Freight-Transit tour synthesis

ilustraciones, diagramnas

Autores:
Moreno Palacio, Diana Patricia
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/85092
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/85092
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines::624 - Ingeniería civil
Transporte de carga
Freight services
Transporte de pasajeros
Transportation-passengers traffic
Entropy
Freight Transportation
Freight Tour Synthesis
Transit Tour Synthesis
Fuzzy Logic
Sioux Falls Network
Freight and Transit Tour Synthesis
Entropía
Transporte de carga
Síntesis de toures de carga
Síntesis de toures de buses
Síntesis de toures de carga y buses
Lógica difusa
Red de Sioux Falls
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_5f93ed662c8d996df0fe85ba48b31a62
oai_identifier_str oai:repositorio.unal.edu.co:unal/85092
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Freight-Transit tour synthesis
dc.title.translated.spa.fl_str_mv Síntesis de toures de carga y de buses de transporte público
title Freight-Transit tour synthesis
spellingShingle Freight-Transit tour synthesis
620 - Ingeniería y operaciones afines::624 - Ingeniería civil
Transporte de carga
Freight services
Transporte de pasajeros
Transportation-passengers traffic
Entropy
Freight Transportation
Freight Tour Synthesis
Transit Tour Synthesis
Fuzzy Logic
Sioux Falls Network
Freight and Transit Tour Synthesis
Entropía
Transporte de carga
Síntesis de toures de carga
Síntesis de toures de buses
Síntesis de toures de carga y buses
Lógica difusa
Red de Sioux Falls
title_short Freight-Transit tour synthesis
title_full Freight-Transit tour synthesis
title_fullStr Freight-Transit tour synthesis
title_full_unstemmed Freight-Transit tour synthesis
title_sort Freight-Transit tour synthesis
dc.creator.fl_str_mv Moreno Palacio, Diana Patricia
dc.contributor.advisor.none.fl_str_mv González-Calderón, Carlos Alberto
Posada Henao, John Jairo
López-Ospina, Héctor Andrés
dc.contributor.author.none.fl_str_mv Moreno Palacio, Diana Patricia
dc.contributor.researchgroup.spa.fl_str_mv Vias y Transporte (Vitra)
dc.contributor.orcid.spa.fl_str_mv https://orcid.org/my-orcid?orcid=0000-0002-9697-7646
Moreno Palacio, Diana Patricia [0000-0002-9697-7646]
dc.contributor.cvlac.spa.fl_str_mv MORENO PALACIO, DIANA PATRICIA
dc.contributor.scopus.spa.fl_str_mv https://www.scopus.com/authid/detail.uri?authorId=57199156747
Moreno Palacio, Diana Patricia [57199156747]
dc.contributor.researchgate.spa.fl_str_mv https://www.researchgate.net/profile/Diana-Patricia-Moreno-Palacio
Moreno Palacio, Diana Patricia [Diana-Patricia-Moreno-Palacio]
dc.contributor.googlescholar.spa.fl_str_mv https://scholar.google.com/citations?user=eXCDGeIAAAAJ&hl=en
Moreno Palacio, Diana Patricia [eXCDGeIAAAAJ&hl=en]
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines::624 - Ingeniería civil
topic 620 - Ingeniería y operaciones afines::624 - Ingeniería civil
Transporte de carga
Freight services
Transporte de pasajeros
Transportation-passengers traffic
Entropy
Freight Transportation
Freight Tour Synthesis
Transit Tour Synthesis
Fuzzy Logic
Sioux Falls Network
Freight and Transit Tour Synthesis
Entropía
Transporte de carga
Síntesis de toures de carga
Síntesis de toures de buses
Síntesis de toures de carga y buses
Lógica difusa
Red de Sioux Falls
dc.subject.lemb.none.fl_str_mv Transporte de carga
Freight services
Transporte de pasajeros
Transportation-passengers traffic
dc.subject.proposal.eng.fl_str_mv Entropy
Freight Transportation
Freight Tour Synthesis
Transit Tour Synthesis
Fuzzy Logic
Sioux Falls Network
Freight and Transit Tour Synthesis
dc.subject.proposal.spa.fl_str_mv Entropía
Transporte de carga
Síntesis de toures de carga
Síntesis de toures de buses
Síntesis de toures de carga y buses
Lógica difusa
Red de Sioux Falls
description ilustraciones, diagramnas
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-12-13T19:52:30Z
dc.date.available.none.fl_str_mv 2023-12-13T19:52:30Z
dc.date.issued.none.fl_str_mv 2023-12
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/85092
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/85092
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.indexed.spa.fl_str_mv RedCol
LaReferencia
dc.relation.references.spa.fl_str_mv Abdulaal, M., & LeBlanc, L. J. (1979). Continuous equilibrium network design models. Transportation Research Part B: Methodological, 13(1), 19–32. https://doi.org/10.1016/0191-2615(79)90004-3
Abrahamsson, T. (1998). Estimation of Origin-Destination Matrices Using Traffic Counts - A Literature Survey. IIASA, Laxenburg, Austria: IR-98-021. Retrieved from http://pure.iiasa.ac.at/id/eprint/5627/
Aggarwal, M. (2021). Redefining fuzzy entropy with a general framework. Expert Systems with Applications, 164, 113671. https://doi.org/10.1016/j.eswa.2020.113671
Agrawal, A. W., T. Goldman, and N. Hannaford. Shared-Use Bus Priority Lanes on City Streets: Case Studies in Design and Management. Journal of Public Transportation, Vol. 16, No. 4, 2013, pp. 25–41. https://doi.org/http://doi.org/10.5038/2375-0901.16.4.2.
Al-Battaineh, O., & Kaysi, I. A. (2005). Commodity-based truck origin--destination matrix estimation using input--output data and genetic algorithms. Transportation Research Record, 1923(1), 37–45.
Bar-Gera, Hillel, Fredrik Hellman, and Michael Patriksson. 2013. “Computational Precision of Traffic Equilibria Sensitivities in Automatic Network Design and Road Pricing.” Procedia-Social and Behavioral Sciences 80:41–60.
Bastida, C., & Holguin-Veras, J. (2009). Freight Generation Models. Comparative analysis of regression models and multiple classification analysis. Transportation Research Record: Journal of the Transportation Research Board, 2097(1), 51–61. https://doi.org/10.3141/2097-07
Bellman, R., & Zadeh, L. A. (1970). Decision-Making in a Fuzzy Environment. Management Science, 17(4), B141–B164. Retrieved from https://www.jstor.org/stable/2629367
Ben-Dor, G., E. Ben-Elia, and I. Benenson. Assessing the Impacts of Dedicated Bus Lanes on Urban Traffic Congestion and Modal Split with an Agent-Based Model. Procedia Computer Science, Vol. 130, 2018, pp. 824–829. https://doi.org/10.1016/j.procs.2018.04.071.
Bit, A. K., Biswal, M. P., & Alam, S. S. (1992). Fuzzy programming approach to multicriteria decision making transportation problem. Fuzzy Sets and Systems, 50(2), 135–141. https://doi.org/10.1016/0165-0114(92)90212-M
Bit, A. K., Biswal, M. P., & Alam, S. S. (1993a). An additive fuzzy programming model for multiobjective transportation problem. Fuzzy Sets and Systems, 57(3), 313–319. https://doi.org/10.1016/0165-0114(93)90026-E
Bit, A. K., Biswal, M. P., & Alam, S. S. (1993b). Fuzzy programming approach to multiobjective solid transportation problem. Fuzzy Sets and Systems, 57(2), 183–194. https://doi.org/10.1016/0165-0114(93)90158-E
Black, J. (2018). Urban transport planning: Theory and practice (Vol. 4). Routledge.
Board, T. R., Engineering, of S., & Medicine. (2016). Using Commodity Flow Survey Microdata and Other Establishment Data to Estimate the Generation of Freight, Freight Trips, and Service Trips: Guidebook. (J. Holguín-Veras, C. Lawson, C. Wang, M. Jaller, C. González-Calderón, S. Campbell, … D. Ramirez, Eds.). Washington, DC, USA: The National Academies Press. https://doi.org/10.17226/24602
Bureau of Public Roads. Traffic Assignment Manual. Washington, D.C., 1964.
