Control de voltaje de múltiples microrredes basado en optimización distribuida

ilustraciones, diagramas

Autores:
Rodriguez Gil, Jhojan Alexis
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/85928
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/85928
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Optimización
Microrredes Interconectadas
ADMM
MPC
Optimization
Networked Microgrids
ADMM
MPC
Sistema de control distribuido
Tensión (electricidad)
Microgrid
distributed control system
voltage
microgrid
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_5f919576e168ff2eeabf4e4824e58a38
oai_identifier_str oai:repositorio.unal.edu.co:unal/85928
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Control de voltaje de múltiples microrredes basado en optimización distribuida
dc.title.translated.eng.fl_str_mv Voltage control of networked microgrids based on distributed optimization
title Control de voltaje de múltiples microrredes basado en optimización distribuida
spellingShingle Control de voltaje de múltiples microrredes basado en optimización distribuida
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Optimización
Microrredes Interconectadas
ADMM
MPC
Optimization
Networked Microgrids
ADMM
MPC
Sistema de control distribuido
Tensión (electricidad)
Microgrid
distributed control system
voltage
microgrid
title_short Control de voltaje de múltiples microrredes basado en optimización distribuida
title_full Control de voltaje de múltiples microrredes basado en optimización distribuida
title_fullStr Control de voltaje de múltiples microrredes basado en optimización distribuida
title_full_unstemmed Control de voltaje de múltiples microrredes basado en optimización distribuida
title_sort Control de voltaje de múltiples microrredes basado en optimización distribuida
dc.creator.fl_str_mv Rodriguez Gil, Jhojan Alexis
dc.contributor.advisor.spa.fl_str_mv Mojica Nava, Eduardo Alirio
dc.contributor.author.spa.fl_str_mv Rodriguez Gil, Jhojan Alexis
dc.contributor.researchgroup.spa.fl_str_mv Programa de Investigacion sobre Adquisicion y Analisis de Señales Paas-Un
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
topic 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Optimización
Microrredes Interconectadas
ADMM
MPC
Optimization
Networked Microgrids
ADMM
MPC
Sistema de control distribuido
Tensión (electricidad)
Microgrid
distributed control system
voltage
microgrid
dc.subject.proposal.spa.fl_str_mv Optimización
Microrredes Interconectadas
ADMM
MPC
dc.subject.proposal.eng.fl_str_mv Optimization
Networked Microgrids
ADMM
MPC
dc.subject.wikidata.spa.fl_str_mv Sistema de control distribuido
Tensión (electricidad)
Microgrid
dc.subject.wikidata.eng.fl_str_mv distributed control system
voltage
microgrid
description ilustraciones, diagramas
publishDate 2023
dc.date.issued.none.fl_str_mv 2023
dc.date.accessioned.none.fl_str_mv 2024-04-16T18:49:47Z
dc.date.available.none.fl_str_mv 2024-04-16T18:49:47Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/85928
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/85928
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Foundations and Trends® in Machine Learning, vol. 3, no. 1, pp. 1–122, 2011.
T. Goldstein, B. O’Donoghue, S. Setzer, and R. Baraniuk, “Fast alternating direction optimization methods,” SIAM Journal on Imaging Sciences, vol. 7, no. 3, pp. 1588– 1623, 2014.
S. Anderson, P. Hidalgo-Gonzalez, R. Dobbe, and C. J. Tomlin, “Distributed model predictive control for autonomous droop-controlled inverter-based microgrids,” in 2019 IEEE 58th Conference on Decision and Control (CDC), 2019, pp. 6242–6248.
K. Rahbar, C. C. Chai, and R. Zhang, “Energy cooperation optimization in microgrids with renewable energy integration,” IEEE Transactions on Smart Grid, vol. 9, no. 2, pp. 1482–1493, 2018.
X. Dou, P. Xu, Q. Hu, W. Sheng, X. Quan, Z. Wu, and B. Xu, “A distributed voltage control strategy for multi-microgrid active distribution networks considering economy and response speed,” IEEE Access, vol. 6, pp. 31 259–31 268, 2018.
N. Priyadharshini, S. Gomathy, and M. Sabarimuthu, “A review on microgrid archi- tecture, cyber security threats and standards,” Materials Today: Proceedings, 2020.
C. Wang, P. Yang, C. Ye, Y. Wang, and Z. Xu, “Voltage control strategy for three/single phase hybrid multimicrogrid,” IEEE Transactions on Energy Conversion, vol. 31, no. 4, pp. 1498–1509, 2016.
M. N. Alam, S. Chakrabarti, and A. Ghosh, “Networked microgrids: State-of-the-art and future perspectives,” IEEE Transactions on Industrial Informatics, vol. 15, no. 3, pp. 1238–1250, 2019.
M. Savaghebi, A. Jalilian, J. C. Vasquez, and J. M. Guerrero, “Secondary control scheme for voltage unbalance compensation in an islanded droop-controlled microgrid,” IEEE Transactions on Smart Grid, vol. 3, no. 2, pp. 797–807, 2012.
F. Guo, C. Wen, J. Mao, and Y.-D. Song, “Distributed secondary voltage and frequency restoration control of droop-controlled inverter-based microgrids,” IEEE Transactions on Industrial Electronics, vol. 62, no. 7, pp. 4355–4364, 2015.
S. A. Arefifar, M. Ordonez, and Y. A.-R. I. Mohamed, “Voltage and current contro- llability in multi-microgrid smart distribution systems,” IEEE Transactions on Smart Grid, vol. 9, no. 2, pp. 817–826, 2018.
D. O. Amoateng, M. Al Hosani, M. S. Elmoursi, K. Turitsyn, and J. L. Kirtley, “Adap- tive voltage and frequency control of islanded multi-microgrids,” IEEE Transactions on Power Systems, vol. 33, no. 4, pp. 4454–4465, 2018.
J. W. Simpson-Porco, Q. Shafiee, F. Dörfler, J. C. Vasquez, J. M. Guerrero, and F. Bu- llo, “Secondary frequency and voltage control of islanded microgrids via distributed ave- raging,” IEEE Transactions on Industrial Electronics, vol. 62, no. 11, pp. 7025–7038, 2015.
J. Rocabert, A. Luna, F. Blaabjerg, and P. Rodríguez, “Control of power converters in ac microgrids,” IEEE Transactions on Power Electronics, vol. 27, no. 11, pp. 4734– 4749, 2012.
J. M. Guerrero, J. C. Vasquez, J. Matas, L. G. de Vicuna, and M. Castilla, “Hierarchical control of droop-controlled ac and dc microgrids—a general approach toward standar- dization,” IEEE Transactions on Industrial Electronics, vol. 58, no. 1, pp. 158–172, 2011.
J. M. Guerrero, M. Chandorkar, T.-L. Lee, and P. C. Loh, “Advanced control architec- tures for intelligent microgrids—part i: Decentralized and hierarchical control,” IEEE Transactions on Industrial Electronics, vol. 60, no. 4, pp. 1254–1262, 2013.
R. H. Lasseter, “Smart distribution: Coupled microgrids,” Proceedings of the IEEE, vol. 99, no. 6, pp. 1074–1082, 2011.
M. Marzband, N. Parhizi, M. Savaghebi, and J. M. Guerrero, “Distributed smart decision-making for a multimicrogrid system based on a hierarchical interactive ar- chitecture,” IEEE Transactions on Energy Conversion, vol. 31, no. 2, pp. 637–648, 2016.
H. Han, X. Hou, J. Yang, J. Wu, M. Su, and J. M. Guerrero, “Review of power sharing control strategies for islanding operation of ac microgrids,” IEEE Transactions on Smart Grid, vol. 7, no. 1, pp. 200–215, 2016.
