Estudio de las lectinas presentes en el alga roja Tricleocarpa cylindrica
ilustraciones, fotografías, graficas
- Autores:
-
Duarte Tayo, Angie Patricia
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/81388
- Palabra clave:
- 570 - Biología::572 - Bioquímica
Protectinas
EXTRACCION (QUIMICA)
Extraction (chemistry)
Lectinas
Algas marinas
Aglutinación
Caracterización bioquímica
Carbohidratos
Interacciones proteína
Tricleocarpa cylindrica
Lectins
Seaweed
Agglutination
Biochemical characterization
Carbohydrates
Protein interactions
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_5e76d9d8fdc4967b4e78c34da58885f9 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/81388 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Estudio de las lectinas presentes en el alga roja Tricleocarpa cylindrica |
dc.title.translated.eng.fl_str_mv |
Study of the lectins from the red algae Tricleocarpa cylindrica |
title |
Estudio de las lectinas presentes en el alga roja Tricleocarpa cylindrica |
spellingShingle |
Estudio de las lectinas presentes en el alga roja Tricleocarpa cylindrica 570 - Biología::572 - Bioquímica Protectinas EXTRACCION (QUIMICA) Extraction (chemistry) Lectinas Algas marinas Aglutinación Caracterización bioquímica Carbohidratos Interacciones proteína Tricleocarpa cylindrica Lectins Seaweed Agglutination Biochemical characterization Carbohydrates Protein interactions |
title_short |
Estudio de las lectinas presentes en el alga roja Tricleocarpa cylindrica |
title_full |
Estudio de las lectinas presentes en el alga roja Tricleocarpa cylindrica |
title_fullStr |
Estudio de las lectinas presentes en el alga roja Tricleocarpa cylindrica |
title_full_unstemmed |
Estudio de las lectinas presentes en el alga roja Tricleocarpa cylindrica |
title_sort |
Estudio de las lectinas presentes en el alga roja Tricleocarpa cylindrica |
dc.creator.fl_str_mv |
Duarte Tayo, Angie Patricia |
dc.contributor.advisor.none.fl_str_mv |
Vega Castro, Nohora Angélica Puyana Hegedus, Mónica |
dc.contributor.author.none.fl_str_mv |
Duarte Tayo, Angie Patricia |
dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Investigación en Proteinas Grip |
dc.subject.ddc.spa.fl_str_mv |
570 - Biología::572 - Bioquímica |
topic |
570 - Biología::572 - Bioquímica Protectinas EXTRACCION (QUIMICA) Extraction (chemistry) Lectinas Algas marinas Aglutinación Caracterización bioquímica Carbohidratos Interacciones proteína Tricleocarpa cylindrica Lectins Seaweed Agglutination Biochemical characterization Carbohydrates Protein interactions |
dc.subject.lemb.spa.fl_str_mv |
Protectinas EXTRACCION (QUIMICA) |
dc.subject.lemb.eng.fl_str_mv |
Extraction (chemistry) |
dc.subject.proposal.spa.fl_str_mv |
Lectinas Algas marinas Aglutinación Caracterización bioquímica Carbohidratos Interacciones proteína |
dc.subject.proposal.none.fl_str_mv |
Tricleocarpa cylindrica |
dc.subject.proposal.eng.fl_str_mv |
Lectins Seaweed Agglutination Biochemical characterization Carbohydrates Protein interactions |
description |
ilustraciones, fotografías, graficas |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021 |
dc.date.accessioned.none.fl_str_mv |
2022-03-25T17:05:54Z |
dc.date.available.none.fl_str_mv |