Campbell, S., Holguin-Veras, J., Ramirez-Rios, D. G., Gonzalez-Calderon, C. A., Kalahasthi, L., & Wojtowicz, J. (2018). Freight and service parking needs and the role of demand management. European Transport Research Review, 10(2), 1–13. https://doi.org/http://dx.doi.org/10.1186/s12544-018-0309-5
Chakirov, A. Sioux Falls. In The Multi-Agent Transport Simulation MATSim (A. Horni, K. Nagel, and K. W. Axhausen, eds.), Ubiquity Press, London, pp. 385–388.
Chakirov, Artem, and Pieter J. Fourie. 2014. Enriched Sioux Falls Scenario with Dynamic and Disaggregate Demand. Singapore.
Chanas, S., & Kuchta, D. (1996). A concept of the optimal solution of the transportation problem with fuzzy cost coefficients. Fuzzy Sets and Systems, 82(3), 299–305. https://doi.org/10.1016/0165-0114(95)00278-2
Cruz-Daraviña, P. A. ;, I. Sanchez-Diaz, and J. P. Bocarejo Suescún. Bus Rapid Transit (BRT) and Urban Freight-Competition for Space in Densely Populated Cities. Sustainability, Vol. 13, No. 6611, 2021. https://doi.org/10.3390/su13126611.
De Cea, Joaquin, and Enrique Fernández. 1993. “Transit Assignment for Congested Public Transport Systems: An Equilibrium Model.” Transportation Science 27(2):133–47.
Fan, W., & Machemehl, R. B. (2006). Optimal Transit Route Network Design Problem with Variable Transit Demand : Genetic Algorithm Approach. Journal of Transportation Engineering, 132(January), 40–51. https://doi.org/10.1061/(ASCE)0733-947X(2006)132:1(40)
Fisk, C. S. 1989. “Trip Matrix Estimation from Link Traffic Counts: The Congested Network Case.” Transportation Research Part B 23(5):331–36. doi: 10.1016/0191-2615(89)90009-X.
Friesz, Terry L., Hsun-Jung Cho, Nihal J. Mehta, Roger L. Tobin, and G. Anandalingam. 1992. “A Simulated Anneal-ing Approach to the Network Design Problem with Variational Inequality Constraints.” Transportation Science 26(1):18–26.
Gonzalez-Calderon, C. A. (2014). Multiclass Equilibrium Demand Synthesis. PhD dissertation. Doctor of Philosophy, Rensselaer Polytechnic Institute.
Gonzalez-Calderon, C. A., & Holguín-Veras, J. (2019). Entropy-based freight tour synthesis and the role of traffic count sampling. Transportation Research Part E: Logistics and Transportation Review, 121(November 2017), 63–83. https://doi.org/10.1016/j.tre.2017.10.010
Gonzalez-Calderon, C. A., Sanchez-Diaz, I., Sarmiento-Ordosgoitia, I., & Holguin-Veras, J. (2018). Characterization and analysis of metropolitan freight patterns in Medellin, Colombia. European Transport Research Review, 10(2), 23. https://doi.org/10.1186/s12544-018-0290-z
Gonzalez-Feliu, J., & Sánchez-Díaz, I. (2019). The influence of aggregation level and category construction on estimation quality for freight trip generation models. Transportation Research Part E: Logistics and Transportation Review, 121, 134–148. https://doi.org/10.1016/j.tre.2018.07.007
Gunes, S., A. Goodchild, C. Greene, and V. Nemani. Evaluating Traffic Impacts of Permitting Trucks in Transit-Only Lanes. Transportation Research Record, 2021, p. 03611981211031888.
Hannan, E. L. (1981a). Linear programming with multiple fuzzy goals. Fuzzy Sets and Systems, 6(3), 235–248. https://doi.org/10.1016/0165-0114(81)90002-6
Hannan, E. L. (1981b). On Fuzzy Goal Programming. Decision Sciences, 12(3), 522–531. https://doi.org/10.1111/j.1540-5915.1981.tb00102.x
Hewings, Geoffrey J. D., and Esteban Fernandez-Vazquez. 2019. “Entropy Maximization and Input–Output Analy-sis.” Interdisciplinary Science Reviews 44(3–4):272–85.
Holguin-Veras, J. (2013). Freight demand modeling: state of the art and practice. In Onlinepubs Trb. Washington, D.C.: paper presented to Adapting freight models and traditional freight data programs for performance measurement Workshop. Retrieved from http://onlinepubs.trb.org/onlinepubs/conferences/2013/Freight/Holguin-Veras.pdf
Holguín-Veras, J., & Jaller, M. (2014). Comprehensive freight demand data collection framework for large urban areas. In Sustainable Urban Logistics: Concepts, Methods and Information Systems (pp. 91–112). Springer.
Holguin-Veras, J., & Patil, G. R. (2005). Observed trip chain behavior of commercial vehicles. Transportation Research Record, 1906(1), 74–80.
Holguin-Veras, J., & Thorson, E. (2003). Practical implications of modeling commercial vehicle empty trips. Transportation Research Record, (1833), 87–94. https://doi.org/10.3141/1833-12
Holguin-Veras, J., Amaya-Leal, J., Wojtowicz, J., Jaller, M., Gonzalez-Calderon, C. A., Sanchez-Diaz, I., Wang, X., Haake, D. G., Rhodes, S. S. ;, Darville Hodge, S., Frazier, R. J., Nick, M. K., Dack, J., & Casinelli, L. (2015). Improving freight system performance in metropolitan areas: a planning guide. https://doi.org/10.17226/22159
Holguin-Veras, J., and M. Cetin. Optimal Tolls for Multi-Class Traffic: Analytical Formulations and Policy Implications. Transportation Research Part A: Policy and Practice, Vol. 43, No. 4, 2009, pp. 445–467. https://doi.org/10.1016/j.tra.2008.11.012.
Holguin-Veras, J., Encarnacion, T., Ramirez-Rios, D., He, X. (Sean), Kalahasthi, L., Perez-Guzman, S., Sanchez-Diaz, I., & Gonzalez-Calderon, C. A. (2020). A Multiclass Tour Flow Model and lts Role in Multiclass Freight Tour Synthesis. Transportation Science. https://doi.org/10.1287/trsc.2019.0936
Holguín-Veras, J., Hodge, S., Wojtowicz, J., Singh, C., Wang, C., Jaller, M., … Cruz, B. (2018). The New York city off-hour delivery program: a business and community-friendly sustainability program. Interfaces, 48(1), 70–86. https://doi.org/10.1287/inte.2017.0929
Holguin-Veras, J., Jaller, M., Destro, L., Ban, X., Lawson, C., & Levinson, H. (2011). Freight generation, freight trip generation, and perils of using constant trip rates. Transportation Research Record: Journal of the Transportation Research Board, 2224, 68–81. https://doi.org/10.3141/2224-09
Holguin-Veras, J., Jaller, M., Sanchez-Diaz, I., Campbell, S., & Lawson, C. (2014). Freight Generation and Freight Trip Generation Models. In Modelling Freight Transport (pp. 43–63). Elsevier Inc. https://doi.org/10.1016/B978-0-12-410400-6.00003-3
Hu, Baoyu, Yanli Ma, Yulong Pei, and Wei Gao. 2020. “Statistical Analysis and Predictability of Inter-Urban High-way Traffic Flows: A Case Study in Heilongjiang Province, China.” Transportmetrica A: Transport Science 16(3):1062–78.
Josefsson, Magnus, and Michael Patriksson. 2007. “Sensitivity Analysis of Separable Traffic Equilibrium Equilibria with Application to Bilevel Optimization in Network Design.” Transportation Research Part B: Methodological 41(1):4–31.
Konstantinos, K., and K. Matthew. Transit Route Network Design Problem: Review. Journal of Transportation Engineering, Vol. 135, No. 8, 2009, pp. 491–505. https://doi.org/10.1061/(ASCE)0733-947X(2009)135:8(491).