A. Q. Huang, M. L. Crow, G. T. Heydt, J. P. Zheng, and S. J. Dale, “The future rene- wable electric energy delivery and management (freedm) system: The energy internet,” Proceedings of the IEEE, vol. 99, no. 1, pp. 133–148, 2011.
J. Hu, Y. Shan, J. M. Guerrero, A. Ioinovici, K. W. Chan, and J. Rodriguez, “Model predictive control of microgrids – an overview,” Renewable and Sustainable Energy Reviews, vol. 136, p. 110422, 2021.
N. Bazmohammadi, A. Tahsiri, A. Anvari-Moghaddam, and J. M. Guerrero, “Sto- chastic predictive control of multi-microgrid systems,” IEEE Transactions on Industry Applications, vol. 55, no. 5, pp. 5311–5319, 2019.
F. Milano, F. Dörfler, G. Hug, D. J. Hill, and G. Verbič, “Foundations and challenges of low-inertia systems (invited paper),” in 2018 Power Systems Computation Conference (PSCC), 2018, pp. 1–25.
C. A. Macana, E. Mojica-Nava, H. R. Pota, J. M. Guerrero, and J. C. Vasquez, “A novel compact dq-reference frame model for inverter-based microgrids,” Electronics, vol. 8, no. 11, 2019.
U. Tamrakar, T. M. Hansen, R. Tonkoski, and D. A. Copp, “Model predictive frequency control of low inertia microgrids,” in 2019 IEEE 28th International Symposium on Industrial Electronics (ISIE), 2019, pp. 2111–2116.
A. Parisio, C. Wiezorek, T. Kyntäjä, J. Elo, K. Strunz, and K. H. Johansson, “Coope- rative mpc-based energy management for networked microgrids,” IEEE Transactions on Smart Grid, vol. 8, no. 6, pp. 3066–3074, 2017.
R. H. M. Zargar and M. H. Yaghmaee, “Energy exchange cooperative model in sdn-based interconnected multi-microgrids,” Sustainable Energy, Grids and Networks, vol. 27, p. 100491, 2021.
H. Zou, S. Mao, Y. Wang, F. Zhang, X. Chen, and L. Cheng, “A survey of energy management in interconnected multi-microgrids,” IEEE Access, vol. 7, pp. 72 158– 72 169, 2019.
F. Bandeiras, E. Pinheiro, M. Gomes, P. Coelho, and J. Fernandes, “Review of the cooperation and operation of microgrid clusters,” Renewable and Sustainable Energy Reviews, vol. 133, p. 110311, 2020.
Y. Guo, Q. Wu, H. Gao, S. Huang, B. Zhou, and C. Li, “Double-time-scale coordinated voltage control in active distribution networks based on mpc,” IEEE Transactions on Sustainable Energy, vol. 11, no. 1, pp. 294–303, 2020.
K. E. Antoniadou-Plytaria, I. N. Kouveliotis-Lysikatos, P. S. Georgilakis, and N. D. Hatziargyriou, “Distributed and decentralized voltage control of smart distribution networks: Models, methods, and future research,” IEEE Transactions on Smart Grid, vol. 8, no. 6, pp. 2999–3008, 2017.
H. Sun, Q. Guo, J. Qi, V. Ajjarapu, R. Bravo, J. Chow, Z. Li, R. Moghe, E. Nasr- Azadani, U. Tamrakar, G. N. Taranto, R. Tonkoski, G. Valverde, Q. Wu, and G. Yang, “Review of challenges and research opportunities for voltage control in smart grids,” IEEE Transactions on Power Systems, vol. 34, no. 4, pp. 2790–2801, 2019.
F. Dörfler, S. Bolognani, J. W. Simpson-Porco, and S. Grammatico, “Distributed con- trol and optimization for autonomous power grids,” in 2019 18th European Control Conference (ECC), 2019, pp. 2436–2453.
Y. Guo, Q. Wu, H. Gao, X. Chen, J. Østergaard, and H. Xin, “Mpc-based coordinated voltage regulation for distribution networks with distributed generation and energy storage system,” IEEE Transactions on Sustainable Energy, vol. 10, no. 4, pp. 1731– 1739, 2019.
X. Wu, C. Shen, and R. Iravani, “A distributed, cooperative frequency and voltage control for microgrids,” IEEE Transactions on Smart Grid, vol. 9, no. 4, pp. 2764– 2776, 2018.
J. Schiffer, T. Seel, J. Raisch, and T. Sezi, “Voltage stability and reactive power sharing in inverter-based microgrids with consensus-based distributed voltage control,” IEEE Transactions on Control Systems Technology, vol. 24, no. 1, pp. 96–109, 2016.
Y. Shan, J. Hu, Z. Li, and J. M. Guerrero, “A model predictive control for renewable energy based ac microgrids without any pid regulators,” IEEE Transactions on Power Electronics, vol. 33, no. 11, pp. 9122–9126, 2018.
A. Parisio, E. Rikos, and L. Glielmo, “A model predictive control approach to microgrid operation optimization,” IEEE Transactions on Control Systems Technology, vol. 22, no. 5, pp. 1813–1827, 2014.
D. A. Martínez, E. Mojica-Nava, A. S. Al-Sumaiti, and S. Rivera, “A distortion-based potential game for secondary voltage control in micro-grids,” IEEE Access, vol. 8, pp. 110 611–110 622, 2020.
S. Mhanna, G. Verbič, and A. C. Chapman, “Adaptive admm for distributed ac optimal power flow,” IEEE Transactions on Power Systems, vol. 34, no. 3, pp. 2025–2035, 2019.
J. Xu, H. Sun, and C. J. Dent, “Admm-based distributed opf problem meets stochastic communication delay,” IEEE Transactions on Smart Grid, vol. 10, no. 5, pp. 5046– 5056, 2019.
North American Electric Realiability Corporation, “Fast frequency response concepts and bps reliability needs,” North American Electric Realiability Corporation, Tech. Rep., 2020.
A. Nedić, “Convergence rate of distributed averaging dynamics and optimization in networks,” Foundations and Trends® in Systems and Control, vol. 2, no. 1, pp. 1–100, 2015.
A. Nedić and J. Liu, “Distributed optimization for control,” Annual Review of Control, Robotics, and Autonomous Systems, vol. 1, no. 1, pp. 77–103, 2018.
F. Morbidi, “Functions of the laplacian matrix with application to distributed formation control,” IEEE Transactions on Control of Network Systems, vol. 9, no. 3, pp. 1459–1467, 2022.
M. Mesbahi and M. Egerstedt, Graph Theoretic Methods in Multiagent Networks. Princeton: Princeton University Press, 2010.
S. P. Boyd and L. Vandenberghe, Convex optimization. Cambridge university press, 2004.
MathWorks® , “Quadratic programming - MATLAB quadprog,” Accessed May. 01, 2022 [Online]. Available: https://www.mathworks.com/help/optim/ug/quadprog. html.
Y. Okuyama, Discrete control systems. Springer, 2014.
K. Ogata, Sistemas de control en tiempo discreto. Pearson educación, 1996.
Q. Zhou, M. Shahidehpour, A. Paaso, S. Bahramirad, A. Alabdulwahab, and A. Abusorrah, “Distributed control and communication strategies in networked microgrids,” IEEE Communications Surveys Tutorials, vol. 22, no. 4, pp. 2586–2633, 2020.