2022-03-25T17:05:54Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/81388 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/81388 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Alam, T. (2018). Extraction of Natural Colors from Marine Algae. Journal of Agricultural and Marine Sciences, 23, 81–91. https://doi.org/10.24200/jams.vol23iss1pp81-91 Alexandre, K. B., Gray, E. S., Lambson, B. E., Moore, P. L., Choge, I. A., Mlisana, K., Karim, S. S. A., McMahon, J., O’Keefe, B., Chikwamba, R., & Morris, L. (2010). Mannose-rich glycosylation patterns on HIV-1 subtype C gp120 and sensitivity to the lectins, Griffithsin, Cyanovirin-N and Scytovirin. Virology, 402(1), 187–196. https://doi.org/10.1016/J.VIROL.2010.03.021 Alpuche, J., Pereyra, A., Agundis, C., Rosas, C., Pascual, C., Slomianny, M. C., Vázquez, L., & Zenteno, E. (2005). Purification and characterization of a lectin from the white shrimp Litopenaeus setiferus (Crustacea decapoda) hemolymph. Biochimica et Biophysica Acta (BBA) - General Subjects, 1724(1–2), 86–93. https://doi.org/10.1016/J.BBAGEN.2005.04.014 Anam, C., Chasanah, E., Perdhana, B. P., Fajarningsih, N. D., Yusro, N. F., Sari, A. M., Nursiwi, A., Praseptiangga, D., & Yunus, A. (2017). Cytotoxicity of Crude Lectins from Red Macroalgae from the Southern Coast of Java Island, Gunung Kidul Regency, Yogyakarta, Indonesia. IOP Conference Series: Materials Science and Engineering, 193(1), 012017. https://doi.org/10.1088/1757-899X/193/1/012017 Barre, A., Damme, E. J. M. V., Simplicien, M., Benoist, H., & Rougé, P. (2020). Man-Specific, GalNAc/T/Tn-Specific and Neu5Ac-Specific Seaweed Lectins as Glycan Probes for the SARS-CoV-2 (COVID-19) Coronavirus. Marine Drugs 2020, Vol. 18, Page 543, 18(11), 543. https://doi.org/10.3390/MD18110543 Barre, A., Simplicien, M., Benoist, H., Van Damme, E. J. M., & Rougé, P. (2019). Mannose-Specific Lectins from Marine Algae: Diverse Structural Scaffolds Associated to Common Virucidal and Anti-Cancer Properties. Marine Drugs, 17(8), 440. https://doi.org/10.3390/md17080440 Benevides, N., Holanda, M., Melo, F., Freitas, A., & Sampaio, A. (1998). Purification and Partial Characterisation of the Lectin from the Marine Red Alga Enantiocladia duperreyi (C. Agardh) Falkenberg. Botanica Marina, 41(5), 521–526. https://doi.org/10.1515/BOTM.1998.41.1-6.521 Benevides, N., Holanda, M., Melo, F., Pereira, M., Monteiro, A., & Freitas, A. (2001). Purification and Partial Characterization of the Lectin from the Marine Green Alga Caulerpa cupressoides (Vahl) C. Agardh. Botanica Marina, 44(1), 17–22. https://doi.org/10.1515/BOT.2001.003 Benevides, N., Leite, A., & Ponte, A. (1996). Atividade hemaglutinante na alga vermelha Solieria filiformis. Revista Brasileira de Fisiologia Vegetal, 6(2), 117–122. Bitencourt, F. D. S., Figueiredo, J. G., Mota, M. R. L., Bezerra, C. C. R., Silvestre, P. P., Vale, M. R., Nascimento, K. S., Sampaio, A. H., Nagano, C. S., Saker-Sampaio, S., Farias, W. R. L., Cavada, B. S., Assreuy, A. M. S., & De Alencar, N. M. N. (2008). Antinociceptive and anti-inflammatory effects of a mucin-binding agglutinin isolated from the red marine alga Hypnea cervicornis. Naunyn-Schmiedeberg’s Archives of Pharmacology, 377(2), 139–148. https://doi.org/10.1007/S00210-008-0262-2 Bleakley, S., & Hayes, M. (2017). Algal Proteins: Extraction, Application, and Challenges Concerning Production. Foods, 6(5), 1–34. https://doi.org/10.3390/FOODS6050033 Bollag, D., & Edelstein, S. (1994). Protein Methods. Wiley-Liss. 162-171 p. Bonnardel, F., Haslam, S., Dell, A., Feizi, T., Liu, Y., Tajadura, V., Akune, Y., Sykes, L., Bennett, P., MacIntyre, D., Lisacek, F., & Imberty, A. (2021a). Proteome-wide prediction of bacterial carbohydrate-binding proteins as a tool for understanding commensal and pathogen colonisation of the vaginal microbiome. Biofilms and Microbiomes, 7(1), 1–10. https://doi.org/10.1038/s41522-021-00220-9 