(4), 963–969. https://doi.org/10.1262/jrd.18175Torres-Zapata, S., Luna-Palomera, C., Aguilar-Cabrales, J. A., Peralta-Torres, J. A., Aké-López, J. R., Sánchez-Dávila, F., & Abad-Zavaleta, J. (2016). Ovulatory response and embryo quality in Katahdin ewes supplemented with palm oil. South African Journal of Animal Sciences, 46(3), 261–268. https://doi.org/10.4314/sajas. v46i3.5Torres, S., & Sevellec, C. (1987). Repeated superovulation and surgical recovery of embryos in the ewe. Reproduction Nutrition Developpement, 27(4), 859–863. https://doi.org/10.1051/rnd:19870612Truong, T. T., & Gardner, D. K. (2020). Antioxidants increase blastocyst cryosurvival and viability post-vitrification. Human Reproduction, 35(1), 12–23. https://doi.org/10.1093/humrep/dez243Tsang, W. H., & Chow, K. L. (2009). Mouse embryo cryopreservation utilizing a novel high-capacity vitrification spatula. BioTechniques, 46(7), 550–552. https://doi.org/10.2144/000113125Vajta, G, Murphy, C. N., & Machaty, Z. (1999). In-straw dilution of bovine blastocysts after vitrification with the method. Veterinary Record, 144, 180–181.Vajta, Gábor, & Nagy, Z. P. (2006). Are programmable freezers still needed in the embryo laboratory? Review on vitrification. Reproductive Biomedicine Online, 12(6), 779–796. https://doi.org/10.1016/S1472-6483(10)61091-7Varago, F. C., Moutacas, V. S., Carvalho, B. C., Serapião, R. V., Vieira, F., Chiarini-Garcia, H., Brandão, F. Z., Camargo, L. S., Henry, M., & Lagares, M. A. (2014). Comparison of conventional freezing and vitrification with dimethylformamide and ethylene glycol for cryopreservation of ovine embryos. Reproduction in Domestic Animals, 49(5), 839–844. https://doi.org/10.1111/rda.12376Vargas Reyes, J. N., & Chacón Jaramillo, L. (2016). Cryopreservation method and composition of the vitrification solution affect viability of in vitro bovine embryos. Revista Colombiana de Ciencias Pecuarias, 29(2), 130–137. https://doi.org/10.17533/udea.rccp.v29n2a06Viana, J. (2019). Embryo Technology Newsletter. Embryo Tecnology Newsletter, v.36, n.4, 2019, 36(4).Willadsen, S. M., Polge, C., Rowson, L. E. A., & Moor, R. M. (1976). Deep freezing of sheep embryos. Journal of Reproduction and Fertility, 46(1), 151–154. https://doi.org/10.1530/jrf.0.0460151Yavin, S., & Arav, A. (2007). Measurement of essential physical properties of vitrification solutions. Theriogenology, 67(1), 81–89. https://doi.org/10.1016/j.theriogenology.2006.09.029Youngs, C. R. (2011). Cryopreservation of preimplantation embryos of cattle, sheep, and goats. Journal of Visualized Experiments, 54, 2–5. https://doi.org/10.3791/2764Yu, X. L., Deng, W., Liu, F. J., Li, Y. H., Li, X. X., Zhang, Y. L., & Zan, L. S. (2010). Closed pulled straw vitrification of in vitro-produced and in vivo-produced bovine embryos. Theriogenology, 73(4), 474–479. https://doi.org/10.1016/j.theriogenology.2009.10.004Zhou, Y., Fu, X., Zhou, G., Jia, B., Fang, Y., Hou, Y., & Zhu, S. (2014). An efficient method for the sanitary vitrification of bovine oocytes in straws. Journal of Animal Science and Biotechnology, 5(1), 1–7. https://doi.org/10.1186/2049-1891-5-19Gobernación de BoyacáColcienciasFundación Universitaria Juan de CastellanosUniversidad Nacional de Colombia Programas de Posgrado de la Facultad de Medicina Veterinaria y de Zootecnia.ORIGINAL2949613899.2020.pdf2949613899.2020.pdfTesis de Maestría en Salud Animalapplication/pdf1193374https://repositorio.unal.edu.co/bitstream/unal/79502/4/2949613899.2020.pdfe11876f2c8866771e397eac3c6e11ba0MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79502/2/license.txtcccfe52f796b7c63423298c2d3365fc6MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.unal.edu.co/bitstream/unal/79502/3/license_rdf4460e5956bc1d1639be9ae6146a50347MD53THUMBNAIL2949613899.2020.pdf.jpg2949613899.2020.pdf.jpgGenerated Thumbnailimage/jpeg4056https://repositorio.unal.edu.co/bitstream/unal/79502/5/2949613899.2020.pdf.jpg57ba60e44b64f5bcdf6da9142adfb473MD55unal/79502oai:repositorio.unal.edu.co:unal/795022024-07-10 23:21:41.286Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg== |