B. Zhou, J. Zou, C. Y. Chung, H. Wang, N. Liu, N. Voropai, and D. Xu, “Multimicrogrid energy management systems: Architecture, communication, and scheduling strategies,” Journal of Modern Power Systems and Clean Energy, vol. 9, no. 3, pp. 463–476, 2021.
A. Hirsch, Y. Parag, and J. Guerrero, “Microgrids: A review of technologies, key drivers, and outstanding issues,” Renewable and Sustainable Energy Reviews, vol. 90, pp. 402–411, 2018.
A. Cagnano, E. De Tuglie, and P. Mancarella, “Microgrids: Overview and guidelines for practical implementations and operation,” Applied Energy, vol. 258, p. 114039, 2020.
N. Pogaku, M. Prodanovic, and T. C. Green, “Modeling, analysis and testing of autonomous operation of an inverter-based microgrid,” IEEE Transactions on Power Electronics, vol. 22, no. 2, pp. 613–625, 2007.
M. Ahmed, L. Meegahapola, A. Vahidnia, and M. Datta, “Stability and control aspects of microgrid architectures–a comprehensive review,” IEEE Access, vol. 8, pp. 144 730–144 766, 2020.
N. S., S. K.N., J. E.A., and T. P. I. Ahamed, “Comparative analysis of communication assisted grid synchronization methods in microgrids,” IEEE Systems Journal, vol. 14, no. 1, pp. 1007–1014, 2020.
D. Kumar, F. Zare, and A. Ghosh, “Dc microgrid technology: System architectures, ac grid interfaces, grounding schemes, power quality, communication networks, applications, and standardizations aspects,” IEEE Access, vol. 5, pp. 12 230–12 256, 2017.
I. Serban, S. Céspedes, C. Marinescu, C. A. Azurdia-Meza, J. S. Gómez, and D. S. Hueichapan, “Communication requirements in microgrids: A practical survey,” IEEE Access, vol. 8, pp. 47 694–47 712, 2020.
W.-J. Ma, J. Wang, V. Gupta, and C. Chen, “Distributed energy management for networked microgrids using online admm with regret,” IEEE Transactions on Smart Grid, vol. 9, no. 2, pp. 847–856, 2018.
H. Wang and J. Huang, “Incentivizing energy trading for interconnected microgrids,” IEEE Transactions on Smart Grid, vol. 9, no. 4, pp. 2647–2657, 2018.
L. Mariam, M. Basu, and M. F. Conlon, “Microgrid: Architecture, policy and future trends,” Renewable and Sustainable Energy Reviews, vol. 64, pp. 477–489, 2016.
A. Ahl, M. Yarime, K. Tanaka, and D. Sagawa, “Review of blockchain-based distributed energy: Implications for institutional development,” Renewable and Sustainable Energy Reviews, vol. 107, pp. 200–211, 2019.
P. Vorobev, P. Huang, M. Al Hosani, J. L. Kirtley, and K. Turitsyn, “High-fidelity model order reduction for microgrids stability assessment,” IEEE Transactions on Power Systems, vol. 33, no. 1, pp. 874–887, 2018.
Z. Li, S. Bahramirad, A. Paaso, M. Yan, and M. Shahidehpour, “Blockchain for decentralized transactive energy management system in networked microgrids,” The Electricity Journal, vol. 32, no. 4, pp. 58–72, 2019, special Issue on Strategies for a sustainable, reliable and resilient grid.
Y. Wang, T.-L. Nguyen, Y. Xu, Q.-T. Tran, and R. Caire, “Peer-to-peer control for networked microgrids: Multi-layer and multi-agent architecture design,” IEEE Transactions on Smart Grid, vol. 11, no. 6, pp. 4688–4699, 2020.
X. Zhou, L. Zhou, Y. Chen, J. M. Guerrero, A. Luo, W. Wu, and L. Yang, “A microgrid cluster structure and its autonomous coordination control strategy,” International Journal of Electrical Power & Energy Systems, vol. 100, pp. 69–80, 2018.
Z. Tang, P. Zhang, W. O. Krawec, and Z. Jiang, “Programmable quantum networked microgrids,” IEEE Transactions on Quantum Engineering, vol. 1, pp. 1–13, 2020.
H. Farzin, M. Fotuhi-Firuzabad, and M. Moeini-Aghtaie, “Enhancing power system resilience through hierarchical outage management in multi-microgrids,” IEEE Transactions on Smart Grid, vol. 7, no. 6, pp. 2869–2879, 2016.
Y. Wang, A. O. Rousis, and G. Strbac, “On microgrids and resilience: A comprehensive review on modeling and operational strategies,” Renewable and Sustainable Energy Reviews, vol. 134, p. 110313, 2020.
W. Xu, J. Li, M. Dehghani, and M. GhasemiGarpachi, “Blockchain-based secure energy policy and management of renewable-based smart microgrids,” Sustainable Cities and Society, vol. 72, p. 103010, 2021.
R. Aboli, M. Ramezani, and H. Falaghi, “A hybrid robust distributed model for short-term operation of multi-microgrid distribution networks,” Electric Power Systems Research, vol. 177, p. 106011, 2019.
M. A. Jirdehi, V. S. Tabar, S. Ghassemzadeh, and S. Tohidi, “Different aspects of microgrid management: A comprehensive review,” Journal of Energy Storage, vol. 30, p. 101457, 2020.
V. K. Sood and H. Abdelgawad, “Chapter 1 - microgrids architectures,” in Distributed Energy Resources in Microgrids, R. K. Chauhan and K. Chauhan, Eds. Academic Press, 2019, pp. 1–31.
E. Bullich-Massagué, F. Díaz-González, M. Aragüés-Peñalba, F. Girbau-Llistuella, P. Olivella-Rosell, and A. Sumper, “Microgrid clustering architectures,” Applied Energy, vol. 212, pp. 340–361, 2018.
Y. C. C. Wong, C. S. Lim, M. D. Rotaru, A. Cruden, and X. Kong, “Consensus virtual output impedance control based on the novel droop equivalent impedance concept for a multi-bus radial microgrid,” IEEE Transactions on Energy Conversion, vol. 35, no. 2, pp. 1078–1087, 2020.
F. Dörfler, J. W. Simpson-Porco, and F. Bullo, “Breaking the hierarchy: Distributed control and economic optimality in microgrids,” IEEE Transactions on Control of Network Systems, vol. 3, no. 3, pp. 241–253, 2016.
U. Orji, C. Schantz, S. B. Leeb, J. L. Kirtley, B. Sievenpiper, K. Gerhard, and T. McCoy, “Adaptive zonal protection for ring microgrids,” IEEE Transactions on Smart Grid, vol. 8, no. 4, pp. 1843–1851, 2017.
Z. Tang, Y. Qin, Z. Jiang, W. O. Krawec, and P. Zhang, “Quantum-secure microgrid,” IEEE Transactions on Power Systems, vol. 36, no. 2, pp. 1250–1263, 2021.
A. Renjit, “Chapter 10 - communications, cybersecurity, and the internet of things for microgrids,” in Distributed Energy Resources in Microgrids, R. K. Chauhan and K. Chauhan, Eds. Academic Press, 2019, pp. 275–290.
Y. Han, K. Zhang, H. Li, E. A. A. Coelho, and J. M. Guerrero, “Mas-based distributed coordinated control and optimization in microgrid and microgrid clusters: A comprehensive overview,” IEEE Transactions on Power Electronics, vol. 33, no. 8, pp. 6488–6508, 2018.
M. Starke, A. Herron, D. King, and Y. Xue, “Implementation of a publish-subscribe protocol in microgrid islanding and resynchronization with self-discovery,” IEEE Transactions on Smart Grid, vol. 10, no. 1, pp. 361–370, 2019.