Krisztin, T. (2018). Semi-parametric spatial autoregressive models in freight generation modeling. Transportation Research Part E: Logistics and Transportation Review, 114, 121–143. https://doi.org/10.1016/j.tre.2018.03.003
Kurauchi, F., Bell, M. G. H., & Schmöcker, J.-D. (2003). Capacity Constrained Transit Assignment with Common Lines. Journal of Mathematical Modelling and Algorithms, 2(4), 309–327. https://doi.org/10.1023/B:JMMA.0000020426.22501.c1
Lam, W. H. K., Wu, Z. X., & Chan, K. S. (2003). Estimation of Transit Origin-Destination Matrices from Passenger Counts Using a Frequency-Based Approach. Journal of Mathematical Modelling and Algorithms, 2(4), 329–348. https://doi.org/10.1023/B:JMMA.0000020423.93104.14
Lam, W. H. K., Z. Y. Gao, K. S. Chan, and H. Yang. 1999. “A Stochastic User Equilibrium Assignment Model for Congested Transit Networks.” Transportation Research Part B: Methodological 33(5):351–68. doi: 10.1016/S0191-2615(98)00040-X.
Lam, William H. K., Jing Zhou, and Zhao Han Sheng. 2002. “A Capacity Restraint Transit Assignment with Elastic Line Frequency.” Transportation Research Part B: Methodological 36(10):919–38. doi: 10.1016/S0191-2615(01)00042-X.
LeBlanc, L. J., E. K. Morlok, and W. P. Pierskalla. An Efficient Approach to Solving the Road Network Equilibrium Traffic Assignment Problem. Transportation Research, Vol. 9, No. 5, 1975, pp. 309–318. https://doi.org/10.1016/0041-1647(75)90030-1.
Lee, S., and J. Lim. Effectiveness And Macroeconomic Impact Analysis Of Policy Instruments For Sustainable Transport In Korea: A CGE Modelling Approach. WIT Transactions on the Built Environment, Vol. 60, 2002, pp. 1–12.
Li, T., Sun, H., Wu, J., Gao, Z., Ge, Y., & Ding, R. (2019). Optimal urban expressway system in a transportation and land use interaction equilibrium framework. Transportmetrica A: Transport Science, 15(2), 1247–1277. https://doi.org/10.1080/23249935.2019.1576798
Lim, Y., & Kim, H. (2016). A combined model of trip distribution and route choice problem. Transportmetrica A: Transport Science, 12(8), 721–735. https://doi.org/10.1080/23249935.2016.1166171
López-Ospina, H. (2013). Modelo de maximización de la entropía y costos generalizados intervalares para la distribución de viajes urbanos. Ingenieria y Universidad, 17(2), 390–407. Retrieved from https://www.redalyc.org/articulo.oa?id=47728826008
López-Ospina, H., Cortés, C. E., Pérez, J., Peña, R., Figueroa-García, J. C., & Urrutia-Mosquera, J. (2021). A maximum entropy optimization model for origin-destination trip matrix estimation with fuzzy entropic parameters. Transportmetrica A: Transport Science, 1–38. https://doi.org/10.1080/23249935.2021.1913257
Luathep, P., A. Sumalee, W. H. K. Lam, Z.-C. Li, and H. K. Lo. Global Optimization Method for Mixed Transportation Network Design Problem: A Mixed-Integer Linear Programming Approach. Transportation Research Part B: Methodological, Vol. 45, No. 5, 2011, pp. 808–827.
Luhandjula, M. K. (2015). Fuzzy optimization: Milestones and perspectives. Fuzzy Sets and Systems, 274, 4–11. https://doi.org/10.1016/j.fss.2014.01.004
Majidi, S., Hosseini-Motlagh, S. M., Yaghoubi, S., & Jokar, A. (2017). Fuzzy green vehicle routing problem with simultaneous pickup-delivery and time windows. RAIRO - Operations Research, 51(4), 1151–1176. https://doi.org/10.1051/ro/2017007
Marcotte, Patrice, and Gerald Marquis. 1992. “Efficient Implementation of Heuristics for the Continuous Network Design Problem.” Annal of Operations Research 34:163–76.
Mcleod, F., and T. Cherrett. Modelling the Impacts of Shared Freight-Public Transport Lanes in Urban Centers. 9.
Meng, Q., H. Yang, and M. G. H. Bell. An Equivalent Continuously Differentiable Model and a Locally Convergent Algorithm for the Continuous Network Design Problem. Transportation Research Part B: Methodological, Vol. 35, No. 1, 2001, pp. 83–105.
Moreno-Palacio, D. P., Gonzalez-Calderon, C. A., López-Ospina, H., Gil-Marin, J. K., & Posada-Henao, J. J. (2023). Freight tour synthesis based on entropy maximization with fuzzy logic constraints. Transportation. https://doi.org/10.1007/s11116-023-10407-y
Moreno-Palacio, D. P., Gonzalez-Calderon, C. A., Posada-Henao, J. J., Lopez-Ospina, H., & Gil-Marin, J. K. (2022). Entropy-Based Transit Tour Synthesis Using Fuzzy Logic. In Sustainability (Vol. 14, Issue 21). https://doi.org/10.3390/su142114564
Moreno-Palacio, Diana Patricia, Carlos Alberto Gonzalez-Calderon, Héctor López-Ospina, Jhan Gil-Marin, and John Jairo Posada-Henao. 2022. “POMS-2022-Conference Program Book.” P. 147 in Freight Tour Synthesis based on Entropy - Fuzzy Logic, edited by T. Dhakar, R. Tewari, and S. Singhania. PRODUCTION AND OPERATIONS MANAGEMENT SOCIETY.
Morlok, E. K., Schofer, J. L., Pierskalla, W. P., Marsten, R. E., Agarwal, S. K., Stoner, J. W., … Spacek, D. T. (1973). Development and Application of a Highway Network Design Model (Vol. 1,2).
Nagy, A., Ercsey, Z., Tick, J., & Kovács, Z. (2019). Bus transport process network synthesis. Acta Polytechnica Hungarica, 16(7), 25–43. https://doi.org/10.12700/APH.16.7.2019.7.2
National Association of City Transportation Officials. Transit Street Design Guide. Washington, 2016.
Nguyen, Sang, and Stefano Pallottino. 1988. “Equilibrium Traffic Assignment for Large Scale Transit Networks.” European Journal of Operational Research 37(2):176–86.
Nielsen, Otto Anker. 2000. “A Stochastic Transit Assignment Model Considering Differences in Passengers Utility Functions.” Transportation Research Part B: Methodological 34(5):377–402. doi: 10.1016/S0191-2615(99)00029-6.
Noriega, Y., & Florian, M. (2007). Multi-Class Demand Matrix Adjustment. Canada: CIRRELT.
Nuzzolo, Agostino, and Umberto Crisalli. 2001. “Estimation of Transit Origin/Destination Matrices from Traffic Counts Using a Scheduled-Based Approach.” in European Transport Forum 2001. Cambridge, UK: Association for European Transport.
Ortuzar, J. de D., & Willumsen, L. G. (2011). Modelling Transport (Fourth Edi). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781119993308
Sakawa, M. (1983). Interactive Fuzzy Decision Making for Multiobjective Linear Programming Problems and its Application. IFAC Proceedings Volumes, 16(13), 295–300. https://doi.org/10.1016/S1474-6670(17)62049-4
Sakawa, M., & Yano, H. (1987). An Interactive Fuzzy Satisficing Method for Multiobjective Linear Programming Problems with Fuzzy Parameters. IFAC Proceedings Volumes, 20(9), 437–442. https://doi.org/10.1016/S1474-6670(17)55745-6
Sanchez-Diaz, I., Holguin-Veras, J., & Ban, X. (Jeff). (2015). A time-dependent freight tour synthesis model. Transportation Research Part B: Methodological, 78, 144–168. https://doi.org/10.1016/j.trb.2015.04.007
Sanchez-Diaz, I., Holguin-Veras, J., & Wang, X. (2016). An Exploratory Analysis of Spatial Effects on Freight Trip Attraction. Transportation, 43(1), 177–196. https://doi.org/10.1007/s11116-014-9570-1
Soehodo, S., & Koshi, M. (1999). Design of public transit network in urban area with elastic demand. Journal of Advanced Transportation, 33(3), 335–369. https://doi.org/10.1002/atr.5670330306
Spiess, Heinz, and Michael Florian. 1989. “Optimal Strategies: A New Assignment Model for Transit Networks.” Transportation Research Part B: Methodological 23(2):83–102.