Bonnardel, F., Mariethoz, J., Pérez, S., Imberty, A., & Lisacek, F. (2021b). LectomeXplore, an update of UniLectin for the discovery of carbohydrate-binding proteins based on a new lectin classification. Nucleic Acids Research, 49(D1), D1548. https://doi.org/10.1093/NAR/GKAA1019 Boonsri, N., Rudtanatip, T., Withyachumnarnkul, B., & Wongprasert, K. (2016). Protein extract from red seaweed Gracilaria fisheri prevents acute hepatopancreatic necrosis disease (AHPND) infection in shrimp. Journal of Applied Phycology, 29(3), 1597–1608. https://doi.org/10.1007/S10811-016-0969-2 Boyd, W. C., Almodóvar, L. R., & Boyd, L. G. (1966). Agglutinins in Marine Algae for Human Erythrocytes. Transfusion, 6(1), 82–83. https://doi.org/10.1111/j.1537-2995.1966.tb04699.x Calvete, J. J., Costa, F. H. F., Saker-Sampaio, S., Murciano, M. P. M., Nagano, C. S., Cavada, B. S., Grangeiro, T. B., Ramos, M. V., Bloch, C., Silveira, S. B., Freitas, B. T., & Sampaio, A. H. (2000). The amino acid sequence of the agglutinin isolated from the red marine alga Bryothamnion triquetrum defines a novel lectin structure. Cellular and Molecular Life Sciences, 57(2). https://doi.org/10.1007/PL00000696 Carneiro, R. F., Duarte, P. L., Chaves, R. P., da Silva, S. R., Feitosa, R. R., de Sousa, B. L., da Silva Alves, A. W., de Vasconcelos, M. A., da Rocha, B. A. M., Teixeira, E. H., Sampaio, A. H., & Nagano, C. S. (2020). New lectins from Codium isthmocladum Vickers show unique amino acid sequence and antibiofilm effect on pathogenic bacteria. Journal of Applied Phycology, 32(6), 4263–4276. https://doi.org/10.1007/S10811-020-02198-X Catanzaro, E., Calcabrini, C., Bishayee, A., & Fimognari, C. (2019). Antitumor Potential of Marine and Freshwater Lectins. Marine Drugs, 18(1). https://doi.org/10.3390/MD18010011 Chaves, R., da Silva, S., da Silva, J., Carneiro, R., de Sousa, B., Abreu, J. O., de Carvalho, F., Rocha, C., Farias, W., de Sousa, O., Silva, A., Sampaio, A., & Nagano, C. (2018a). Meristiella echinocarpa lectin (MEL): a new member of the OAAH-lectin family. Journal of Applied Phycology, 30(4), 2629–2638. https://doi.org/10.1007/S10811-018-1473-7 Chaves, R., da Silva, S., Nascimento, L., Carneiro, R., Silva, A., Sampaio, A., Sousa, B., Cabral, M., Videira, P., Teixeira, E., & Nagano, C. (2018b). Structural characterization of two isolectins from the marine red alga Solieria filiformis (Kützing) P.W. Gabrielson and their anticancer effect on MCF-7 breast cancer cells. International Journal of Biological Macromolecules, 107(Pt A), 1320–1329. https://doi.org/10.1016/J.IJBIOMAC.2017.09.116 Clausen, H., & Hakomori, S. (1989). ABH and related histo-blood group antigens; immunochemical differences in carrier isotypes and their distribution. Vox Sanguinis, 56(1), 1–20. https://doi.org/10.1111/J.1423-0410.1989.TB03040.X Cortés, J., Zárate, A. M., Figueroa, J. D., Medina, J., Fuentes-Lemus, E., Rodríguez-Fernández, M., Aliaga, M., & López-Alarcón, C. (2020). Protein quantification by bicinchoninic acid (BCA) assay follows complex kinetics and can be performed at short incubation times. Analytical Biochemistry, 608, 113904. https://doi.org/10.1016/J.AB.2020.113904 Cummings, R. D., Darvill, A. G., Etzler, M. E., & Hahn, M. G. (2017). Glycan-Recognizing Probes as Tools. In Essentials of Glycobiology (3rd ed.). Cold Spring Harbor Laboratory Press. https://doi.org/10.1101/GLYCOBIOLOGY.3E.048 De Coninck, T., & Van Damme, E. (2021). Review: The multiple roles of plant lectins. Plant Science, 313, 111096. https://doi.org/10.1016/J.PLANTSCI.2021.111096 De