S. A. Alavi, K. Mehran, Y. Hao, A. Rahimian, H. Mirsaeedi, and V. Vahidinasab, “A distributed event-triggered control strategy for dc microgrids based on publish-subscribe model over industrial wireless sensor networks,” IEEE Transactions on Smart Grid, vol. 10, no. 4, pp. 4323–4337, 2019.
K. Umer, Q. Huang, M. Khorasany, M. Afzal, and W. Amin, “A novel communication efficient peer-to-peer energy trading scheme for enhanced privacy in microgrids,” Applied Energy, vol. 296, p. 117075, 2021.
Y. Zhou, J. Wu, C. Long, and W. Ming, “State-of-the-art analysis and perspectives for peer-to-peer energy trading,” Engineering, vol. 6, no. 7, pp. 739–753, 2020.
C. Zhang, J. Wu, Y. Zhou, M. Cheng, and C. Long, “Peer-to-peer energy trading in a microgrid,” Applied Energy, vol. 220, pp. 1–12, 2018.
A. Werth, A. André, D. Kawamoto, T. Morita, S. Tajima, M. Tokoro, D. Yanagidaira, and K. Tanaka, “Peer-to-peer control system for dc microgrids,” IEEE Transactions on Smart Grid, vol. 9, no. 4, pp. 3667–3675, 2018.
J. Lai, X. Lu, F. Wang, P. Dehghanian, and R. Tang, “Broadcast gossip algorithms for distributed peer-to-peer control in ac microgrids,” IEEE Transactions on Industry Applications, vol. 55, no. 3, pp. 2241–2251, 2019.
J. Lai, X. Lu, X. Yu, and A. Monti, “Stochastic distributed secondary control for ac microgrids via event-triggered communication,” IEEE Transactions on Smart Grid, vol. 11, no. 4, pp. 2746–2759, 2020.
L. Ding, Q.-L. Han, and X.-M. Zhang, “Distributed secondary control for active power sharing and frequency regulation in islanded microgrids using an event-triggered communication mechanism,” IEEE Transactions on Industrial Informatics, vol. 15, no. 7, pp. 3910–3922, 2019.
Z. Tang, Y. Qin, Z. Jiang, W. O. Krawec, and P. Zhang, “Quantum-secure networked microgrids,” in 2020 IEEE Power Energy Society General Meeting (PESGM), 2020, pp. 1–5.
A. Meeuw, S. Schopfer, A. Wörner, V. Tiefenbeck, L. Ableitner, E. Fleisch, and F. Wortmann, “Implementing a blockchain-based local energy market: Insights on communication and scalability,” Computer Communications, vol. 160, pp. 158–171, 2020.
S. Sen and V. Kumar, “Microgrid modelling: A comprehensive survey,” Annual Reviews in Control, vol. 46, pp. 216–250, 2018.
Z. Shuai, Y. Peng, X. Liu, Z. Li, J. M. Guerrero, and Z. J. Shen, “Dynamic equivalent modeling for multi-microgrid based on structure preservation method,” IEEE Transactions on Smart Grid, vol. 10, no. 4, pp. 3929–3942, 2019.
Y. Li, Z. Wang, J. Yang, X. Wang, and J. Feng, “Dynamic equivalence modeling for microgrid cluster by using physical-data-driven method,” IEEE Transactions on Applied Superconductivity, vol. 31, no. 8, pp. 1–4, 2021.
C. Cai, H. Liu, Y. Tao, Z. Deng, W. Dai, and J. Chen, “Microgrid equivalent modeling based on long short-term memory neural network,” IEEE Access, vol. 8, pp. 23120–23133, 2020.
M. Sharifzadeh, A. Sikinioti-Lock, and N. Shah, “Machine-learning methods for integrated renewable power generation: A comparative study of artificial neural networks, support vector regression, and gaussian process regression,” Renewable and Sustainable Energy Reviews, vol. 108, pp. 513–538, 2019.
K. P. Kumar and B. Saravanan, “Recent techniques to model uncertainties in power generation from renewable energy sources and loads in microgrids – a review,” Renewable and Sustainable Energy Reviews, vol. 71, pp. 348–358, 2017.
H. Xiao, W. Pei, W. Deng, L. Kong, H. Sun, and C. Tang, “A comparative study of deep neural network and meta-model techniques in behavior learning of microgrids,” IEEE Access, vol. 8, pp. 30 104–30 118, 2020.
J. Schiffer, D. Zonetti, R. Ortega, A. M. Stanković, T. Sezi, and J. Raisch, “A survey on modeling of microgrids—From fundamental physics to phasors and voltage sources,” Automatica, vol. 74, pp. 135–150, 2016.
U. B. Tayab, M. A. B. Roslan, L. J. Hwai, and M. Kashif, “A review of droop control techniques for microgrid,” Renewable and Sustainable Energy Reviews, vol. 76, pp. 717–727, 2017.
T. Yang, X. Yi, J. Wu, Y. Yuan, D. Wu, Z. Meng, Y. Hong, H. Wang, Z. Lin, and K. H. Johansson, “A survey of distributed optimization,” Annual Reviews in Control, vol. 47, pp. 278–305, 2019.
D. K. Molzahn, F. Dörfler, H. Sandberg, S. H. Low, S. Chakrabarti, R. Baldick, and J. Lavaei, “A survey of distributed optimization and control algorithms for electric power systems,” IEEE Transactions on Smart Grid, vol. 8, no. 6, pp. 2941–2962, 2017.
J. Wangni, J. Wang, J. Liu, and T. Zhang, “Gradient sparsification for communicationefficient distributed optimization,” Advances in Neural Information Processing Systems, vol. 31, 2018.
L. Grüne and J. Pannek, Nonlinear Model Predictive Control. Springer International Publishing, 2017.
L. Yang, J. Luo, Y. Xu, Z. Zhang, and Z. Dong, “A distributed dual consensus ADMM based on partition for DC-DOPF with carbon emission trading,” IEEE Transactions on Industrial Informatics, vol. 16, no. 3, pp. 1858–1872, 2020.
E. De Din, M. Josevski, M. Pau, F. Ponci, and A. Monti, “Distributed model predictive voltage control for distribution grid based on relaxation and successive distributed decomposition,” IEEE Access, vol. 10, pp. 50 508–50 522, 2022.
Y. Wang, S. Wang, and L. Wu, “Distributed optimization approaches for emerging power systems operation: A review,” Electric Power Systems Research, vol. 144, pp. 127–135, 2017.
W. Jiang and T. Charalambous, “Distributed alternating direction method of multipliers using finite-time exact ratio consensus in digraphs,” in 2021 European Control Conference (ECC), 2021, pp. 2205–2212.
