Predicción probabilística de corto plazo en generación eólica
A través de este proyecto se describe el uso del clasificador del K n-ésimo vecino más cercano KNN y un estimador del kernel con el fin de predecir la potencia eólica del viento. El modelo es capaz de predecir valores de la potencie eólica generada a la salida de la granja con una antelación de hast...
- Autores:
-
Sánchez Rosas, Yuber Samir
- Tipo de recurso:
- Fecha de publicación:
- 2018
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/68680
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/68680
http://bdigital.unal.edu.co/69786/
- Palabra clave:
- 5 Ciencias naturales y matemáticas / Science
62 Ingeniería y operaciones afines / Engineering
Predicción Probabilística
Generación eólica
Estimador del kernel
Potencia eólica
Generation Prediction
Wind Power
Forecasting
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
Summary: | A través de este proyecto se describe el uso del clasificador del K n-ésimo vecino más cercano KNN y un estimador del kernel con el fin de predecir la potencia eólica del viento. El modelo es capaz de predecir valores de la potencie eólica generada a la salida de la granja con una antelación de hasta 48h. Los datos usados para el estudio de caso tienen una resolución por cada hora. Estos datos fueron obtenidos de 10 granjas ubicadas en Australia, a dos distintas alturas: 10m y 100m. El modelo desarrollado es un modelo de un único paso. En la primera Fase, el KNN es usado para filtrar los datos. Una vez los datos han sido filtrados y normalizados, el modelo predice escenarios de generación a través del estimador del kernel. Finalmente, algunos indicadores de desempeño son usados para medir los resultados obtenidos respecto del valor real, tales como: EM, EMAN, EPMA y DEE. |
---|