Estudio in vivo e in vitro del efecto antidiabético de un extracto de hojas de passiflora ligularis
ilustraciones, diagramas
- Autores:
-
Rey Padilla, Diana Patricia
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2023
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/84473
- Palabra clave:
- Ciencias Farmacéuticas
540 - Química y ciencias afines
610 - Medicina y salud::615 - Farmacología y terapéutica
Passiflora
Diabetes Mellitus Tipo 2
Extractos Vegetales
Diabetes Mellitus, Type 2
Plant Extracts
Diabetes mellitus tipo 2
Dieta rica en grasa/estreptozotocina
Astragalina
Isoquercetina
Señalización de calcio
GLUT4
Passiflora ligularis Juss
Type 2 diabetes mellitus
High-fat diet/streptozotocin
Astragalin
Isoquercetin
Calcium signaling
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_5f2f5300ae3fb918b7c2444c0ae66faa |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/84473 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Estudio in vivo e in vitro del efecto antidiabético de un extracto de hojas de passiflora ligularis |
dc.title.translated.eng.fl_str_mv |
In vivo and in vitro study of the antidiabetic effect of an extract of passiflora ligularis leaves |
title |
Estudio in vivo e in vitro del efecto antidiabético de un extracto de hojas de passiflora ligularis |
spellingShingle |
Estudio in vivo e in vitro del efecto antidiabético de un extracto de hojas de passiflora ligularis Ciencias Farmacéuticas 540 - Química y ciencias afines 610 - Medicina y salud::615 - Farmacología y terapéutica Passiflora Diabetes Mellitus Tipo 2 Extractos Vegetales Diabetes Mellitus, Type 2 Plant Extracts Diabetes mellitus tipo 2 Dieta rica en grasa/estreptozotocina Astragalina Isoquercetina Señalización de calcio GLUT4 Passiflora ligularis Juss Type 2 diabetes mellitus High-fat diet/streptozotocin Astragalin Isoquercetin Calcium signaling |
title_short |
Estudio in vivo e in vitro del efecto antidiabético de un extracto de hojas de passiflora ligularis |
title_full |
Estudio in vivo e in vitro del efecto antidiabético de un extracto de hojas de passiflora ligularis |
title_fullStr |
Estudio in vivo e in vitro del efecto antidiabético de un extracto de hojas de passiflora ligularis |
title_full_unstemmed |
Estudio in vivo e in vitro del efecto antidiabético de un extracto de hojas de passiflora ligularis |
title_sort |
Estudio in vivo e in vitro del efecto antidiabético de un extracto de hojas de passiflora ligularis |
dc.creator.fl_str_mv |
Rey Padilla, Diana Patricia |
dc.contributor.advisor.none.fl_str_mv |
Ospina Giraldo, Luis Fernando Mena Barreto Silva, Fátima Regina |
dc.contributor.author.none.fl_str_mv |
Rey Padilla, Diana Patricia |
dc.contributor.researchgroup.spa.fl_str_mv |
Principios Bioactivos en Plantas Medicinales Grupo de Investigación en Tecnología de Productos Naturales Tecprona |
dc.contributor.orcid.spa.fl_str_mv |
Diana Patricia Rey [000000034517631X] |
dc.contributor.cvlac.spa.fl_str_mv |
Diana Patricia Rey Padilla [0001395740] |
dc.contributor.researchgate.spa.fl_str_mv |
Diana Rey [Diana-Rey] |
dc.contributor.googlescholar.spa.fl_str_mv |
Diana Patricia Rey Padilla [3HljxewAAAAJ&hl=es] |
dc.subject.ddc.spa.fl_str_mv |
Ciencias Farmacéuticas 540 - Química y ciencias afines 610 - Medicina y salud::615 - Farmacología y terapéutica |
topic |
Ciencias Farmacéuticas 540 - Química y ciencias afines 610 - Medicina y salud::615 - Farmacología y terapéutica Passiflora Diabetes Mellitus Tipo 2 Extractos Vegetales Diabetes Mellitus, Type 2 Plant Extracts Diabetes mellitus tipo 2 Dieta rica en grasa/estreptozotocina Astragalina Isoquercetina Señalización de calcio GLUT4 Passiflora ligularis Juss Type 2 diabetes mellitus High-fat diet/streptozotocin Astragalin Isoquercetin Calcium signaling |
dc.subject.decs.none.fl_str_mv |
Passiflora |
dc.subject.decs.spa.fl_str_mv |
Diabetes Mellitus Tipo 2 Extractos Vegetales |
dc.subject.decs.eng.fl_str_mv |
Diabetes Mellitus, Type 2 Plant Extracts |
dc.subject.proposal.spa.fl_str_mv |
Diabetes mellitus tipo 2 Dieta rica en grasa/estreptozotocina Astragalina Isoquercetina Señalización de calcio |
dc.subject.proposal.none.fl_str_mv |
GLUT4 Passiflora ligularis Juss |
dc.subject.proposal.eng.fl_str_mv |
Type 2 diabetes mellitus High-fat diet/streptozotocin Astragalin Isoquercetin Calcium signaling |
description |
ilustraciones, diagramas |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-08-08T14:26:24Z |
dc.date.available.none.fl_str_mv |
2023-08-08T14:26:24Z |
dc.date.issued.none.fl_str_mv |
2023-10-31 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/84473 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/84473 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Abdelhameed, R. F. A., Ibrahim, A. K., Elfaky, M. A., Habib, E. S., Mahamed, M. I., Mehanna, E. T., Darwish, K. M., Khodeer, D. M., Ahmed, S. A., & Elhady, S. S. (2021). Antioxidant and anti-inflammatory activity of Cynanchum acutum L. isolated flavonoids using experimentally induced type 2 diabetes mellitus: biological and in silico investigation for NF-κB pathway/miR-146a expression modulation. Antioxidants, 10(11), 1713. https://doi.org/10.3390/antiox10111713 Aguilar-Bryan, L., Clement, J. P., Gonzalez, G., Kunjilwar, K., Babenko, A., & Bryan, J. (1998). Toward understanding the assembly and structure of K ATP channels. Physiological Reviews, 78(1), 227–245. https://doi.org/10.1152/physrev.1998.78.1.227 Agyemang, K., Han, L., Liu, E., Zhang, Y., Wang, T., & Gao, X. (2013). Anti-diabetic research: pharmacological effects of its phytochemical constituents. Evidence-Based Complementary and Alternative Medicine, 654643. https://doi.org/10.1155/2013/654643 Alam, Md. M., Meerza, D., & Naseem, I. (2014). Protective effect of quercetin on hyperglycemia, oxidative stress and DNA damage in alloxan induced type 2 diabetic mice. Life Sciences, 109(1), 8–14. https://doi.org/10.1016/j.lfs.2014.06.005 Al-Awar, A., Kupai, K., Veszelka, M., Szucs, G., Attieh, Z., Murlasits, Z., Török, S., Pósa, A., & Varga, C. (2016). Experimental diabetes mellitus in different animal models. Journal of Diabetes Research, 2016. https://doi.org/10.1155/2016/9051426 Algariri, K., Meng, K. Y., Atangwho, I. J., Asmawi, M. Z., Sadikun, A., Murugaiyah, V., & Ismail, N. (2013). Hypoglycemic and anti-hyperglycemic study of Gynura procumbens leaf extracts. Asian Pacific Journal of Tropical Biomedicine, 3(5), 358–366. https://doi.org/10.1016/S2221-1691(13)60077-5 Algoblan, A., Alalfi, M., & Khan, M. (2014). Mechanism linking diabetes mellitus and obesity. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 587. https://doi.org/10.2147/DMSO.S67400 AL-Ishaq, Abotaleb, Kubatka, Kajo, & Büsselberg. (2019). Flavonoids and their anti-diabetic effects: cellular mechanisms and effects to improve blood sugar levels. Biomolecules, 9(9), 430. https://doi.org/10.3390/biom9090430 Alkhalidy, H., Moore, W., Wang, A., Luo, J., McMillan, R. P., Wang, Y., Zhen, W., Hulver, M. W., & Liu, D. (2018). Kaempferol ameliorates hyperglycemia through suppressing hepatic gluconeogenesis and enhancing hepatic insulin sensitivity in diet-induced obese mice. The Journal of Nutritional Biochemistry, 58, 90–101. https://doi.org/10.1016/j.jnutbio.2018.04.014 Altunkaynak, B. Z., & Ozbek, E. (2009). Overweight and structural alterations of the liver in female rats fed a high-fat diet: a stereological and histological study. The Turkish Journal of Gastroenterology : The Official Journal of Turkish Society of Gastroenterology, 20(2), 93–103. American Diabetes Association. (2022). 2. Classification and diagnosis of diabetes: standards of medical care in diabetes—2022. Diabetes Care, 45(Supplement_1), S17–S38. https://doi.org/10.2337/dc22-S002 American Diabetes Association (ADA). (2017). Lifestyle management. Diabetes Care, 40(Supplement_1), S33–S43. https://doi.org/10.2337/dc17-S007 American Diabetes Association (ADA). (2021a). 2. Classification and diagnosis of diabetes: standards of medical care in diabetes—2021. Diabetes Care, 44(Supplement 1), S15–S33. https://doi.org/10.2337/dc21-S002 American Diabetes Association (ADA). (2021b). Introduction: standards of medical care in diabetes—2021. Diabetes Care, 44(Supplement 1), S1–S2. https://doi.org/10.2337/dc21-Sint Amir Siddiqui, M., Badruddeen, Akhtar, J., Uddin, S., Chandrashekharan, S. M., Ahmad, M., Khan, M. I., & Khalid, M. (2022). Chrysin modulates protein kinase IKKε/TBK1, insulin sensitivity and hepatic fatty infiltration in diet‐induced obese mice. Drug Development Research, 83(1), 194–207. https://doi.org/10.1002/ddr.21859 Andrade-Cetto, A., & Heinrich, M. (2005). Mexican plants with hypoglycaemic effect used in the treatment of diabetes. Journal of Ethnopharmacology, 99(3), 325–348. https://doi.org/10.1016/j.jep.2005.04.019 Andrikopoulos, S., Blair, A. R., Deluca, N., Fam, B. C., & Proietto, J. (2008). Evaluating the glucose tolerance test in mice. American Journal of Physiology-Endocrinology and Metabolism, 295(6), E1323–E1332. https://doi.org/10.1152/ajpendo.90617.2008 Antunes, L. C., Elkfury, J. L., Jornada, M. N., Foletto, K. C., & Bertoluci, M. C. (2016). Validation of HOMA-IR in a model of insulin-resistance induced by a high-fat diet in Wistar rats. Archives of Endocrinology and Metabolism, 60(2), 138–142. https://doi.org/10.1590/2359-3997000000169 Anurag, P., & Anuradha, C. V. (2002). Metformin improves lipid metabolism and attenuates lipid peroxidation in high fructose-fed rats. Diabetes, Obesity and Metabolism, 4(1), 36–42. https://doi.org/10.1046/j.1463-1326.2002.00178.x Anusooriya, P., Malarvizhi, D., Gopalakrishnan, V. K., & Devaki, K. (2014). antioxidant and antidiabetic effect of aqueous fruit extract of Passiflora ligularis Juss. on streptozotocin induced diabetic rats. International Scholarly Research Notices, 2014, 1–10. https://doi.org/10.1155/2014/130342 Aragón Novoa, D. M., Ospina Giraldo, L. F., Ramos Rodríguez, F. A., Castellanos Hernández, L., Costa Modesti, G., & Barreto Silva, F. R. M. (2021). Passiflora ligularis Juss. (granadilla): farmacológicos de una estudios químicos y planta con potencial terapéutico (D. M. Aragón Novoa, Ed.; First). Universidad Nacional de Colombia - Sede Bogotá. Araújo Galdino, O., de Souza Gomes, I., Ferreira de Almeida Júnior, R., Conceição Ferreira de Carvalho, M. I., Abreu, B. J., Abbott Galvão Ururahy, M., Cabral, B., Zucolotto Langassner, S. M., Costa de Souza, K. S., & Augusto de Rezende, A. (2022). The nephroprotective action of Passiflora edulis in streptozotocin-induced diabetes. Scientific Reports, 12(1), 17546. https://doi.org/10.1038/s41598-022-21826-9 Arkhammar, P., Juntti-Berggren, L., Larsson, O., Welsh, M., Nanberg, E., Sjoholm, A., Kohler, M., & Berggren, P. O. (1994). Protein kinase C modulates the insulin secretory process by maintaining a proper function of the β-cell voltage-activated Ca2+channels. Journal of Biological Chemistry, 269(4), 2743–2749. Aschner, P., Mauricio Muñoz, O., Giron, D., Garcia, O. M., Fernandez Ávila, D. G., Casas, L. A., Bohórquez, L. F., Arángo T., C. M., Carvajal, L., Ramírez, D. A., Sarmiento, J. G., Colon, C. A., Correa G., N. F., Alarcón R., P., & Bústamante S., A. A. (2016). Clinical practice guideline for the prevention, early detection, diagnosis, management and follow up of type 2 diabetes mellitus in adults. Colombia Medica, 109–130. https://doi.org/10.25100/cm.v47i2.2207 Ashcroft, F. M., Proks, P., Smith, P. A., Ämmälä, C., Bokvist, K., & Rorsman, P. (1994). Stimulus-secretion coupling in pancreatic β cells. Journal of Cellular Biochemistry, 55(S1994A), 54–65. https://doi.org/10.1002/jcb.240550007 Ashcroft, F. M., & Rorsman, P. (2013). K(ATP) channels and islet hormone secretion: new insights and controversies. Nature Reviews Endocrinology, 9(11), 660–669. https://doi.org/10.1038/nrendo.2013.166 Bailey, C. J. (2017). Metformin: historical overview. Diabetologia, 60(9), 1566–1576. https://doi.org/10.1007/s00125-017-4318-z Balibrea, J., & Arias-Díaz, J. (2007). Modelos animales de intolerancia a la glucosa y diabetes tipo 2. Diabetes, 22(2), 160–168. Barber, E., Houghton, M. J., & Williamson, G. (2021). Flavonoids as human intestinal α-glucosidase inhibitors. Foods, 10(8), 1939. https://doi.org/10.3390/foods10081939 Bardy, G., Virsolvy, A., Quignard, J. F., Ravier, M. A., Bertrand, G., Dalle, S., Cros, G., Magous, R., Richard, S., & Oiry, C. (2013). Quercetin induces insulin secretion by direct activation of L-type calcium channels in pancreatic beta cells. British Journal of Pharmacology, 169(5), 1102–1113. https://doi.org/10.1111/bph.12194 Barge, S., Deka, B., Kashyap, B., Bharadwaj, S., Kandimalla, R., Ghosh, A., Dutta, P. P., Samanta, S. K., Manna, P., Borah, J. C., & Talukdar, N. C. (2021). Astragalin mediates the pharmacological effects of Lysimachia candida Lindl on adipogenesis via downregulating PPARG and FKBP51 signaling cascade. Phytotherapy Research, 35(12), 6990–7003. https://doi.org/10.1002/ptr.7320 Barnes, A. S. (2011). The epidemic of obesity and diabetes: trends and treatments. Texas Heart Institute Journal, 38(2), 142–144. Batra, S., & Sjögren, C. (1983). Effect of estrogen treatment of calcium uptake by the rat uterine smooth muscle. Life Sciences, 32(4), 315–319. Belfiore, A., Malaguarnera, R., Vella, V., Lawrence, M. C., Sciacca, L., Frasca, F., Morrione, A., & Vigneri, R. (2017). Insulin receptor isoforms in physiology and disease: an updated view. Endocrine Reviews, 38(5), 379–431. https://doi.org/10.1210/er.2017-00073 Benes, C., Poitout, V., Marie, J.-C., Matin-Perez, J., Roisin, M.-P., & Fagard, R. (1999). Mode of regulation of the extracellular signal-regulated kinases in the pancreatic β-cell line MIN6 and their implication in the regulation of insulin gene transcription. Biochemical Journal, 340(1), 219–225. https://doi.org/10.1042/bj3400219 Bensaude, O. (2011). Inhibiting eukaryotic transcription. Which compound to choose? How to evaluate its activity? Transcription, 2(3), 103–108. https://doi.org/10.4161/trns.2.3.16172 Berger, C., & Zdzieblo, D. (2020). Glucose transporters in pancreatic islets. Pflügers Archiv - European Journal of Physiology, 472(9), 1249–1272. https://doi.org/10.1007/s00424-020-02383- Berridge, M. J., Bootman, M. D., & Roderick, H. L. (2003). Calcium signalling: dynamics, homeostasis and remodelling. Nature Reviews Molecular Cell Biology, 4(7), 517–529. https://doi.org/10.1038/nrm1155 Blackman, S. M., Cooke, D. W., & Hopkins, J. (2013). Diabetes. 1, 649–658. https://doi.org/10.1016/B978-0-12-378630-2.00035-9 Bonfanti, D. H., Alcazar, L. P., Arakaki, P. A., Martins, L. T., Agustini, B. C., de Moraes Rego, F. G., & Frigeri, H. R. (2015). ATP-dependent potassium channels and type 2 diabetes mellitus. Clinical Biochemistry, 48(7–8), 476–482. https://doi.org/10.1016/j.clinbiochem.2014.12.026 Bösenberg, L. H., & van Zyl, D. G. (2008). The mechanism of action of oral antidiabetic drugs: A review of recent literature. Journal of Endocrinology, Metabolism and Diabetes of South Africa, 13(3), 80–88. https://doi.org/10.1080/22201009.2008.10872177 Brahmachari, G. (2011). Bio-flavonoids with promising anti- diabetic potentials: A critical survey. Opportunity, Challenge and Scope of Natural Products in Medicinal Chemistry - Research Signpost, 661(2), 187–212. Brereton, M. F., Iberl, M., Shimomura, K., Zhang, Q., Adriaenssens, A. E., Proks, P., Spiliotis, I. I., Dace, W., Mattis, K. K., Ramracheya, R., Gribble, F. M., Reimann, F., Clark, A., Rorsman, P., & Ashcroft, F. M. (2014). Reversible changes in pancreatic islet structure and function produced by elevated blood glucose. Nature Communications, 5(1), 4639. https://doi.org/10.1038/ncomms5639 Calisti, L., & Tognetti, S. (2005). Measure of glycosylated hemoglobin. Acta Bio-Medica : Atenei Parmensis, 76 Suppl 3, 59–62. Carvajal de Pabón, L. M., Turbay, S., Rojano, B., Álvarez, L. M., Restrepo, S. L., Álvarez, J. M., Bonilla, K. C., Clara Ochoa, O., & Sánchez, N. (2011). Algunas especies de Passiflora y su capacidad antioxidante. Revista Cubana de Plantas Medicinales, 16(4), 354–363. Castro, A. J. G., Frederico, M. J. S., Cazarolli, L. H., Mendes, C. P., Bretanha, L. C., Schmidt, É. C., Bouzon, Z. L., de Medeiros Pinto, V. A., da Fonte Ramos, C., Pizzolatti, M. G., & Silva, F. R. M. B. (2015). The mechanism of action of ursolic acid as insulin secretagogue and insulinomimetic is mediated by cross-talk between calcium and kinases to regulate glucose balance. Biochimica et Biophysica Acta (BBA) - General Subjects, 1850(1), 51–61. https://doi.org/10.1016/j.bbagen.2014.10.001 Castro Gomes, A. J., Cazarolli, L. H., Bretanha, L. C., Sulis, P. M., Rey Padilla, D. P., Aragón Novoa, D. M., Dambrós, B. F., Pizzolatti, M. G., & Mena Barreto Silva, F. R. (2018). The potent insulin secretagogue effect of betulinic acid is mediated by potassium and chloride channels. Archives of Biochemistry and Biophysics, 648(April), 20–26. https://doi.org/10.1016/j.abb.2018.04.015 Catterall, W. A. (2011). Voltage-Gated Calcium Channels. Cold Spring Harbor Perspectives in Biology, 3(8), a003947–a003947. https://doi.org/10.1101/cshperspect.a003947 Cazarolli, L. H., Folador, P., Moresco, H. H., Brighente, I. M. C., Pizzolatti, M. G., & Silva, F. R. M. B. (2009). Mechanism of action of the stimulatory effect of apigenin-6-C-(2″-O-α-l-rhamnopyranosyl)-β-l-fucopyranoside on 14C-glucose uptake. Chemico-Biological Interactions, 179(2–3), 407–412. https://doi.org/10.1016/j.cbi.2008.11.012 Cazarolli, L. H., Folador, P., Pizzolatti, M. G., & Mena Barreto Silva, F. R. (2009a). Signaling pathways of kaempferol-3-neohesperidoside in glycogen synthesis in rat soleus muscle. Biochimie, 91(7), 843–849. https://doi.org/10.1016/j.biochi.2009.04.004 Cazarolli, L. H., Kappel, V. D., Pereira, D. F., Moresco, H. H., Brighente, I. M. C., Pizzolatti, M. G., & Silva, F. R. M. B. (2012). Anti-hyperglycemic action of apigenin-6-C-β-fucopyranoside from Averrhoa carambola. Fitoterapia, 83(7), 1176–1183. https://doi.org/10.1016/j.fitote.2012.07.003 Cazarolli, L. H., Pereira, D. F., Kappel, V. D., Folador, P., Figueiredo, M. D. S. R. B., Pizzolatti, M. G., & Silva, F. R. M. B. (2013). Insulin signaling: A potential signaling pathway for the stimulatory effect of kaempferitrin on glucose uptake in skeletal muscle. European Journal of Pharmacology, 712(1–3), 1–7. https://doi.org/10.1016/j.ejphar.2013.02.029 Cazarolli, L. H., Zanatta, L., Jorge, A. P., de Sousa, E., Horst, H., Woehl, V. M., Pizzolatti, M. G., Szpoganicz, B., & Silva, F. R. M. B. (2006). Follow-up studies on glycosylated flavonoids and their complexes with vanadium: Their anti-hyperglycemic potential role in diabetes. Chemico-Biological Interactions, 163(3), 177–191. https://doi.org/10.1016/j.cbi.2006.07.010 Cazarolli, L., Zanatta, L., Alberton, E., Reis Bonorino Figueiredo, M., Folador, P., Damazio, R., Pizzolatti, M., & Mena Barreto Silva, F. (2008). Flavonoids: Cellular and molecular mechanism of action in glucose homeostasis. Mini-Reviews in Medicinal Chemistry, 8(10), 1032–1038. https://doi.org/10.2174/138955708785740580 Chang, Y.-C., & Chuang, L.-M. (2010). The role of oxidative stress in the pathogenesis of type 2 diabetes: from molecular mechanism to clinical implication. American Journal of Translational Research, 2(3), 316–331. Chen, S., Chen, J., Li, S., Guo, F., Li, A., Wu, H., Chen, J., Pan, Q., Liao, S., Liu, H., & Pan, Q. (2021). High-fat diet-induced renal proximal tubular inflammatory injury: emerging risk factor of chronic kidney disease. Frontiers in Physiology, 12. https://doi.org/10.3389/fphys.2021.786599 Chippy, J., Lincy, J., & Mathew, G. (2016). Evaluation of anti-diabetic activity of leaves of Passiflora ligularis on alloxan induced diabetes mellitus in albino rats. International Journal of Pharmacy and Pharmaceutical Research, 6(4), 518–522. Choi, B. H., & Hahn, S. J. (2010). Kv1.3: a potential pharmacological target for diabetes. Acta Pharmacologica Sinica, 31(9), 1031–1035. https://doi.org/10.1038/aps.2010.133 Choi, J., Kang, H. J., Kim, S. Z., Kwon, T. O., Jeong, S. Il, & Jang, S. Il. (2013). Antioxidant effect of astragalin isolated from the leaves of Morus alba L. against free radical-induced oxidative hemolysis of human red blood cells. Archives of Pharmacal Research, 36(7), 912–917. https://doi.org/10.1007/s12272-013-0090-x Choi, S. B., Park, C. H., Choi, M. K., Jun, D. W., & Park, S. (2004). Improvement of insulin resistance and insulin secretion by water extracts of Cordyceps militaris, Phellinus linteus, and Paecilomyces tenuipes in 90% pancreatectomized rats. Bioscience, Biotechnology, and Biochemistry, 68(11), 2257–2264. https://doi.org/10.1271/bbb.68.2257 Coman, C., Rugina, O. D., & Socaciu, C. (2012). Plants and natural compounds with antidiabetic action. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 40(1), 314. https://doi.org/10.15835/nbha4017205 Costa, G. M., Gazola, A. C., Zucolotto, S. M., Castellanos, L., Ramos, F. A., Reginatto, F. H., & Schenkel, E. P. (2016). Chemical profiles of traditional preparations of four south american Passiflora species by chromatographic and capillary electrophoretic techniques. Revista Brasileira de Farmacognosia, 26(4), 451–458. https://doi.org/10.1016/j.bjp.2016.02.005 Da Silva Xavier, G. (2018). The cells of the islets of langerhans. Journal of Clinical Medicine, 7(3), 54. https://doi.org/10.3390/jcm7030054 Dabla, P. K. (2010). Renal function in diabetic nephropathy. World Journal of Diabetes, 1(2), 48. https://doi.org/10.4239/wjd.v1.i2.48 Dash, S., Pattnaik, G., Kar, B., Sahoo, N., & Bhattacharya, S. (2021). An approach towards method development to investigate the anti-diabetic activity on experimental animals. Current Trends in Biotechnology and Pharmacy, 15(3), 330–348. https://doi.org/10.5530/ctbp.2021.3.34 de Almeida, V. L., Silva, C. G., & Campana, P. R. V. (2021). Flavonoids of Passiflora: isolation, structure elucidation, and biotechnological application (pp. 263–310). https://doi.org/10.1016/B978-0-323-91095-8.00004-0 Dejager, S., Penfornis, A., Blickle, J.-F., Fiquet, B., & Quere, S. (2014). How are patients with type 2 diabetes and renal disease monitored and managed? Insights from the observational OREDIA study. Vascular Health and Risk Management, 341. https://doi.org/10.2147/VHRM.S60312 Dhawan, K., Dhawan, S., & Sharma, A. (2004). Passiflora: a review update. Journal of Ethnopharmacology, 94(1), 1–23. https://doi.org/10.1016/j.jep.2004.02.023 Di Magno, L., Di Pastena, F., Bordone, R., Coni, S., & Canettieri, G. (2022). The mechanism of action of biguanides: new answers to a complex question. Cancers, 14(13), 3220. https://doi.org/10.3390/cancers14133220 Díaz Horta, O. (2003). El ion calcio: su regulación y función en la célula ß pancreática. Revista Cubana de Endocrinología, 14(3), 0–0. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1561-29532003000300008&lng=es&nrm=iso&tlng=es Doi, K., Yamanouchi, J., Kume, E., & Yasoshima, A. (1997). Morphologic changes in hepatocyte nuclei of streptozotocin (SZ)-induced diabetic mice. Experimental and Toxicologic Pathology, 49(3–4), 295–299. https://doi.org/10.1016/S0940-2993(97)80041-3 Dowarah, J., & Singh, V. P. (2020). Anti-diabetic drugs recent approaches and advancements. Bioorganic & Medicinal Chemistry, 28(5), 115263. https://doi.org/10.1016/j.bmc.2019.115263 Drozdowski, L., & Thomson, A. (2006). Intestinal sugar transport. World Journal of Gastroenterology, 12(11), 1657. https://doi.org/10.3748/wjg.v12.i11.1657 Du, Y., & Wei, T. (2014). Inputs and outputs of insulin receptor. Protein & Cell, 5(3), 203–213. https://doi.org/10.1007/s13238-014-0030-7 Duan, Y., Dai, H., An, Y., Cheng, L., Shi, L., Lv, Y., Li, H., Wang, C., He, C., Zhang, H., Huang, Y., Fu, W., Meng, Y., & Zhao, B. (2022). Mulberry leaf flavonoids inhibit liver inflammation in type 2 diabetes rats by regulating TLR4/MyD88/NF-κB signaling pathway. Evidence-Based Complementary and Alternative Medicine, 2022, 1–10. https://doi.org/10.1155/2022/3354062 Duarte, I. de A. E., Milenkovic, D., Borges, T. K. dos S., Rosa, A. J. de M., Morand, C., Oliveira, L. de L. de, & Costa, A. M. (2020). Acute effects of the consumption of Passiflora setacea juice on metabolic risk factors and gene expression profile in humans. Nutrients, 12(4), 1104. https://doi.org/10.3390/nu12041104 Echeverry, S. M., Rey, D., Valderrama, I. H., Araujo, B. V. de, & Aragón, D. M. (2021). Development of a self-emulsifying drug delivery system (SEDDS) to improve the hypoglycemic activity of Passiflora ligularis leaves extract. In Journal of Drug Delivery Science and Technology (Vol. 64). https://doi.org/10.1016/j.jddst.2021.102604 Echeverry, S. M., Valderrama, I. H., Costa, G. M., Ospina-Giraldo, L. F., & Aragón, D. M. (2018). Development and optimization of microparticles containing a hypoglycemic fraction of calyces from Physalis peruviana. Journal of Applied Pharmaceutical Science, 8(5), 10–18. https://doi.org/10.7324/JAPS.2018.8502 Eid, H. M., Martineau, L. C., Saleem, A., Muhammad, A., Vallerand, D., Benhaddou-Andaloussi, A., Nistor, L., Afshar, A., Arnason, J. T., & Haddad, P. S. (2010). Stimulation of AMP-activated protein kinase and enhancement of basal glucose uptake in muscle cells by quercetin and quercetin glycosides, active principles of the antidiabetic medicinal plant Vaccinium vitis-idaea. Molecular Nutrition and Food Research, 54(7), 991–1003. https://doi.org/10.1002/mnfr.200900218 Eisenreich, A., & Leppert, U. (2017). Update on the protective renal effects of metformin in diabetic nephropathy. Current Medicinal Chemistry, 24(31). https://doi.org/10.2174/0929867324666170404143102 Fallah, Z., Tajbakhsh, M., Alikhani, M., Larijani, B., Faramarzi, M. A., Hamedifar, H., Mohammadi-Khanaposhtani, M., & Mahdavi, M. (2022). A review on synthesis, mechanism of action, and structure-activity relationships of 1,2,3-triazole-based α-glucosidase inhibitors as promising anti-diabetic agents. Journal of Molecular Structure, 1255, 132469. https://doi.org/10.1016/j.molstruc.2022.132469 Fang, P., Yu, M., Min, W., Wan, D., Han, S., Shan, Y., Wang, R., Shi, M., Zhang, Z., & Bo, P. (2018). Effect of baicalin on GLUT4 expression and glucose uptake in myotubes of rats. Life Sciences, 196, 156–161. https://doi.org/10.1016/j.lfs.2018.01.022 Farzaei, F., Morovati, M. R., Farjadmand, F., & Farzaei, M. H. (2017). A mechanistic review on medicinal plants used for diabetes mellitus in traditional persian medicine. Journal of Evidence-Based Complementary and Alternative Medicine, 22(4), 944–955. https://doi.org/10.1177/2156587216686461 Fazakerley, D. J., Krycer, J. R., Kearney, A. L., Hocking, S. L., & James, D. E. (2019). Muscle and adipose tissue insulin resistance: malady without mechanism?. Journal of Lipid Research, 60(10), 1720–1732. https://doi.org/10.1194/jlr.R087510 Floch, J.-P. le, Escuyer, P., Baudin, E., Baudon, D., & Perlemuter, L. (1990). Blood glucose area under the curve: methodological aspects. Diabetes Care, 13(2), 172–175. https://doi.org/10.2337/diacare.13.2.172 Folador, P., Cazarolli, L. H., Gazola, A. C., Reginatto, F. H., Schenkel, E. P., & Silva, F. R. M. B. (2010). Potential insulin secretagogue effects of isovitexin and swertisin isolated from Wilbrandia ebracteata roots in non-diabetic rats. Fitoterapia, 81(8), 1180–1187. https://doi.org/10.1016/j.fitote.2010.07.022 Frederico, M. J. S., Castro, A. J. G., Mascarello, A., Mendes, C. P., Kappel, V. D., Stumpf, T. R., Leal, P. C., Nunes, R. J., Yunes, R. A., & Silva, F. R. M. B. (2012). Acylhydrazones contribute to serum glucose homeostasis through dual physiological targets. Current Topics in Medicinal Chemistry, 12(19), 2049–2058. https://dx.doi.org/10.2174/1568026611212190003 Frederico, M., Gomes Castro, A., Menegaz, D., de Bernardis Murat, C., Pires Mendes, C., Mascarello, A., Nunes, R., & Silva, F. R. M. B. (2017). Mechanism of Action of Novel Glibenclamide Derivatives on Potassium and Calcium Channels for Insulin Secretion. Current Drug Targets, 18(6), 641–650. https://doi.org/10.2174/1389450117666160615084752 Frederico, M. J. S., Castro, A. J. G., Pinto, V. A. M., Ramos, C. D. F., Monteiro, F. B. F., Mascarello, A., Nunes, R. J., & Silva, F. R. M. B. (2018). Mechanism of action of camphoryl-benzene sulfonamide derivative on glucose uptake in adipose tissue. Journal of Cellular Biochemistry, 119(6), 4408–4419. https://doi.org/10.1002/jcb.26506 Friedrichsen, M., Mortensen, B., Pehmøller, C., Birk, J. B., & Wojtaszewski, J. F. P. (2013). Exercise-induced AMPK activity in skeletal muscle: Role in glucose uptake and insulin sensitivity. In Molecular and Cellular Endocrinology (Vol. 366, Issue 2, pp. 204–214). Elsevier Ireland Ltd. https://doi.org/10.1016/j.mce.2012.06.013 Fröde, T. S., & Medeiros, Y. S. (2008). Animal models to test drugs with potential antidiabetic activity. Journal of Ethnopharmacology, 115(2), 173–183. https://doi.org/10.1016/j.jep.2007.10.038 Furman, B. L. (2015). Streptozotocin-induced diabetic models in mice and rats. In Current Protocols in Pharmacology (pp. 5.47.1-5.47.20). John Wiley & Sons, Inc. https://doi.org/10.1002/0471141755.ph0547s70 George, P., & McCrimmon, R. (2012). Diazoxide. Practical Diabetes, 29(1), 36–37. Ghasemi, A., Khalifi, S., & Jedi, S. (2014). Streptozotocin-nicotinamide-induced rat model of type 2 diabetes (review). Acta Physiologica Hungarica, 101(4), 408–420. https://doi.org/10.1556/APhysiol.101.2014.4.2 Giacco, F., & Brownlee, M. (2010). Oxidative stress and diabetic complications. Circulation Research, 107(9), 1058–1070. https://doi.org/10.1161/CIRCRESAHA.110.223545 Gilbert, E. R., Fu, Z., & Liu, D. (2011). Development of a nongenetic mouse model of type 2 diabetes. Experimental Diabetes Research, 2011, 1–12. https://doi.org/10.1155/2011/416254 Gilon, P., Chae, H.-Y., Rutter, G. A., & Ravier, M. A. (2014). Calcium signaling in pancreatic β-cells in health and in type 2 diabetes. Cell Calcium, 56(5), 340–361. https://doi.org/10.1016/j.ceca.2014.09.001 Ginsberg, H. N., Zhang, Y.-L., & Hernandez-Ono, A. (2005). Regulation of plasma triglycerides in insulin resistance and diabetes. Archives of Medical Research, 36(3), 232–240. https://doi.org/10.1016/j.arcmed.2005.01.005 Goldberg, I. J. (2001). Diabetic dyslipidemia: Causes and consequences. The Journal of Clinical Endocrinology & Metabolism, 86(3), 965–971. https://doi.org/10.1210/jcem.86.3.7304 Gomes Castro, A. J., Silva Frederico, M. J., Cazarolli, L. H., Bretanha, L. C., Tavares, L. de C., Buss, Z. da S., Dutra, M. F., Pacheco de Souza, A. Z., Pizzolatti, M. G., & Silva, F. R. M. B. (2014). Betulinic acid and 1,25(OH)2 vitamin D3 share intracellular signal transduction in glucose homeostasis in soleus muscle. The International Journal of Biochemistry & Cell Biology, 48, 18–27. https://doi.org/10.1016/j.biocel.2013.11.020 Gorovits, N., & Charron, M. J. (2003). What we know about facilitative glucose transporters. Biochemistry and Molecular Biology Education, 31(3), 163–172. Goss, M. J., Nunes, M. L. O., Machado, I. D., Merlin, L., Macedo, N. B., Silva, A. M. O., Bresolin, T. M. B., & Santin, J. R. (2018). Peel flour of Passiflora edulis Var. Flavicarpa supplementation prevents the insulin resistance and hepatic steatosis induced by low-fructose-diet in young rats. Biomedicine & Pharmacotherapy, 102, 848–854. https://doi.org/10.1016/j.biopha.2018.03.137 Gulliford, M. C., Charlton, J., & Latinovic, R. (2006). Risk of diabetes associated with prescribed glucocorticoids in a large population. Diabetes Care, 29(12), 2728–2729. https://doi.org/10.2337/dc06-1499 Guo, X., Wang, Y., Wang, K., Ji, B., & Zhou, F. (2018). Stability of a type 2 diabetes rat model induced by high-fat diet feeding with low-dose streptozotocin injection. Journal of Zhejiang University-SCIENCE B, 19(7), 559–569. https://doi.org/10.1631/jzus.B1700254 Gupta, J., Gupta, A., & Kumar, A. (2018). Role of dietary flavonoids having antidiabetic properties and their protective mechanism. IJCRCPS, 5(1), 13–21. https://doi.org/10.22192/ijcrcps.2018.05.01.004 Gupta, R. K., Kumar, D., Chaudhary, A. K., Maithani, M., & Singh, R. (2012). Antidiabetic activity of Passiflora incarnata Linn. in streptozotocin-induced diabetes in mice. Journal of Ethnopharmacology, 139(3), 801–806. https://doi.org/10.1016/j.jep.2011.12.021 Gustavsson, J., Parpal, S., Karlsson, M., Ramsing, C., Thorn, H., Borg, M., Lindroth, M., Peterson, K. H., Magnusson, K. E., & Strâlfors, P. (1999). Localization of the insulin receptor in caveolae of adipocyte plasma membrane. FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology, 13(14), 1961–1971. http://www.ncbi.nlm.nih.gov/pubmed/10544179 Hagenacker, T., Hillebrand, I., Büsselberg, D., & Schäfers, M. (2010). Myricetin reduces voltage activated potassium channel currents in DRG neurons by a p38 dependent mechanism. Brain Research Bulletin, 83(5), 292–296. https://doi.org/10.1016/j.brainresbull.2010.07.010 Haligur, M., Topsakal, S., & Ozmen, O. (2012). Early Degenerative effects of diabetes mellitus on pancreas, liver, and kidney in rats: An immunohistochemical study. Experimental Diabetes Research, 2012, 1–10. https://doi.org/10.1155/2012/120645 Han, Y., Tang, S., Liu, Y., Li, A., Zhan, M., Yang, M., Song, N., Zhang, W., Wu, X., Peng, C., Zhang, H., & Yang, S. (2021). AMPK agonist alleviate renal tubulointerstitial fibrosis via activating mitophagy in high fat and streptozotocin induced diabetic mice. Cell Death & Disease, 12(10), 925. https://doi.org/10.1038/s41419-021-04184-8 Hassan, Z., Yam, M. F., Ahmad, M., & Yusof, A. P. M. (2010). Antidiabetic properties and mechanism of action of Gynura procumbens water extract in streptozotocin-induced diabetic rats. Molecules, 15(12), 9008–9023. https://doi.org/10.3390/molecules15129008 Hawley, J. A., Hargreaves, M., & Zierath, J. R. (2006). Signalling mechanisms in skeletal muscle: Role in substrate selection and muscle adaptation. Essays in Biochemistry, 42, 1–12. https://doi.org/10.1042/bse0420001 Henquin, J.-C. (2011). The dual control of insulin secretion by glucose involves triggering and amplifying pathways in β-cells. Diabetes Research and Clinical Practice, 93, S27–S31. https://doi.org/10.1016/S0168-8227(11)70010-9 Hiriart, M., & Aguilar-Bryan, L. (2008). Channel regulation of glucose sensing in the pancreatic β-cell. American Journal of Physiology-Endocrinology and Metabolism, 295(6), E1298–E1306. https://doi.org/10.1152/ajpendo.90493.2008. Ho, G. T. T., Kase, E. T., Wangensteen, H., & Barsett, H. (2017). Phenolic elderberry extracts, anthocyanins, procyanidins, and metabolites influence glucose and fatty acid uptake in human skeletal muscle cells. Journal of Agricultural and Food Chemistry, 65(13), 2677–2685. https://doi.org/10.1021/acs.jafc.6b05582 Hong, H. C., Li, S. L., Zhang, X. Q., Ye, W. C., & Zhang, Q. W. (2013). Flavonoids with α-glucosidase inhibitory activities and their contents in the leaves of Morus atropurpurea. Chinese Medicine (United Kingdom), 8(1), 1. https://doi.org/10.1186/1749-8546-8-19 Hsia, D. S., Grove, O., & Cefalu, W. T. (2016). An update on sodium-glucose co-transporter-2 inhibitors for the treatment of diabetes mellitus. Current Opinion in Endocrinology & Diabetes and Obesity, 1. https://doi.org/10.1097/MED.0000000000000311 Huang, G., Tang, B., Tang, K., Dong, X., Deng, J., Liao, L., Liao, Z., Yang, H., & He, S. (2014). Isoquercitrin inhibits the progression of liver cancer in vivo and in vitro via the MAPK signalling pathway. Oncology Reports, 31(5), 2377–2384. https://doi.org/10.3892/or.2014.3099 Huang, J., Imamura, T., Babendure, J. L., Lu, J.-C., & Olefsky, J. M. (2005). Disruption of microtubules ablates the specificity of insulin signaling to GLUT4 translocation in 3T3-L1 adipocytes. Journal of Biological Chemistry, 280(51), 42300–42306. https://doi.org/10.1074/jbc.M510920200 Huang, X.-L., He, Y., Ji, L.-L., Wang, K.-Y., Wang, Y.-L., Chen, D.-F., Geng, Y., OuYang, P., & Lai, W.-M. (2017). Hepatoprotective potential of isoquercitrin against type 2 diabetes-induced hepatic injury in rats. Oncotarget, 8(60). https://doi.org/10.18632/oncotarget.21074 Hughes, E., Lee, A. K., & Tse, A. (2006). Dominant role of sarcoendoplasmic reticulum Ca2+-ATPase pump in Ca2+ homeostasis and exocytosis in rat pancreatic beta-cells. Endocrinology, 147(3), 1396–1407. https://doi.org/10.1210/en.2005-1023 Huopio, H., Shyng, S.-L., Otonkoski, T., & Nichols, C. G. (2002). KATP channels and insulin secretion disorders. American Journal of Physiology-Endocrinology and Metabolism, 283(2), E207–E216. https://doi.org/10.1152/ajpendo.00047.2002 Ibtissem, B. A., Hajer, B. S., Ahmed, H., Awatef, E., Choumous, K., Ons, B., Mounir, Z. K., & Najiba, Z. (2017). Oxidative stress and histopathological changes induced by methylthiophanate, a systemic fungicide, in blood, liver and kidney of adult rats. African Health Sciences, 17(1), 154. https://doi.org/10.4314/ahs.v17i1.20 Janssen, B. J. A., De Celle, T., Debets, J. J. M., Brouns, A. E., Callahan, M. F., & Smith, T. L. (2004). Effects of anesthetics on systemic hemodynamics in mice. American Journal of Physiology-Heart and Circulatory Physiology, 287(4), H1618–H1624. https://doi.org/10.1152/ajpheart.01192.2003 Jayachandran, M., Zhang, T., Ganesan, K., Xu, B., & Chung, S. S. M. (2018). Isoquercetin ameliorates hyperglycemia and regulates key enzymes of glucose metabolism via insulin signaling pathway in streptozotocin-induced diabetic rats. European Journal of Pharmacology, 829, 112–120. https://doi.org/10.1016/j.ejphar.2018.04.015 Jing, X., Li, D.-Q., Olofsson, C. S., Salehi, A., Surve, V. v., Caballero, J., Ivarsson, R., Lundquist, I., Pereverzev, A., Schneider, T., Rorsman, P., & Renström, E. (2005). CaV2.3 calcium channels control second-phase insulin release. Journal of Clinical Investigation, 115(1), 146–154. https://doi.org/10.1172/JCI22518 Jitrapakdee, S., Wutthisathapornchai, A., Wallace, J. C., & MacDonald, M. J. (2010). Regulation of insulin secretion: role of mitochondrial signalling. Diabetologia, 53(6), 1019–1032. https://doi.org/10.1007/s00125-010-1685-0 Joseph, J., Anand, K., Malindisa, S. T., Oladipo, A. O., & Fagbohun, O. F. (2021). Exercise, CaMKII, and type 2 diabetes. EXCLI Journal, 20, 386–399. https://doi.org/10.17179/excli2020-3317 Jung, K. Y., Kim, K. M., & Lim, S. (2014). Therapeutic approaches for preserving or restoring pancreatic β-cell function and mass. Diabetes & Metabolism Journal, 38(6), 426. https://doi.org/10.4093/dmj.2014.38.6.426 Kamp, T. J., & Hell, J. W. (2000). Regulation of cardiac L-type calcium channels by protein kinase a and protein kinase C. Circulation Research, 87(12), 1095–1102. https://doi.org/10.1161/01.RES.87.12.1095 Kandandapani, S., Balaraman, A. K., & Ahamed, H. N. (2015). Extracts of passion fruit peel and seed of Passiflora edulis (Passifloraceae) attenuate oxidative stress in diabetic rats. Chinese Journal of Natural Medicines, 13(9), 680–686. https://doi.org/10.1016/S1875-5364(15)30066-2 Kaneko, Y. K., & Ishikawa, T. (2015). Diacylglycerol signaling pathway in pancreatic β-cells: an essential role of diacylglycerol kinase in the regulation of insulin secretion. Biological & Pharmaceutical Bulletin, 38(5), 669–673. https://doi.org/10.1248/bpb.b15-00060 Kanzaki, M. (2006). Insulin receptor signals regulating GLUT4 translocation and actin dynamics. Endocrine Journal, 53(3), 267–293. https://doi.org/10.1507/endocrj.KR-65 Kappel, V. D., Cazarolli, L. H., Pereira, D. F., Postal, B. G., Madoglio, F. A., Buss, Z. da S., Reginatto, F. H., & B. Silva, F. R. M. (2013). Beneficial effects of banana leaves (Musa x paradisiaca) on glucose homeostasis: Multiple sites of action. Revista Brasileira de Farmacognosia, 23(4), 706–715. https://doi.org/10.1590/S0102-695X2013005000062 Kappel, V. D., Cazarolli, L. H., Pereira, D. F., Postal, B. G., Zamoner, A., Reginatto, F. H., & Silva, F. R. M. B. (2013a). Involvement of GLUT-4 in the stimulatory effect of rutin on glucose uptake in rat soleus muscle. Journal of Pharmacy and Pharmacology, 65(8), 1179–1186. https://doi.org/10.1111/jphp.12066 Kappel, V. D., Frederico, M. J. S., Postal, B. G., Mendes, C. P., Cazarolli, L. H., & Silva, F. R. M. B. (2013b). The role of calcium in intracellular pathways of rutin in rat pancreatic islets: Potential insulin secretagogue effect. European Journal of Pharmacology, 702(1–3), 264–268. https://doi.org/10.1016/j.ejphar.2013.01.055 Kappel, V. D., Pereira, D. F., Cazarolli, L. H., Guesser, S. M., da Silva, C. H. B., Schenkel, E. P., Reginatto, F. H., & Silva, F. R. M. B. (2012). Short and long-term effects of Baccharis articulata on glucose homeostasis. Molecules, 17(6), 6754–6768. https://doi.org/10.3390/molecules17066754 Karam, I., Ma, N., Yang, Y.-J., & Li, J.