V. Khatana and M. V. Salapaka, “D-DistADMM: A O(1/k) distributed ADMM for distributed optimization in directed graph topologies,” in 2020 59th IEEE Conference on Decision and Control (CDC), 2020, pp. 2992–2997.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 88 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Ingeniería - Automatización Industrial
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/85928/2/1032493569.2024.pdf
https://repositorio.unal.edu.co/bitstream/unal/85928/3/license.txt
https://repositorio.unal.edu.co/bitstream/unal/85928/4/1032493569.2024.pdf.jpg
bitstream.checksum.fl_str_mv 43fa864de0e3f08989db24cb28d4fa3d
eb34b1cf90b7e1103fc9dfd26be24b4a
2fa5c5242865d2001aad84490c47346c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089454522990592
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Mojica Nava, Eduardo Alirioe4a1a8ad2ab3b2c45a8785177a841de1600Rodriguez Gil, Jhojan Alexisd23e7495f54524ff2cd40de709ea2140600Programa de Investigacion sobre Adquisicion y Analisis de Señales Paas-Un2024-04-16T18:49:47Z2024-04-16T18:49:47Z2023https://repositorio.unal.edu.co/handle/unal/85928Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasEsta tesis estudia el uso de control distribuido predictivo basado en el Método de Mul- tiplicadores de Direcciones Alternantes (ADMM) para obtener la regulación de voltaje en microrredes interconectadas. Este problema es modelado mediante una función global de costo y este trabajo propone un algoritmo que lo soluciona usando decisiones locales. Así mismo, la función global de costo es formada por una suma de funciones locales de costo. El problema global es solucionado de manera local usando Control Predictivo Basado en Modelo (MPC). De esta manera, la solución del problema se obtiene de manera distribuida. Además, este trabajo presenta un estudio de la convergencia del algoritmo propuesto. Final- mente, para probar el algoritmo propuesto se utilizan dos casos de simulación. Primero, una simulación numérica en MATLAB® se usa en el problema de regulación de voltaje en micro- rredes interconectadas. Segundo, se usan unos dispositivos discretos para emular el sistema interconectado de una simulación Hardware-in-the-Loop (HIL). Los resultados muestran la efectividad del algoritmo propuesto para solucionar el problema de regulación de voltaje para microrredes interconectadas. (Texto tomado de la fuente).This dissertation studies a distributed predictive control approach based on the Alterna- ting Direction Method of Multipliers (ADMM) to achieve voltage regulation on networked microgrids. The control problem considers a global cost function. So, this work proposes an algorithm to solve it using local decisions. Likewise, the global cost function contains a set of local functions. The global local problem is solved in a local way using Model Pre- dictive Control (MPC). In this way, we can obtain the problem solution in a distributed approach. Also, this work shows a convergence study of the proposed algorithm. Finally, to test the proposed algorithm, there are two simulation cases. First, a numerical simulation in MATLAB® is used to study the voltage regulation problem in networked microgrids. Se- cond, discrete devices are used to emulate the networked system and individual controllers in a Hardware-in-the-Loop (HIL) fashion. Results show the effectiveness of the proposed algorithm in solving the voltage regulation problem for networked microgrids.Agradezco al apoyo recibido por parte de la Universidad Nacional de Colombia y el Ministerio de Ciencias, Tecnología e Innovación con el proyecto “Programa de Investigación en Tecnologías Emergentes para Microrredes Eléctricas Inteligentes con Alta Penetración de Energías Renovables” mediante el contrato 80740-542-2020.MaestríaMagíster en Ingeniería - Automatización IndustrialTeoría y aplicación de control88 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Automatización IndustrialFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaOptimizaciónMicrorredes InterconectadasADMMMPCOptimizationNetworked MicrogridsADMMMPCSistema de control distribuidoTensión (electricidad)Microgriddistributed control systemvoltagemicrogridControl de voltaje de múltiples microrredes basado en optimización distribuidaVoltage control of networked microgrids based on distributed optimizationTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMS. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Foundations and Trends® in Machine Learning, vol. 3, no. 1, pp. 1–122, 2011.T. Goldstein, B. O’Donoghue, S. Setzer, and R. Baraniuk, “Fast alternating direction optimization methods,” SIAM Journal on Imaging Sciences, vol. 7, no. 3, pp. 1588– 1623, 2014.S. Anderson, P. Hidalgo-Gonzalez, R. Dobbe, and C. J. Tomlin, “Distributed model predictive control for autonomous droop-controlled inverter-based microgrids,” in 2019 IEEE 58th Conference on Decision and Control (CDC), 2019, pp. 6242–6248.K. Rahbar, C. C. Chai, and R. Zhang, “Energy cooperation optimization in microgrids with renewable energy integration,” IEEE Transactions on Smart Grid, vol. 9, no. 2, pp. 1482–1493, 2018.X. Dou, P. Xu, Q. Hu, W. Sheng, X. Quan, Z. Wu, and B. Xu, “A distributed voltage control strategy for multi-microgrid active distribution networks considering economy and response speed,” IEEE Access, vol. 6, pp. 31 259–31 268, 2018.N. Priyadharshini, S. Gomathy, and M. Sabarimuthu, “A review on microgrid archi- tecture, cyber security threats and standards,” Materials Today: Proceedings, 2020.C. Wang, P. Yang, C. Ye, Y. Wang, and Z. Xu, “Voltage control strategy for three/single phase hybrid multimicrogrid,” IEEE Transactions on Energy Conversion, vol. 31, no. 4, pp. 1498–1509, 2016.M. N. Alam, S. Chakrabarti, and A. Ghosh, “Networked microgrids: State-of-the-art and future perspectives,” IEEE Transactions on Industrial Informatics, vol. 15, no. 3, pp. 1238–1250, 2019.M. Savaghebi, A. Jalilian, J. C. Vasquez, and J. M. Guerrero, “Secondary control scheme for voltage unbalance compensation in an islanded droop-controlled microgrid,” IEEE Transactions on Smart Grid, vol. 3, no. 2, pp. 797–807, 2012.F. Guo, C. Wen, J. Mao, and Y.-D. Song, “Distributed secondary voltage and frequency restoration control of droop-controlled inverter-based microgrids,” IEEE Transactions on Industrial Electronics, vol. 62, no. 7, pp. 4355–4364, 2015.S. A. Arefifar, M. Ordonez, and Y. A.