Souza, G. A., Ferreira, B. S., Dias, J. M., Queiroz, K. S., Branco, A. T., Bressan, R. E., Oliveira, J. G., & Garcia, A. B. (2003). Accumulation of SALT protein in rice plants as a response to environmental stresses. Plant Science, 164(4), 623–628. https://doi.org/10.1016/S0168-9452(03)00014-1 Delatorre, P., Rocha, B., Gadelha, C., Santi, T., Cajazeiras, J., Souza, E., Nascimento, K., Freire, V., Sampaio, A., Azevedo, W., & Cavada, B. (2006). Crystal structure of a lectin from Canavalia maritima (ConM) in complex with trehalose and maltose reveals relevant mutation in ConA-like lectins. Journal of Structural Biology, 154(3), 280–286. https://doi.org/10.1016/J.JSB.2006.03.011 Dinh, H. Le, Hori, K., & Quang, N. H. (2008). Screening and preliminary characterization of hemagglutinins in Vietnamese marine algae. Journal of Applied Phycology, 21(1), 89–97. https://doi.org/10.1007/S10811-008-9330-8 Do Nascimento, L., Carneiro, R., Da Silva, S., Da Silva, B., Arruda, F., Carneiro, V., Do Nascimento, K., Saker, S., Da Silva, V., Porto, A., Cavada, B., Sampaio, A., Teixeira, E., & Nagano, C. (2012). Characterization of isoforms of the lectin isolated from the red algae Bryothamnion seaforthii and its pro-healing effect. Marine Drugs, 10(9), 1936–1954. https://doi.org/10.3390/md10091936 Domingo, M. (2018). Caracterización y aplicaciones potenciales de una columna monolítica funcionalizada con magnetita. Universidad Politécnica de Valencia. Tesis de Pregrado. 52 p. Domínguez, A. (2008). Regulación de la expresión y función de las lectinas mieloides DC-SIGN y LSECtin. Univesidad Complutense de Madrid, Departamento de Bioquímica y Biología Molecular. Tesis Doctoral. 134 p. Dumontier, R., Mareck, A., Mati-Baouche, N., Lerouge, P., & Bardor, M. (2018). Toward Future Engineering of the N-Glycosylation Pathways in Microalgae for Optimizing the Production of Biopharmaceuticals. Microalgal Biotechnology. https://doi.org/10.5772/INTECHOPEN.73401 Duong, K. C., & Gabelli, S. B. (2014). Salting out of Proteins Using Ammonium Sulfate Precipitation. Methods in Enzymology, 541, 85–94. https://doi.org/10.1016/B978-0-12-420119-4.00007-0 Elayabharathi, T., Vinoliya, J., & Bai, S. (2020). Characterization of a novel O-acetyl sialic acid specific lectin from the hemolymph of the marine crab, Atergatis integerrimus (Lamarck, 1818). Fish & Shellfish Immunology, 106, 1131–1138. https://doi.org/10.1016/J.FSI.2020.07.039 Elumalai, P., Rubeena, A. S., Arockiaraj, J., Wongpanya, R., Cammarata, M., Ringø, E., & Vaseeharan, B. (2019). The Role of Lectins in Finfish: A Review. Revieew in Fisherires Science & Aquaculture, 27(2), 152–169. https://doi.org/10.1080/23308249.2018.1520191 Englard, S., & Seifter, S. (1990). Precipitation techniques. Methods in Enzymology, 182(C), 285–300. https://doi.org/10.1016/0076-6879(90)82024-V Fajarningsih, N., Intaqta, N., Praseptiangga, D., & Anam, C. (2019). Extraction and Partial Characterization of Lectin from Indonesian Brown Algae Padina australis and Padina minor. Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology, 14, 103–111. https://doi.org/10.15578/squalen.v14i3.400 Figueiredo, J. G., Bitencourt, F. S., Cunha, T. M., Luz, P. B., Nascimento, K. S., Mota, M. R. L., Sampaio, A. H., Cavada, B. S., Cunha, F. Q., & Alencar, N. M. N. (2010). Agglutinin isolated from the red marine alga Hypnea cervicornis J. Agardh reduces inflammatory hypernociception: involvement of nitric oxide. Pharmacology, Biochemistry, and Behavior, 96(4), 371–377. https://doi.org/10.1016/J.PBB.2010.06.008 Fontenelle, T. P. C., Lima, G. C., Mesquita, J. X., Lopes, J. L. de S., de Brito, T. V., Vieira Junior, F. das C., Sales, A. B., Aragao, K. S., Souza, M. H. L. P., Barbosa, A. L. D. R., & Freitas, A. L. P. (2018). Lectin obtained from the red seaweed Bryothamnion triquetrum: Secondary structure and anti-inflammatory activity in mice. International Journal of Biological Macromolecules, 112, 1122–1130. https://doi.org/10.1016/j.ijbiomac.2018.02.058 Fricke, A., Nguyen, X. V., Stuhr, M., Hoang, T. D., Dao, V. H., Tran, M. D., Pham, T. S., Le, H. C., Le, M. H., Pham, Q. L., Schmid, M., Kunzmann, A., Gärdes, A., von Hagen, J., & Teichberg, M. (2021). Subtidal macrophyte diversity and potentials in Nha Trang Bay - baseline data for monitoring a rising natural resource. Estuarine, Coastal and Shelf Science, 259, 107460. https://doi.org/10.1016/j.ecss.2021.107460 https://doi.org/10.1016/J.ECSS.2021.107460 Fujii, Y., Gerdol, M., Hasan, I., Koide, Y., Matsuzaki, R., Ikeda, M., Rajia, S., Ogawa, Y., Kawsar, S. M. A., & Ozeki, Y. (2018). Phylogeny and properties of a novel lectin family with β-trefoil folding in mussels. Trends in Glycoscience and Glycotechnology, 30(177), E195–E208. https://doi.org/10.4052/tigg.1717.1E Fujimoto, Z., Tateno, H., & Hirabayashi, J. (2014). Lectin structures: classification based on the 3-D structures. Methods in Molecular Biology (Clifton, N.J.), 1200, 579–606. https://doi.org/10.1007/978-1-4939-1292-6_46 Fukuda, Y., Sugahara, T., Ueno, M., Fukuta, Y., Ochi, Y., Akiyama, K., Miyazaki, T., Masuda, S., Kawakubo, A., & Kato, K. (2006). The anti-tumor effect of Euchema serra agglutinin on colon cancer cells in vitro and in vivo. Anti-Cancer Drugs, 17(8), 943–947. https://doi.org/10.1097/01.cad.0000224458.13651.b4 Galland, A. V., Fleurence, J., Lamghari, R., Luçon, M., Rouxel, C., Barbaroux, O., Bronowicki, J. P., Villaume, C., & Guéant, J. L. (1999). Nutritional value of proteins from edible seaweed Palmaria palmata (dulse). The Journal of Nutritional Biochemistry, 10(6), 353–359. https://doi.org/10.1016/S0955-2863(99)00014-5 Goldring, J. P. D. (2012). Protein Quantification Methods to Determine Protein Concentration Prior to Electrophoresis. Methods in Molecular Biology, 869, 29–35. https://doi.org/10.1007/978-1-61779-821-4_3 Gondim, A. C. S., Roberta Da Silva, S., Mathys, L., Noppen, S., Liekens, S., Holanda Sampaio, A., Nagano, C. S., Renata Costa Rocha, C., Nascimento, K. S., Cavada, B. S., Sadler, P. J., & Balzarini, J. (2019). Potent antiviral activity of carbohydrate-specific algal and leguminous lectins from the Brazilian biodiversity. MedChemComm, 10(3), 390–398. https://doi.org/10.1039/c8md00508g Hammarston, S., & Kabat, E. (1969). Purification and Characterization of a Blood-Group A Reactive Hemagglutinin from the Snail Helix pomatia and a Study of Its Combining Site. Biochemistry, 8(7), 2696–2705. https://doi.org/doi:10.1021/bi00835a002 Han, J. W., Yoon, K. S., Klochkova, T. A., Hwang, M.-S., & Kim, G. H. (2010). Purification and characterization of a lectin, BPL-3, from the marine green alga Bryopsis plumosa. Journal of Applied Phycology, 23(4), 745–753. https://doi.org/10.1007/S10811-010-9575-X Hara, A., Imamura, A., Ando, H., Ishida, H., & Kiso, M. (2014). A New Chemical Approach to Human ABO Histo-Blood Group Type 2 Antigens. Molecules, 19(1), 414. https://doi.org/10.3390/MOLECULES19010414 Hayes, M. (2020). Measuring Protein Content in Food: An Overview of Methods. Foods, 9(10). https://doi.org/10.3390/FOODS9101340 Heljo, V. P., Filipe, V., Romeijn, S., Jiskoot, W., & Juppo, A. M. (2013). Stability of Rituximab in Freeze-Dried Formulations Containing Trehalose or Melibiose Under Different Relative Humidity Atmospheres. Journal of Pharmaceutical Sciences, 102(2), 401–414. https://doi.org/10.1002/JPS.23392 Hermanson, G., Mallia, A., & Smith, P. (1992). Immobilized affinity ligand techniques. In Immobilized affinity ligand techniques. Academic Press. 