-Y. (2018). Induce hyperlipidemia in rats using high fat diet investigating blood lipid and histopathology. Journal of Hematology and Blood Disorders, 4(1). https://doi.org/10.15744/2455-7641.4.104 Ke, M., Hu, X. Q., Ouyang, J., Dai, B., & Xu, Y. (2012). The effect of astragalin on the VEGF production of cultured Müller cells under high glucose conditions. Bio-Medical Materials and Engineering, 22(1–3), 113–119. https://doi.org/10.3233/BME-2012-0696 Khan, M. A. B., Hashim, M. J., King, J. K., Govender, R. D., Mustafa, H., & al Kaabi, J. (2020). Epidemiology of type 2 diabetes – global burden of disease and forecasted trends. Journal of Epidemiology and Global Health, 10(1), 107–111. https://doi.org/10.2991/jegh.k.191028.001 Khlifi, R., Dhaouefi, Z., Toumia, I. Ben, Lahmar, A., Sioud, F., Bouhajeb, R., Bellalah, A., & Chekir-Ghedira, L. (2020). Erica multiflora extract rich in quercetin-3-O-glucoside and kaempferol-3-O-glucoside alleviates high fat and fructose diet-induced fatty liver disease by modulating metabolic and inflammatory pathways in Wistar rats. The Journal of Nutritional Biochemistry, 86, 108490. https://doi.org/10.1016/j.jnutbio.2020.108490 Kim, B., Cho, B., & Jang, S. (2018). Anti-obesity effects of Diospyros lotus leaf extract in mice with high-fat diet-induced obesity. International Journal of Molecular Medicine. https://doi.org/10.3892/ijmm.2018.3941 Kim, M. S., & Kim, S. H. (2011). Inhibitory effect of astragalin on expression of lipopolysaccharide induced inflammatory mediators through NF-κB in macrophages. Archives of Pharmacal Research, 34(12), 2101–2107. https://doi.org/10.1007/s12272-011-1213-x Kittl, M., Beyreis, M., Tumurkhuu, M., Fürst, J., Helm, K., Pitschmann, A., Gaisberger, M., Glasl, S., Ritter, M., & Jakab, M. (2016). Quercetin stimulates insulin secretion and reduces the viability of rat INS-1 beta-cells. Cellular Physiology and Biochemistry, 39(1), 278–293. https://doi.org/10.1159/000445623 Kjøbsted, R., Hingst, J. R., Fentz, J., Foretz, M., Sanz, M., Pehmøller, C., Shum, M., Marette, A., Mounier, R., Treebak, J. T., Wojtaszewski, J. F. P., Viollet, B., & Lantier, L. (2018). AMPK in skeletal muscle function and metabolism. The FASEB Journal, 32(4), 1741–1777. https://doi.org/10.1096/fj.201700442R Koh, D. S., Cho, J. H., & Chen, L. (2012). Paracrine interactions within islets of Langerhans. Journal of Molecular Neuroscience, 48(2), 429–440. https://doi.org/10.1007/s12031-012-9752-2 Krisman, C. (1962). A method for the colorimetric estimation of glycogen with lodine. Analytical Biochemistry, 4(1), 17–23. Kyriazis, G. A., Smith, K. R., Tyrberg, B., Hussain, T., & Pratley, R. E. (2014). Sweet taste receptors regulate basal insulin secretion and contribute to compensatory insulin hypersecretion during the development of diabetes in male mice. Endocrinology, 155(6), 2112–2121. https://doi.org/10.1210/en.2013-2015 Lacy, P. E., & Kostianovsky, M. D. (1967). Method for the isolation of intact islets of Langerhans from the rat pancreas. Diabetes, 6(1), 35–39. Lenzen, S. (2008). The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia, 51(2), 216–226. https://doi.org/10.1007/s00125-007-0886-7 Li, H., Park, H.-M., Ji, H.-S., Han, J., Kim, S.-K., Park, H.-Y., & Jeong, T.-S. (2020). Phenolic-enriched blueberry-leaf extract attenuates glucose homeostasis, pancreatic β-cell function, and insulin sensitivity in high-fat diet–induced diabetic mice. Nutrition Research, 73, 83–96. https://doi.org/10.1016/j.nutres.2019.09.005 Li, R., Bilik, D., Brown, M. B., Zhang, P., Ettner, S. L., Ackermann, R. T., Crosson, J. C., & Herman, W. H. (2013). Medical costs associated with type 2 diabetes complications and comorbidities. The American Journal of Managed Care, 19(5), 421–430. Li, Y., Wang, P., Xu, J., & Desir, G. V. (2006). Voltage-gated potassium channel Kv1.3 regulates GLUT4 trafficking to the plasma membrane via a Ca2+ -dependent mechanism. American Journal of Physiology-Cell Physiology, 290(2), C345–C351. https://doi.org/10.1152/ajpcell.00091.2005 Liu, M., Weiss, M. A., Arunagiri, A., Yong, J., Rege, N., Sun, J., Haataja, L., Kaufman, R. J., & Arvan, P. (2018). Biosynthesis, structure, and folding of the insulin precursor protein. Diabetes, Obesity and Metabolism, 20, 28–50. https://doi.org/10.1111/dom.13378 Llanos, P., Contreras-Ferrat, A., Georgiev, T., Osorio-Fuentealba, C., Espinosa, A., Hidalgo, J., Hidalgo, C., & Jaimovich, E. (2015). The cholesterol-lowering agent methyl-β-cyclodextrin promotes glucose uptake via GLUT4 in adult muscle fibers and reduces insulin resistance in obese mice. American Journal of Physiology-Endocrinology and Metabolism, 308(4), E294–E305. https://doi.org/10.1152/ajpendo.00189.2014 Lochner, A., & Moolman, J. A. (2006). The many faces of H89: A review. Cardiovascular Drug Reviews, 24(3–4), 261–274. https://doi.org/10.1111/j.1527-3466.2006.00261.x Lowry, O. H., Rosebrough, N. J., Randall, R. J., & Farr, L. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry, 193(1), 265–275. https://doi.org/10.1016/0304-3894(92)87011-4 Luna, B., & Feinglos, M. N. (2001). Oral agents in the management of type 2 diabetes mellitus. American Family Physician, 63(9), 1747–1756. Lytton, J., Westlin, M., & Hanley, M. R. (1991). Thapsigargin inhibits the sarcoplasmic or endoplasmic reticulum Ca-ATPase family of calcium pumps. Journal of Biological Chemistry, 266(26), 17067–17071. Ma, Q., Guo, Y., Sun, L., & Zhuang, Y. (2017). Anti-diabetic effects of phenolic extract from rambutan peels (Nephelium lappaceum) in high-fat diet and streptozotocin-induced diabetic mice. Nutrients, 9(8), 801. https://doi.org/10.3390/nu9080801 Ma, Z., Piao, T., Wang, Y., & Liu, J. (2015). Astragalin inhibits IL-1β-induced inflammatory mediators production in human osteoarthritis chondrocyte by inhibiting NF-κB and MAPK activation. International Immunopharmacology, 25(1), 83–87. https://doi.org/10.1016/j.intimp.2015.01.018 MacDonald, P. E., Joseph, J. W., & Rorsman, P. (2005). Glucose-sensing mechanisms in pancreatic β-cells. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1464), 2211–2225. https://doi.org/10.1098/rstb.2005.1762 MacDonald, P. E., & Wheeler, M. B. (2003). Voltage-dependent K+ channels in pancreatic beta cells: Role, regulation and potential as therapeutic targets. Diabetologia, 46(8), 1046–1062. https://doi.org/10.1007/s00125-003-1159-8 McCarty, M. F. (2006). PKC-mediated modulation of L-type calcium channels may contribute to fat-induced insulin resistance. Medical Hypotheses, 66(4), 824–831. https://doi.org/10.1016/j.mehy.2004.08.034 McTaggart, J. S., Clark, R. H., & Ashcroft, F. M. (2010). Symposium review: The role of the KATP channel in glucose homeostasis in health and disease: more than meets the islet. The Journal of Physiology, 588(17), 3201–3209. https://doi.org/10.1113/jphysiol.2010.191767 Mendez, C. F., Leibiger, I. B., Leibiger, B., Høy, M., Gromada, J., Berggren, P.-O., & Bertorello, A. M. (2003). Rapid association of protein kinase C-ϵ with insulin granules is essential for insulin exocytosis. Journal of Biological Chemistry, 278(45), 44753–44757. https://doi.org/10.1074/jbc.M308664200 Ministerio de la Protección Social. (2016). Guía de práctica clínica para el diagnóstico, tratamiento y seguimiento de la diabetes mellitus tipo 2 en la población mayor de 18 años (1st ed.). Miralles, F., & Portha, B. (2001). Early development of beta-cells is impaired in the GK rat model of type 2 diabetes. Diabetes Miranda, D., Fischer, G., Carranza, C., Magnitskiy, S., Casierra, F., Piedrahíta, W., & Flórez, L. E. (2009). Cultivo, poscosecha y comercialización de las pasifloráceas en Colombia: maracuyá, granadilla, gulupa y curuba. In D. Miranda, G. Fischer, C. Carranza, S. Magnitskiy, F. Casierra, W. Piedrahíta, & L. E. Flórez (Eds.), Paper Knowledge . Toward a Media History of Documents (1ra Ed). Sociedad Colombiana de Ciencias Hortícolas Mirhoseini, M., Baradaran, A., & Rafieian-kopaei, M. (2013). Medicinal plants, diabetes mellitus and urgent needs. Journal of HerbMed Pharmacology. 2(2), 53–54 Miroddi, M., Calapai, G., Navarra, M., Minciullo, P. L., & Gangemi, S. (2013). Passiflora incarnata L.: Ethnopharmacology, clinical application, safety and evaluation of clinical trials. Journal of Ethnopharmacology, 150(3), 791–804. https://doi.org/10.1016/j.jep.2013.09.047 Monzón, G., Castellanos, L., Meneses, C., Forero, A. M., Rodríguez, J., Aragón, M., Jiménez, C., & Ramos, F. A. (2021). Identification of α-amylase and α-glucosidase inhibitors and ligularoside a, a new triterpenoid saponin from Passiflora ligularis Juss (sweet granadilla) leaves, by a nuclear magnetic resonance- based metabolomic study. Journal of Agricultural and Food Chemistry. https://doi.org/10.1021/acs.jafc.0c07850 Moon, M. K., Hur, K.-Y., Ko, S.-H., Park, S.-O., Lee, B.-W., Kim, J. H., Rhee, S. Y., Kim, H. J., Choi, K. M., & Kim, N.-H. (2017). Combination therapy of oral hypoglycemic agents in patients with type 2 diabetes mellitus. Diabetes & Metabolism Journal, 41(5), 357. https://doi.org/10.4093/dmj.2017.41.5.357 Morimoto M. S. (2000). Mecanismos moleculares que intervienen en la regulación de la síntesis de insulina por glucosa. Revista del Hospital General Manuel Gea González, 3(3), 118-120. Mounika, K. L. S. (2015). In silico evaluation of alpha glucosidase and alpha amylase inhibitory activity of chemical constituents from Psoralea corylifolia. International Journal of ChemTech Research, 8(11), 532–538. Nakrani, M. N., Wineland, R. H., & Anjum, F. (2021). Physiology, Glucose Metabolism. Treasure Island (FL): StatPearls Publishing. Nerdy, N., & Ritarwan, K. (2019). Hepatoprotective activity and nephroprotective activity of peel extract from three varieties of the passion fruit (Passiflora sp.) in the albino rat. Open Access Macedonian Journal of Medical Sciences, 7(4), 536–542. https://doi.org/10.3889/oamjms.2019.153 Neumiller, J. J. (2009). Differential chemistry (structure), mechanism of action, and pharmacology of GLP-1 receptor agonists and DPP-4 inhibitors. Journal of the American Pharmacists Association, 49(5), S16–S29. https://doi.org/10.1331/JAPhA.2009.09078 Nordlie, R. C., Foster, J. D., & Lange, A. J. (1999). Regulation of glucose production by the liver. Annual Review of Nutrition, 19(1), 379–406. https://doi.org/10.1146/annurev.nutr.19.1.379 Noshahr, Z. S., Salmani, H., Khajavi Rad, A., & Sahebkar, A. (2020). Animal models of diabetes-associated renal injury. Journal of Diabetes Research, 2020, 1–16. https://doi.org/10.1155/2020/9416419 Nugent, D. A., Smith, D. M., & Jones, H. B. (2008). A review of islet of Langerhans degeneration in rodent models of type 2 diabetes. Toxicologic Pathology, 36(4), 529–551. https://doi.org/10.1177/0192623308318209 O’Brien, T., Nguyen, T. T., & Zimmerman, B. R. (1998). Hyperlipidemia and diabetes mellitus. Mayo Clinic Proceedings, 73(10), 969–976. https://doi.org/10.4065/73.10.969 Ogunbayo, O. A., Harris, R. M., Waring, R. H., Kirk, C. J., & Michelangeli, F. (2008). Inhibition of the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase by flavonoids: A quantitative structure-activity relationship study. IUBMB Life, 60(12), 853–858. https://doi.org/10.1002/iub.132 Ojuka, E. O., Goyaram, V., & Smith, J. A. H. (2012). The role of CaMKII in regulating GLUT4 expression in skeletal muscle. American Journal of Physiology-Endocrinology and Metabolism, 303(3), E322–E331. https://doi.org/10.1152/ajpendo.00091.2012 Oldoni, T. L. C., Merlin, N., Bicas, T. C., Prasniewski, A., Carpes, S. T., Ascari, J., de Alencar, S. M., Massarioli, A. P., Bagatini, M. D., Morales, R., & Thomé, G. (2021). Antihyperglycemic activity of crude extract and isolation of phenolic compounds with antioxidant activity from Moringa oleifera Lam. leaves grown in Southern Brazil. Food Research International, 141, 110082. https://doi.org/10.1016/j.foodres.2020.110082 Ormazabal, V., Nair, S., Elfeky, O., Aguayo, C., Salomon, C., & Zuñiga, F. A. (2018). Association between insulin resistance and the development of cardiovascular disease. Cardiovascular Diabetology, 17(1), 122. https://doi.org/10.1186/s12933-018-0762-4 Oteiza, P. I., Fraga, C. G., Mills, D. A., & Taft, D. H. (2018). Flavonoids and the gastrointestinal tract: Local and systemic effects. Molecular Aspects of Medicine, 61, 41–49. https://doi.org/10.1016/j.mam.2018.01.001 Pacheco, G., Simão, M. J., Vianna, M. G., Garcia, R. O., Vieira, M. L. C., & Mansur, E. (2016). In vitro conservation of Passiflora —A review. Scientia Horticulturae, 211, 305–311. https://doi.org/10.1016/j.scienta.2016.09.004 Panchanathan, S., & Rajendran, J. (2015). Evidence of anti-hyperglycemic and anti-oxidant effect of Passiflora edulis flavicarpa (sims.) in streptozotocin induced diabetic rats. Notulae Scientia Biologicae, 7(4), 383–389. 10.15835/nsb.7.4.9655 Pandeya, P. R., Lee, K.-H., Lamichhane, R., Lamichhane, G., Poudel, A., & Jung, H.-J. (2021). Evaluation of anti-obesity activity of an herbal formulation (F2) in DIO mice model and validation of UPLC-DAD method for quality control. Applied Sciences, 11(16), 7404. https://doi.org/10.3390/app11167404 Pandol, S. J. (2011). The exocrine pancreas. Colloquium Series on Integrated Systems Physiology: From Molecule to Function, 3(1), 1–64. https://doi.org/10.4199/C00026ED1V01Y201102ISP014 Park, J. E., Park, J. Y., Seo, Y., & Han, J. S. (2019). A new chromanone isolated from Portulaca oleracea L. increases glucose uptake by stimulating GLUT4 translocation to the plasma membrane in 3T3-L1 adipocytes. International Journal of Biological Macromolecules, 123, 26–34. https://doi.org/10.1016/j.ijbiomac.2018.10.206 Park, S. N., Kim, S. Y., Lim, G. N., Jo, N. R., & Lee, M. H. (2012). In vitro skin permeation and cellular protective effects of flavonoids isolated from Suaeda asparagoides extracts. Journal of Industrial and Engineering Chemistry, 18(2), 680–683. https://doi.org/10.1016/j.jiec.2011.11.126 Parpal, S., Karlsson, M., Thorn, H., & Strålfors, P. (2001). Cholesterol depletion disrupts caveolae and insulin receptor signaling for metabolic control via insulin receptor substrate-1, but not for mitogen-activated protein kinase control. Journal of Biological Chemistry, 276(13), 9670–9678. https://doi.org/10.1074/jbc.M007454200 Parra, M., Aguilera, A., Escobar, W., Rubiano, V., & Rodríguez, A. (2010). Agenda prospectiva de investigación y desarrollo tecnológico para la cadena productiva de granadilla en el Departamento del Huila. Asofrucol. http://www.asohofrucol.com.co/archivos/biblioteca/biblioteca_165_AGENDA_GRANADILLA.pdf Patel, D., Prasad, S., Kumar, R., & Hemalatha, S. (2012). An overview on antidiabetic medicinal plants having insulin mimetic property. Asian Pacific Journal of Tropical Biomedicine, 2(4), 320–330. https://doi.org/10.1016/S2221-1691(12)60032-X Patel, S., & Dutta, S. (2018). Insulin. RCSB Protein Data Bank. https://doi.org/10.2210/rcsb_pdb/GH/DM/drugs/Insulin/Insulin Pereira Fontana, D., Cazarolli, L. H., Lavado, C., Mengatto, V., Figueiredo, M. S. R. B., Guedes, A., Pizzolatti, M. G., & Silva, F. R. M. B. (2011). Effects of flavonoids on α-glucosidase activity: Potential targets for glucose homeostasis. Nutrition, 27(11–12), 1161–1167. https://doi.org/10.1016/j.nut.2011.01.008 Pinent, M., Castell, A., Baiges, I., Montagut, G., Arola, L., & Ardévol, A. (2008). Bioactivity of flavonoids on insulin-secreting cells. Comprehensive Reviews in Food Science and Food Safety, 7(4), 299–308. https://doi.org/10.1111/j.1541-4337.2008.00048.x Ploug, T., & Ralston, E. (2002). Exploring the whereabouts of GLUT4 in skeletal muscle (Review). Molecular Membrane Biology, 19(1), 39–49. https://doi.org/10.1080/09687680110119229 Prabhakar, P., & Doble, M. (2008). A target based therapeutic approach towards diabetes mellitus using medicinal plants. Current Diabetes Reviews, 4(4), 291–308. https://doi.org/10.2174/157339908786241124 Prem, P. N., & Kurian, G. A. (2021). High-fat diet increased oxidative stress and mitochondrial dysfunction induced by renal ischemia-reperfusion injury in rat. Frontiers in Physiology, 12. https://doi.org/10.3389/fphys.2021.715693 Qin, G., Ma, J., Huang, Q., Yin, H., Han, J., Li, M., Deng, Y., Wang, B., Hassan, W., & Shang, J. (2018). Isoquercetin improves hepatic lipid accumulation by activating ampk pathway and suppressing TGF-β signaling on an HFD-induced nonalcoholic fatty liver disease rat model. International Journal of Molecular Sciences, 19(12), 4126. https://doi.org/10.3390/ijms19124126 Queiroz, E. A. M., Paim, R. T. T., Lira, S. M., da Silva, J. Y. G., Lima, C. L. S., Holanda, M. O., Benjamin, S. R., Vieira, Í. G. P., & Guedes, M. I. F. (2018). Antihyperglycemic effect of Passiflora glandulosa cav. fruit rinds flour in streptozotocin-induced diabetic mice. Asian Pacific Journal of Tropical Medicine, 11(9), 510–517. https://doi.org/10.4103/1995-7645.242308 Ramaiya, S. D., Bujang, J. S., & Zakaria, M. H. (2014). Assessment of total phenolic, antioxidant, and antibacterial activities of Passiflora species. The Scientific World Journal, 2014, 1–10. https://doi.org/10.1155/2014/167309 Ranilla, L. G., Kwon, Y.-I., Apostolidis, E., & Shetty, K. (2010). Phenolic compounds, antioxidant activity and in vitro inhibitory potential against key enzymes relevant for hyperglycemia and hypertension of commonly used medicinal plants, herbs and spices in Latin America. Bioresource Technology, 101(12), 4676–4689. https://doi.org/10.1016/j.biortech.2010.01.093 Ravussin, E., & Smith, S. R. (2006). Increased fat intake, impaired fat oxidation, and failure of fat cell proliferation result in ectopic fat storage, insulin resistance, and type 2 diabetes mellitus. Annals of the New York Academy of Sciences, 967(1), 363–378. https://doi.org/10.1111/j.1749-6632.2002.tb04292.x Rehani, P. R., Iftikhar, H., Nakajima, M., Tanaka, T., Jabbar, Z., & Rehani, R. N. (2019). Safety and mode of action of diabetes medications in comparison with 5-aminolevulinic acid (5-ALA). Journal of Diabetes Research, 2019, 4267357. https://doi.org/10.1155/2019/4267357 Rehwald, A., Meier, B., & Sticher, O. (1994). Qualitative and quantitative reversed-phase high-performance liquid chromatography of flavonoids in Passiflora incarnata L. Pharmaceutica Acta Helvetiae, 69(3), 153–158. https://doi.org/10.1016/0031-6865(94)90017-5 Riaz, A., Rasul, A., Hussain, G., Zahoor, M. K., Jabeen, F., Subhani, Z., Younis, T., Ali, M., Sarfraz, I., & Selamoglu, Z. (2018). Astragalin : A bioactive phytochemical with potential therapeutic activities. Advances in Pharmacological and Pharmaceutical Science, 2018, 1–15. https://doi.org/10.1155/2018/9794625 Rickels, M. R., Norris, A. W., & Hull, R. L. (2020). A tale of two pancreases: exocrine pathology and endocrine dysfunction. Diabetologia, 63(10), 2030–2039. https://doi.org/10.1007/s00125-020-05210-8 Roberts, C. K., Hevener, A. L., & Barnard, R. J. (2013). Metabolic syndrome and insulin resistance: underlying causes and modification by exercise training. Comprehensive Physiology, 3(1), 1–58. https://doi.org/10.1002/cphy.c110062 Rodriguez, L., Stirling, C. J., & Woodman, P. G. (1994). Multiple N-ethylmaleimide-sensitive components are required for endosomal vesicle fusion. Molecular Biology of the Cell, 5(7), 773–783. https://doi.org/10.1091/mbc.5.7.773 Rorsman, P., Braun, M., & Zhang, Q. (2012). Regulation of calcium in pancreatic α- and β-cells in health and disease. Cell Calcium, 51(3–4), 300–308. https://doi.org/10.1016/j.ceca.2011.11.006 Rorsman, P., Eliasson, L., Renström, E., Gromada, J., Barg, S., & Göpel, S. (2000). The cell physiology of biphasic insulin secretion. News in Physiological Sciences, 15(2), 72–77. https://doi.org/10.1152/physiologyonline.2000.15.2.72 Rosler, K.-H., & Goodwin, R. S. (1984). A general use of amberlite XAD-2 resin for the purification of flavonoids from aqueous fractions. Journal of Natural Products, 47(1), 188–188. https://doi.org/10.1021/np50031a036 Saeedi, P., Petersohn, I., Salpea, P., Malanda, B., Karuranga, S., Unwin, N., Colagiuri, S., Guariguata, L., Motala, A. A., Ogurtsova, K., Shaw, J. E., Bright, D., & Williams, R. (2019). Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Research and Clinical Practice, 157, 107843. https://doi.org/10.1016/j.diabres.2019.107843 Safayhi, H., Haase, H., Kramer, U., Bihlmayer, A., Roenfeldt, M., Ammon, H. P., Froschmayr, M., Cassidy, T. N., Morano, I., Ahlijanian, M. K., & Striessnig, J. (1997). L-type calcium channels in insulin-secreting cells: biochemical characterization and phosphorylation in RINm5F cells. Molecular Endocrinology, 11(5), 619–629. https://doi.org/10.1210/mend.11.5.9922 Sakaguchi, K., Takeda, K., Maeda, M., Ogawa, W., Sato, T., Okada, S., Ohnishi, Y., Nakajima, H., & Kashiwagi, A. (2016). Glucose area under the curve during oral glucose tolerance test as an index of glucose intolerance. Diabetology International, 7(1), 53–58. https://doi.org/10.1007/s13340-015-0212-4 Salaj, N., Kladar, N., Srđenović Čonić, B., Jeremić, K., Hitl, M., Gavarić, N., & Božin, B. (2021). Traditional multi-herbal formula in diabetes therapy – Antihyperglycemic and antioxidant potential. Arabian Journal of Chemistry, 14(10), 103347. https://doi.org/10.1016/j.arabjc.2021.103347 Salehi, Ata, v. Anil Kumar, Sharopov, Ramírez-Alarcón, Ruiz-Ortega, Abdulmajid Ayatollahi, Tsouh Fokou, Kobarfard, Amiruddin Zakaria, Iriti, Taheri, Martorell, Sureda, Setzer, Durazzo, Lucarini, Santini, Capasso & Sharifi-Rad. (2019). Antidiabetic potential of medicinal plants and their active components. Biomolecules, 9(10), 551. https://doi.org/10.3390/biom9100551 Salgado, J. M., Bombarde, T. A. D., Mansi, D. N., Piedade, S. M. de S., & Meletti, L. M. M. (2010). Effects of different concentrations of passion fruit peel (Passiflora edulis) on the glicemic control in diabetic rat. Ciência e Tecnologia de Alimentos, 30(3), 784–789. https://doi.org/10.1590/S0101-20612010000300034 Salih, N. D., Muslih, R. K., & Hamoodi, S. R. (2009). Histological liver changes in streptozotocin induced diabetic mice. International Medical Journal Malaysia, 8(1), 1-4. Samarghandian, S., Azimi-Nezhad, M., Samini, F., & Farkhondeh, T. (2016). Chrysin treatment improves diabetes and its complications in liver, brain, and pancreas in streptozotocin-induced diabetic rats. Canadian Journal of Physiology and Pharmacology, 94(4), 388–393. https://doi.org/10.1139/cjpp-2014-0412 Santilli, F., Simeone, P., Liani, R., & Davì, G. (2015). Platelets and diabetes mellitus. Prostaglandins & Other Lipid Mediators, 120, 28–39. https://doi.org/10.1016/j.prostaglandins.2015.05.002 Santulli, G., Nakashima, R., Yuan, Q., & Marks, A. R. (2017). Intracellular calcium release channels: an update. The Journal of Physiology, 595(10), 3041–3051. https://doi.org/10.1113/JP272781 Santulli, G., Pagano, G., Sardu, C., Xie, W., Reiken, S., Ascia, S. L. D., Cannone, M., Marziliano, N., Trimarco, B., Guise, T. a, Lacampagne, A., Marks, A. R., D’Ascia, S. L., Cannone, M., Marziliano, N., Trimarco, B., Guise, T. a, Lacampagne, A., & Marks, A. R. (2015). Calcium release channel RyR2 regulates insulin release and glucose homeostasis. The Journal of Clinical Investigation, 125(5), 1968–1978. https://doi.org/10.1172/JCI79273 Sarto, D. A. Q. S., Siqueira, A. H. D. de, Magalhaes, F. M. de A., Caproni, K. de P., Martins, Â. M., Santos, G. B., Silva, D. B. da, Boas, B. M. V., & Garcia, J. A. D. (2018). Dry extract of Passiflora incarnata L. leaves as a cardiac and hepatic oxidative stress protector in LDLr-/- mice fed high-fat diet. Brazilian Archives of Biology and Technology, 61. https://doi.org/10.1590/1678-4324-2018180147 Satyanarayana, K., Sravanthi, K., Shaker, I., Ponnulakshmi, R., & Selvaraj, J. (2015). Role of chrysin on expression of insulin signaling molecules. Journal of Ayurveda and Integrative Medicine, 6(4), 248. https://doi.org/10.4103/0975-9476.157951 Scheepers, A., Joost, H., & Schurmann, A. (2004). The glucose transporter families SGLT and GLUT: molecular basis of normal and aberrant function. Journal of Parenteral and Enteral Nutrition, 28(5), 364–371. https://doi.org/10.1177/0148607104028005364 Schneider-Poetsch, T., Ju, J., Eyler, D. E., Dang, Y., Bhat, S., Merrick, W. C., Green, R., Shen, B., & Liu, J. O. (2010). Inhibition of eukaryotic translation elongation by cycloheximide and lactimidomycin. Nature Chemical Biology, 6(3), 209–217. https://doi.org/10.1038/nchembio.304 Sepúlveda, P. M., Echeverrry, S., Costa, G., & Aragón, M. (2020). Passiflora ligularis leaf ultrasound-assisted extraction in the optimization of flavonoid content and enhancement of hypoglycemic activity. Journal of Applied Pharmaceutical Science. https://doi.org/10.7324/JAPS.2020.10810 Sepúlveda Ramos, P. M. (2021). Contribución a la caracterización biofarmacéutica de un extracto de hojas de Passiflora ligularis (granadilla) optimizado en flavonoides. Universidad Nacional de Colombia. Seyer-Hansen, K. (1976). Renal Hypertrophy in streptozotocin-diabetic rats. Clinical Science, 51(6), 551–555. https://doi.org/10.1042/cs0510551 Shaker, S. M., Magdy, Y. M., Abd-Elaziz, L. F., El-Said, S. A., Alkharashy, O. A., & Nabeeh, E. S. (2014). Histological study on the effect of metformin on high-fat-diet-induced liver injury in adult male albino rats. The Egyptian Journal of Histology, 37(3), 592–602. https://doi.org/10.1097/01.EHX.0000452726.54766.93 Shanmugam, S., Rajan, M., de Souza Araújo, A. A., & Narain, N. (2018). Potential of Passion (Passiflora spp.) fruit in control of type II diabetes. Current Research in Diabetes & Obesity Journal, 7(3). https://doi.org/10.19080/CRDOJ.2018.07.555712 Sheng, L., Chen, Q., Di, L., & Li, N. (2021). Evaluation of anti-diabetic potential of corn silk in high-fat diet/ streptozotocin-induced type 2 diabetes mice model. Endocrine, Metabolic & Immune Disorders - Drug Targets, 21(1), 131–138. https://doi.org/10.2174/1871530320666200606224708 Silva Frederico, M. J., Mascarello, A., Castro, A. J. G., Da Luz, G., Altenhofen, D., Mendes, C. P., Leal, P. C., Yunes, R. A., Nunes, R. J., & Silva, F. R. M. B. (2016). Incretinomimetic and insulinomimetic effect of (2E)-N′-(1′-Naphthyl)-3,4,5-trimethoxybenzohydrazide for glycemic homeostasis. Journal of Cellular Biochemistry, 117(5), 1199–1209. https://doi.org/10.1002/jcb.25403 Simons, K., & Gerl, M. J. (2010). Revitalizing membrane rafts: new tools and insights. Nature Reviews Molecular Cell Biology, 11(10), 688–699. https://doi.org/10.1038/nrm2977 Skelin Klemen, M., Dolenšek, J., Slak Rupnik, M., & Stožer, A. (2017). The triggering pathway to insulin secretion: Functional similarities and differences between the human and the mouse β cells and their translational relevance. Islets, 9(6), 109–139. https://doi.org/10.1080/19382014.2017.1342022 Skovsø, S. (2014). Modeling type 2 diabetes in rats using high fat diet and streptozotocin. Journal of Diabetes Investigation, 5(4), 349–358. https://doi.org/10.1111/jdi.12235 Smart, E. J., & Anderson, R. G. W. (2002). Alterations in membrane cholesterol that affect structure and function of caveolae. Methods in enzymology, 353, 131-139 https://doi.org/10.1016/S0076-6879(02)53043-3 Smirnov, A. V., Snigur, G. L., & Voronkov, M. P. (2012). Pancreatic islet beta-cell apoptosis in experimental diabetes mellitus. Apoptosis and Medicine. InTech. https://doi.org/10.5772/51411 Soares D, J., Leal P, A. B., Silva, J., Almeida, JacksonR. G. S., & de Oliveira, H. (2017). Influence of flavonoids on mechanism of modulation of insulin secretion. Pharmacognosy Magazine, 13(52), 639-646. https://doi.org/10.4103/pm.pm_87_17 Somwar, R., Kim, D. Y., Sweeney, G., Huang, C., Niu, W., Lador, C., Ramlal, T., & Klip, A. (2001). GLUT4 translocation precedes the stimulation of glucose uptake by insulin in muscle cells: potential activation of GLUT4 via p38 mitogen-activated protein kinase. Biochemical Journal, 359(3), 639–649. https://doi.org/10.1042/bj3590639 Srinivasan, K., Viswanad, B., Asrat, L., Kaul, C. L., & Ramarao, P. (2005). Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: A model for type 2 diabetes and pharmacological screening. Pharmacological Research, 52(4), 313–320. https://doi.org/10.1016/j.phrs.2005.05.004 Sudasinghe, H. P., & Peiris, D. C. (2018). Hypoglycemic and hypolipidemic activity of aqueous leaf extract of Passiflora suberosa L. PeerJ, 6, E4389. https://doi.org/10.7717/peerj.4389 Suen, J., Thomas, J., Kranz, A., Vun, S., & Miller, M. (2016). Effect of flavonoids on oxidative stress and inflammation in adults at risk of cardiovascular disease: A systematic review. Healthcare, 4(3), 69. https://doi.org/10.3390/healthcare4030069 Sugano, M., Yamato, H., Hayashi, T., Ochiai, H., Kakuchi, J., Goto, S., Nishijima, F., Iino, N., Kazama, J. J., Takeuchi, T., Mokuda, O., Ishikawa, T., & Okazaki, R. (2006). High-fat diet in low-dose-streptozotocin-treated heminephrectomized rats induces all features of human type 2 diabetic nephropathy: A new rat model of diabetic nephropathy. Nutrition, Metabolism and Cardiovascular Diseases, 16(7), 477–484. https://doi.org/10.1016/j.numecd.2005.08.007 Sweeney, G., Somwar, R., Ramlal, T., Volchuk, A., Ueyama, A., & Klip, A. (1999). An inhibitor of p38 mitogen-activated protein kinase prevents insulin-stimulated glucose transport but not glucose transporter translocation in 3T3-L1 adipocytes and L6 Myotubes. Journal of Biological Chemistry, 274(15), 10071–10078. https://doi.org/10.1074/jbc.274.15.10071 Tajima, K., Shirakawa, J., Okuyama, T., Kyohara, M., Yamazaki, S., Togashi, Y., & Terauchi, Y. (2017). Effects of metformin on compensatory pancreatic β-cell hyperplasia in mice fed a high-fat diet. American Journal of Physiology-Endocrinology and Metabolism, 313(3), E367–E380. https://doi.org/10.1152/ajpendo.00447.2016 Tal, M., Liang, Y., Najafi, H., Lodish, H. F., & Matschinsky, F. M. (1992). Expression and function of GLUT-1 and GLUT-2 glucose transporter isoforms in cells of cultured rat pancreatic islets. Journal of Biological Chemistry, 267(24), 17241–17247. https://doi.org/10.1016/S0021-9258(18)41918-7 Tamayo, D. C., Camacho, S. M., & López, P. A. (2015). Caracterización de pacientes con diabetes mellitus tipo 2 atendidos por médicos residentes de medicina familiar en Bogotá, Colombia. Revista Desafíos, 9(2), 17–24. Teixeira, L. S., Lima, A. S., Boleti, A. P. A., Lima, A. A. N., Libório, S. T., de Paula, L., Oliveira, M. I. B., Lima, E. F., Costa, G. M., Reginatto, F. H., & Lima, E. S. (2014). Effects of Passiflora nitida Kunth leaf extract on digestive enzymes and high caloric diet in rats. Journal of Natural Medicines, 68(2), 316–325. https://doi.org/10.1007/s11418-013-0800-1 Tesh, G. H., & Allen, T. J. (2007). Rodent models of streptozotocin-induced diabetic nephropathy (Methods in Renal Research). Nephrology, 12(3), 261–266. https://doi.org/10.1111/j.1440-1797.2007.00796.x Thiyagarajah, P., Kuttan, S. C., Lim, S. C., Teo, T. S., & Das, N. P. (1991). Effect of myricetin and other flavonoids on the liver plasma membrane Ca2+ pump kinetics and structure-function relationships. Biochemical Pharmacology, 41(5), 669–675. https://doi.org/10.1016/0006-2952(91)90065-D Thompson, B., & Satin, L. S. (2021). Beta‐cell ion channels and their role in regulating insulin secretion. Comprehensive Physiology, 11(4), 1-21. https://doi.org/10.1002/cphy.c210004 Thorens, B. (2015). GLUT2, glucose sensing and glucose homeostasis. Diabetologia, 58(2), 221–232. https://doi.org/10.1007/s00125-014-3451-1 Tiwari, B. K., Pandey, K. B., Abidi, A. B., & Rizvi, S. I. (2013). Markers of oxidative stress during diabetes mellitus. Journal of Biomarkers, 2013, 1–8. https://doi.org/10.1155/2013/378790 Tremblay, F., Dubois, M.-J., & Marette, A. (2003). Regulation of GLUT4 traffic and function by insulin and contraction in skeletal muscle. Frontiers in Bioscience, 8(12), d1072–d1084. Trube, G., Rorsman, P., & Ohno-Shosaku, T. (1986). Opposite effects of tolbutamide and diazoxide on the ATP-dependent K+ channel in mouse pancreatic β-cells. Pflügers Archiv, 407(5), 493–499. Tundis, R., Loizzo, M. R., & Menichini, F. (2010). Natural products as alpha-amylase and alpha-glucosidase inhibitors and their hypoglycaemic potential in the treatment of diabetes: an update. Mini-Reviews in Medicinal Chemistry, 10(4), 315–331. https://doi.org/10.2174/138955710791331007 Tunduguru, R., & Thurmond, D. C. (2017). Promoting glucose transporter-4 vesicle trafficking along cytoskeletal tracks: PAK-Ing them out. Frontiers in Endocrinology, 8. https://doi.org/10.3389/fendo.2017.00329 Unuofin, J. O., & Lebelo, S. L. (2020). Antioxidant effects and mechanisms of medicinal plants and their bioactive compounds for the prevention and treatment of Type 2 Diabetes: An Updated Review. Oxidative Medicine and Cellular Longevity, 2020. https://doi.org/10.1155/2020/1356893 Valentová, K., Vrba, J., Bancířová, M., Ulrichová, J., & Křen, V. (2014). Isoquercitrin: pharmacology, toxicology, and metabolism. Food and Chemical Toxicology, 68, 267–282. Vasiljević, J., Torkko, J. M., Knoch, K. P., & Solimena, M. (2020). The making of insulin in health and disease. Diabetologia, 63(10), 1981-1989. https://doi.org/10.1007/s00125-020-05192-7 Viera, W., Shinohara, T., Samaniego, I., Sanada, A., Terada, N., Ron, L., Suárez-Tapia, A., & Koshio, K. (2022). Phytochemical composition and antioxidant activity of Passiflora spp. germplasm grown in Ecuador. Plants, 11(3), 328. https://doi.org/10.3390/plants11030328 Vinayagam, R., & Xu, B. (2015). Antidiabetic properties of dietary flavonoids: a cellular mechanism review. Nutrition & Metabolism, 12(1), 60. https://doi.org/10.1186/s12986-015-0057-7 Wang, H., Xia, W., Long, G., Pei, Z., Li, Y., Wu, M., Wang, Q., Zhang, Y., Jia, Z., & Chen, H. (2020). Isoquercitrin ameliorates cisplatin-induced nephrotoxicity via the inhibition of apoptosis, inflammation, and oxidative stress. Frontiers in Pharmacology, 11. https://doi.org/10.3389/fphar.2020.599416 Wang, Y., Sun, G., Sun, J., Liu, S., Wang, J., Xu, X., & Miao, L. (2013). Spontaneous type 2 diabetic rodent models. Journal of Diabetes Research, 2013, 1–8. https://doi.org/10.1155/2013/401723 Wilkinson, S. E., Parker, P. J., & Nixon, J. S. (1993). Isoenzyme specificity of bisindolylmaleimides, selective inhibitors of protein kinase C. Biochemical Journal, 294(2), 335–337. https://doi.org/10.1042/bj2940335 Wood, I. S., & Trayhurn, P. (2003). Glucose transporters (GLUT and SGLT): expanded families of sugar transport proteins. British Journal of Nutrition, 89(1), 3–9. https://doi.org/10.1079/BJN2002763 World Health Organization (WHO). (2021). Diabetes. https://www.who.int/health-topics/diabetes#tab=tab_1 Xiao, J., Capanoglu, E., Jassbi, A. R., & Miron, A. (2016). Advance on the Flavonoid C -glycosides and health benefits. Critical Reviews in Food Science and Nutrition, 56(sup1), S29–S45. https://doi.org/10.1080/10408398.2015.1067595 Xie, L., Deng, Z., Zhang, J., Dong, H., Wang, W., Xing, B., & Liu, X. (2022). Comparison of flavonoid O-glycoside, C-glycoside and their aglycones on antioxidant capacity and metabolism during in vitro digestion and in vivo. Foods, 11(6), 882. https://doi.org/10.3390/foods11060882 Xu, Y. C., Leung, S. W. S., Leung, G. P. H., & Man, R. Y. K. (2015). Kaempferol enhances endothelium-dependent relaxation in the porcine coronary artery through activation of large-conductance Ca2+-activated K+ channels. British Journal of Pharmacology, 172(12), 3003–3014. https://doi.org/10.1111/bph.13108 Yanardag, R., Ozsoy-Sacan, O., Bolkent, S., Orak, H., & Karabulut-Bulan, O. (2005). Protective effects of metformin treatment on the liver injury of streptozotocin-diabetic rats. Human & Experimental Toxicology, 24(3), 129–135. https://doi.org/10.1191/0960327104ht507oa Yang, H., & Yang, L. (2016). Targeting cAMP/PKA pathway for glycemic control and type 2 diabetes therapy. Journal of Molecular Endocrinology, 57(2), R93–R108. https://doi.org/10.1530/JME-15-0316 Yang, S.-N., & Berggren, P.-O. (2006). The role of voltage-gated calcium channels in pancreatic β-cell physiology and pathophysiology. Endocrine Reviews, 27(6), 621–676. https://doi.org/10.1210/er.2005-0888 Yang, Y., Smith, D. L., Keating, K. D., Allison, D. B., & Nagy, T. R. (2014). Variations in body weight, food intake and body composition after long-term high-fat diet feeding in C57BL/6J mice. Obesity, 22(10), 2147–2155. https://doi.org/10.1002/oby.20811 Yaras, N., Ugur, M., Ozdemir, S., Gurdal, H., Purali, N., Lacampagne, A., Vassort, G., & Turan, B. (2005). Effects of diabetes on ryanodine receptor Ca release channel (RyR2) and Ca2+ homeostasis in rat heart. Diabetes, 54(11). https://doi.org/10.2337/diabetes.54.11.3082 Youl, E., Bardy, G., Magous, R., Cros, G., Sejalon, F., Virsolvy, A., Richard, S., Quignard, J. F., Gross, R., Petit, P., Bataille, D., & Oiry, C. (2010). Quercetin potentiates insulin secretion and protects INS-1 pancreatic -cells against oxidative damage via the ERK1/2 pathway. British Journal of Pharmacology, 161(4), 799–814. https://doi.org/10.1111/j.1476-5381.2010.00910.x Youngren, J. F. (2007). Regulation of insulin receptor function. Cell. Mol. Life Sci, 64, 873–891. https://doi.org/10.1007/s00018-007-6359-9 Zhang, L., Zhang, S.-T., Yin, Y.-C., Xing, S., Li, W.-N., & Fu, X.-Q. (2018). Hypoglycemic effect and mechanism of isoquercitrin as an inhibitor of dipeptidyl peptidase-4 in type 2 diabetic mice. RSC Advances, 8(27), 14967–14974. Zhang, M., Lv, X.-Y., Li, J., Xu, Z.-G., & Chen, L. (2008). The characterization of high-fat diet and multiple low-dose streptozotocin induced type 2 diabetes rat model. Experimental Diabetes Research, 2008, 1–9. https://doi.org/10.1155/2008/704045 Zhang, Q., Ramracheya, R., Lahmann, C., Tarasov, A., Bengtsson, M., Braha, O., Braun, M., Brereton, M., Collins, S., Galvanovskis, J., Gonzalez, A., Groschner, L. N., Rorsman, N. J. G., Salehi, A., Travers, M. E., Walker, J. N., Gloyn, A. L., Gribble, F., Johnson, P. R. V., & Rorsman, P. (2013). Role of KATP channels in glucose-regulated glucagon secretion and impaired counterregulation in type 2 diabetes. Cell Metabolism, 18(6), 871–882. https://doi.org/10.1016/j.cmet.2013.10.014 Zhang, S., Xu, H., Yu, X., Wu, Y., & Sui, D. (2017). Metformin ameliorates diabetic nephropathy in a rat model of low-dose streptozotocin-induced diabetes. Experimental and Therapeutic Medicine, 14(1), 383–390. https://doi.org/10.3892/etm.2017.4475 Zhang, Y., & Liu, D. (2011). Flavonol kaempferol improves chronic hyperglycemia-impaired pancreatic beta-cell viability and insulin secretory function. European Journal of Pharmacology, 670(1), 325–332. https://doi.org/10.1016/j.ejphar.2011.08.011 Zhao, F., Li, P., Chen, S. R. W., Louis, C. F., & Fruen, B. R. (2001). Dantrolene inhibition of ryanodine receptor Ca2+ release channels: molecular mechanism and isoform selectivity. Journal of Biological Chemistry, 276(17), 13810–13816. https://doi.org/10.1074/jbc.M006104200 Zhou, Y.-J., Xu, N., Zhang, X.-C., Zhu, Y.-Y., Liu, S.-W., & Chang, Y.-N. (2021). Chrysin improves glucose and lipid metabolism disorders by regulating the AMPK/PI3K/AKT signaling pathway in insulin-resistant HepG2 cells and HFD/STZ-induced C57BL/6J mice. Journal of Agricultural and Food Chemistry, 69(20), 5618–5627. https://doi.org/10.1021/acs.jafc.1c01109 Zhu, M., Li, J., Wang, K., Hao, X., Ge, R., & Li, Q. (2016). Isoquercitrin inhibits hydrogen peroxide-induced apoptosis of EA.hy926 cells via the PI3K/Akt/GSK3β signaling pathway. Molecules, 21(3), 356. https://doi.org/10.3390/molecules21030356 Zucolotto, S. M., Fagundes, C., Reginatto, F. H., Ramos, F. A., Castellanos, L., Duque, C., & Schenkel, E. P. (2012). Analysis of C -glycosyl flavonoids from South American Passiflora species by HPLC-DAD and HPLC-MS. Phytochemical Analysis, 23(3), 232–239. https://doi.org/10.1002/pca.1348 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xxi, 144 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Doctorado en Ciencias Farmacéuticas |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/84473/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/84473/2/1014182296.2023.pdf https://repositorio.unal.edu.co/bitstream/unal/84473/3/1014182296.2023.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a 3d76d9cac5de9fe86d31c5779ccf4ec2 3cf7e381c5765d9a658b5acde3560fcf |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089478576275456 |
spelling |
Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ospina Giraldo, Luis Fernandobfb3464e494e8bac88c6cb72a6754547600Mena Barreto Silva, Fátima Regina3d5c30b03563ffbe97734b3f2c0036c2Rey Padilla, Diana Patriciaa471ff60f9625596cc6bd780001052ed600Principios Bioactivos en Plantas MedicinalesGrupo de Investigación en Tecnología de Productos Naturales TecpronaDiana Patricia Rey [000000034517631X]Diana Patricia Rey Padilla [0001395740]Diana Rey [Diana-Rey]Diana Patricia Rey Padilla [3HljxewAAAAJ&hl=es]2023-08-08T14:26:24Z2023-08-08T14:26:24Z2023-10-31https://repositorio.unal.edu.co/handle/unal/84473Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasIntroducción: La diabetes mellitus tipo 2 es una enfermedad de alta prevalencia e incidencia a nivel mundial, se estima que la población afectada por esta enfermedad siga en aumento en el transcurso de los próximos años, esta patología se caracteriza por una hiperglicemia crónica que si no es controlada conlleva a complicaciones cardiovasculares, neuropáticas, neurológicas, entre otras. Aunque actualmente se cuenta con varios tratamientos para el control de la glicemia y prevenir la aparición de las complicaciones asociadas a la misma, se sigue en búsqueda de nuevos tratamientos. Gran parte de la población mundial acude a la utilización de plantas medicinales para el tratamiento de sus enfermedades y aunque se ha reportado en la literatura el efecto antidiabético de varias plantas medicinales, es necesario profundizar en estudios que permitan establecer su actividad terapéutica, una de las especies en las que se ha evidenciado esta actividad, es la Passiflora ligularis, sin embargo se desconoce los metabolitos asociados a este efecto y su mecanismo de acción por ello se plantearon los siguientes objetivos. Los objetivos planteados fueron: evaluar el efecto antidiabético de un extracto de hojas de Passiflora ligularis (P. ligularis), identificar los metabolitos responsables de la actividad antidiabética de dicho extracto y la dilucidar un posible mecanismo de acción de los metabolitos responsables de dicha actividad antidiabética. (Texto tomado de la fuente)Introduction: Type 2 diabetes mellitus is a disease of high prevalence and incidence worldwide, it is estimated that the population affected by this disease will continue to increase in the coming years, this pathology is characterized by chronic hyperglycemia that if not controlled leads to cardiovascular, neuropathic, neurological complications, among others. Although there are currently several treatments to control glycemia and prevent the appearance of complications associated with it, the search for new treatments continues. A large part of the world population resorts to the use of medicinal plants for the treatment of their diseases and although the antidiabetic effect of various medicinal plants has been reported in the literature, it is necessary to deepen studies that allow establishing their therapeutic activity, one of the species in which this activity has been evidenced, is Passiflora ligularis, however the metabolites associated with this effect and its mechanism of action are unknown, therefore the following objectives were set. The proposed objectives were: evaluate the antidiabetic effect of an extract of Passiflora ligularis (P. ligularis) leaves, to identify the metabolites responsible for the antidiabetic activity of said extract and to elucidate a possible mechanism of action of the metabolites responsible for said antidiabetic activity.DoctoradoDoctor en Ciencias Farmacéuticasse realizó la preparación tanto del extracto acuoso como de la fracción etanólica de hojas de Passiflora ligularis, luego, se cuantificaron los flavonoides presentes en tanto en estos dos, mediante cromatografía liquida de alta resolución (CLAR), en un sistema LC Agilent 1260 Infinity acoplado a un detector de matriz de diodos (DAD). Posteriormente se evaluó la actividad antidiabética en ratones con diabetes inducida por dieta rica en grasa y dosis baja de estreptozotocina, se determinó la glicemia a los 7, 14 y 21 días de tratamiento y luego de los 21 días se realizó un test de tolerancia oral a la glucosa (TTOG), la determinación de insulina sérica y el sacrificio de los animales. Posterior al sacrificio se realizó un análisis histopatológico en páncreas, hígado y riñón y se determinaron los parámetros de estrés oxidativo y perfil lipídico de los animales diabéticos tratados y no tratados. Posteriormente en ratas normoglicémicas se efectuó un TTOG para determinar el efecto antihiperglicemiante y el contenido de glucógeno hepático y muscular de diferentes dosis de la fracción etanólica, por último, se evaluó el efecto y el posible mecanismo de acción de la isoquercetina y astragalina en la captación de glucosa en músculo sóleo aislado y en el aumento del calcio intracelular en islotes β-pancreáticos aislados para aumentar la secreción de insulinaFarmacología experimentalxxi, 144 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Doctorado en Ciencias FarmacéuticasFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede BogotáCiencias Farmacéuticas540 - Química y ciencias afines610 - Medicina y salud::615 - Farmacología y terapéuticaPassifloraDiabetes Mellitus Tipo 2Extractos VegetalesDiabetes Mellitus, Type 2Plant ExtractsDiabetes mellitus tipo 2Dieta rica en grasa/estreptozotocinaAstragalinaIsoquercetinaSeñalización de calcioGLUT4Passiflora ligularis JussType 2 diabetes mellitusHigh-fat diet/streptozotocinAstragalinIsoquercetinCalcium signalingEstudio in vivo e in vitro del efecto antidiabético de un extracto de hojas de passiflora ligularisIn vivo and in vitro study of the antidiabetic effect of an extract of passiflora ligularis leavesTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDAbdelhameed, R. F. A., Ibrahim, A. K., Elfaky, M. A., Habib, E. S., Mahamed, M. I., Mehanna, E. T., Darwish, K. M., Khodeer, D. M., Ahmed, S. A., & Elhady, S. S. (2021). Antioxidant and anti-inflammatory activity of Cynanchum acutum L. isolated flavonoids using experimentally induced type 2 diabetes mellitus: biological and in silico investigation for NF-κB pathway/miR-146a expression modulation. Antioxidants, 10(11), 1713. https://doi.org/10.3390/antiox10111713Aguilar-Bryan, L., Clement, J. P., Gonzalez, G., Kunjilwar, K., Babenko, A., & Bryan, J. (1998). Toward understanding the assembly and structure of K ATP channels. Physiological Reviews, 78(1), 227–245. https://doi.org/10.1152/physrev.1998.78.1.227Agyemang, K., Han, L., Liu, E., Zhang, Y., Wang, T., & Gao, X. (2013). Anti-diabetic research: pharmacological effects of its phytochemical constituents. Evidence-Based Complementary and Alternative Medicine, 654643. https://doi.org/10.1155/2013/654643Alam, Md. M., Meerza, D., & Naseem, I. (2014). Protective effect of quercetin on hyperglycemia, oxidative stress and DNA damage in alloxan induced type 2 diabetic mice. Life Sciences, 109(1), 8–14. https://doi.org/10.1016/j.lfs.2014.06.005Al-Awar, A., Kupai, K., Veszelka, M., Szucs, G., Attieh, Z., Murlasits, Z., Török, S., Pósa, A., & Varga, C. (2016). Experimental diabetes mellitus in different animal models. Journal of Diabetes Research, 2016. https://doi.org/10.1155/2016/9051426Algariri, K., Meng, K. Y., Atangwho, I. J., Asmawi, M. Z., Sadikun, A., Murugaiyah, V., & Ismail, N. (2013). Hypoglycemic and anti-hyperglycemic study of Gynura procumbens leaf extracts. Asian Pacific Journal of Tropical Biomedicine, 3(5), 358–366. https://doi.org/10.1016/S2221-1691(13)60077-5Algoblan, A., Alalfi, M., & Khan, M. (2014). Mechanism linking diabetes mellitus and obesity. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 587. https://doi.org/10.2147/DMSO.S67400AL-Ishaq, Abotaleb, Kubatka, Kajo, & Büsselberg. (2019). Flavonoids and their anti-diabetic effects: cellular mechanisms and effects to improve blood sugar levels. Biomolecules, 9(9), 430. https://doi.org/10.3390/biom9090430Alkhalidy, H., Moore, W., Wang, A., Luo, J., McMillan, R. P., Wang, Y., Zhen, W., Hulver, M. W., & Liu, D. (2018). Kaempferol ameliorates hyperglycemia through suppressing hepatic gluconeogenesis and enhancing hepatic insulin sensitivity in diet-induced obese mice. The Journal of Nutritional Biochemistry, 58, 90–101. https://doi.org/10.1016/j.jnutbio.2018.04.014Altunkaynak, B. Z., & Ozbek, E. (2009). Overweight and structural alterations of the liver in female rats fed a high-fat diet: a stereological and histological study. The Turkish Journal of Gastroenterology : The Official Journal of Turkish Society of Gastroenterology, 20(2), 93–103.American Diabetes Association. (2022). 2. Classification and diagnosis of diabetes: standards of medical care in diabetes—2022. Diabetes Care, 45(Supplement_1), S17–S38. https://doi.org/10.2337/dc22-S002American Diabetes Association (ADA). (2017). Lifestyle management. Diabetes Care, 40(Supplement_1), S33–S43. https://doi.org/10.2337/dc17-S007American Diabetes Association (ADA). (2021a). 2. Classification and diagnosis of diabetes: standards of medical care in diabetes—2021. Diabetes Care, 44(Supplement 1), S15–S33. https://doi.org/10.2337/dc21-S002American Diabetes Association (ADA). (2021b). Introduction: standards of medical care in diabetes—2021. Diabetes Care, 44(Supplement 1), S1–S2. https://doi.org/10.2337/dc21-SintAmir Siddiqui, M., Badruddeen, Akhtar, J., Uddin, S., Chandrashekharan, S. M., Ahmad, M., Khan, M. I., & Khalid, M. (2022). Chrysin modulates protein kinase IKKε/TBK1, insulin sensitivity and hepatic fatty infiltration in diet‐induced obese mice. Drug Development Research, 83(1), 194–207. https://doi.org/10.1002/ddr.21859Andrade-Cetto, A., & Heinrich, M. (2005). Mexican plants with hypoglycaemic effect used in the treatment of diabetes. Journal of Ethnopharmacology, 99(3), 325–348. https://doi.org/10.1016/j.jep.2005.04.019Andrikopoulos, S., Blair, A. R., Deluca, N., Fam, B. C., & Proietto, J. (2008). Evaluating the glucose tolerance test in mice. American Journal of Physiology-Endocrinology and Metabolism, 295(6), E1323–E1332. https://doi.org/10.1152/ajpendo.90617.2008Antunes, L. C., Elkfury, J. L., Jornada, M. N., Foletto, K. C., & Bertoluci, M. C. (2016). Validation of HOMA-IR in a model of insulin-resistance induced by a high-fat diet in Wistar rats. Archives of Endocrinology and Metabolism, 60(2), 138–142. https://doi.org/10.1590/2359-3997000000169Anurag, P., & Anuradha, C. V. (2002). Metformin improves lipid metabolism and attenuates lipid peroxidation in high fructose-fed rats. Diabetes, Obesity and Metabolism, 4(1), 36–42. https://doi.org/10.1046/j.1463-1326.2002.00178.xAnusooriya, P., Malarvizhi, D., Gopalakrishnan, V. K., & Devaki, K. (2014). antioxidant and antidiabetic effect of aqueous fruit extract of Passiflora ligularis Juss. on streptozotocin induced diabetic rats. International Scholarly Research Notices, 2014, 1–10. https://doi.org/10.1155/2014/130342Aragón Novoa, D. M., Ospina Giraldo, L. F., Ramos Rodríguez, F. A., Castellanos Hernández, L., Costa Modesti, G., & Barreto Silva, F. R. M. (2021). Passiflora ligularis Juss. (granadilla): farmacológicos de una estudios químicos y planta con potencial terapéutico (D. M. Aragón Novoa, Ed.; First). Universidad Nacional de Colombia - Sede Bogotá.Araújo Galdino, O., de Souza Gomes, I., Ferreira de Almeida Júnior, R., Conceição Ferreira de Carvalho, M. I., Abreu, B. J., Abbott Galvão Ururahy, M., Cabral, B., Zucolotto Langassner, S. M., Costa de Souza, K. S., & Augusto de Rezende, A. (2022). The nephroprotective action of Passiflora edulis in streptozotocin-induced diabetes. Scientific Reports, 12(1), 17546. https://doi.org/10.1038/s41598-022-21826-9Arkhammar, P., Juntti-Berggren, L., Larsson, O., Welsh, M., Nanberg, E., Sjoholm, A., Kohler, M., & Berggren, P. O. (1994). Protein kinase C modulates the insulin secretory process by maintaining a proper function of the β-cell voltage-activated Ca2+channels. Journal of Biological Chemistry, 269(4), 2743–2749.Aschner, P., Mauricio Muñoz, O., Giron, D., Garcia, O. M., Fernandez Ávila, D. G., Casas, L. A., Bohórquez, L. F., Arángo T., C. M., Carvajal, L., Ramírez, D. A., Sarmiento, J. G., Colon, C. A., Correa G., N. F., Alarcón R., P., & Bústamante S., A. A. (2016). Clinical practice guideline for the prevention, early detection, diagnosis, management and follow up of type 2 diabetes mellitus in adults. Colombia Medica, 109–130. https://doi.org/10.25100/cm.v47i2.2207Ashcroft, F. M., Proks, P., Smith, P. A., Ämmälä, C., Bokvist, K., & Rorsman, P. (1994). Stimulus-secretion coupling in pancreatic β cells. Journal of Cellular Biochemistry, 55(S1994A), 54–65. https://doi.org/10.1002/jcb.240550007Ashcroft, F. M., & Rorsman, P. (2013). K(ATP) channels and islet hormone secretion: new insights and controversies. Nature Reviews Endocrinology, 9(11), 660–669. https://doi.org/10.1038/nrendo.2013.166Bailey, C. J. (2017). Metformin: historical overview. Diabetologia, 60(9), 1566–1576. https://doi.org/10.1007/s00125-017-4318-zBalibrea, J., & Arias-Díaz, J. (2007). Modelos animales de intolerancia a la glucosa y diabetes tipo 2. Diabetes, 22(2), 160–168.Barber, E., Houghton, M. J., & Williamson, G. (2021). Flavonoids as human intestinal α-glucosidase inhibitors. Foods, 10(8), 1939. https://doi.org/10.3390/foods10081939Bardy, G., Virsolvy, A., Quignard, J. F., Ravier, M. A., Bertrand, G., Dalle, S., Cros, G., Magous, R., Richard, S., & Oiry, C. (2013). Quercetin induces insulin secretion by direct activation of L-type calcium channels in pancreatic beta cells. British Journal of Pharmacology, 169(5), 1102–1113. https://doi.org/10.1111/bph.12194Barge, S., Deka, B., Kashyap, B., Bharadwaj, S., Kandimalla, R., Ghosh, A., Dutta, P. P., Samanta, S. K., Manna, P., Borah, J. C., & Talukdar, N. C. (2021). Astragalin mediates the pharmacological effects of Lysimachia candida Lindl on adipogenesis via downregulating PPARG and FKBP51 signaling cascade. Phytotherapy Research, 35(12), 6990–7003. https://doi.org/10.1002/ptr.7320Barnes, A. S. (2011). The epidemic of obesity and diabetes: trends and treatments. Texas Heart Institute Journal, 38(2), 142–144.Batra, S., & Sjögren, C. (1983). Effect of estrogen treatment of calcium uptake by the rat uterine smooth muscle. Life Sciences, 32(4), 315–319.Belfiore, A., Malaguarnera, R., Vella, V., Lawrence, M. C., Sciacca, L., Frasca, F., Morrione, A., & Vigneri, R. (2017). Insulin receptor isoforms in physiology and disease: an updated view. Endocrine Reviews, 38(5), 379–431. https://doi.org/10.1210/er.2017-00073Benes, C., Poitout, V., Marie, J.-C., Matin-Perez, J., Roisin, M.-P., & Fagard, R. (1999). Mode of regulation of the extracellular signal-regulated kinases in the pancreatic β-cell line MIN6 and their implication in the regulation of insulin gene transcription. Biochemical Journal, 340(1), 219–225. https://doi.org/10.1042/bj3400219Bensaude, O. (2011). Inhibiting eukaryotic transcription. Which compound to choose? How to evaluate its activity? Transcription, 2(3), 103–108. https://doi.org/10.4161/trns.2.3.16172Berger, C., & Zdzieblo, D. (2020). Glucose transporters in pancreatic islets. Pflügers Archiv - European Journal of Physiology, 472(9), 1249–1272. https://doi.org/10.1007/s00424-020-02383-Berridge, M. J., Bootman, M. D., & Roderick, H. L. (2003). Calcium signalling: dynamics, homeostasis and remodelling. Nature Reviews Molecular Cell Biology, 4(7), 517–529. https://doi.org/10.1038/nrm1155Blackman, S. M., Cooke, D. W., & Hopkins, J. (2013). Diabetes. 1, 649–658. https://doi.org/10.1016/B978-0-12-378630-2.00035-9Bonfanti, D. H., Alcazar, L. P., Arakaki, P. A., Martins, L. T., Agustini, B. C., de Moraes Rego, F. G., & Frigeri, H. R. (2015). ATP-dependent potassium channels and type 2 diabetes mellitus. Clinical Biochemistry, 48(7–8), 476–482. https://doi.org/10.1016/j.clinbiochem.2014.12.026Bösenberg, L. H., & van Zyl, D. G. (2008). The mechanism of action of oral antidiabetic drugs: A review of recent literature. Journal of Endocrinology, Metabolism and Diabetes of South Africa, 13(3), 80–88. https://doi.org/10.1080/22201009.2008.10872177Brahmachari, G. (2011). Bio-flavonoids with promising anti- diabetic potentials: A critical survey. Opportunity, Challenge and Scope of Natural Products in Medicinal Chemistry - Research Signpost, 661(2), 187–212.Brereton, M. F., Iberl, M., Shimomura, K., Zhang, Q., Adriaenssens, A. E., Proks, P., Spiliotis, I. I., Dace, W., Mattis, K. K., Ramracheya, R., Gribble, F. M., Reimann, F., Clark, A., Rorsman, P., & Ashcroft, F. M. (2014). Reversible changes in pancreatic islet structure and function produced by elevated blood glucose. Nature Communications, 5(1), 4639. https://doi.org/10.1038/ncomms5639Calisti, L., & Tognetti, S. (2005). Measure of glycosylated hemoglobin. Acta Bio-Medica : Atenei Parmensis, 76 Suppl 3, 59–62.Carvajal de Pabón, L. M., Turbay, S., Rojano, B., Álvarez, L. M., Restrepo, S. L., Álvarez, J. M., Bonilla, K. C., Clara Ochoa, O., & Sánchez, N. (2011). Algunas especies de Passiflora y su capacidad antioxidante. Revista Cubana de Plantas Medicinales, 16(4), 354–363.Castro, A. J. G., Frederico, M. J. S., Cazarolli, L. H., Mendes, C. P., Bretanha, L. C., Schmidt, É. C., Bouzon, Z. L., de Medeiros Pinto, V. A., da Fonte Ramos, C., Pizzolatti, M. G., & Silva, F. R. M. B. (2015). The mechanism of action of ursolic acid as insulin secretagogue and insulinomimetic is mediated by cross-talk between calcium and kinases to regulate glucose balance. Biochimica et Biophysica Acta (BBA) - General Subjects, 1850(1), 51–61. https://doi.org/10.1016/j.bbagen.2014.10.001Castro Gomes, A. J., Cazarolli, L. H., Bretanha, L. C., Sulis, P. M., Rey Padilla, D. P., Aragón Novoa, D. M., Dambrós, B. F., Pizzolatti, M. G., & Mena Barreto Silva, F. R. (2018). The potent insulin secretagogue effect of betulinic acid is mediated by potassium and chloride channels. Archives of Biochemistry and Biophysics, 648(April), 20–26. https://doi.org/10.1016/j.abb.2018.04.015Catterall, W. A. (2011). Voltage-Gated Calcium Channels. Cold Spring Harbor Perspectives in Biology, 3(8), a003947–a003947. https://doi.org/10.1101/cshperspect.a003947Cazarolli, L. H., Folador, P., Moresco, H. H., Brighente, I. M. C., Pizzolatti, M. G., & Silva, F. R. M. B. (2009). Mechanism of action of the stimulatory effect of apigenin-6-C-(2″-O-α-l-rhamnopyranosyl)-β-l-fucopyranoside on 14C-glucose uptake. Chemico-Biological Interactions, 179(2–3), 407–412. https://doi.org/10.1016/j.cbi.2008.11.012Cazarolli, L. H., Folador, P., Pizzolatti, M. G., & Mena Barreto Silva, F. R. (2009a). Signaling pathways of kaempferol-3-neohesperidoside in glycogen synthesis in rat soleus muscle. Biochimie, 91(7), 843–849. https://doi.org/10.1016/j.biochi.2009.04.004Cazarolli, L. H., Kappel, V. D., Pereira, D. F., Moresco, H. H., Brighente, I. M. C., Pizzolatti, M. G., & Silva, F. R. M. B. (2012). Anti-hyperglycemic action of apigenin-6-C-β-fucopyranoside from Averrhoa carambola. Fitoterapia, 83(7), 1176–1183. https://doi.org/10.1016/j.fitote.2012.07.003Cazarolli, L. H., Pereira, D. F., Kappel, V. D., Folador, P., Figueiredo, M. D. S. R. B., Pizzolatti, M. G., & Silva, F. R. M. B. (2013). Insulin signaling: A potential signaling pathway for the stimulatory effect of kaempferitrin on glucose uptake in skeletal muscle. European Journal of Pharmacology, 712(1–3), 1–7. https://doi.org/10.1016/j.ejphar.2013.02.029Cazarolli, L. H., Zanatta, L., Jorge, A. P., de Sousa, E., Horst, H., Woehl, V. M., Pizzolatti, M. G., Szpoganicz, B., & Silva, F. R. M. B. (2006). Follow-up studies on glycosylated flavonoids and their complexes with vanadium: Their anti-hyperglycemic potential role in diabetes. Chemico-Biological Interactions, 163(3), 177–191. https://doi.org/10.1016/j.cbi.2006.07.010Cazarolli, L., Zanatta, L., Alberton, E., Reis Bonorino Figueiredo, M., Folador, P., Damazio, R., Pizzolatti, M., & Mena Barreto Silva, F. (2008). Flavonoids: Cellular and molecular mechanism of action in glucose homeostasis. Mini-Reviews in Medicinal Chemistry, 8(10), 1032–1038. https://doi.org/10.2174/138955708785740580Chang, Y.-C., & Chuang, L.