-R. I. Mohamed, “Voltage and current contro- llability in multi-microgrid smart distribution systems,” IEEE Transactions on Smart Grid, vol. 9, no. 2, pp. 817–826, 2018.D. O. Amoateng, M. Al Hosani, M. S. Elmoursi, K. Turitsyn, and J. L. Kirtley, “Adap- tive voltage and frequency control of islanded multi-microgrids,” IEEE Transactions on Power Systems, vol. 33, no. 4, pp. 4454–4465, 2018.J. W. Simpson-Porco, Q. Shafiee, F. Dörfler, J. C. Vasquez, J. M. Guerrero, and F. Bu- llo, “Secondary frequency and voltage control of islanded microgrids via distributed ave- raging,” IEEE Transactions on Industrial Electronics, vol. 62, no. 11, pp. 7025–7038, 2015.J. Rocabert, A. Luna, F. Blaabjerg, and P. Rodríguez, “Control of power converters in ac microgrids,” IEEE Transactions on Power Electronics, vol. 27, no. 11, pp. 4734– 4749, 2012.J. M. Guerrero, J. C. Vasquez, J. Matas, L. G. de Vicuna, and M. Castilla, “Hierarchical control of droop-controlled ac and dc microgrids—a general approach toward standar- dization,” IEEE Transactions on Industrial Electronics, vol. 58, no. 1, pp. 158–172, 2011.J. M. Guerrero, M. Chandorkar, T.-L. Lee, and P. C. Loh, “Advanced control architec- tures for intelligent microgrids—part i: Decentralized and hierarchical control,” IEEE Transactions on Industrial Electronics, vol. 60, no. 4, pp. 1254–1262, 2013.R. H. Lasseter, “Smart distribution: Coupled microgrids,” Proceedings of the IEEE, vol. 99, no. 6, pp. 1074–1082, 2011.M. Marzband, N. Parhizi, M. Savaghebi, and J. M. Guerrero, “Distributed smart decision-making for a multimicrogrid system based on a hierarchical interactive ar- chitecture,” IEEE Transactions on Energy Conversion, vol. 31, no. 2, pp. 637–648, 2016.H. Han, X. Hou, J. Yang, J. Wu, M. Su, and J. M. Guerrero, “Review of power sharing control strategies for islanding operation of ac microgrids,” IEEE Transactions on Smart Grid, vol. 7, no. 1, pp. 200–215, 2016.A. Q. Huang, M. L. Crow, G. T. Heydt, J. P. Zheng, and S. J. Dale, “The future rene- wable electric energy delivery and management (freedm) system: The energy internet,” Proceedings of the IEEE, vol. 99, no. 1, pp. 133–148, 2011.J. Hu, Y. Shan, J. M. Guerrero, A. Ioinovici, K. W. Chan, and J. Rodriguez, “Model predictive control of microgrids – an overview,” Renewable and Sustainable Energy Reviews, vol. 136, p. 110422, 2021.N. Bazmohammadi, A. Tahsiri, A. Anvari-Moghaddam, and J. M. Guerrero, “Sto- chastic predictive control of multi-microgrid systems,” IEEE Transactions on Industry Applications, vol. 55, no. 5, pp. 5311–5319, 2019.F. Milano, F. Dörfler, G. Hug, D. J. Hill, and G. Verbič, “Foundations and challenges of low-inertia systems (invited paper),” in 2018 Power Systems Computation Conference (PSCC), 2018, pp. 1–25.C. A. Macana, E. Mojica-Nava, H. R. Pota, J. M. Guerrero, and J. C. Vasquez, “A novel compact dq-reference frame model for inverter-based microgrids,” Electronics, vol. 8, no. 11, 2019.U. Tamrakar, T. M. Hansen, R. Tonkoski, and D. A. Copp, “Model predictive frequency control of low inertia microgrids,” in 2019 IEEE 28th International Symposium on Industrial Electronics (ISIE), 2019, pp. 2111–2116.A. Parisio, C. Wiezorek, T. Kyntäjä, J. Elo, K. Strunz, and K. H. Johansson, “Coope- rative mpc-based energy management for networked microgrids,” IEEE Transactions on Smart Grid, vol. 8, no. 6, pp. 3066–3074, 2017.R. H. M. Zargar and M. H. Yaghmaee, “Energy exchange cooperative model in sdn-based interconnected multi-microgrids,” Sustainable Energy, Grids and Networks, vol. 27, p. 100491, 2021.H. Zou, S. Mao, Y. Wang, F. Zhang, X. Chen, and L. Cheng, “A survey of energy management in interconnected multi-microgrids,” IEEE Access, vol. 7, pp. 72 158– 72 169, 2019.F. Bandeiras, E. Pinheiro, M. Gomes, P. Coelho, and J. Fernandes, “Review of the cooperation and operation of microgrid clusters,” Renewable and Sustainable Energy Reviews, vol. 133, p. 110311, 2020.Y. Guo, Q. Wu, H. Gao, S. Huang, B. Zhou, and C. Li, “Double-time-scale coordinated voltage control in active distribution networks based on mpc,” IEEE Transactions on Sustainable Energy, vol. 11, no. 1, pp. 294–303, 2020.K. E. Antoniadou-Plytaria, I. N. Kouveliotis-Lysikatos, P. S. Georgilakis, and N. D. Hatziargyriou, “Distributed and decentralized voltage control of smart distribution networks: Models, methods, and future research,” IEEE Transactions on Smart Grid, vol. 8, no. 6, pp. 2999–3008, 2017.H. Sun, Q. Guo, J. Qi, V. Ajjarapu, R. Bravo, J. Chow, Z. Li, R. Moghe, E. Nasr- Azadani, U. Tamrakar, G. N. Taranto, R. Tonkoski, G. Valverde, Q. Wu, and G. Yang, “Review of challenges and research opportunities for voltage control in smart grids,” IEEE Transactions on Power Systems, vol. 34, no. 4, pp. 2790–2801, 2019.F. Dörfler, S. Bolognani, J. W. Simpson-Porco, and S. Grammatico, “Distributed con- trol and optimization for autonomous power grids,” in 2019 18th European Control Conference (ECC), 2019, pp. 2436–2453.Y. Guo, Q. Wu, H. Gao, X. Chen, J. Østergaard, and H. Xin, “Mpc-based coordinated voltage regulation for distribution networks with distributed generation and energy storage system,” IEEE Transactions on Sustainable Energy, vol. 10, no. 4, pp. 1731– 1739, 2019.X. Wu, C. Shen, and R. Iravani, “A distributed, cooperative frequency and voltage control for microgrids,” IEEE Transactions on Smart Grid, vol. 9, no. 4, pp. 2764– 2776, 2018.J. Schiffer, T. Seel, J. Raisch, and T. Sezi, “Voltage stability and reactive power sharing in inverter-based microgrids with consensus-based distributed voltage control,” IEEE Transactions on Control Systems Technology, vol. 24, no. 1, pp. 96–109, 2016.Y. Shan, J. Hu, Z. Li, and J. M. Guerrero, “A model predictive control for renewable energy based ac microgrids without any pid regulators,” IEEE Transactions on Power Electronics, vol. 33, no. 11, pp. 9122–9126, 2018.A. Parisio, E. Rikos, and L. Glielmo, “A model predictive control approach to microgrid operation optimization,” IEEE Transactions on Control Systems Technology, vol. 22, no. 5, pp. 1813–1827, 2014.D. A. Martínez, E. Mojica-Nava, A. S. Al-Sumaiti, and S. Rivera, “A distortion-based potential game for secondary voltage control in micro-grids,” IEEE Access, vol. 8, pp. 110 611–110 622, 2020.S. Mhanna, G. Verbič, and A. C. Chapman, “Adaptive admm for distributed ac optimal power flow,” IEEE Transactions on Power Systems, vol. 34, no. 3, pp. 2025–2035, 2019.J. Xu, H. Sun, and C. J. Dent, “Admm-based distributed opf problem meets stochastic communication delay,” IEEE Transactions on Smart Grid, vol. 10, no. 5, pp. 5046– 5056, 2019.North American Electric Realiability Corporation, “Fast frequency response concepts and bps reliability needs,” North American Electric Realiability Corporation, Tech. Rep., 2020.A. Nedić, “Convergence rate of distributed averaging dynamics and optimization in networks,” Foundations and Trends® in Systems and Control, vol. 2, no. 1, pp. 1–100, 2015.A. Nedić and J. Liu, “Distributed optimization for control,” Annual Review of Control, Robotics, and Autonomous Systems, vol. 1, no. 1, pp. 77–103, 2018.F. Morbidi, “Functions of the laplacian matrix with application to distributed formation control,” IEEE