Sun, Chao, Yulin Chang, Yuji Shi, Lin Cheng, and Jie Ma. 2019. “Subnetwork Origin-Destination Matrix Estimation Under Travel Demand Constraints.” Networks and Spatial Economics 19(4):1123–42. doi: 10.1007/s11067-019-09449-6.
Suwansirikul, Chaisak, Terry L. Friesz, and Roger L. Tobin. 1987. “Equilibrium Decomposed Optimization: A Heu-ristic for the Continuous Equilibrium Network Design Problem.” Transportation Science 21(4):254–63.
Tamin, and LG Willumsem. 1992. “Freight Demand Model Estimation From Traffic Counts.” Simplified Transport Demand Modelling (Perspectives 2) 75–86.
Tang, Jinjun, Shen Zhang, Xinqiang Chen, Fang Liu, and Yajie Zou. 2018. “Taxi Trips Distribution Modeling Based on Entropy-Maximizing Theory: A Case Study in Harbin City—China.” Physica A: Statistical Mechanics and Its Applications 493:430–43.
Tavasszy, L. A., & Stada, J. E. (1994). THE IMPACT OF DECREASING BORDER BARRIERS IN EUROPE ON FREIGHT TRANSPORT BY ROAD. In Transportation Research Forum, 36th Annual Conference, 2 volumesTransportation Research Forum.
Trubia, S., A. Severino, S. Curto, F. Arena, and G. Pau. On BRT Spread around the World: Analysis of Some Particular Cities. Infrastructures, 2020. https://doi.org/10.3390/infrastructures5100088.
Velichko, Andrey. 2016. “Interregional Transportation Modeling for the Far East of Russia Macro-Region.” Pp. 394–403 in DOOR (Supplement).
Viegas, J., and B. Lu. Turn of the Century, Survival of the Compact City, Revival of Public Transport. Bottlenecks in Transportation and the Port Industry.(H. Meersman, Ed). Antwerp, Belgium, 1996, pp. 55–63.
Wang, Q., & Holguin-Veras, J. (2009). Tour-Based Entropy Maximization Formulations of Urban Commercial Vehicle Movements. In 2009 Annual Meeting of the Transportation Research Board (pp. 1–22). New York: 2009 Annual Meeting of the Transportation Research Board. Retrieved from https://abstracts.aetransport.org/
Wardrop, J. G. (1952). Some Theoretical Aspects of Road Traffic Research. ROAD ENGINEERING DIVISION MEETING.
Wei, Xueyan, Weijie Yu, Wei Wang, De Zhao, and Xuedong Hua. n.d. “Optimization and Comparative Analysis of Traffic Restriction Policy by Jointly Considering Carpool Exemptions.” doi: 10.3390/su12187734.
Wigan, M., Browne, M., Allen, J., & Anderson, S. (2002). Understanding the growth in service trips and developing transport modelling approaches to commercial, service and light goods movements. Association for European Transport, 15. Retrieved from http://abstracts.aetransport.org/paper/index/id/1370/confid/8
Willumsen, L. G. (1978a). Estimation of an OD Matrix from Traffic Counts - A Review. Leeds, UK: Institute of Transport Studies, University of Leeds. Retrieved from http://eprints.whiterose.ac.uk/2415/
Willumsen, L. G. (1978b). OD matrices from network data: a comparison of alternative methods for their estimation. In Proc. of PTRC Summer Annual Meeting 1978 Seminar in Transport Models.
Willumsen, L. G. 1982. Estimation of Trip Matrices from Volume Counts. Validation of a Model under Congested Condi-tions.
Willumsen, L. G. 1984. “Estimating Time-Dependent Trip Matrices from Traffic Counts.” Pp. 397–412 in Proceedings of the Ninth International Symposium on Transportation and Traffic Theory, edited by J. Volmuller and R. Hamers-lag. Utrecht, Netherlands: VNU Science Press.
Wilson, A. G. (1969). The use of entropy maximising models, in the theory of trip distribution, mode split and route split. Journal of Transport Economics and Policy, 3(1), 108–126. Retrieved from https://www.jstor.org/stable/20052128
Wilson, A. G. (1970). Inter‐regional Commodity Flows: Entropy Maximizing Approaches. Geographical Analysis, 2(3), 255–282. https://doi.org/10.1111/j.1538-4632.1970.tb00859.x
Wilson, A. G. A Statistical Theory of Spatial Distribution Models. Transportation Research, Vol. 1, No. 3, 1967, pp. 253–269. https://doi.org/10.1016/0041-1647(67)90035-4.
Wirasinghe, S. C., Kattan, L., Rahman, M. M., Hubbell, J., Thilakaratne, R., & Anowar, & S. (2013). Bus rapid transit-a review. International Journal of Urban Sciences, 17(1), 1–31. https://doi.org/10.1080/12265934.2013.777514
Wong, S. C., and C. O. Tong. 1998. “Estimation of Time-Dependent Origin-Destination Matrices for Transit Net-works.” Transportation Research Part B: Methodological 32(1):35–48. doi: 10.1016/S0191-2615(97)00011-8.
Wong, S. C., C. O. Tong, K. I. Wong, W. H. K. Lam, H. K. Lo, H. Yang, and H. P. Lo. 2005. “Estimation of Multiclass Origin-Destination Matrices from Traffic Counts.” Journal of Urban Planning and Development 131(1):19–29. doi: 10.1061/(ASCE)0733-9488(2005)131:1(19).
Wu, Jia Hao, Michael Florian, and Patrice Marcotte. 1994. “Transit Equilibrium Assignment: A Model and Solution Algorithms.” Transportation Science 28(3):193–203.
