Beta meteorological time series: application to air humidity data
Time series models are often used in the analysis of Meteorological phenomena to model levels of rainfall, temperature and levels of air humidity series in order to make forecasting and generate synthetic series which are inputs for the analysis of the influence of these variables on the quality of...
- Autores:
-
Cepeda-Cuervo, Edilberto
Andrade, Marinho G.
Achcar, Jorge Alberto
- Tipo de recurso:
- Work document
- Fecha de publicación:
- 2019
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/11778
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/11778
http://bdigital.unal.edu.co/9316/
- Palabra clave:
- 5 Ciencias naturales y matemáticas / Science
55 Ciencias de la tierra / Earth sciences and geology
Meteorological time series data
beta distribution
Bayesian analysis, MCMC methods
MCMC methods
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_5e9a68d2160600aaf781300c979c2934 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/11778 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cepeda-Cuervo, Edilberto8f2ae6e2-1778-4f83-a496-0d49efcbe66a300Andrade, Marinho G.d641d233-d05c-4ee4-8df5-4e1c6a209ac1300Achcar, Jorge Alberto99c161ab-6e01-4ba5-bf64-a6528c49b4803002019-06-25T00:31:10Z2019-06-25T00:31:10Zhttps://repositorio.unal.edu.co/handle/unal/11778http://bdigital.unal.edu.co/9316/Time series models are often used in the analysis of Meteorological phenomena to model levels of rainfall, temperature and levels of air humidity series in order to make forecasting and generate synthetic series which are inputs for the analysis of the influence of these variables on the quality of life. Relative air humidity for example, has great influence on the count increasing of respiratory diseases, especially for some age populations as newly born and elderly people. In this paper we introduce a new modeling approach for meteorological time series assuming a beta distribution for the data, where both the mean and precision parameters are being modeled. Bayesian methods using standard MCMC (Markov Chain Monte Carlo Methods) are used to simulate samples for the joint posterior distribution of interest. An example is given with a time series of 313 air humidity observations, measured by a wether station of Rio Claro, a city localized in S˜ao Paulo state, southeastern of Brazil.application/pdfspaUniversidad Nacional de Colombia Sede Bogotá Facultad de Ciencias Departamento de EstadísticaDepartamento de EstadísticaCepeda-Cuervo, Edilberto and Andrade, Marinho G. and Achcar, Jorge Alberto Beta meteorological time series: application to air humidity data. Reporte técnico. Sin Definir. (No publicado)5 Ciencias naturales y matemáticas / Science55 Ciencias de la tierra / Earth sciences and geologyMeteorological time series databeta distributionBayesian analysis, MCMC methodsMCMC methodsBeta meteorological time series: application to air humidity dataDocumento de trabajoinfo:eu-repo/semantics/workingPaperinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_8042http://purl.org/coar/version/c_b1a7d7d4d402bcceTexthttp://purl.org/redcol/resource_type/WPORIGINALBeta-Autorregresiva.pdfapplication/pdf119213https://repositorio.unal.edu.co/bitstream/unal/11778/1/Beta-Autorregresiva.pdf86ce83cb54d179e26c67fe536f3f257dMD51THUMBNAILBeta-Autorregresiva.pdf.jpgBeta-Autorregresiva.pdf.jpgGenerated Thumbnailimage/jpeg5060https://repositorio.unal.edu.co/bitstream/unal/11778/2/Beta-Autorregresiva.pdf.jpga3a0f95f402b83c98ba64a386653c884MD52unal/11778oai:repositorio.unal.edu.co:unal/117782023-09-20 23:05:40.111Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |
dc.title.spa.fl_str_mv |
Beta meteorological time series: application to air humidity data |
title |
Beta meteorological time series: application to air humidity data |
spellingShingle |
Beta meteorological time series: application to air humidity data 5 Ciencias naturales y matemáticas / Science 55 Ciencias de la tierra / Earth sciences and geology Meteorological time series data beta distribution Bayesian analysis, MCMC methods MCMC methods |
title_short |
Beta meteorological time series: application to air humidity data |
title_full |
Beta meteorological time series: application to air humidity data |
title_fullStr |
Beta meteorological time series: application to air humidity data |
title_full_unstemmed |
Beta meteorological time series: application to air humidity data |
title_sort |
Beta meteorological time series: application to air humidity data |
dc.creator.fl_str_mv |
Cepeda-Cuervo, Edilberto Andrade, Marinho G. Achcar, Jorge Alberto |
dc.contributor.author.spa.fl_str_mv |
Cepeda-Cuervo, Edilberto Andrade, Marinho G. Achcar, Jorge Alberto |
dc.subject.ddc.spa.fl_str_mv |
5 Ciencias naturales y matemáticas / Science 55 Ciencias de la tierra / Earth sciences and geology |
topic |
5 Ciencias naturales y matemáticas / Science 55 Ciencias de la tierra / Earth sciences and geology Meteorological time series data beta distribution Bayesian analysis, MCMC methods MCMC methods |
dc.subject.proposal.spa.fl_str_mv |
Meteorological time series data beta distribution Bayesian analysis, MCMC methods MCMC methods |
description |
Time series models are often used in the analysis of Meteorological phenomena to model levels of rainfall, temperature and levels of air humidity series in order to make forecasting and generate synthetic series which are inputs for the analysis of the influence of these variables on the quality of life. Relative air humidity for example, has great influence on the count increasing of respiratory diseases, especially for some age populations as newly born and elderly people. In this paper we introduce a new modeling approach for meteorological time series assuming a beta distribution for the data, where both the mean and precision parameters are being modeled. Bayesian methods using standard MCMC (Markov Chain Monte Carlo Methods) are used to simulate samples for the joint posterior distribution of interest. An example is given with a time series of 313 air humidity observations, measured by a wether station of Rio Claro, a city localized in S˜ao Paulo state, southeastern of Brazil. |
publishDate |
2019 |
dc.date.accessioned.spa.fl_str_mv |
2019-06-25T00:31:10Z |
dc.date.available.spa.fl_str_mv |
2019-06-25T00:31:10Z |
dc.type.spa.fl_str_mv |
Documento de trabajo |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/workingPaper |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/draft |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_8042 |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/WP |
format |
http://purl.org/coar/resource_type/c_8042 |
status_str |
draft |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/11778 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/9316/ |
url |
https://repositorio.unal.edu.co/handle/unal/11778 http://bdigital.unal.edu.co/9316/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Sede Bogotá Facultad de Ciencias Departamento de Estadística Departamento de Estadística |
dc.relation.references.spa.fl_str_mv |
Cepeda-Cuervo, Edilberto and Andrade, Marinho G. and Achcar, Jorge Alberto Beta meteorological time series: application to air humidity data. Reporte técnico. Sin Definir. (No publicado) |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/11778/1/Beta-Autorregresiva.pdf https://repositorio.unal.edu.co/bitstream/unal/11778/2/Beta-Autorregresiva.pdf.jpg |
bitstream.checksum.fl_str_mv |
86ce83cb54d179e26c67fe536f3f257d a3a0f95f402b83c98ba64a386653c884 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089458585174016 |