Transactions on Control of Network Systems, vol. 9, no. 3, pp. 1459–1467, 2022.M. Mesbahi and M. Egerstedt, Graph Theoretic Methods in Multiagent Networks. Princeton: Princeton University Press, 2010.S. P. Boyd and L. Vandenberghe, Convex optimization. Cambridge university press, 2004.MathWorks® , “Quadratic programming - MATLAB quadprog,” Accessed May. 01, 2022 [Online]. Available: https://www.mathworks.com/help/optim/ug/quadprog. html.Y. Okuyama, Discrete control systems. Springer, 2014.K. Ogata, Sistemas de control en tiempo discreto. Pearson educación, 1996.Q. Zhou, M. Shahidehpour, A. Paaso, S. Bahramirad, A. Alabdulwahab, and A. Abusorrah, “Distributed control and communication strategies in networked microgrids,” IEEE Communications Surveys Tutorials, vol. 22, no. 4, pp. 2586–2633, 2020.B. Zhou, J. Zou, C. Y. Chung, H. Wang, N. Liu, N. Voropai, and D. Xu, “Multimicrogrid energy management systems: Architecture, communication, and scheduling strategies,” Journal of Modern Power Systems and Clean Energy, vol. 9, no. 3, pp. 463–476, 2021.A. Hirsch, Y. Parag, and J. Guerrero, “Microgrids: A review of technologies, key drivers, and outstanding issues,” Renewable and Sustainable Energy Reviews, vol. 90, pp. 402–411, 2018.A. Cagnano, E. De Tuglie, and P. Mancarella, “Microgrids: Overview and guidelines for practical implementations and operation,” Applied Energy, vol. 258, p. 114039, 2020.N. Pogaku, M. Prodanovic, and T. C. Green, “Modeling, analysis and testing of autonomous operation of an inverter-based microgrid,” IEEE Transactions on Power Electronics, vol. 22, no. 2, pp. 613–625, 2007.M. Ahmed, L. Meegahapola, A. Vahidnia, and M. Datta, “Stability and control aspects of microgrid architectures–a comprehensive review,” IEEE Access, vol. 8, pp. 144 730–144 766, 2020.N. S., S. K.N., J. E.A., and T. P. I. Ahamed, “Comparative analysis of communication assisted grid synchronization methods in microgrids,” IEEE Systems Journal, vol. 14, no. 1, pp. 1007–1014, 2020.D. Kumar, F. Zare, and A. Ghosh, “Dc microgrid technology: System architectures, ac grid interfaces, grounding schemes, power quality, communication networks, applications, and standardizations aspects,” IEEE Access, vol. 5, pp. 12 230–12 256, 2017.I. Serban, S. Céspedes, C. Marinescu, C. A. Azurdia-Meza, J. S. Gómez, and D. S. Hueichapan, “Communication requirements in microgrids: A practical survey,” IEEE Access, vol. 8, pp. 47 694–47 712, 2020.W.-J. Ma, J. Wang, V. Gupta, and C. Chen, “Distributed energy management for networked microgrids using online admm with regret,” IEEE Transactions on Smart Grid, vol. 9, no. 2, pp. 847–856, 2018.H. Wang and J. Huang, “Incentivizing energy trading for interconnected microgrids,” IEEE Transactions on Smart Grid, vol. 9, no. 4, pp. 2647–2657, 2018.L. Mariam, M. Basu, and M. F. Conlon, “Microgrid: Architecture, policy and future trends,” Renewable and Sustainable Energy Reviews, vol. 64, pp. 477–489, 2016.A. Ahl, M. Yarime, K. Tanaka, and D. Sagawa, “Review of blockchain-based distributed energy: Implications for institutional development,” Renewable and Sustainable Energy Reviews, vol. 107, pp. 200–211, 2019.P. Vorobev, P. Huang, M. Al Hosani, J. L. Kirtley, and K. Turitsyn, “High-fidelity model order reduction for microgrids stability assessment,” IEEE Transactions on Power Systems, vol. 33, no. 1, pp. 874–887, 2018.Z. Li, S. Bahramirad, A. Paaso, M. Yan, and M. Shahidehpour, “Blockchain for decentralized transactive energy management system in networked microgrids,” The Electricity Journal, vol. 32, no. 4, pp. 58–72, 2019, special Issue on Strategies for a sustainable, reliable and resilient grid.Y. Wang, T.-L. Nguyen, Y. Xu, Q.-T. Tran, and R. Caire, “Peer-to-peer control for networked microgrids: Multi-layer and multi-agent architecture design,” IEEE Transactions on Smart Grid, vol. 11, no. 6, pp. 4688–4699, 2020.X. Zhou, L. Zhou, Y. Chen, J. M. Guerrero, A. Luo, W. Wu, and L. Yang, “A microgrid cluster structure and its autonomous coordination control strategy,” International Journal of Electrical Power & Energy Systems, vol. 100, pp. 69–80, 2018.Z. Tang, P. Zhang, W. O. Krawec, and Z. Jiang, “Programmable quantum networked microgrids,” IEEE Transactions on Quantum Engineering, vol. 1, pp. 1–13, 2020.H. Farzin, M. Fotuhi-Firuzabad, and M. Moeini-Aghtaie, “Enhancing power system resilience through hierarchical outage management in multi-microgrids,” IEEE Transactions on Smart Grid, vol. 7, no. 6, pp. 2869–2879, 2016.Y. Wang, A. O. Rousis, and G. Strbac, “On microgrids and resilience: A comprehensive review on modeling and operational strategies,” Renewable and Sustainable Energy Reviews, vol. 134, p. 110313, 2020.W. Xu, J. Li, M. Dehghani, and M. GhasemiGarpachi, “Blockchain-based secure energy policy and management of renewable-based smart microgrids,” Sustainable Cities and Society, vol. 72, p. 103010, 2021.R. Aboli, M. Ramezani, and H. Falaghi, “A hybrid robust distributed model for short-term operation of multi-microgrid distribution networks,” Electric Power Systems Research, vol. 177, p. 106011, 2019.M. A. Jirdehi, V. S. Tabar, S. Ghassemzadeh, and S. Tohidi, “Different aspects of microgrid management: A comprehensive review,” Journal of Energy Storage, vol. 30, p. 101457, 2020.V. K. Sood and H. Abdelgawad, “Chapter 1 - microgrids architectures,” in Distributed Energy Resources in Microgrids, R. K. Chauhan and K. Chauhan, Eds. Academic Press, 2019, pp. 1–31.E. Bullich-Massagué, F. Díaz-González, M. Aragüés-Peñalba, F. Girbau-Llistuella, P. Olivella-Rosell, and A. Sumper, “Microgrid clustering architectures,” Applied Energy, vol. 212, pp. 340–361, 2018.Y. C. C. Wong, C. S. Lim, M. D. Rotaru, A. Cruden, and X. Kong, “Consensus virtual output impedance control based on the novel droop equivalent impedance concept for a multi-bus radial microgrid,” IEEE Transactions on Energy Conversion, vol. 35, no. 2, pp. 1078–1087, 2020.F. Dörfler, J. W. Simpson-Porco, and F. Bullo, “Breaking the hierarchy: Distributed control and economic optimality in microgrids,” IEEE Transactions on Control of Network Systems, vol. 3, no. 3, pp. 241–253, 2016.U. Orji, C. Schantz, S. B. Leeb, J. L. Kirtley, B. Sievenpiper, K. Gerhard, and T. McCoy, “Adaptive zonal protection for ring microgrids,” IEEE Transactions on Smart Grid, vol. 8, no. 4, pp. 1843–1851, 2017.Z. Tang, Y. Qin, Z. Jiang, W. O. Krawec, and P. Zhang, “Quantum-secure microgrid,” IEEE Transactions on Power Systems, vol. 36, no. 2, pp. 1250–1263, 2021.A. Renjit, “Chapter 10 - communications, cybersecurity, and the internet of things for microgrids,” in Distributed Energy Resources in Microgrids, R. K. Chauhan and K. Chauhan, Eds. Academic Press, 2019, pp. 275–290.Y. Han, K. Zhang, H. Li, E. A. A. Coelho, and J. M. Guerrero, “Mas-based distributed coordinated