You, S. I., & Ritchie, S. G. (2019). Tour-Based Truck Demand Modeling with Entropy Maximization Using GPS Data. Journal of Advanced Transportation, 2019. https://doi.org/10.1155/2019/5021026
Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X
Zadeh, L. A. (1968). Fuzzy algorithms. Information and Control, 12(2), 94–102. https://doi.org/10.1016/S0019-9958(68)90211-8
Zadeh, L. A. (1999). Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems, 100(6), 9–34. https://doi.org/10.1016/S0165-0114(99)80004-9
Zhang, Y., & Ye, Z. (2008). Short-term traffic flow forecasting using fuzzy logic system methods. Journal of Intelligent Transportation Systems: Technology, Planning, and Operations, 12(3), 102–112. https://doi.org/10.1080/15472450802262281
Zimmermann, H.-J. (1978). Fuzzy programming and linear programming with several objective functions. Fuzzy Sets and Systems, 1(1), 45–55. https://doi.org/10.1016/0165-0114(78)90031-3
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xvi, 132 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Minas - Doctorado en Ingeniería - Ingeniería Civil
dc.publisher.faculty.spa.fl_str_mv Facultad de Minas
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/85092/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/85092/2/43203448.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/85092/3/43203448.2023.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
5167269cd353f34d42e5f5410b00f3c6
e2aea9161aafd3195e6f8ac92137902f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089721304842240
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2González-Calderón, Carlos Alberto99ac3a8e7401fe03f0484989c7c4a6e2Posada Henao, John Jairo5549b8463c907bc1e6c224c4159518c2López-Ospina, Héctor Andrésfdb7e8e940faddb8e6723030de895570Moreno Palacio, Diana Patricia8032696c13104665ff35e99b83286f91Vias y Transporte (Vitra)https://orcid.org/my-orcid?orcid=0000-0002-9697-7646Moreno Palacio, Diana Patricia [0000-0002-9697-7646]MORENO PALACIO, DIANA PATRICIAhttps://www.scopus.com/authid/detail.uri?authorId=57199156747Moreno Palacio, Diana Patricia [57199156747]https://www.researchgate.net/profile/Diana-Patricia-Moreno-PalacioMoreno Palacio, Diana Patricia [Diana-Patricia-Moreno-Palacio]https://scholar.google.com/citations?user=eXCDGeIAAAAJ&hl=enMoreno Palacio, Diana Patricia [eXCDGeIAAAAJ&hl=en]2023-12-13T19:52:30Z2023-12-13T19:52:30Z2023-12https://repositorio.unal.edu.co/handle/unal/85092Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramnasThis research introduces a multi-class demand synthesis model for transit and freight, utilizing entropy maximization and fuzzy logic. The model incorporates traffic data and fuzzy parameters to accommodate uncertainty. The use of fuzzy logic enhances classical modeling by providing flexibility and addressing data uncertainty, a critical aspect in resource-constrained decision-making scenarios. Finite resources such as road capacity necessitate optimal decision-making. Flexible models are essential, as not all constraints can be fully met. Fuzzy logic excels in handling variability and uncertainty, improving results' reliability. It aids in estimating congestion patterns, emissions levels, and accidents, thereby providing valuable insights to decision-makers. Fuzzy logic's flexibility is crucial for real-world adaptability. It enhances transportation planning, benefiting urban mobility. Results' accuracy directly impacts decisions, and fuzzy logic incorporates real-world variability into models. The research focuses on triangular membership functions, a commonly used approach. Fuzzy logic's adaptability is compared with deterministic models, demonstrating superior performance. It helps in finding satisfactory solutions when full constraint satisfaction is unfeasible. Pareto frontiers indicate multi-objective optimization. Decision-makers can use this frontier to choose the right model based on accomplishment versus entropy trade-offs. Fuzzy logic accommodates partial solutions when strict constraints cannot be met. Trials with a developed model show that capacity and cost significantly influence outcomes. Sensitivity analyses reveal the model's robustness. The model's application is promising for shared lanes and infrastructure optimization, handling data variability and uncertainty. It aids in decision-making for urban transportation planning and infrastructure development. Government agencies must strategize mobility elements. Accurate data are crucial for decisions related to routes, traffic management, and infrastructure. Fuzzy logic can guide decisions about shared lanes and resource allocation, enhancing urban transportation planning and development.Esta investigación presenta un modelo de síntesis de demanda multiclase para tránsito y carga, utilizando maximización de entropía y lógica difusa. El modelo incorpora datos de tráfico y parámetros difusos para adaptarse a la incertidumbre. El uso de la lógica difusa mejora el modelado clásico al proporcionar flexibilidad y abordar la incertidumbre de los datos, un aspecto crítico en escenarios de toma de decisiones con recursos limitados. Los recursos finitos, como la capacidad de las vías, requieren una toma de decisiones óptima. Los modelos flexibles son esenciales, ya que no todas las restricciones pueden cumplirse por completo. La lógica difusa se destaca en el manejo de la variabilidad y la incertidumbre, mejorando la confiabilidad de los resultados. Ayuda a estimar los patrones de congestión, los niveles de emisiones y los accidentes, proporcionando así información valiosa a los responsables de la toma de decisiones. La flexibilidad de la lógica difusa es crucial para la adaptabilidad al mundo real. Mejora la planificación del transporte, beneficiando la movilidad urbana. La precisión de los resultados impacta directamente en las decisiones, y la lógica difusa incorpora la variabilidad del mundo real en los modelos. La investigación se centra en las funciones de pertenencia triangulares, un enfoque de uso común. La adaptabilidad de la lógica difusa se compara con modelos deterministas, lo que demuestra un rendimiento superior. Ayuda a encontrar soluciones satisfactorias cuando la satisfacción total de la restricción es inviable. Las fronteras de Pareto indican optimización multiobjetivo. Los tomadores de decisiones pueden usar esta frontera para elegir el modelo correcto en función de las compensaciones entre logros y entropía. La lógica difusa acomoda soluciones parciales cuando no se pueden cumplir restricciones estrictas. Los ensayos con el modelo desarrollado muestran que la capacidad y el costo influyen significativamente en los resultados. Los análisis de sensibilidad revelan la solidez del modelo. La aplicación del modelo es una alternativa prometedora en el uso de infraestructura compartida (carriles y bahías) y la optimización de la misma, al incluir la variabilidad e incertidumbre de los datos, pudiendo ser de ayuda en la toma de decisiones para la planificación del transporte urbano y el desarrollo de infraestructura. Las agencias gubernamentales deben diseñar estrategias para los elementos de movilidad. Los datos precisos son cruciales para las decisiones relacionadas con las rutas, la gestión del tráfico y la infraestructura. La lógica difusa puede guiar las decisiones sobre carriles compartidos y asignación de recursos, mejorando la planificación y el desarrollo del transporte urbano. (Texto tomado de la fuente)DoctoradoDoctor en IngenieríaTransporte de carga y logísticaxvi, 132 páginasapplication/pdfengUniversidad Nacional de ColombiaMedellín - Minas - Doctorado en Ingeniería - Ingeniería CivilFacultad de MinasUniversidad Nacional de Colombia - Sede Medellín620 - Ingeniería y operaciones afines::624 - Ingeniería civilTransporte de cargaFreight servicesTransporte de pasajerosTransportation-passengers trafficEntropyFreight TransportationFreight Tour