-M. (2010). The role of oxidative stress in the pathogenesis of type 2 diabetes: from molecular mechanism to clinical implication. American Journal of Translational Research, 2(3), 316–331.Chen, S., Chen, J., Li, S., Guo, F., Li, A., Wu, H., Chen, J., Pan, Q., Liao, S., Liu, H., & Pan, Q. (2021). High-fat diet-induced renal proximal tubular inflammatory injury: emerging risk factor of chronic kidney disease. Frontiers in Physiology, 12. https://doi.org/10.3389/fphys.2021.786599Chippy, J., Lincy, J., & Mathew, G. (2016). Evaluation of anti-diabetic activity of leaves of Passiflora ligularis on alloxan induced diabetes mellitus in albino rats. International Journal of Pharmacy and Pharmaceutical Research, 6(4), 518–522.Choi, B. H., & Hahn, S. J. (2010). Kv1.3: a potential pharmacological target for diabetes. Acta Pharmacologica Sinica, 31(9), 1031–1035. https://doi.org/10.1038/aps.2010.133Choi, J., Kang, H. J., Kim, S. Z., Kwon, T. O., Jeong, S. Il, & Jang, S. Il. (2013). Antioxidant effect of astragalin isolated from the leaves of Morus alba L. against free radical-induced oxidative hemolysis of human red blood cells. Archives of Pharmacal Research, 36(7), 912–917. https://doi.org/10.1007/s12272-013-0090-xChoi, S. B., Park, C. H., Choi, M. K., Jun, D. W., & Park, S. (2004). Improvement of insulin resistance and insulin secretion by water extracts of Cordyceps militaris, Phellinus linteus, and Paecilomyces tenuipes in 90% pancreatectomized rats. Bioscience, Biotechnology, and Biochemistry, 68(11), 2257–2264. https://doi.org/10.1271/bbb.68.2257Coman, C., Rugina, O. D., & Socaciu, C. (2012). Plants and natural compounds with antidiabetic action. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 40(1), 314. https://doi.org/10.15835/nbha4017205Costa, G. M., Gazola, A. C., Zucolotto, S. M., Castellanos, L., Ramos, F. A., Reginatto, F. H., & Schenkel, E. P. (2016). Chemical profiles of traditional preparations of four south american Passiflora species by chromatographic and capillary electrophoretic techniques. Revista Brasileira de Farmacognosia, 26(4), 451–458. https://doi.org/10.1016/j.bjp.2016.02.005Da Silva Xavier, G. (2018). The cells of the islets of langerhans. Journal of Clinical Medicine, 7(3), 54. https://doi.org/10.3390/jcm7030054Dabla, P. K. (2010). Renal function in diabetic nephropathy. World Journal of Diabetes, 1(2), 48. https://doi.org/10.4239/wjd.v1.i2.48Dash, S., Pattnaik, G., Kar, B., Sahoo, N., & Bhattacharya, S. (2021). An approach towards method development to investigate the anti-diabetic activity on experimental animals. Current Trends in Biotechnology and Pharmacy, 15(3), 330–348. https://doi.org/10.5530/ctbp.2021.3.34de Almeida, V. L., Silva, C. G., & Campana, P. R. V. (2021). Flavonoids of Passiflora: isolation, structure elucidation, and biotechnological application (pp. 263–310). https://doi.org/10.1016/B978-0-323-91095-8.00004-0Dejager, S., Penfornis, A., Blickle, J.-F., Fiquet, B., & Quere, S. (2014). How are patients with type 2 diabetes and renal disease monitored and managed? Insights from the observational OREDIA study. Vascular Health and Risk Management, 341. https://doi.org/10.2147/VHRM.S60312Dhawan, K., Dhawan, S., & Sharma, A. (2004). Passiflora: a review update. Journal of Ethnopharmacology, 94(1), 1–23. https://doi.org/10.1016/j.jep.2004.02.023Di Magno, L., Di Pastena, F., Bordone, R., Coni, S., & Canettieri, G. (2022). The mechanism of action of biguanides: new answers to a complex question. Cancers, 14(13), 3220. https://doi.org/10.3390/cancers14133220Díaz Horta, O. (2003). El ion calcio: su regulación y función en la célula ß pancreática. Revista Cubana de Endocrinología, 14(3), 0–0. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1561-29532003000300008&lng=es&nrm=iso&tlng=esDoi, K., Yamanouchi, J., Kume, E., & Yasoshima, A. (1997). Morphologic changes in hepatocyte nuclei of streptozotocin (SZ)-induced diabetic mice. Experimental and Toxicologic Pathology, 49(3–4), 295–299. https://doi.org/10.1016/S0940-2993(97)80041-3Dowarah, J., & Singh, V. P. (2020). Anti-diabetic drugs recent approaches and advancements. Bioorganic & Medicinal Chemistry, 28(5), 115263. https://doi.org/10.1016/j.bmc.2019.115263Drozdowski, L., & Thomson, A. (2006). Intestinal sugar transport. World Journal of Gastroenterology, 12(11), 1657. https://doi.org/10.3748/wjg.v12.i11.1657Du, Y., & Wei, T. (2014). Inputs and outputs of insulin receptor. Protein & Cell, 5(3), 203–213. https://doi.org/10.1007/s13238-014-0030-7Duan, Y., Dai, H., An, Y., Cheng, L., Shi, L., Lv, Y., Li, H., Wang, C., He, C., Zhang, H., Huang, Y., Fu, W., Meng, Y., & Zhao, B. (2022). Mulberry leaf flavonoids inhibit liver inflammation in type 2 diabetes rats by regulating TLR4/MyD88/NF-κB signaling pathway. Evidence-Based Complementary and Alternative Medicine, 2022, 1–10. https://doi.org/10.1155/2022/3354062Duarte, I. de A. E., Milenkovic, D., Borges, T. K. dos S., Rosa, A. J. de M., Morand, C., Oliveira, L. de L. de, & Costa, A. M. (2020). Acute effects of the consumption of Passiflora setacea juice on metabolic risk factors and gene expression profile in humans. Nutrients, 12(4), 1104. https://doi.org/10.3390/nu12041104Echeverry, S. M., Rey, D., Valderrama, I. H., Araujo, B. V. de, & Aragón, D. M. (2021). Development of a self-emulsifying drug delivery system (SEDDS) to improve the hypoglycemic activity of Passiflora ligularis leaves extract. In Journal of Drug Delivery Science and Technology (Vol. 64). https://doi.org/10.1016/j.jddst.2021.102604Echeverry, S. M., Valderrama, I. H., Costa, G. M., Ospina-Giraldo, L. F., & Aragón, D. M. (2018). Development and optimization of microparticles containing a hypoglycemic fraction of calyces from Physalis peruviana. Journal of Applied Pharmaceutical Science, 8(5), 10–18. https://doi.org/10.7324/JAPS.2018.8502Eid, H. M., Martineau, L. C., Saleem, A., Muhammad, A., Vallerand, D., Benhaddou-Andaloussi, A., Nistor, L., Afshar, A., Arnason, J. T., & Haddad, P. S. (2010). Stimulation of AMP-activated protein kinase and enhancement of basal glucose uptake in muscle cells by quercetin and quercetin glycosides, active principles of the antidiabetic medicinal plant Vaccinium vitis-idaea. Molecular Nutrition and Food Research, 54(7), 991–1003. https://doi.org/10.1002/mnfr.200900218Eisenreich, A., & Leppert, U. (2017). Update on the protective renal effects of metformin in diabetic nephropathy. Current Medicinal Chemistry, 24(31). https://doi.org/10.2174/0929867324666170404143102Fallah, Z., Tajbakhsh, M., Alikhani, M., Larijani, B., Faramarzi, M. A., Hamedifar, H., Mohammadi-Khanaposhtani, M., & Mahdavi, M. (2022). A review on synthesis, mechanism of action, and structure-activity relationships of 1,2,3-triazole-based α-glucosidase inhibitors as promising anti-diabetic agents. Journal of Molecular Structure, 1255, 132469. https://doi.org/10.1016/j.molstruc.2022.132469Fang, P., Yu, M., Min, W., Wan, D., Han, S., Shan, Y., Wang, R., Shi, M., Zhang, Z., & Bo, P. (2018). Effect of baicalin on GLUT4 expression and glucose uptake in myotubes of rats. Life Sciences, 196, 156–161. https://doi.org/10.1016/j.lfs.2018.01.022Farzaei, F., Morovati, M. R., Farjadmand, F., & Farzaei, M. H. (2017). A mechanistic review on medicinal plants used for diabetes mellitus in traditional persian medicine. Journal of Evidence-Based Complementary and Alternative Medicine, 22(4), 944–955. https://doi.org/10.1177/2156587216686461Fazakerley, D. J., Krycer, J. R., Kearney, A. L., Hocking, S. L., & James, D. E. (2019). Muscle and adipose tissue insulin resistance: malady without mechanism?. Journal of Lipid Research, 60(10), 1720–1732. https://doi.org/10.1194/jlr.R087510Floch, J.-P. le, Escuyer, P., Baudin, E., Baudon, D., & Perlemuter, L. (1990). Blood glucose area under the curve: methodological aspects. Diabetes Care, 13(2), 172–175. https://doi.org/10.2337/diacare.13.2.172Folador, P., Cazarolli, L. H., Gazola, A. C., Reginatto, F. H., Schenkel, E. P., & Silva, F. R. M. B. (2010). Potential insulin secretagogue effects of isovitexin and swertisin isolated from Wilbrandia ebracteata roots in non-diabetic rats. Fitoterapia, 81(8), 1180–1187. https://doi.org/10.1016/j.fitote.2010.07.022Frederico, M. J. S., Castro, A. J. G., Mascarello, A., Mendes, C. P., Kappel, V. D., Stumpf, T. R., Leal, P. C., Nunes, R. J., Yunes, R. A., & Silva, F. R. M. B. (2012). Acylhydrazones contribute to serum glucose homeostasis through dual physiological targets. Current Topics in Medicinal Chemistry, 12(19), 2049–2058. https://dx.doi.org/10.2174/1568026611212190003Frederico, M., Gomes Castro, A., Menegaz, D., de Bernardis Murat, C., Pires Mendes, C., Mascarello, A., Nunes, R., & Silva, F. R. M. B. (2017). Mechanism of Action of Novel Glibenclamide Derivatives on Potassium and Calcium Channels for Insulin Secretion. Current Drug Targets, 18(6), 641–650. https://doi.org/10.2174/1389450117666160615084752Frederico, M. J. S., Castro, A. J. G., Pinto, V. A. M., Ramos, C. D. F., Monteiro, F. B. F., Mascarello, A., Nunes, R. J., & Silva, F. R. M. B. (2018). Mechanism of action of camphoryl-benzene sulfonamide derivative on glucose uptake in adipose tissue. Journal of Cellular Biochemistry, 119(6), 4408–4419. https://doi.org/10.1002/jcb.26506Friedrichsen, M., Mortensen, B., Pehmøller, C., Birk, J. B., & Wojtaszewski, J. F. P. (2013). Exercise-induced AMPK activity in skeletal muscle: Role in glucose uptake and insulin sensitivity. In Molecular and Cellular Endocrinology (Vol. 366, Issue 2, pp. 204–214). Elsevier Ireland Ltd. https://doi.org/10.1016/j.mce.2012.06.013Fröde, T. S., & Medeiros, Y. S. (2008). Animal models to test drugs with potential antidiabetic activity. Journal of Ethnopharmacology, 115(2), 173–183. https://doi.org/10.1016/j.jep.2007.10.038Furman, B. L. (2015). Streptozotocin-induced diabetic models in mice and rats. In Current Protocols in Pharmacology (pp. 5.47.1-5.47.20). John Wiley & Sons, Inc. https://doi.org/10.1002/0471141755.ph0547s70George, P., & McCrimmon, R. (2012). Diazoxide. Practical Diabetes, 29(1), 36–37.Ghasemi, A., Khalifi, S., & Jedi, S. (2014). Streptozotocin-nicotinamide-induced rat model of type 2 diabetes (review). Acta Physiologica Hungarica, 101(4), 408–420. https://doi.org/10.1556/APhysiol.101.2014.4.2Giacco, F., & Brownlee, M. (2010). Oxidative stress and diabetic complications. Circulation Research, 107(9), 1058–1070. https://doi.org/10.1161/CIRCRESAHA.110.223545Gilbert, E. R., Fu, Z., & Liu, D. (2011). Development of a nongenetic mouse model of type 2 diabetes. Experimental Diabetes Research, 2011, 1–12. https://doi.org/10.1155/2011/416254Gilon, P., Chae, H.-Y., Rutter, G. A., & Ravier, M. A. (2014). Calcium signaling in pancreatic β-cells in health and in type 2 diabetes. Cell Calcium, 56(5), 340–361. https://doi.org/10.1016/j.ceca.2014.09.001Ginsberg, H. N., Zhang, Y.-L., & Hernandez-Ono, A. (2005). Regulation of plasma triglycerides in insulin resistance and diabetes. Archives of Medical Research, 36(3), 232–240. https://doi.org/10.1016/j.arcmed.2005.01.005Goldberg, I. J. (2001). Diabetic dyslipidemia: Causes and consequences. The Journal of Clinical Endocrinology & Metabolism, 86(3), 965–971. https://doi.org/10.1210/jcem.86.3.7304Gomes Castro, A. J., Silva Frederico, M. J., Cazarolli, L. H., Bretanha, L. C., Tavares, L. de C., Buss, Z. da S., Dutra, M. F., Pacheco de Souza, A. Z., Pizzolatti, M. G., & Silva, F. R. M. B. (2014). Betulinic acid and 1,25(OH)2 vitamin D3 share intracellular signal transduction in glucose homeostasis in soleus muscle. The International Journal of Biochemistry & Cell Biology, 48, 18–27. https://doi.org/10.1016/j.biocel.2013.11.020Gorovits, N., & Charron, M. J. (2003). What we know about facilitative glucose transporters. Biochemistry and Molecular Biology Education, 31(3), 163–172.Goss, M. J., Nunes, M. L. O., Machado, I. D., Merlin, L., Macedo, N. B., Silva, A. M. O., Bresolin, T. M. B., & Santin, J. R. (2018). Peel flour of Passiflora edulis Var. Flavicarpa supplementation prevents the insulin resistance and hepatic steatosis induced by low-fructose-diet in young rats. Biomedicine & Pharmacotherapy, 102, 848–854. https://doi.org/10.1016/j.biopha.2018.03.137Gulliford, M. C., Charlton, J., & Latinovic, R. (2006). Risk of diabetes associated with prescribed glucocorticoids in a large population. Diabetes Care, 29(12), 2728–2729. https://doi.org/10.2337/dc06-1499Guo, X., Wang, Y., Wang, K., Ji, B., & Zhou, F. (2018). Stability of a type 2 diabetes rat model induced by high-fat diet feeding with low-dose streptozotocin injection. Journal of Zhejiang University-SCIENCE B, 19(7), 559–569. https://doi.org/10.1631/jzus.B1700254Gupta, J., Gupta, A., & Kumar, A. (2018). Role of dietary flavonoids having antidiabetic properties and their protective mechanism. IJCRCPS, 5(1), 13–21. https://doi.org/10.22192/ijcrcps.2018.05.01.004Gupta, R. K., Kumar, D., Chaudhary, A. K., Maithani, M., & Singh, R. (2012). Antidiabetic activity of Passiflora incarnata Linn. in streptozotocin-induced diabetes in mice. Journal of Ethnopharmacology, 139(3), 801–806. https://doi.org/10.1016/j.jep.2011.12.021Gustavsson, J., Parpal, S., Karlsson, M., Ramsing, C., Thorn, H., Borg, M., Lindroth, M., Peterson, K. H., Magnusson, K. E., & Strâlfors, P. (1999). Localization of the insulin receptor in caveolae of adipocyte plasma membrane. FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology, 13(14), 1961–1971. http://www.ncbi.nlm.nih.gov/pubmed/10544179Hagenacker, T., Hillebrand, I., Büsselberg, D., & Schäfers, M. (2010). Myricetin reduces voltage activated potassium channel currents in DRG neurons by a p38 dependent mechanism. Brain Research Bulletin, 83(5), 292–296. https://doi.org/10.1016/j.brainresbull.2010.07.010Haligur, M., Topsakal, S., & Ozmen, O. (2012). Early Degenerative effects of diabetes mellitus on pancreas, liver, and kidney in rats: An immunohistochemical study. Experimental Diabetes Research, 2012, 1–10. https://doi.org/10.1155/2012/120645Han, Y., Tang, S., Liu, Y., Li, A., Zhan, M., Yang, M., Song, N., Zhang, W., Wu, X., Peng, C., Zhang, H., & Yang, S. (2021). AMPK agonist alleviate renal tubulointerstitial fibrosis via activating mitophagy in high fat and streptozotocin induced diabetic mice. Cell Death & Disease, 12(10), 925. https://doi.org/10.1038/s41419-021-04184-8Hassan, Z., Yam, M. F., Ahmad, M., & Yusof, A. P. M. (2010). Antidiabetic properties and mechanism of action of Gynura procumbens water extract in streptozotocin-induced diabetic rats. Molecules, 15(12), 9008–9023. https://doi.org/10.3390/molecules15129008Hawley, J. A., Hargreaves, M., & Zierath, J. R. (2006). Signalling mechanisms in skeletal muscle: Role in substrate selection and muscle adaptation. Essays in Biochemistry, 42, 1–12. https://doi.org/10.1042/bse0420001Henquin, J.-C. (2011). The dual control of insulin secretion by glucose involves triggering and amplifying pathways in β-cells. Diabetes Research and Clinical Practice, 93, S27–S31. https://doi.org/10.1016/S0168-8227(11)70010-9Hiriart, M., & Aguilar-Bryan, L. (2008). Channel regulation of glucose sensing in the pancreatic β-cell. American Journal of Physiology-Endocrinology and Metabolism, 295(6), E1298–E1306. https://doi.org/10.1152/ajpendo.90493.2008.Ho, G. T. T., Kase, E. T., Wangensteen, H., & Barsett, H. (2017). Phenolic elderberry extracts, anthocyanins, procyanidins, and metabolites influence glucose and fatty acid uptake in human skeletal muscle cells. Journal of Agricultural and Food Chemistry, 65(13), 2677–2685. https://doi.org/10.1021/acs.jafc.6b05582Hong, H. C., Li, S. L., Zhang, X. Q., Ye, W. C., & Zhang, Q. W. (2013). Flavonoids with α-glucosidase inhibitory activities and their contents in the leaves of Morus atropurpurea. Chinese Medicine (United Kingdom), 8(1), 1. https://doi.org/10.1186/1749-8546-8-19Hsia, D. S., Grove, O., & Cefalu, W. T. (2016). An update on sodium-glucose co-transporter-2 inhibitors for the treatment of diabetes mellitus. Current Opinion in Endocrinology & Diabetes and Obesity, 1. https://doi.org/10.1097/MED.0000000000000311Huang, G., Tang, B., Tang, K., Dong, X., Deng, J., Liao, L., Liao, Z., Yang, H., & He, S. (2014). Isoquercitrin inhibits the progression of liver cancer in vivo and in vitro via the MAPK signalling pathway. Oncology Reports, 31(5), 2377–2384. https://doi.org/10.3892/or.2014.3099Huang, J., Imamura, T., Babendure, J. L., Lu, J.-C., & Olefsky, J. M. (2005). Disruption of microtubules ablates the specificity of insulin signaling to GLUT4 translocation in 3T3-L1 adipocytes. Journal of Biological Chemistry, 280(51), 42300–42306. https://doi.org/10.1074/jbc.M510920200Huang, X.-L., He, Y., Ji, L.-L., Wang, K.-Y., Wang, Y.-L., Chen, D.-F., Geng, Y., OuYang, P., & Lai, W.-M. (2017). Hepatoprotective potential of isoquercitrin against type 2 diabetes-induced hepatic injury in rats. Oncotarget, 8(60). https://doi.org/10.18632/oncotarget.21074Hughes, E., Lee, A. K., & Tse, A. (2006). Dominant role of sarcoendoplasmic reticulum Ca2+-ATPase pump in Ca2+ homeostasis and exocytosis in rat pancreatic beta-cells. Endocrinology, 147(3), 1396–1407. https://doi.org/10.1210/en.2005-1023Huopio, H., Shyng, S.-L., Otonkoski, T., & Nichols, C. G. (2002). KATP channels and insulin secretion disorders. American Journal of Physiology-Endocrinology and Metabolism, 283(2), E207–E216. https://doi.org/10.1152/ajpendo.00047.2002Ibtissem, B. A., Hajer, B. S., Ahmed, H., Awatef, E., Choumous, K., Ons, B., Mounir, Z. K., & Najiba, Z. (2017). Oxidative stress and histopathological changes induced by methylthiophanate, a systemic fungicide, in blood, liver and kidney of adult rats. African Health Sciences, 17(1), 154. https://doi.org/10.4314/ahs.v17i1.20Janssen, B. J. A., De Celle, T., Debets, J. J. M., Brouns, A. E., Callahan, M. F., & Smith, T. L. (2004). Effects of anesthetics on systemic hemodynamics in mice. American Journal of Physiology-Heart and Circulatory Physiology, 287(4), H1618–H1624. https://doi.org/10.1152/ajpheart.01192.2003Jayachandran, M., Zhang, T., Ganesan, K., Xu, B., & Chung, S. S. M. (2018). Isoquercetin ameliorates hyperglycemia and regulates key enzymes of glucose metabolism via insulin signaling pathway in streptozotocin-induced diabetic rats. European Journal of Pharmacology, 829, 112–120. https://doi.org/10.1016/j.ejphar.2018.04.015Jing, X., Li, D.-Q., Olofsson, C. S., Salehi, A., Surve, V. v., Caballero, J., Ivarsson, R., Lundquist, I., Pereverzev, A., Schneider, T., Rorsman, P., & Renström, E. (2005). CaV2.3 calcium channels control second-phase insulin release. Journal of Clinical Investigation, 115(1), 146–154. https://doi.org/10.1172/JCI22518Jitrapakdee, S., Wutthisathapornchai, A., Wallace, J. C., & MacDonald, M. J. (2010). Regulation of insulin secretion: role of mitochondrial signalling. Diabetologia, 53(6), 1019–1032. https://doi.org/10.1007/s00125-010-1685-0Joseph, J., Anand, K., Malindisa, S. T., Oladipo, A. O., & Fagbohun, O. F. (2021). Exercise, CaMKII, and type 2 diabetes. EXCLI Journal, 20, 386–399. https://doi.org/10.17179/excli2020-3317Jung, K. Y., Kim, K. M., & Lim, S. (2014). Therapeutic approaches for preserving or restoring pancreatic β-cell function and mass. Diabetes & Metabolism Journal, 38(6), 426. https://doi.org/10.4093/dmj.2014.38.6.426Kamp, T. J., & Hell, J. W. (2000). Regulation of cardiac L-type calcium channels by protein kinase a and protein kinase C. Circulation Research, 87(12), 1095–1102. https://doi.org/10.1161/01.RES.87.12.1095Kandandapani, S., Balaraman, A. K., & Ahamed, H. N. (2015). Extracts of passion fruit peel and seed of Passiflora edulis (Passifloraceae) attenuate oxidative stress in diabetic rats. Chinese Journal of Natural Medicines, 13(9), 680–686. https://doi.org/10.1016/S1875-5364(15)30066-2Kaneko, Y. K., & Ishikawa, T. (2015). Diacylglycerol signaling pathway in pancreatic β-cells: an essential role of diacylglycerol kinase in the regulation of insulin secretion. Biological & Pharmaceutical Bulletin, 38(5), 669–673. https://doi.org/10.1248/bpb.b15-00060Kanzaki, M. (2006). Insulin receptor signals regulating GLUT4 translocation and actin dynamics. Endocrine Journal, 53(3), 267–293. https://doi.org/10.1507/endocrj.KR-65Kappel, V. D., Cazarolli, L. H., Pereira, D. F., Postal, B. G., Madoglio, F. A., Buss, Z. da S., Reginatto, F. H., & B. Silva, F. R. M. (2013). Beneficial effects of banana leaves (Musa x paradisiaca) on glucose homeostasis: Multiple sites of action. Revista Brasileira de Farmacognosia, 23(4), 706–715. https://doi.org/10.1590/S0102-695X2013005000062Kappel, V. D., Cazarolli, L. H., Pereira, D. F., Postal, B. G., Zamoner, A., Reginatto, F. H., & Silva, F. R. M. B. (2013a). Involvement of GLUT-4 in the stimulatory effect of rutin on glucose uptake in rat soleus muscle. Journal of Pharmacy and Pharmacology, 65(8), 1179–1186. https://doi.org/10.1111/jphp.12066Kappel, V. D., Frederico, M. J. S., Postal, B. G., Mendes, C. P., Cazarolli, L. H., & Silva, F. R. M. B. (2013b). The role of calcium in intracellular pathways of rutin in rat pancreatic islets: Potential insulin secretagogue effect. European Journal of Pharmacology, 702(1–3), 264–268. https://doi.org/10.1016/j.ejphar.2013.01.055Kappel, V. D., Pereira, D. F., Cazarolli, L. H., Guesser, S. M., da Silva, C. H. B., Schenkel, E. P., Reginatto, F. H., & Silva, F. R. M. B. (2012). Short and long-term effects of Baccharis articulata on glucose homeostasis. Molecules, 17(6), 6754–6768. https://doi.org/10.3390/molecules17066754Karam, I., Ma, N., Yang, Y.