control and optimization in microgrid and microgrid clusters: A comprehensive overview,” IEEE Transactions on Power Electronics, vol. 33, no. 8, pp. 6488–6508, 2018.M. Starke, A. Herron, D. King, and Y. Xue, “Implementation of a publish-subscribe protocol in microgrid islanding and resynchronization with self-discovery,” IEEE Transactions on Smart Grid, vol. 10, no. 1, pp. 361–370, 2019.S. A. Alavi, K. Mehran, Y. Hao, A. Rahimian, H. Mirsaeedi, and V. Vahidinasab, “A distributed event-triggered control strategy for dc microgrids based on publish-subscribe model over industrial wireless sensor networks,” IEEE Transactions on Smart Grid, vol. 10, no. 4, pp. 4323–4337, 2019.K. Umer, Q. Huang, M. Khorasany, M. Afzal, and W. Amin, “A novel communication efficient peer-to-peer energy trading scheme for enhanced privacy in microgrids,” Applied Energy, vol. 296, p. 117075, 2021.Y. Zhou, J. Wu, C. Long, and W. Ming, “State-of-the-art analysis and perspectives for peer-to-peer energy trading,” Engineering, vol. 6, no. 7, pp. 739–753, 2020.C. Zhang, J. Wu, Y. Zhou, M. Cheng, and C. Long, “Peer-to-peer energy trading in a microgrid,” Applied Energy, vol. 220, pp. 1–12, 2018.A. Werth, A. André, D. Kawamoto, T. Morita, S. Tajima, M. Tokoro, D. Yanagidaira, and K. Tanaka, “Peer-to-peer control system for dc microgrids,” IEEE Transactions on Smart Grid, vol. 9, no. 4, pp. 3667–3675, 2018.J. Lai, X. Lu, F. Wang, P. Dehghanian, and R. Tang, “Broadcast gossip algorithms for distributed peer-to-peer control in ac microgrids,” IEEE Transactions on Industry Applications, vol. 55, no. 3, pp. 2241–2251, 2019.J. Lai, X. Lu, X. Yu, and A. Monti, “Stochastic distributed secondary control for ac microgrids via event-triggered communication,” IEEE Transactions on Smart Grid, vol. 11, no. 4, pp. 2746–2759, 2020.L. Ding, Q.-L. Han, and X.-M. Zhang, “Distributed secondary control for active power sharing and frequency regulation in islanded microgrids using an event-triggered communication mechanism,” IEEE Transactions on Industrial Informatics, vol. 15, no. 7, pp. 3910–3922, 2019.Z. Tang, Y. Qin, Z. Jiang, W. O. Krawec, and P. Zhang, “Quantum-secure networked microgrids,” in 2020 IEEE Power Energy Society General Meeting (PESGM), 2020, pp. 1–5.A. Meeuw, S. Schopfer, A. Wörner, V. Tiefenbeck, L. Ableitner, E. Fleisch, and F. Wortmann, “Implementing a blockchain-based local energy market: Insights on communication and scalability,” Computer Communications, vol. 160, pp. 158–171, 2020.S. Sen and V. Kumar, “Microgrid modelling: A comprehensive survey,” Annual Reviews in Control, vol. 46, pp. 216–250, 2018.Z. Shuai, Y. Peng, X. Liu, Z. Li, J. M. Guerrero, and Z. J. Shen, “Dynamic equivalent modeling for multi-microgrid based on structure preservation method,” IEEE Transactions on Smart Grid, vol. 10, no. 4, pp. 3929–3942, 2019.Y. Li, Z. Wang, J. Yang, X. Wang, and J. Feng, “Dynamic equivalence modeling for microgrid cluster by using physical-data-driven method,” IEEE Transactions on Applied Superconductivity, vol. 31, no. 8, pp. 1–4, 2021.C. Cai, H. Liu, Y. Tao, Z. Deng, W. Dai, and J. Chen, “Microgrid equivalent modeling based on long short-term memory neural network,” IEEE Access, vol. 8, pp. 23120–23133, 2020.M. Sharifzadeh, A. Sikinioti-Lock, and N. Shah, “Machine-learning methods for integrated renewable power generation: A comparative study of artificial neural networks, support vector regression, and gaussian process regression,” Renewable and Sustainable Energy Reviews, vol. 108, pp. 513–538, 2019.K. P. Kumar and B. Saravanan, “Recent techniques to model uncertainties in power generation from renewable energy sources and loads in microgrids – a review,” Renewable and Sustainable Energy Reviews, vol. 71, pp. 348–358, 2017.H. Xiao, W. Pei, W. Deng, L. Kong, H. Sun, and C. Tang, “A comparative study of deep neural network and meta-model techniques in behavior learning of microgrids,” IEEE Access, vol. 8, pp. 30 104–30 118, 2020.J. Schiffer, D. Zonetti, R. Ortega, A. M. Stanković, T. Sezi, and J. Raisch, “A survey on modeling of microgrids—From fundamental physics to phasors and voltage sources,” Automatica, vol. 74, pp. 135–150, 2016.U. B. Tayab, M. A. B. Roslan, L. J. Hwai, and M. Kashif, “A review of droop control techniques for microgrid,” Renewable and Sustainable Energy Reviews, vol. 76, pp. 717–727, 2017.T. Yang, X. Yi, J. Wu, Y. Yuan, D. Wu, Z. Meng, Y. Hong, H. Wang, Z. Lin, and K. H. Johansson, “A survey of distributed optimization,” Annual Reviews in Control, vol. 47, pp. 278–305, 2019.D. K. Molzahn, F. Dörfler, H. Sandberg, S. H. Low, S. Chakrabarti, R. Baldick, and J. Lavaei, “A survey of distributed optimization and control algorithms for electric power systems,” IEEE Transactions on Smart Grid, vol. 8, no. 6, pp. 2941–2962, 2017.J. Wangni, J. Wang, J. Liu, and T. Zhang, “Gradient sparsification for communicationefficient distributed optimization,” Advances in Neural Information Processing Systems, vol. 31, 2018.L. Grüne and J. Pannek, Nonlinear Model Predictive Control. Springer International Publishing, 2017.L. Yang, J. Luo, Y. Xu, Z. Zhang, and Z. Dong, “A distributed dual consensus ADMM based on partition for DC-DOPF with carbon emission trading,” IEEE Transactions on Industrial Informatics, vol. 16, no. 3, pp. 1858–1872, 2020.E. De Din, M. Josevski, M. Pau, F. Ponci, and A. Monti, “Distributed model predictive voltage control for distribution grid based on relaxation and successive distributed decomposition,” IEEE Access, vol. 10, pp. 50 508–50 522, 2022.Y. Wang, S. Wang, and L. Wu, “Distributed optimization approaches for emerging power systems operation: A review,” Electric Power Systems Research, vol. 144, pp. 127–135, 2017.W. Jiang and T. Charalambous, “Distributed alternating direction method of multipliers using finite-time exact ratio consensus in digraphs,” in 2021 European Control Conference (ECC), 2021, pp. 2205–2212.V. Khatana and M. V. Salapaka, “D-DistADMM: A O(1/k) distributed ADMM for distributed optimization in directed graph topologies,” in 2020 59th IEEE Conference on Decision and Control (CDC), 2020, pp. 2992–2997.InvestigadoresPúblico generalORIGINAL1032493569.2024.pdf1032493569.2024.pdfMaestría en Ingeniería - Automatización Industrialapplication/pdf3886625https://repositorio.unal.edu.co/bitstream/unal/85928/2/1032493569.2024.pdf43fa864de0e3f08989db24cb28d4fa3dMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85928/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53THUMBNAIL1032493569.2024.pdf.jpg1032493569.2024.pdf.jpgGenerated Thumbnailimage/jpeg4225https://repositorio.unal.edu.co/bitstream/unal/85928/4/1032493569.2024.pdf.jpg2fa5c5242865d2001aad84490c47346cMD54unal/85928oai:repositorio.unal.edu.co:unal/859282024-04-16 23:19:35.796Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=