SynthesisTransit Tour SynthesisFuzzy LogicSioux Falls NetworkFreight and Transit Tour SynthesisEntropíaTransporte de cargaSíntesis de toures de cargaSíntesis de toures de busesSíntesis de toures de carga y busesLógica difusaRed de Sioux FallsFreight-Transit tour synthesisSíntesis de toures de carga y de buses de transporte públicoTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDRedColLaReferenciaAbdulaal, M., & LeBlanc, L. J. (1979). Continuous equilibrium network design models. Transportation Research Part B: Methodological, 13(1), 19–32. https://doi.org/10.1016/0191-2615(79)90004-3Abrahamsson, T. (1998). Estimation of Origin-Destination Matrices Using Traffic Counts - A Literature Survey. IIASA, Laxenburg, Austria: IR-98-021. Retrieved from http://pure.iiasa.ac.at/id/eprint/5627/Aggarwal, M. (2021). Redefining fuzzy entropy with a general framework. Expert Systems with Applications, 164, 113671. https://doi.org/10.1016/j.eswa.2020.113671Agrawal, A. W., T. Goldman, and N. Hannaford. Shared-Use Bus Priority Lanes on City Streets: Case Studies in Design and Management. Journal of Public Transportation, Vol. 16, No. 4, 2013, pp. 25–41. https://doi.org/http://doi.org/10.5038/2375-0901.16.4.2.Al-Battaineh, O., & Kaysi, I. A. (2005). Commodity-based truck origin--destination matrix estimation using input--output data and genetic algorithms. Transportation Research Record, 1923(1), 37–45.Bar-Gera, Hillel, Fredrik Hellman, and Michael Patriksson. 2013. “Computational Precision of Traffic Equilibria Sensitivities in Automatic Network Design and Road Pricing.” Procedia-Social and Behavioral Sciences 80:41–60.Bastida, C., & Holguin-Veras, J. (2009). Freight Generation Models. Comparative analysis of regression models and multiple classification analysis. Transportation Research Record: Journal of the Transportation Research Board, 2097(1), 51–61. https://doi.org/10.3141/2097-07Bellman, R., & Zadeh, L. A. (1970). Decision-Making in a Fuzzy Environment. Management Science, 17(4), B141–B164. Retrieved from https://www.jstor.org/stable/2629367Ben-Dor, G., E. Ben-Elia, and I. Benenson. Assessing the Impacts of Dedicated Bus Lanes on Urban Traffic Congestion and Modal Split with an Agent-Based Model. Procedia Computer Science, Vol. 130, 2018, pp. 824–829. https://doi.org/10.1016/j.procs.2018.04.071.Bit, A. K., Biswal, M. P., & Alam, S. S. (1992). Fuzzy programming approach to multicriteria decision making transportation problem. Fuzzy Sets and Systems, 50(2), 135–141. https://doi.org/10.1016/0165-0114(92)90212-MBit, A. K., Biswal, M. P., & Alam, S. S. (1993a). An additive fuzzy programming model for multiobjective transportation problem. Fuzzy Sets and Systems, 57(3), 313–319. https://doi.org/10.1016/0165-0114(93)90026-EBit, A. K., Biswal, M. P., & Alam, S. S. (1993b). Fuzzy programming approach to multiobjective solid transportation problem. Fuzzy Sets and Systems, 57(2), 183–194. https://doi.org/10.1016/0165-0114(93)90158-EBlack, J. (2018). Urban transport planning: Theory and practice (Vol. 4). Routledge.Board, T. R., Engineering, of S., & Medicine. (2016). Using Commodity Flow Survey Microdata and Other Establishment Data to Estimate the Generation of Freight, Freight Trips, and Service Trips: Guidebook. (J. Holguín-Veras, C. Lawson, C. Wang, M. Jaller, C. González-Calderón, S. Campbell, … D. Ramirez, Eds.). Washington, DC, USA: The National Academies Press. https://doi.org/10.17226/24602Bureau of Public Roads. Traffic Assignment Manual. Washington, D.C., 1964.Campbell, S., Holguin-Veras, J., Ramirez-Rios, D. G., Gonzalez-Calderon, C. A., Kalahasthi, L., & Wojtowicz, J. (2018). Freight and service parking needs and the role of demand management. European Transport Research Review, 10(2), 1–13. https://doi.org/http://dx.doi.org/10.1186/s12544-018-0309-5Chakirov, A. Sioux Falls. In The Multi-Agent Transport Simulation MATSim (A. Horni, K. Nagel, and K. W. Axhausen, eds.), Ubiquity Press, London, pp. 385–388.Chakirov, Artem, and Pieter J. Fourie. 2014. Enriched Sioux Falls Scenario with Dynamic and Disaggregate Demand. Singapore.Chanas, S., & Kuchta, D. (1996). A concept of the optimal solution of the transportation problem with fuzzy cost coefficients. Fuzzy Sets and Systems, 82(3), 299–305. https://doi.org/10.1016/0165-0114(95)00278-2Cruz-Daraviña, P. A. ;, I. Sanchez-Diaz, and J. P. Bocarejo Suescún. Bus Rapid Transit (BRT) and Urban Freight-Competition for Space in Densely Populated Cities. Sustainability, Vol. 13, No. 6611, 2021. https://doi.org/10.3390/su13126611.De Cea, Joaquin, and Enrique Fernández. 1993. “Transit Assignment for Congested Public Transport Systems: An Equilibrium Model.” Transportation Science 27(2):133–47.Fan, W., & Machemehl, R. B. (2006). Optimal Transit Route Network Design Problem with Variable Transit Demand : Genetic Algorithm Approach. Journal of Transportation Engineering, 132(January), 40–51. https://doi.org/10.1061/(ASCE)0733-947X(2006)132:1(40)Fisk, C. S. 1989. “Trip Matrix Estimation from Link Traffic Counts: The Congested Network Case.” Transportation Research Part B 23(5):331–36. doi: 10.1016/0191-2615(89)90009-X.Friesz, Terry L., Hsun-Jung Cho, Nihal J. Mehta, Roger L. Tobin, and G. Anandalingam. 1992. “A Simulated Anneal-ing Approach to the Network Design Problem with Variational Inequality Constraints.” Transportation Science 26(1):18–26.Gonzalez-Calderon, C. A. (2014). Multiclass Equilibrium Demand Synthesis. PhD dissertation. Doctor of Philosophy, Rensselaer Polytechnic Institute.Gonzalez-Calderon, C. A., & Holguín-Veras, J. (2019). Entropy-based freight tour synthesis and the role of traffic count sampling. Transportation Research Part E: Logistics and Transportation Review, 121(November 2017), 63–83. https://doi.org/10.1016/j.tre.2017.10.010Gonzalez-Calderon, C. A., Sanchez-Diaz, I., Sarmiento-Ordosgoitia, I., & Holguin-Veras, J. (2018). Characterization and analysis of metropolitan freight patterns in Medellin, Colombia. European Transport Research Review, 10(2), 23. https://doi.org/10.1186/s12544-018-0290-zGonzalez-Feliu, J., & Sánchez-Díaz, I. (2019). The influence of aggregation level and category construction on estimation quality for freight trip generation models. Transportation Research Part E: Logistics and Transportation Review, 121, 134–148. https://doi.org/10.1016/j.tre.2018.07.007Gunes, S., A. Goodchild, C. Greene, and V. Nemani. Evaluating Traffic Impacts of Permitting Trucks in Transit-Only Lanes. Transportation Research Record, 2021, p. 03611981211031888.Hannan, E. L. (1981a). Linear programming with multiple fuzzy goals. Fuzzy Sets and Systems, 6(3), 235–248. https://doi.org/10.1016/0165-0114(81)90002-6Hannan, E. L. (1981b). On Fuzzy Goal Programming. Decision Sciences, 12(3), 522–531. https://doi.org/10.1111/j.1540-5915.1981.tb00102.xHewings, Geoffrey J. D., and Esteban Fernandez-Vazquez. 