-J., & Li, J.-Y. (2018). Induce hyperlipidemia in rats using high fat diet investigating blood lipid and histopathology. Journal of Hematology and Blood Disorders, 4(1). https://doi.org/10.15744/2455-7641.4.104Ke, M., Hu, X. Q., Ouyang, J., Dai, B., & Xu, Y. (2012). The effect of astragalin on the VEGF production of cultured Müller cells under high glucose conditions. Bio-Medical Materials and Engineering, 22(1–3), 113–119. https://doi.org/10.3233/BME-2012-0696Khan, M. A. B., Hashim, M. J., King, J. K., Govender, R. D., Mustafa, H., & al Kaabi, J. (2020). Epidemiology of type 2 diabetes – global burden of disease and forecasted trends. Journal of Epidemiology and Global Health, 10(1), 107–111. https://doi.org/10.2991/jegh.k.191028.001Khlifi, R., Dhaouefi, Z., Toumia, I. Ben, Lahmar, A., Sioud, F., Bouhajeb, R., Bellalah, A., & Chekir-Ghedira, L. (2020). Erica multiflora extract rich in quercetin-3-O-glucoside and kaempferol-3-O-glucoside alleviates high fat and fructose diet-induced fatty liver disease by modulating metabolic and inflammatory pathways in Wistar rats. The Journal of Nutritional Biochemistry, 86, 108490. https://doi.org/10.1016/j.jnutbio.2020.108490Kim, B., Cho, B., & Jang, S. (2018). Anti-obesity effects of Diospyros lotus leaf extract in mice with high-fat diet-induced obesity. International Journal of Molecular Medicine. https://doi.org/10.3892/ijmm.2018.3941Kim, M. S., & Kim, S. H. (2011). Inhibitory effect of astragalin on expression of lipopolysaccharide induced inflammatory mediators through NF-κB in macrophages. Archives of Pharmacal Research, 34(12), 2101–2107. https://doi.org/10.1007/s12272-011-1213-xKittl, M., Beyreis, M., Tumurkhuu, M., Fürst, J., Helm, K., Pitschmann, A., Gaisberger, M., Glasl, S., Ritter, M., & Jakab, M. (2016). Quercetin stimulates insulin secretion and reduces the viability of rat INS-1 beta-cells. Cellular Physiology and Biochemistry, 39(1), 278–293. https://doi.org/10.1159/000445623Kjøbsted, R., Hingst, J. R., Fentz, J., Foretz, M., Sanz, M., Pehmøller, C., Shum, M., Marette, A., Mounier, R., Treebak, J. T., Wojtaszewski, J. F. P., Viollet, B., & Lantier, L. (2018). AMPK in skeletal muscle function and metabolism. The FASEB Journal, 32(4), 1741–1777. https://doi.org/10.1096/fj.201700442RKoh, D. S., Cho, J. H., & Chen, L. (2012). Paracrine interactions within islets of Langerhans. Journal of Molecular Neuroscience, 48(2), 429–440. https://doi.org/10.1007/s12031-012-9752-2Krisman, C. (1962). A method for the colorimetric estimation of glycogen with lodine. Analytical Biochemistry, 4(1), 17–23.Kyriazis, G. A., Smith, K. R., Tyrberg, B., Hussain, T., & Pratley, R. E. (2014). Sweet taste receptors regulate basal insulin secretion and contribute to compensatory insulin hypersecretion during the development of diabetes in male mice. Endocrinology, 155(6), 2112–2121. https://doi.org/10.1210/en.2013-2015Lacy, P. E., & Kostianovsky, M. D. (1967). Method for the isolation of intact islets of Langerhans from the rat pancreas. Diabetes, 6(1), 35–39.Lenzen, S. (2008). The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia, 51(2), 216–226. https://doi.org/10.1007/s00125-007-0886-7Li, H., Park, H.-M., Ji, H.-S., Han, J., Kim, S.-K., Park, H.-Y., & Jeong, T.-S. (2020). Phenolic-enriched blueberry-leaf extract attenuates glucose homeostasis, pancreatic β-cell function, and insulin sensitivity in high-fat diet–induced diabetic mice. Nutrition Research, 73, 83–96. https://doi.org/10.1016/j.nutres.2019.09.005Li, R., Bilik, D., Brown, M. B., Zhang, P., Ettner, S. L., Ackermann, R. T., Crosson, J. C., & Herman, W. H. (2013). Medical costs associated with type 2 diabetes complications and comorbidities. The American Journal of Managed Care, 19(5), 421–430.Li, Y., Wang, P., Xu, J., & Desir, G. V. (2006). Voltage-gated potassium channel Kv1.3 regulates GLUT4 trafficking to the plasma membrane via a Ca2+ -dependent mechanism. American Journal of Physiology-Cell Physiology, 290(2), C345–C351. https://doi.org/10.1152/ajpcell.00091.2005Liu, M., Weiss, M. A., Arunagiri, A., Yong, J., Rege, N., Sun, J., Haataja, L., Kaufman, R. J., & Arvan, P. (2018). Biosynthesis, structure, and folding of the insulin precursor protein. Diabetes, Obesity and Metabolism, 20, 28–50. https://doi.org/10.1111/dom.13378Llanos, P., Contreras-Ferrat, A., Georgiev, T., Osorio-Fuentealba, C., Espinosa, A., Hidalgo, J., Hidalgo, C., & Jaimovich, E. (2015). The cholesterol-lowering agent methyl-β-cyclodextrin promotes glucose uptake via GLUT4 in adult muscle fibers and reduces insulin resistance in obese mice. American Journal of Physiology-Endocrinology and Metabolism, 308(4), E294–E305. https://doi.org/10.1152/ajpendo.00189.2014Lochner, A., & Moolman, J. A. (2006). The many faces of H89: A review. Cardiovascular Drug Reviews, 24(3–4), 261–274. https://doi.org/10.1111/j.1527-3466.2006.00261.xLowry, O. H., Rosebrough, N. J., Randall, R. J., & Farr, L. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry, 193(1), 265–275. https://doi.org/10.1016/0304-3894(92)87011-4Luna, B., & Feinglos, M. N. (2001). Oral agents in the management of type 2 diabetes mellitus. American Family Physician, 63(9), 1747–1756.Lytton, J., Westlin, M., & Hanley, M. R. (1991). Thapsigargin inhibits the sarcoplasmic or endoplasmic reticulum Ca-ATPase family of calcium pumps. Journal of Biological Chemistry, 266(26), 17067–17071.Ma, Q., Guo, Y., Sun, L., & Zhuang, Y. (2017). Anti-diabetic effects of phenolic extract from rambutan peels (Nephelium lappaceum) in high-fat diet and streptozotocin-induced diabetic mice. Nutrients, 9(8), 801. https://doi.org/10.3390/nu9080801Ma, Z., Piao, T., Wang, Y., & Liu, J. (2015). Astragalin inhibits IL-1β-induced inflammatory mediators production in human osteoarthritis chondrocyte by inhibiting NF-κB and MAPK activation. International Immunopharmacology, 25(1), 83–87. https://doi.org/10.1016/j.intimp.2015.01.018MacDonald, P. E., Joseph, J. W., & Rorsman, P. (2005). Glucose-sensing mechanisms in pancreatic β-cells. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1464), 2211–2225. https://doi.org/10.1098/rstb.2005.1762MacDonald, P. E., & Wheeler, M. B. (2003). Voltage-dependent K+ channels in pancreatic beta cells: Role, regulation and potential as therapeutic targets. Diabetologia, 46(8), 1046–1062. https://doi.org/10.1007/s00125-003-1159-8McCarty, M. F. (2006). PKC-mediated modulation of L-type calcium channels may contribute to fat-induced insulin resistance. Medical Hypotheses, 66(4), 824–831. https://doi.org/10.1016/j.mehy.2004.08.034McTaggart, J. S., Clark, R. H., & Ashcroft, F. M. (2010). Symposium review: The role of the KATP channel in glucose homeostasis in health and disease: more than meets the islet. The Journal of Physiology, 588(17), 3201–3209. https://doi.org/10.1113/jphysiol.2010.191767Mendez, C. F., Leibiger, I. B., Leibiger, B., Høy, M., Gromada, J., Berggren, P.-O., & Bertorello, A. M. (2003). Rapid association of protein kinase C-ϵ with insulin granules is essential for insulin exocytosis. Journal of Biological Chemistry, 278(45), 44753–44757. https://doi.org/10.1074/jbc.M308664200Ministerio de la Protección Social. (2016). Guía de práctica clínica para el diagnóstico, tratamiento y seguimiento de la diabetes mellitus tipo 2 en la población mayor de 18 años (1st ed.).Miralles, F., & Portha, B. (2001). Early development of beta-cells is impaired in the GK rat model of type 2 diabetes. DiabetesMiranda, D., Fischer, G., Carranza, C., Magnitskiy, S., Casierra, F., Piedrahíta, W., & Flórez, L. E. (2009). Cultivo, poscosecha y comercialización de las pasifloráceas en Colombia: maracuyá, granadilla, gulupa y curuba. In D. Miranda, G. Fischer, C. Carranza, S. Magnitskiy, F. Casierra, W. Piedrahíta, & L. E. Flórez (Eds.), Paper Knowledge . Toward a Media History of Documents (1ra Ed). Sociedad Colombiana de Ciencias HortícolasMirhoseini, M., Baradaran, A., & Rafieian-kopaei, M. (2013). Medicinal plants, diabetes mellitus and urgent needs. Journal of HerbMed Pharmacology. 2(2), 53–54Miroddi, M., Calapai, G., Navarra, M., Minciullo, P. L., & Gangemi, S. (2013). Passiflora incarnata L.: Ethnopharmacology, clinical application, safety and evaluation of clinical trials. Journal of Ethnopharmacology, 150(3), 791–804. https://doi.org/10.1016/j.jep.2013.09.047Monzón, G., Castellanos, L., Meneses, C., Forero, A. M., Rodríguez, J., Aragón, M., Jiménez, C., & Ramos, F. A. (2021). Identification of α-amylase and α-glucosidase inhibitors and ligularoside a, a new triterpenoid saponin from Passiflora ligularis Juss (sweet granadilla) leaves, by a nuclear magnetic resonance- based metabolomic study. Journal of Agricultural and Food Chemistry. https://doi.org/10.1021/acs.jafc.0c07850Moon, M. K., Hur, K.-Y., Ko, S.-H., Park, S.-O., Lee, B.-W., Kim, J. H., Rhee, S. Y., Kim, H. J., Choi, K. M., & Kim, N.-H. (2017). Combination therapy of oral hypoglycemic agents in patients with type 2 diabetes mellitus. Diabetes & Metabolism Journal, 41(5), 357. https://doi.org/10.4093/dmj.2017.41.5.357Morimoto M. S. (2000). Mecanismos moleculares que intervienen en la regulación de la síntesis de insulina por glucosa. Revista del Hospital General Manuel Gea González, 3(3), 118-120.Mounika, K. L. S. (2015). In silico evaluation of alpha glucosidase and alpha amylase inhibitory activity of chemical constituents from Psoralea corylifolia. International Journal of ChemTech Research, 8(11), 532–538.Nakrani, M. N., Wineland, R. H., & Anjum, F. (2021). Physiology, Glucose Metabolism. Treasure Island (FL): StatPearls Publishing.Nerdy, N., & Ritarwan, K. (2019). Hepatoprotective activity and nephroprotective activity of peel extract from three varieties of the passion fruit (Passiflora sp.) in the albino rat. Open Access Macedonian Journal of Medical Sciences, 7(4), 536–542. https://doi.org/10.3889/oamjms.2019.153Neumiller, J. J. (2009). Differential chemistry (structure), mechanism of action, and pharmacology of GLP-1 receptor agonists and DPP-4 inhibitors. Journal of the American Pharmacists Association, 49(5), S16–S29. https://doi.org/10.1331/JAPhA.2009.09078Nordlie, R. C., Foster, J. D., & Lange, A. J. (1999). Regulation of glucose production by the liver. Annual Review of Nutrition, 19(1), 379–406. https://doi.org/10.1146/annurev.nutr.19.1.379Noshahr, Z. S., Salmani, H., Khajavi Rad, A., & Sahebkar, A. (2020). Animal models of diabetes-associated renal injury. Journal of Diabetes Research, 2020, 1–16. https://doi.org/10.1155/2020/9416419Nugent, D. A., Smith, D. M., & Jones, H. B. (2008). A review of islet of Langerhans degeneration in rodent models of type 2 diabetes. Toxicologic Pathology, 36(4), 529–551. https://doi.org/10.1177/0192623308318209O’Brien, T., Nguyen, T. T., & Zimmerman, B. R. (1998). Hyperlipidemia and diabetes mellitus. Mayo Clinic Proceedings, 73(10), 969–976. https://doi.org/10.4065/73.10.969Ogunbayo, O. A., Harris, R. M., Waring, R. H., Kirk, C. J., & Michelangeli, F. (2008). Inhibition of the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase by flavonoids: A quantitative structure-activity relationship study. IUBMB Life, 60(12), 853–858. https://doi.org/10.1002/iub.132Ojuka, E. O., Goyaram, V., & Smith, J. A. H. (2012). The role of CaMKII in regulating GLUT4 expression in skeletal muscle. American Journal of Physiology-Endocrinology and Metabolism, 303(3), E322–E331. https://doi.org/10.1152/ajpendo.00091.2012Oldoni, T. L. C., Merlin, N., Bicas, T. C., Prasniewski, A., Carpes, S. T., Ascari, J., de Alencar, S. M., Massarioli, A. P., Bagatini, M. D., Morales, R., & Thomé, G. (2021). Antihyperglycemic activity of crude extract and isolation of phenolic compounds with antioxidant activity from Moringa oleifera Lam. leaves grown in Southern Brazil. Food Research International, 141, 110082. https://doi.org/10.1016/j.foodres.2020.110082Ormazabal, V., Nair, S., Elfeky, O., Aguayo, C., Salomon, C., & Zuñiga, F. A. (2018). Association between insulin resistance and the development of cardiovascular disease. Cardiovascular Diabetology, 17(1), 122. https://doi.org/10.1186/s12933-018-0762-4Oteiza, P. I., Fraga, C. G., Mills, D. A., & Taft, D. H. (2018). Flavonoids and the gastrointestinal tract: Local and systemic effects. Molecular Aspects of Medicine, 61, 41–49. https://doi.org/10.1016/j.mam.2018.01.001Pacheco, G., Simão, M. J., Vianna, M. G., Garcia, R. O., Vieira, M. L. C., & Mansur, E. (2016). In vitro conservation of Passiflora —A review. Scientia Horticulturae, 211, 305–311. https://doi.org/10.1016/j.scienta.2016.09.004Panchanathan, S., & Rajendran, J. (2015). Evidence of anti-hyperglycemic and anti-oxidant effect of Passiflora edulis flavicarpa (sims.) in streptozotocin induced diabetic rats. Notulae Scientia Biologicae, 7(4), 383–389. 10.15835/nsb.7.4.9655Pandeya, P. R., Lee, K.-H., Lamichhane, R., Lamichhane, G., Poudel, A., & Jung, H.-J. (2021). Evaluation of anti-obesity activity of an herbal formulation (F2) in DIO mice model and validation of UPLC-DAD method for quality control. Applied Sciences, 11(16), 7404. https://doi.org/10.3390/app11167404Pandol, S. J. (2011). The exocrine pancreas. Colloquium Series on Integrated Systems Physiology: From Molecule to Function, 3(1), 1–64. https://doi.org/10.4199/C00026ED1V01Y201102ISP014Park, J. E., Park, J. Y., Seo, Y., & Han, J. S. (2019). A new chromanone isolated from Portulaca oleracea L. increases glucose uptake by stimulating GLUT4 translocation to the plasma membrane in 3T3-L1 adipocytes. International Journal of Biological Macromolecules, 123, 26–34. https://doi.org/10.1016/j.ijbiomac.2018.10.206Park, S. N., Kim, S. Y., Lim, G. N., Jo, N. R., & Lee, M. H. (2012). In vitro skin permeation and cellular protective effects of flavonoids isolated from Suaeda asparagoides extracts. Journal of Industrial and Engineering Chemistry, 18(2), 680–683. https://doi.org/10.1016/j.jiec.2011.11.126Parpal, S., Karlsson, M., Thorn, H., & Strålfors, P. (2001). Cholesterol depletion disrupts caveolae and insulin receptor signaling for metabolic control via insulin receptor substrate-1, but not for mitogen-activated protein kinase control. Journal of Biological Chemistry, 276(13), 9670–9678. https://doi.org/10.1074/jbc.M007454200Parra, M., Aguilera, A., Escobar, W., Rubiano, V., & Rodríguez, A. (2010). Agenda prospectiva de investigación y desarrollo tecnológico para la cadena productiva de granadilla en el Departamento del Huila. Asofrucol. http://www.asohofrucol.com.co/archivos/biblioteca/biblioteca_165_AGENDA_GRANADILLA.pdfPatel, D., Prasad, S., Kumar, R., & Hemalatha, S. (2012). An overview on antidiabetic medicinal plants having insulin mimetic property. Asian Pacific Journal of Tropical Biomedicine, 2(4), 320–330. https://doi.org/10.1016/S2221-1691(12)60032-XPatel, S., & Dutta, S. (2018). Insulin. RCSB Protein Data Bank. https://doi.org/10.2210/rcsb_pdb/GH/DM/drugs/Insulin/InsulinPereira Fontana, D., Cazarolli, L. H., Lavado, C., Mengatto, V., Figueiredo, M. S. R. B., Guedes, A., Pizzolatti, M. G., & Silva, F. R. M. B. (2011). Effects of flavonoids on α-glucosidase activity: Potential targets for glucose homeostasis. Nutrition, 27(11–12), 1161–1167. https://doi.org/10.1016/j.nut.2011.01.008Pinent, M., Castell, A., Baiges, I., Montagut, G., Arola, L., & Ardévol, A. (2008). Bioactivity of flavonoids on insulin-secreting cells. Comprehensive Reviews in Food Science and Food Safety, 7(4), 299–308. https://doi.org/10.1111/j.1541-4337.2008.00048.xPloug, T., & Ralston, E. (2002). Exploring the whereabouts of GLUT4 in skeletal muscle (Review). Molecular Membrane Biology, 19(1), 39–49. https://doi.org/10.1080/09687680110119229Prabhakar, P., & Doble, M. (2008). A target based therapeutic approach towards diabetes mellitus using medicinal plants. Current Diabetes Reviews, 4(4), 291–308. https://doi.org/10.2174/157339908786241124Prem, P. N., & Kurian, G. A. (2021). High-fat diet increased oxidative stress and mitochondrial dysfunction induced by renal ischemia-reperfusion injury in rat. Frontiers in Physiology, 12. https://doi.org/10.3389/fphys.2021.715693Qin, G., Ma, J., Huang, Q., Yin, H., Han, J., Li, M., Deng, Y., Wang, B., Hassan, W., & Shang, J. (2018). Isoquercetin improves hepatic lipid accumulation by activating ampk pathway and suppressing TGF-β signaling on an HFD-induced nonalcoholic fatty liver disease rat model. International Journal of Molecular Sciences, 19(12), 4126. https://doi.org/10.3390/ijms19124126Queiroz, E. A. M., Paim, R. T. T., Lira, S. M., da Silva, J. Y. G., Lima, C. L. S., Holanda, M. O., Benjamin, S. R., Vieira, Í. G. P., & Guedes, M. I. F. (2018). Antihyperglycemic effect of Passiflora glandulosa cav. fruit rinds flour in streptozotocin-induced diabetic mice. Asian Pacific Journal of Tropical Medicine, 11(9), 510–517. https://doi.org/10.4103/1995-7645.242308Ramaiya, S. D., Bujang, J. S., & Zakaria, M. H. (2014). Assessment of total phenolic, antioxidant, and antibacterial activities of Passiflora species. The Scientific World Journal, 2014, 1–10. https://doi.org/10.1155/2014/167309Ranilla, L. G., Kwon, Y.-I., Apostolidis, E., & Shetty, K. (2010). Phenolic compounds, antioxidant activity and in vitro inhibitory potential against key enzymes relevant for hyperglycemia and hypertension of commonly used medicinal plants, herbs and spices in Latin America. Bioresource Technology, 101(12), 4676–4689. https://doi.org/10.1016/j.biortech.2010.01.093Ravussin, E., & Smith, S. R. (2006). Increased fat intake, impaired fat oxidation, and failure of fat cell proliferation result in ectopic fat storage, insulin resistance, and type 2 diabetes mellitus. Annals of the New York Academy of Sciences, 967(1), 363–378. https://doi.org/10.1111/j.1749-6632.2002.tb04292.xRehani, P. R., Iftikhar, H., Nakajima, M., Tanaka, T., Jabbar, Z., & Rehani, R. N. (2019). Safety and mode of action of diabetes medications in comparison with 5-aminolevulinic acid (5-ALA). Journal of Diabetes Research, 2019, 4267357. https://doi.org/10.1155/2019/4267357Rehwald, A., Meier, B., & Sticher, O. (1994). Qualitative and quantitative reversed-phase high-performance liquid chromatography of flavonoids in Passiflora incarnata L. Pharmaceutica Acta Helvetiae, 69(3), 153–158. https://doi.org/10.1016/0031-6865(94)90017-5Riaz, A., Rasul, A., Hussain, G., Zahoor, M. K., Jabeen, F., Subhani, Z., Younis, T., Ali, M., Sarfraz, I., & Selamoglu, Z. (2018). Astragalin : A bioactive phytochemical with potential therapeutic activities. Advances in Pharmacological and Pharmaceutical Science, 2018, 1–15. https://doi.org/10.1155/2018/9794625Rickels, M. R., Norris, A. W., & Hull, R. L. (2020). A tale of two pancreases: exocrine pathology and endocrine dysfunction. Diabetologia, 63(10), 2030–2039. https://doi.org/10.1007/s00125-020-05210-8Roberts, C. K., Hevener, A. L., & Barnard, R. J. (2013). Metabolic syndrome and insulin resistance: underlying causes and modification by exercise training. Comprehensive Physiology, 3(1), 1–58. https://doi.org/10.1002/cphy.c110062Rodriguez, L., Stirling, C. J., & Woodman, P. G. (1994). Multiple N-ethylmaleimide-sensitive components are required for endosomal vesicle fusion. Molecular Biology of the Cell, 5(7), 773–783. https://doi.org/10.1091/mbc.5.7.773Rorsman, P., Braun, M., & Zhang, Q. (2012). Regulation of calcium in pancreatic α- and β-cells in health and disease. Cell Calcium, 51(3–4), 300–308. https://doi.org/10.1016/j.ceca.2011.11.006Rorsman, P., Eliasson, L., Renström, E., Gromada, J., Barg, S., & Göpel, S. (2000). The cell physiology of biphasic insulin secretion. News in Physiological Sciences, 15(2), 72–77. https://doi.org/10.1152/physiologyonline.2000.15.2.72Rosler, K.-H., & Goodwin, R. S. (1984). A general use of amberlite XAD-2 resin for the purification of flavonoids from aqueous fractions. Journal of Natural Products, 47(1), 188–188. https://doi.org/10.1021/np50031a036Saeedi, P., Petersohn, I., Salpea, P., Malanda, B., Karuranga, S., Unwin, N., Colagiuri, S., Guariguata, L., Motala, A. A., Ogurtsova, K., Shaw, J. E., Bright, D., & Williams, R. (2019). Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Research and Clinical Practice, 157, 107843. https://doi.org/10.1016/j.diabres.2019.107843Safayhi, H., Haase, H., Kramer, U., Bihlmayer, A., Roenfeldt, M., Ammon, H. P., Froschmayr, M., Cassidy, T. N., Morano, I., Ahlijanian, M. K., & Striessnig, J. (1997). L-type calcium channels in insulin-secreting cells: biochemical characterization and phosphorylation in RINm5F cells. Molecular Endocrinology, 11(5), 619–629. https://doi.org/10.1210/mend.11.5.9922Sakaguchi, K., Takeda, K., Maeda, M., Ogawa, W., Sato, T., Okada, S., Ohnishi, Y., Nakajima, H., & Kashiwagi, A. (2016). Glucose area under the curve during oral glucose tolerance test as an index of glucose intolerance. Diabetology International, 7(1), 53–58. https://doi.org/10.1007/s13340-015-0212-4Salaj, N., Kladar, N., Srđenović Čonić, B., Jeremić, K., Hitl, M., Gavarić, N., & Božin, B. (2021). Traditional multi-herbal formula in diabetes therapy – Antihyperglycemic and antioxidant potential. Arabian Journal of Chemistry, 14(10), 103347. https://doi.org/10.1016/j.arabjc.2021.103347Salehi, Ata, v. Anil Kumar, Sharopov, Ramírez-Alarcón, Ruiz-Ortega, Abdulmajid Ayatollahi, Tsouh Fokou, Kobarfard, Amiruddin Zakaria, Iriti, Taheri, Martorell, Sureda, Setzer, Durazzo, Lucarini, Santini, Capasso & Sharifi-Rad. (2019). Antidiabetic potential of medicinal plants and their active components. Biomolecules, 9(10), 551. https://doi.org/10.3390/biom9100551Salgado, J. M., Bombarde, T. A. D., Mansi, D. N., Piedade, S. M. de S., & Meletti, L. M. M. (2010). Effects of different concentrations of passion fruit peel (Passiflora edulis) on the glicemic control in diabetic rat. Ciência e Tecnologia de Alimentos, 30(3), 784–789. https://doi.org/10.1590/S0101-20612010000300034Salih, N. D., Muslih, R. K., & Hamoodi, S. R. (2009). Histological liver changes in streptozotocin induced diabetic mice. International Medical Journal Malaysia, 8(1), 1-4.Samarghandian, S., Azimi-Nezhad, M., Samini, F., & Farkhondeh, T. (2016). Chrysin treatment improves diabetes and its complications in liver, brain, and pancreas in streptozotocin-induced diabetic rats. Canadian Journal of Physiology and Pharmacology, 94(4), 388–393. https://doi.org/10.1139/cjpp-2014-0412Santilli, F., Simeone, P., Liani, R., & Davì, G. (2015). Platelets and diabetes mellitus. Prostaglandins & Other Lipid Mediators, 120, 28–39. https://doi.org/10.1016/j.prostaglandins.2015.05.002Santulli, G., Nakashima, R., Yuan, Q., & Marks, A. R. (2017). Intracellular calcium release channels: an update. The Journal of Physiology, 595(10), 3041–3051. https://doi.org/10.1113/JP272781Santulli, G., Pagano, G., Sardu, C., Xie, W., Reiken, S., Ascia, S. L. D., Cannone, M., Marziliano, N., Trimarco, B., Guise, T. a, Lacampagne, A., Marks, A. R., D’Ascia, S. L., Cannone, M., Marziliano, N., Trimarco, B., Guise, T. a, Lacampagne, A., & Marks, A. R. (2015). Calcium release channel RyR2 regulates insulin release and glucose homeostasis. The Journal of Clinical Investigation, 125(5), 1968–1978. https://doi.org/10.1172/JCI79273Sarto, D. A. Q. S., Siqueira, A. H. D. de, Magalhaes, F. M. de A., Caproni, K. de P., Martins, Â. M., Santos, G. B., Silva, D. B. da, Boas, B. M. V., & Garcia, J. A. D. (2018). Dry extract of Passiflora incarnata L. leaves as a cardiac and hepatic oxidative stress protector in LDLr-/- mice fed high-fat diet. Brazilian Archives of Biology and Technology, 61. https://doi.org/10.1590/1678-4324-2018180147Satyanarayana, K., Sravanthi, K., Shaker, I., Ponnulakshmi, R., & Selvaraj, J. (2015). Role of chrysin on expression of insulin signaling molecules. Journal of Ayurveda and Integrative Medicine, 6(4), 248. https://doi.org/10.4103/0975-9476.157951Scheepers, A., Joost, H., & Schurmann, A. (2004). The glucose transporter families SGLT and GLUT: molecular basis of normal and aberrant function. Journal of Parenteral and Enteral Nutrition, 28(5), 364–371. https://doi.org/10.1177/0148607104028005364Schneider-Poetsch, T., Ju, J., Eyler, D. E., Dang, Y., Bhat, S., Merrick, W. C., Green, R., Shen, B., & Liu, J. O. (2010). Inhibition of eukaryotic translation elongation by cycloheximide and lactimidomycin. Nature Chemical Biology, 6(3), 209–217. https://doi.org/10.1038/nchembio.304Sepúlveda, P. M., Echeverrry, S., Costa, G., & Aragón, M. (2020). Passiflora ligularis leaf ultrasound-assisted extraction in the optimization of flavonoid content and enhancement of hypoglycemic activity. Journal of Applied Pharmaceutical Science. https://doi.org/10.7324/JAPS.2020.10810Sepúlveda Ramos, P. M. (2021). Contribución a la caracterización biofarmacéutica de un extracto de hojas de Passiflora ligularis (granadilla) optimizado en flavonoides. Universidad Nacional de Colombia.Seyer-Hansen, K. (1976). Renal Hypertrophy in streptozotocin-diabetic rats. Clinical Science, 51(6), 551–555. https://doi.org/10.1042/cs0510551Shaker, S. M., Magdy, Y. M., Abd-Elaziz, L. F., El-Said, S. A., Alkharashy, O. A., & Nabeeh, E. S. (2014). Histological study on the effect of metformin on high-fat-diet-induced liver injury in adult male albino rats. The Egyptian Journal of Histology, 37(3), 592–602. https://doi.org/10.1097/01.EHX.0000452726.54766.93Shanmugam, S., Rajan, M., de Souza Araújo, A. A., & Narain, N. (2018). Potential of Passion (Passiflora spp.) fruit in control of type II diabetes. Current Research in Diabetes & Obesity Journal, 7(3). https://doi.org/10.19080/CRDOJ.2018.07.555712Sheng, L., Chen, Q., Di, L., & Li, N. (2021). Evaluation of anti-diabetic potential of corn silk in high-fat diet/ streptozotocin-induced type 2 diabetes mice model. Endocrine, Metabolic & Immune Disorders - Drug Targets, 21(1), 131–138. https://doi.org/10.2174/1871530320666200606224708Silva Frederico, M. J., Mascarello, A., Castro, A. J. G., Da Luz, G., Altenhofen, D., Mendes, C. P., Leal, P. C., Yunes, R. A., Nunes, R. J., & Silva, F. R. M. B. (2016). Incretinomimetic and insulinomimetic effect of (2E)-N′-(1′-Naphthyl)-3,4,5-trimethoxybenzohydrazide for glycemic homeostasis. Journal of Cellular Biochemistry, 117(5), 1199–1209. https://doi.org/10.1002/jcb.25403Simons, K., & Gerl, M. J. (2010). Revitalizing membrane rafts: new tools and insights. Nature Reviews Molecular Cell Biology, 11(10), 688–699. https://doi.org/10.1038/nrm2977Skelin Klemen, M., Dolenšek, J., Slak Rupnik, M., & Stožer, A. (2017). The triggering pathway to insulin secretion: Functional similarities and differences between the human and the mouse β cells and their translational relevance. Islets, 9(6), 109–139. https://doi.org/10.1080/19382014.2017.1342022Skovsø, S. (2014). Modeling type 2 diabetes in rats using high fat diet and streptozotocin. Journal of Diabetes Investigation, 5(4), 349–358. https://doi.org/10.1111/jdi.12235Smart, E. J., & Anderson, R. G. W. (2002). Alterations in membrane cholesterol that affect structure and function of caveolae. Methods in enzymology, 353, 131-139 https://doi.org/10.1016/S0076-6879(02)53043-3Smirnov, A. V., Snigur, G. L., & Voronkov, M. P. (2012). Pancreatic islet beta-cell apoptosis in experimental diabetes mellitus. Apoptosis and Medicine. InTech. https://doi.org/10.5772/51411Soares D, J., Leal P, A. B., Silva, J., Almeida, JacksonR. G. S., & de Oliveira, H. (2017). Influence of flavonoids on mechanism of modulation of insulin secretion. Pharmacognosy Magazine, 13(52), 639-646. https://doi.org/10.4103/pm.pm_87_17Somwar, R., Kim, D. Y., Sweeney, G., Huang, C., Niu, W., Lador, C., Ramlal, T., & Klip, A. (2001). GLUT4 translocation precedes the stimulation of glucose uptake by insulin in muscle cells: potential activation of GLUT4 via p38 mitogen-activated protein kinase. Biochemical Journal, 359(3), 639–649. https://doi.org/10.1042/bj3590639Srinivasan, K., Viswanad, B., Asrat, L., Kaul, C. L., & Ramarao, P. (2005). Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: A model for type 2 diabetes and pharmacological screening. Pharmacological Research, 52(4), 313–320. https://doi.org/10.1016/j.phrs.2005.05.004Sudasinghe, H. P., & Peiris, D. C. (2018). Hypoglycemic and hypolipidemic activity of aqueous leaf extract of Passiflora suberosa L. PeerJ, 6, E4389. https://doi.org/10.7717/peerj.4389Suen, J., Thomas, J., Kranz, A., Vun, S., & Miller, M. (2016). Effect of flavonoids on oxidative stress and inflammation in adults at risk of cardiovascular disease: A systematic review. Healthcare, 4(3), 69. https://doi.org/10.3390/healthcare4030069Sugano, M., Yamato, H., Hayashi, T., Ochiai, H., Kakuchi, J., Goto, S., Nishijima, F., Iino, N., Kazama, J. J., Takeuchi, T., Mokuda, O., Ishikawa, T., & Okazaki, R. (2006). High-fat diet in low-dose-streptozotocin-treated heminephrectomized rats induces all features of human type 2 diabetic nephropathy: A new rat model of diabetic nephropathy. Nutrition, Metabolism and Cardiovascular Diseases, 16(7), 477–484. https://doi.org/10.1016/j.numecd.2005.08.007Sweeney, G., Somwar, R., Ramlal, T., Volchuk, A., Ueyama, A., & Klip, A. (1999). An inhibitor of p38 mitogen-activated protein kinase prevents insulin-stimulated glucose transport but not glucose transporter translocation in 3T3-L1 adipocytes and L6 Myotubes. Journal of Biological Chemistry, 274(15), 10071–10078. https://doi.org/10.1074/jbc.274.15.10071Tajima, K., Shirakawa, J., Okuyama, T., Kyohara, M., Yamazaki, S., Togashi, Y., & Terauchi, Y. (2017). Effects of metformin on compensatory pancreatic β-cell hyperplasia in mice fed a high-fat diet. American Journal of Physiology-Endocrinology and Metabolism, 313(3), E367–E380. https://doi.org/10.1152/ajpendo.00447.2016Tal, M., Liang, Y., Najafi, H., Lodish, H. F., & Matschinsky, F. M. (1992). Expression and function of GLUT-1 and GLUT-2 glucose transporter isoforms in cells of cultured rat pancreatic islets. Journal of Biological Chemistry, 267(24), 17241–17247. https://doi.org/10.1016/S0021-9258(18)41918-7Tamayo, D. C., Camacho, S. M., & López, P. A. (2015). Caracterización de pacientes con diabetes mellitus tipo 2 atendidos por médicos residentes de medicina familiar en Bogotá, Colombia. Revista Desafíos, 9(2), 17–24.Teixeira, L. S., Lima, A. S., Boleti, A. P. A., Lima, A. A. N., Libório, S. T., de Paula, L., Oliveira, M. I. B., Lima, E. F., Costa, G. M., Reginatto, F. H., & Lima, E. S. (2014). Effects of Passiflora nitida Kunth leaf extract on digestive enzymes and high caloric diet in rats. Journal of Natural Medicines, 68(2), 316–325. https://doi.org/10.1007/s11418-013-0800-1Tesh, G. H., & Allen, T. J. (2007). Rodent models of streptozotocin-induced diabetic nephropathy (Methods in Renal Research). Nephrology, 12(3), 261–266. https://doi.org/10.1111/j.1440-1797.2007.00796.xThiyagarajah, P., Kuttan, S. C., Lim, S. C., Teo, T. S., & Das, N. P. (1991). Effect of myricetin and other flavonoids on the liver plasma membrane Ca2+ pump kinetics and structure-function relationships. Biochemical Pharmacology, 41(5), 669–675. https://doi.org/10.1016/0006-2952(91)90065-DThompson, B., & Satin, L. S. (2021). Beta‐cell ion channels and their role in regulating insulin secretion. Comprehensive Physiology, 11(4), 1-21. https://doi.org/10.1002/cphy.c210004Thorens, B. (2015). GLUT2, glucose sensing and glucose homeostasis. Diabetologia, 58(2), 221–232. https://doi.org/10.1007/s00125-014-3451-1Tiwari, B. K., Pandey, K. B., Abidi, A. B., & Rizvi, S. I. (2013). Markers of oxidative stress during diabetes mellitus. Journal of Biomarkers, 2013, 1–8. https://doi.org/10.1155/2013/378790Tremblay, F., Dubois, M.-J., & Marette, A. (2003). Regulation of GLUT4 traffic and function by insulin and contraction in skeletal muscle. Frontiers in Bioscience, 8(12), d1072–d1084.Trube, G., Rorsman, P., & Ohno-Shosaku, T. (1986). Opposite effects of tolbutamide and diazoxide on the ATP-dependent K+ channel in mouse pancreatic β-cells. Pflügers Archiv, 407(5), 493–499.Tundis, R., Loizzo, M. R., & Menichini, F. (2010). Natural products as alpha-amylase and alpha-glucosidase inhibitors and their hypoglycaemic potential in the treatment of diabetes: an update. Mini-Reviews in Medicinal Chemistry, 10(4), 315–331. https://doi.org/10.2174/138955710791331007Tunduguru, R., & Thurmond, D. C. (2017). Promoting glucose transporter-4 vesicle trafficking along cytoskeletal tracks: PAK-Ing them out. Frontiers in Endocrinology, 8. https://doi.org/10.3389/fendo.2017.00329Unuofin, J. O., & Lebelo, S. L. (2020). Antioxidant effects and mechanisms of medicinal plants and their bioactive compounds for the prevention and treatment of Type 2 Diabetes: An Updated Review. Oxidative Medicine and Cellular Longevity, 2020. https://doi.org/10.1155/2020/1356893Valentová, K., Vrba, J., Bancířová, M., Ulrichová, J., & Křen, V. (2014). Isoquercitrin: pharmacology, toxicology, and metabolism. Food and Chemical Toxicology, 68, 267–282.Vasiljević, J., Torkko, J. M., Knoch, K. P., & Solimena, M. (2020). The making of insulin in health and disease. Diabetologia, 63(10), 1981-1989. https://doi.org/10.1007/s00125-020-05192-7Viera, W., Shinohara, T., Samaniego, I., Sanada, A., Terada, N., Ron, L., Suárez-Tapia, A., & Koshio, K. (2022). Phytochemical composition and antioxidant activity of Passiflora spp. germplasm grown in Ecuador. Plants, 11(3), 328. https://doi.org/10.3390/plants11030328Vinayagam, R., & Xu, B. (2015). Antidiabetic properties of dietary flavonoids: a cellular mechanism review. Nutrition & Metabolism, 12(1), 60. https://doi.org/10.1186/s12986-015-0057-7Wang, H., Xia, W., Long, G., Pei, Z., Li, Y., Wu, M., Wang, Q., Zhang, Y., Jia, Z., & Chen, H. (2020). Isoquercitrin ameliorates cisplatin-induced nephrotoxicity via the inhibition of apoptosis, inflammation, and oxidative stress. Frontiers in Pharmacology, 11. https://doi.org/10.3389/fphar.2020.599416Wang, Y., Sun, G., Sun, J., Liu, S., Wang, J., Xu, X., & Miao, L. (2013). Spontaneous type 2 diabetic rodent models. Journal of Diabetes Research, 2013, 1–8. https://doi.org/10.1155/2013/401723Wilkinson, S. E., Parker, P. J., & Nixon, J. S. (1993). Isoenzyme specificity of bisindolylmaleimides, selective inhibitors of protein kinase C. Biochemical Journal, 294(2), 335–337. https://doi.org/10.1042/bj2940335Wood, I. S., & Trayhurn, P. (2003). Glucose transporters (GLUT and SGLT): expanded families of sugar transport proteins. British Journal of Nutrition, 89(1), 3–9. https://doi.org/10.1079/BJN2002763World Health Organization (WHO). (2021). Diabetes. https://www.who.int/health-topics/diabetes#tab=tab_1Xiao, J., Capanoglu, E., Jassbi, A. R., & Miron, A. (2016). Advance on the Flavonoid C -glycosides and health benefits. Critical Reviews in Food Science and Nutrition, 56(sup1), S29–S45. https://doi.org/10.1080/10408398.2015.1067595Xie, L., Deng, Z., Zhang, J., Dong, H., Wang, W., Xing, B., & Liu, X. (2022). Comparison of flavonoid O-glycoside, C-glycoside and their aglycones on antioxidant capacity and metabolism during in vitro digestion and in vivo. Foods, 11(6), 882. https://doi.org/10.3390/foods11060882Xu, Y. C., Leung, S. W. S., Leung, G. P. H., & Man, R. Y. K. (2015). Kaempferol enhances endothelium-dependent relaxation in the porcine coronary artery through activation of large-conductance Ca2+-activated K+ channels. British Journal of Pharmacology, 172(12), 3003–3014. https://doi.org/10.1111/bph.13108Yanardag, R., Ozsoy-Sacan, O., Bolkent, S., Orak, H., & Karabulut-Bulan, O. (2005). Protective effects of metformin treatment on the liver injury of streptozotocin-diabetic rats. Human & Experimental Toxicology, 24(3), 129–135. https://doi.org/10.1191/0960327104ht507oaYang, H., & Yang, L. (2016). Targeting cAMP/PKA pathway for glycemic control and type 2 diabetes therapy. Journal of Molecular Endocrinology, 57(2), R93–R108. https://doi.org/10.1530/JME-15-0316Yang, S.-N., & Berggren, P.-O. (2006). The role of voltage-gated calcium channels in pancreatic β-cell physiology and pathophysiology. Endocrine Reviews, 27(6), 621–676. https://doi.org/10.1210/er.2005-0888Yang, Y., Smith, D. L., Keating, K. D., Allison, D. B., & Nagy, T. R. (2014). Variations in body weight, food intake and body composition after long-term high-fat diet feeding in C57BL/6J mice. Obesity, 22(10), 2147–2155. https://doi.org/10.1002/oby.20811Yaras, N., Ugur, M., Ozdemir, S., Gurdal, H., Purali, N., Lacampagne, A., Vassort, G., & Turan, B. (2005). Effects of diabetes on ryanodine receptor Ca release channel (RyR2) and Ca2+ homeostasis in rat heart. Diabetes, 54(11). https://doi.org/10.2337/diabetes.54.11.3082Youl, E., Bardy, G., Magous, R., Cros, G., Sejalon, F., Virsolvy, A., Richard, S., Quignard, J. F., Gross, R., Petit, P., Bataille, D., & Oiry, C. (2010). Quercetin potentiates insulin secretion and protects INS-1 pancreatic -cells against oxidative damage via the ERK1/2 pathway. British Journal of Pharmacology, 161(4), 799–814. https://doi.org/10.1111/j.1476-5381.2010.00910.xYoungren, J. F. (2007). Regulation of insulin receptor function. Cell. Mol. Life Sci, 64, 873–891. https://doi.org/10.1007/s00018-007-6359-9Zhang, L., Zhang, S.-T., Yin, Y.-C., Xing, S., Li, W.-N., & Fu, X.-Q. (2018). Hypoglycemic effect and mechanism of isoquercitrin as an inhibitor of dipeptidyl peptidase-4 in type 2 diabetic mice. RSC Advances, 8(27), 14967–14974.Zhang, M., Lv, X.-Y., Li, J., Xu, Z.-G., & Chen, L. (2008). The characterization of high-fat diet and multiple low-dose streptozotocin induced type 2 diabetes rat model. Experimental Diabetes Research, 2008, 1–9. https://doi.org/10.1155/2008/704045Zhang, Q., Ramracheya, R., Lahmann, C., Tarasov, A., Bengtsson, M., Braha, O., Braun, M., Brereton, M., Collins, S., Galvanovskis, J., Gonzalez, A., Groschner, L. N., Rorsman, N. J. G., Salehi, A., Travers, M. E., Walker, J. N., Gloyn, A. L., Gribble, F., Johnson, P. R. V., & Rorsman, P. (2013). Role of KATP channels in glucose-regulated glucagon secretion and impaired counterregulation in type 2 diabetes. Cell Metabolism, 18(6), 871–882. https://doi.org/10.1016/j.cmet.2013.10.014Zhang, S., Xu, H., Yu, X., Wu, Y., & Sui, D. (2017). Metformin ameliorates diabetic nephropathy in a rat model of low-dose streptozotocin-induced diabetes. Experimental and Therapeutic Medicine, 14(1), 383–390. https://doi.org/10.3892/etm.2017.4475Zhang, Y., & Liu, D. (2011). Flavonol kaempferol improves chronic hyperglycemia-impaired pancreatic beta-cell viability and insulin secretory function. European Journal of Pharmacology, 670(1), 325–332. https://doi.org/10.1016/j.ejphar.2011.08.011Zhao, F., Li, P., Chen, S. R. W., Louis, C. F., & Fruen, B. R. (2001). Dantrolene inhibition of ryanodine receptor Ca2+ release channels: molecular mechanism and isoform selectivity. Journal of Biological Chemistry, 276(17), 13810–13816. https://doi.org/10.1074/jbc.M006104200Zhou, Y.-J., Xu, N., Zhang, X.-C., Zhu, Y.-Y., Liu, S.-W., & Chang, Y.-N. (2021). Chrysin improves glucose and lipid metabolism disorders by regulating the AMPK/PI3K/AKT signaling pathway in insulin-resistant HepG2 cells and HFD/STZ-induced C57BL/6J mice. Journal of Agricultural and Food Chemistry, 69(20), 5618–5627. https://doi.org/10.1021/acs.jafc.1c01109Zhu, M., Li, J., Wang, K., Hao, X., Ge, R., & Li, Q. (2016). Isoquercitrin inhibits hydrogen peroxide-induced apoptosis of EA.hy926 cells via the PI3K/Akt/GSK3β signaling pathway. Molecules, 21(3), 356. https://doi.org/10.3390/molecules21030356Zucolotto, S. M., Fagundes, C., Reginatto, F. H., Ramos, F. A., Castellanos, L., Duque, C., & Schenkel, E. P. (2012). Analysis of C -glycosyl flavonoids from South American Passiflora species by HPLC-DAD and HPLC-MS. Phytochemical Analysis, 23(3), 232–239. https://doi.org/10.1002/pca.1348Contract .836–2017#305799/2019–3Fondo Nacional de Financiamiento para la Ciencia, la Tecnología y la Innovación, Francisco José de Caldas.CNPq-Brazil & CAPES-BrazilInvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84473/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1014182296.2023.pdf1014182296.2023.pdfTesis de Doctorado en Ciencias Farmacéuticasapplication/pdf2193319https://repositorio.unal.edu.co/bitstream/unal/84473/2/1014182296.2023.pdf3d76d9cac5de9fe86d31c5779ccf4ec2MD52THUMBNAIL1014182296.2023.pdf.jpg1014182296.2023.pdf.jpgGenerated Thumbnailimage/jpeg4376https://repositorio.unal.edu.co/bitstream/unal/84473/3/1014182296.2023.pdf.jpg3cf7e381c5765d9a658b5acde3560fcfMD53unal/84473oai:repositorio.unal.edu.co:unal/844732024-07-19 23:32:17.856Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |