An association rule based model for information extraction from protein sequence data
In this paper, a data mining technique for protein sequence pattern extraction is developed. Specifically, the aim is to explore the use of association rules as a basis to build successful secondary structure predictors, in a sequencestructure layer. No heuristic or biological infor mation is taken...
- Autores:
-
Becerra, David
Cantor Monroy, Giovanni Antonio
Niño, Luis Fernando
Gómez Perdomo, Jonatan
Bobadilla, Leonardo
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2008
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/24338
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/24338
http://bdigital.unal.edu.co/15375/
- Palabra clave:
- Data Mining
Secondary Structure Prediction
Association Rules.
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_5f8dbf60442c0c4c76ac95de7bff6d67 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/24338 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Becerra, David23121339-2173-42b4-9a92-83d0bf71136b300Cantor Monroy, Giovanni Antonioc5b2bd53-d0c5-48e6-8f5d-c47ed758d88e300Niño, Luis Fernando28761bdc-7a8d-4db3-8e8b-53d961086d72300Gómez Perdomo, Jonatan43ef4bd0-7b88-44b2-8a35-e49c549101e5300Bobadilla, Leonardo20035300-2499-40f2-b728-47d02d52a7603002019-06-25T22:36:05Z2019-06-25T22:36:05Z2008https://repositorio.unal.edu.co/handle/unal/24338http://bdigital.unal.edu.co/15375/In this paper, a data mining technique for protein sequence pattern extraction is developed. Specifically, the aim is to explore the use of association rules as a basis to build successful secondary structure predictors, in a sequencestructure layer. No heuristic or biological infor mation is taken into account in the present study and only the information given by the association rules is used as a basis for building a secondary structure predictor. This work gives some insights about secondary structure prediction features to be used in learning algorithms; this is expected to be useful to achieve substantial improvements of accuracy in protein secondary structure prediction.application/pdfspaUniversidad Nacional de Colombia -Sede Medellínhttp://revistas.unal.edu.co/index.php/avances/article/view/9980Universidad Nacional de Colombia Revistas electrónicas UN Avances en Sistemas e InformáticaAvances en Sistemas e InformáticaAvances en Sistemas e Informática; Vol. 5, núm. 1 (2008) Avances en Sistemas e Informática; Vol. 5, núm. 1 (2008) 1909-0056 1657-7663Becerra, David and Cantor Monroy, Giovanni Antonio and Niño, Luis Fernando and Gómez Perdomo, Jonatan and Bobadilla, Leonardo (2008) An association rule based model for information extraction from protein sequence data. Avances en Sistemas e Informática; Vol. 5, núm. 1 (2008) Avances en Sistemas e Informática; Vol. 5, núm. 1 (2008) 1909-0056 1657-7663 .An association rule based model for information extraction from protein sequence dataArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTData MiningSecondary Structure PredictionAssociation Rules.ORIGINAL9980-18056-1-PB.pdfapplication/pdf2778458https://repositorio.unal.edu.co/bitstream/unal/24338/1/9980-18056-1-PB.pdff26649ebc6d0ddf1f59fabf2c5e1034eMD51THUMBNAIL9980-18056-1-PB.pdf.jpg9980-18056-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg9841https://repositorio.unal.edu.co/bitstream/unal/24338/2/9980-18056-1-PB.pdf.jpg0f522c9939f9df4706be05e62f911224MD52unal/24338oai:repositorio.unal.edu.co:unal/243382023-10-16 23:06:11.732Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |
dc.title.spa.fl_str_mv |
An association rule based model for information extraction from protein sequence data |
title |
An association rule based model for information extraction from protein sequence data |
spellingShingle |
An association rule based model for information extraction from protein sequence data Data Mining Secondary Structure Prediction Association Rules. |
title_short |
An association rule based model for information extraction from protein sequence data |
title_full |
An association rule based model for information extraction from protein sequence data |
title_fullStr |
An association rule based model for information extraction from protein sequence data |
title_full_unstemmed |
An association rule based model for information extraction from protein sequence data |
title_sort |
An association rule based model for information extraction from protein sequence data |
dc.creator.fl_str_mv |
Becerra, David Cantor Monroy, Giovanni Antonio Niño, Luis Fernando Gómez Perdomo, Jonatan Bobadilla, Leonardo |
dc.contributor.author.spa.fl_str_mv |
Becerra, David Cantor Monroy, Giovanni Antonio Niño, Luis Fernando Gómez Perdomo, Jonatan Bobadilla, Leonardo |
dc.subject.proposal.spa.fl_str_mv |
Data Mining Secondary Structure Prediction Association Rules. |
topic |
Data Mining Secondary Structure Prediction Association Rules. |
description |
In this paper, a data mining technique for protein sequence pattern extraction is developed. Specifically, the aim is to explore the use of association rules as a basis to build successful secondary structure predictors, in a sequencestructure layer. No heuristic or biological infor mation is taken into account in the present study and only the information given by the association rules is used as a basis for building a secondary structure predictor. This work gives some insights about secondary structure prediction features to be used in learning algorithms; this is expected to be useful to achieve substantial improvements of accuracy in protein secondary structure prediction. |
publishDate |
2008 |
dc.date.issued.spa.fl_str_mv |
2008 |
dc.date.accessioned.spa.fl_str_mv |
2019-06-25T22:36:05Z |
dc.date.available.spa.fl_str_mv |
2019-06-25T22:36:05Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/24338 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/15375/ |
url |
https://repositorio.unal.edu.co/handle/unal/24338 http://bdigital.unal.edu.co/15375/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.spa.fl_str_mv |
http://revistas.unal.edu.co/index.php/avances/article/view/9980 |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Revistas electrónicas UN Avances en Sistemas e Informática Avances en Sistemas e Informática |
dc.relation.ispartofseries.none.fl_str_mv |
Avances en Sistemas e Informática; Vol. 5, núm. 1 (2008) Avances en Sistemas e Informática; Vol. 5, núm. 1 (2008) 1909-0056 1657-7663 |
dc.relation.references.spa.fl_str_mv |
Becerra, David and Cantor Monroy, Giovanni Antonio and Niño, Luis Fernando and Gómez Perdomo, Jonatan and Bobadilla, Leonardo (2008) An association rule based model for information extraction from protein sequence data. Avances en Sistemas e Informática; Vol. 5, núm. 1 (2008) Avances en Sistemas e Informática; Vol. 5, núm. 1 (2008) 1909-0056 1657-7663 . |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia -Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/24338/1/9980-18056-1-PB.pdf https://repositorio.unal.edu.co/bitstream/unal/24338/2/9980-18056-1-PB.pdf.jpg |
bitstream.checksum.fl_str_mv |
f26649ebc6d0ddf1f59fabf2c5e1034e 0f522c9939f9df4706be05e62f911224 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089862079315968 |