2019. “Entropy Maximization and Input–Output Analy-sis.” Interdisciplinary Science Reviews 44(3–4):272–85.Holguin-Veras, J. (2013). Freight demand modeling: state of the art and practice. In Onlinepubs Trb. Washington, D.C.: paper presented to Adapting freight models and traditional freight data programs for performance measurement Workshop. Retrieved from http://onlinepubs.trb.org/onlinepubs/conferences/2013/Freight/Holguin-Veras.pdfHolguín-Veras, J., & Jaller, M. (2014). Comprehensive freight demand data collection framework for large urban areas. In Sustainable Urban Logistics: Concepts, Methods and Information Systems (pp. 91–112). Springer.Holguin-Veras, J., & Patil, G. R. (2005). Observed trip chain behavior of commercial vehicles. Transportation Research Record, 1906(1), 74–80.Holguin-Veras, J., & Thorson, E. (2003). Practical implications of modeling commercial vehicle empty trips. Transportation Research Record, (1833), 87–94. https://doi.org/10.3141/1833-12Holguin-Veras, J., Amaya-Leal, J., Wojtowicz, J., Jaller, M., Gonzalez-Calderon, C. A., Sanchez-Diaz, I., Wang, X., Haake, D. G., Rhodes, S. S. ;, Darville Hodge, S., Frazier, R. J., Nick, M. K., Dack, J., & Casinelli, L. (2015). Improving freight system performance in metropolitan areas: a planning guide. https://doi.org/10.17226/22159Holguin-Veras, J., and M. Cetin. Optimal Tolls for Multi-Class Traffic: Analytical Formulations and Policy Implications. Transportation Research Part A: Policy and Practice, Vol. 43, No. 4, 2009, pp. 445–467. https://doi.org/10.1016/j.tra.2008.11.012.Holguin-Veras, J., Encarnacion, T., Ramirez-Rios, D., He, X. (Sean), Kalahasthi, L., Perez-Guzman, S., Sanchez-Diaz, I., & Gonzalez-Calderon, C. A. (2020). A Multiclass Tour Flow Model and lts Role in Multiclass Freight Tour Synthesis. Transportation Science. https://doi.org/10.1287/trsc.2019.0936Holguín-Veras, J., Hodge, S., Wojtowicz, J., Singh, C., Wang, C., Jaller, M., … Cruz, B. (2018). The New York city off-hour delivery program: a business and community-friendly sustainability program. Interfaces, 48(1), 70–86. https://doi.org/10.1287/inte.2017.0929Holguin-Veras, J., Jaller, M., Destro, L., Ban, X., Lawson, C., & Levinson, H. (2011). Freight generation, freight trip generation, and perils of using constant trip rates. Transportation Research Record: Journal of the Transportation Research Board, 2224, 68–81. https://doi.org/10.3141/2224-09Holguin-Veras, J., Jaller, M., Sanchez-Diaz, I., Campbell, S., & Lawson, C. (2014). Freight Generation and Freight Trip Generation Models. In Modelling Freight Transport (pp. 43–63). Elsevier Inc. https://doi.org/10.1016/B978-0-12-410400-6.00003-3Hu, Baoyu, Yanli Ma, Yulong Pei, and Wei Gao. 2020. “Statistical Analysis and Predictability of Inter-Urban High-way Traffic Flows: A Case Study in Heilongjiang Province, China.” Transportmetrica A: Transport Science 16(3):1062–78.Josefsson, Magnus, and Michael Patriksson. 2007. “Sensitivity Analysis of Separable Traffic Equilibrium Equilibria with Application to Bilevel Optimization in Network Design.” Transportation Research Part B: Methodological 41(1):4–31.Konstantinos, K., and K. Matthew. Transit Route Network Design Problem: Review. Journal of Transportation Engineering, Vol. 135, No. 8, 2009, pp. 491–505. https://doi.org/10.1061/(ASCE)0733-947X(2009)135:8(491).Krisztin, T. (2018). Semi-parametric spatial autoregressive models in freight generation modeling. Transportation Research Part E: Logistics and Transportation Review, 114, 121–143. https://doi.org/10.1016/j.tre.2018.03.003Kurauchi, F., Bell, M. G. H., & Schmöcker, J.-D. (2003). Capacity Constrained Transit Assignment with Common Lines. Journal of Mathematical Modelling and Algorithms, 2(4), 309–327. https://doi.org/10.1023/B:JMMA.0000020426.22501.c1Lam, W. H. K., Wu, Z. X., & Chan, K. S. (2003). Estimation of Transit Origin-Destination Matrices from Passenger Counts Using a Frequency-Based Approach. Journal of Mathematical Modelling and Algorithms, 2(4), 329–348. https://doi.org/10.1023/B:JMMA.0000020423.93104.14Lam, W. H. K., Z. Y. Gao, K. S. Chan, and H. Yang. 1999. “A Stochastic User Equilibrium Assignment Model for Congested Transit Networks.” Transportation Research Part B: Methodological 33(5):351–68. doi: 10.1016/S0191-2615(98)00040-X.Lam, William H. K., Jing Zhou, and Zhao Han Sheng. 2002. “A Capacity Restraint Transit Assignment with Elastic Line Frequency.” Transportation Research Part B: Methodological 36(10):919–38. doi: 10.1016/S0191-2615(01)00042-X.LeBlanc, L. J., E. K. Morlok, and W. P. Pierskalla. An Efficient Approach to Solving the Road Network Equilibrium Traffic Assignment Problem. Transportation Research, Vol. 9, No. 5, 1975, pp. 309–318. https://doi.org/10.1016/0041-1647(75)90030-1.Lee, S., and J. Lim. Effectiveness And Macroeconomic Impact Analysis Of Policy Instruments For Sustainable Transport In Korea: A CGE Modelling Approach. WIT Transactions on the Built Environment, Vol. 60, 2002, pp. 1–12.Li, T., Sun, H., Wu, J., Gao, Z., Ge, Y., & Ding, R. (2019). Optimal urban expressway system in a transportation and land use interaction equilibrium framework. Transportmetrica A: Transport Science, 15(2), 1247–1277. https://doi.org/10.1080/23249935.2019.1576798Lim, Y., & Kim, H. (2016). A combined model of trip distribution and route choice problem. Transportmetrica A: Transport Science, 12(8), 721–735. https://doi.org/10.1080/23249935.2016.1166171López-Ospina, H. (2013). Modelo de maximización de la entropía y costos generalizados intervalares para la distribución de viajes urbanos. Ingenieria y Universidad, 17(2), 390–407. Retrieved from https://www.redalyc.org/articulo.oa?id=47728826008López-Ospina, H., Cortés, C. E., Pérez, J., Peña, R., Figueroa-García, J. C., & Urrutia-Mosquera, J. (2021). A maximum entropy optimization model for origin-destination trip matrix estimation with fuzzy entropic parameters. Transportmetrica A: Transport Science, 1–38. https://doi.org/10.1080/23249935.2021.1913257Luathep, P., A. Sumalee, W. H. K. Lam, Z.-C. Li, and H. K. Lo. Global Optimization Method for Mixed Transportation Network Design Problem: A Mixed-Integer Linear Programming Approach. Transportation Research Part B: Methodological, Vol. 45, No. 5, 2011, pp. 808–827.Luhandjula, M. K. (2015). Fuzzy optimization: Milestones and perspectives. Fuzzy Sets and Systems, 274, 4–11. https://doi.org/10.1016/j.fss.2014.01.004Majidi, S., Hosseini-Motlagh, S. M., Yaghoubi, S., & Jokar, A. (2017). Fuzzy green vehicle routing problem with simultaneous pickup-delivery and time windows. RAIRO - Operations Research, 51(4), 1151–1176. https://doi.org/10.1051/ro/2017007Marcotte, Patrice, and Gerald Marquis. 1992. “Efficient Implementation of Heuristics for the Continuous Network Design Problem.” Annal of Operations Research 34:163–76.Mcleod, F., and T. Cherrett. Modelling the Impacts of Shared Freight-Public Transport Lanes in Urban Centers. 9.Meng, Q., H. Yang, and M. G. H. Bell. An Equivalent Continuously Differentiable Model and a Locally Convergent Algorithm for the Continuous Network Design Problem. Transportation Research Part B: Methodological, Vol. 35, No. 1, 2001, pp. 83–105.Moreno-Palacio, D. P., Gonzalez-Calderon, C. A., López-Ospina, H., Gil-Marin, J. K., & Posada-Henao, J. J. (2023). Freight tour synthesis based on entropy maximization with fuzzy logic constraints. Transportation. https://doi.org/10.1007/s11116-023-10407-yMoreno-Palacio, D. P., Gonzalez-Calderon, C. A., Posada-Henao, J. J., Lopez-Ospina, H., & Gil-Marin, J. K. (2022). Entropy-Based Transit Tour Synthesis Using Fuzzy Logic. In Sustainability (Vol. 14, Issue 21). https://doi.org/10.3390/su142114564Moreno-Palacio, Diana Patricia, Carlos Alberto Gonzalez-Calderon, Héctor López-Ospina, Jhan Gil-Marin, and John Jairo Posada-Henao. 2022. “POMS-2022-Conference Program Book.” P. 147 in Freight Tour Synthesis based on Entropy - Fuzzy Logic, edited by T. Dhakar, R. Tewari, and S. Singhania. PRODUCTION AND OPERATIONS MANAGEMENT SOCIETY.Morlok, E. K., Schofer, J. L., Pierskalla, W. P., Marsten, R. E., Agarwal, S. K., Stoner, J. W., … Spacek, D. T. (1973). Development and Application of a Highway Network Design Model (Vol. 1,2).Nagy, A., Ercsey, Z., Tick, J., & Kovács, Z. (2019). Bus transport process network synthesis. Acta Polytechnica Hungarica, 16(7), 25–43. https://doi.org/10.12700/APH.16.7.2019.7.2National Association of City Transportation Officials. Transit Street Design Guide. Washington, 2016.Nguyen, Sang, and Stefano Pallottino. 1988. “Equilibrium Traffic Assignment for Large Scale Transit Networks.” European Journal of Operational Research 37(2):176–86.Nielsen, Otto Anker. 2000. “A Stochastic Transit Assignment Model Considering Differences in Passengers Utility Functions.” Transportation Research Part B: Methodological 34(5):377–402. doi: 10.1016/S0191-2615(99)00029-6.Noriega, Y., & Florian, M. (2007). Multi-Class Demand Matrix Adjustment. Canada: CIRRELT.Nuzzolo, Agostino, and Umberto Crisalli. 2001. “Estimation of Transit Origin/Destination Matrices from Traffic Counts Using a Scheduled-Based Approach.” in European Transport Forum 2001. Cambridge, UK: Association for European Transport.Ortuzar, J. de D., & Willumsen, L. G. (2011). Modelling Transport (Fourth Edi). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781119993308Sakawa, M. (1983). Interactive Fuzzy Decision Making for Multiobjective Linear Programming Problems and its Application. IFAC Proceedings Volumes, 16(13), 295–300. https://doi.org/10.1016/S1474-6670(17)62049-4Sakawa, M., & Yano, H. (1987). An Interactive Fuzzy Satisficing Method for Multiobjective Linear Programming Problems with Fuzzy Parameters. IFAC Proceedings Volumes, 20(9), 437–442. https://doi.org/10.1016/S1474-6670(17)55745-6Sanchez-Diaz, I., Holguin-Veras, J., & Ban, X. (Jeff). (2015). A time-dependent freight tour synthesis model. Transportation Research Part B: Methodological, 78, 144–168. https://doi.org/10.1016/j.trb.2015.04.007Sanchez-Diaz, I., Holguin-Veras, J., & Wang, X. (2016). An Exploratory Analysis of Spatial Effects on Freight Trip Attraction. Transportation, 43(1), 177–196. https://doi.org/10.1007/s11116-014-9570-1Soehodo, S., & Koshi, M. (1999). Design of public transit network in urban area with elastic demand. Journal of Advanced Transportation, 33(3), 335–369. https://doi.org/10.1002/atr.5670330306Spiess, Heinz, and Michael Florian. 1989. “Optimal Strategies: A New Assignment Model for Transit Networks.” Transportation Research Part B: Methodological 23(2):83–102.Sun, Chao, Yulin Chang, Yuji Shi, Lin Cheng, and Jie Ma. 2019. “Subnetwork Origin-Destination Matrix Estimation Under Travel Demand Constraints.” Networks and Spatial Economics 19(4):1123–42. doi: 10.1007/s11067-019-09449-6.Suwansirikul, Chaisak, Terry L. Friesz, and Roger L. Tobin. 1987. “Equilibrium Decomposed Optimization: A Heu-ristic for the Continuous Equilibrium Network Design Problem.” Transportation Science 21(4):254–63.Tamin, and LG Willumsem. 1992. “Freight Demand Model Estimation From Traffic Counts.” Simplified Transport Demand Modelling (Perspectives 2) 75–86.Tang, Jinjun, Shen Zhang, Xinqiang Chen, Fang Liu, and Yajie Zou. 2018. “Taxi Trips Distribution Modeling Based on Entropy-Maximizing Theory: A Case Study in Harbin City—China.” Physica A: Statistical Mechanics and Its Applications 493:430–43.Tavasszy, L. A., & Stada, J. E. (1994). THE IMPACT OF DECREASING BORDER BARRIERS IN EUROPE ON FREIGHT TRANSPORT BY ROAD. In Transportation Research Forum, 36th Annual Conference, 2 volumesTransportation Research Forum.Trubia, S., A. Severino, S. Curto, F. Arena, and G. Pau. On BRT Spread around the World: Analysis of Some Particular Cities. Infrastructures, 2020. https://doi.org/10.3390/infrastructures5100088.Velichko, Andrey. 2016. “Interregional Transportation Modeling for the Far East of Russia Macro-Region.” Pp. 394–403 in DOOR (Supplement).Viegas, J., and B. Lu. Turn of the Century, Survival of the Compact City, Revival of Public Transport. Bottlenecks in Transportation and the Port Industry.(H. Meersman, Ed). Antwerp, Belgium, 1996, pp. 55–63.Wang, Q., & Holguin-Veras, J. (2009). Tour-Based Entropy Maximization Formulations of Urban Commercial Vehicle Movements. In 2009 Annual Meeting of the Transportation Research Board (pp. 1–22). New York: 2009 Annual Meeting of the Transportation Research Board. Retrieved from https://abstracts.aetransport.org/Wardrop, J. G. (1952). Some Theoretical Aspects of Road Traffic Research. ROAD ENGINEERING DIVISION MEETING.Wei, Xueyan, Weijie Yu, Wei Wang, De Zhao, and Xuedong Hua. n.d. “Optimization and Comparative Analysis of Traffic Restriction Policy by Jointly Considering Carpool Exemptions.” doi: 10.3390/su12187734.Wigan, M., Browne, M., Allen, J., & Anderson, S. (2002). Understanding the growth in service trips and developing transport modelling approaches to commercial, service and light goods movements. Association for European Transport, 15. Retrieved from http://abstracts.aetransport.org/paper/index/id/1370/confid/8Willumsen, L. G. (1978a). Estimation of an OD Matrix from Traffic Counts - A Review. Leeds, UK: Institute of Transport Studies, University of Leeds. Retrieved from http://eprints.whiterose.ac.uk/2415/Willumsen, L. G. (1978b). OD matrices from network data: a comparison of alternative methods for their estimation. In Proc. of PTRC Summer Annual Meeting 1978 Seminar in Transport Models.Willumsen, L. G. 1982. Estimation of Trip Matrices from Volume Counts. Validation of a Model under Congested Condi-tions.Willumsen, L. G. 1984. “Estimating Time-Dependent Trip Matrices from Traffic Counts.” Pp. 397–412 in Proceedings of the Ninth International Symposium on Transportation and Traffic Theory, edited by J. Volmuller and R. Hamers-lag. Utrecht, Netherlands: VNU Science Press.Wilson, A. G. (1969). The use of entropy maximising models, in the theory of trip distribution, mode split and route split. Journal of Transport Economics and Policy, 3(1), 108–126. Retrieved from https://www.jstor.org/stable/20052128Wilson, A. G. (1970). Inter‐regional Commodity Flows: Entropy Maximizing Approaches. Geographical Analysis, 2(3), 255–282. https://doi.org/10.1111/j.1538-4632.1970.tb00859.xWilson, A. G. A Statistical Theory of Spatial Distribution Models. Transportation Research, Vol. 1, No. 3, 1967, pp. 253–269. https://doi.org/10.1016/0041-1647(67)90035-4.Wirasinghe, S. C., Kattan, L., Rahman, M. M., Hubbell, J., Thilakaratne, R., & Anowar, & S. (2013). Bus rapid transit-a review. International Journal of Urban Sciences, 17(1), 1–31. https://doi.org/10.1080/12265934.2013.777514Wong, S. C., and C. O. Tong. 1998. “Estimation of Time-Dependent Origin-Destination Matrices for Transit Net-works.” Transportation Research Part B: Methodological 32(1):35–48. doi: 10.1016/S0191-2615(97)00011-8.Wong, S. C., C. O. Tong, K. I. Wong, W. H. K. Lam, H. K. Lo, H. Yang, and H. P. Lo. 2005. “Estimation of Multiclass Origin-Destination Matrices from Traffic Counts.” Journal of Urban Planning and Development 131(1):19–29. doi: 10.1061/(ASCE)0733-9488(2005)131:1(19).Wu, Jia Hao, Michael Florian, and Patrice Marcotte. 1994. “Transit Equilibrium Assignment: A Model and Solution Algorithms.” Transportation Science 28(3):193–203.You, S. I., & Ritchie, S. G. (2019). Tour-Based Truck Demand Modeling with Entropy Maximization Using GPS Data. Journal of Advanced Transportation, 2019. https://doi.org/10.1155/2019/5021026Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-XZadeh, L. A. (1968). Fuzzy algorithms. Information and Control, 12(2), 94–102. https://doi.org/10.1016/S0019-9958(68)90211-8Zadeh, L. A. (1999). Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems, 100(6), 9–34. https://doi.org/10.1016/S0165-0114(99)80004-9Zhang, Y., & Ye, Z. (2008). Short-term traffic flow forecasting using fuzzy logic system methods. Journal of Intelligent Transportation Systems: Technology, Planning, and Operations, 12(3), 102–112. https://doi.org/10.1080/15472450802262281Zimmermann, H.-J. (1978). Fuzzy programming and linear programming with several objective functions. Fuzzy Sets and Systems, 1(1), 45–55. https://doi.org/10.1016/0165-0114(78)90031-3EstudiantesInvestigadoresMaestrosResponsables políticosLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85092/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL43203448.2023.pdf43203448.2023.pdfTesis de Doctorado en Ingeniería Civilapplication/pdf2411460https://repositorio.unal.edu.co/bitstream/unal/85092/2/43203448.2023.pdf5167269cd353f34d42e5f5410b00f3c6MD52THUMBNAIL43203448.2023.pdf.jpg43203448.2023.pdf.jpgGenerated Thumbnailimage/jpeg3988https://repositorio.unal.edu.co/bitstream/unal/85092/3/43203448.2023.pdf.jpge2aea9161aafd3195e6f8ac92137902fMD53unal/85092oai:repositorio.unal.edu.co:unal/850922023-12-13 23:04:00.269Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=