88-90 p. Hichrom. (2018). Chromatography ranges acquired from Grace manufactured by Hichrom in the UK. In Catálogo Hichrom Limited (pp. 1–28). Hichrim Limited. www.hichrom.com Hidalgo, D. (2017). Detección , purificación y caracterización parcial de lectinas presentes en algas marinas colombianas. Universidad Nacional de Colombia, Departamento de Química. Tesis de Maestría, 125 p. Hori, K., Matsubara, K., & Miyazawa, K. (2000). Primary structures of two hemagglutinins from the marine red alga, Hypnea japonica. Biochimica et Biophysica Acta (BBA) - General Subjects, 1474(2), 226–236. https://doi.org/10.1016/s0304-4165(00)00008-8 Hori, K., Miyazawa, K., & Ito, K. (1981). Hemagglutinins in Marine Algae. Bulletin of the Japanese Society of Scientific Fisheries, 47(6), 793–798. https://www.jstage.jst.go.jp/article/suisan1932/47/6/47_6_793/_pdf/-char/en Hori, K., Miyazawa, K., & Ito, K. (1990). Some common properties of lectins from marine algae. Hydrobiologia, 204–205(1), 561–566. https://doi.org/10.1007/BF00040287 Hori, K., Sato, Y., Ito, K., Fujiwara, Y., Iwamoto, Y., Makino, H., & Kawakubo, A. (2007). Strict specificity for high-mannose type N-glycans and primary structure of a red alga Eucheuma serra lectin. Glycobiology, 17(5), 479–491. https://doi.org/10.1093/GLYCOB/CWM007 Huisman, J. (2006). Algae of Australia: Nemaliales (1st ed., Vol. 1). CSIRO Publishing. ISBN: 9780643093782. 164 p. Hung, L. D., & Trinh, P. T. H. (2020). Structure and anticancer activity of a new lectin from the cultivated red alga, Kappaphycus striatus. Journal of Natural Medicines 2020 75:1, 75(1), 223–231. https://doi.org/10.1007/S11418-020-01455-0 Hung, L. D., Sato, Y., & Hori, K. (2011). High-mannose N-glycan-specific lectin from the red alga Kappaphycus striatum (Carrageenophyte). Phytochemistry, 72(9), 855–861. https://doi.org/10.1016/J.PHYTOCHEM.2011.03.009 Hwang, H. J., Han, J. W., Jeon, H., Cho, K., Kim, J. hee, Lee, D. S., & Han, J. W. (2020). Characterization of a Novel Mannose-Binding Lectin with Antiviral Activities from Red Alga, Grateloupia chiangii. Biomolecules, 10(2), 333. https://doi.org/10.3390/BIOM10020333 Hwang, H. J., Han, J. W., Jeon, H., & Han, J. W. (2018a). Induction of recombinant lectin expression by an artificially constructed tandem repeat structure: A case study using Bryopsis plumosa mannose-binding lectin. Biomolecules, 8(4), 146. https://doi.org/10.3390/biom8040146 Hwang, H. J., Han, J. W., Kim, G. H., & Han, J. W. (2018b). Functional expression and characterization of the recombinant n-acetyl-glucosamine/n-acetyl-galactosamine-specific marine algal lectin BPL3. Marine Drugs, 16(1), 13. https://doi.org/10.3390/md16010013 Imberty, A. (2011). Synthesis and biological applications of glycoconjugates: Bacterial lectins and adhesins: Structures, Ligands and Functions. In O. Renaudet & N. Spinelli (Eds.), Synthesis and Biological Applications of Glycoconjugates, (1), 3–11. Bentham Science Publishers Ltd. https://doi.org/10.2174/97816080527761110101 Ingram, G. (1985). Lectins and lectin-like molecules in lower plants. I. Marine algae (review). Developmental and Comparative Immunology, 9(1), 1–10. https://doi.org/10.1016/0145-305X(85)90054-0 Jang, H., Lee, D.-H., Kang, H. G., & Lee, S. J. (2020). Concanavalin A targeting N-linked glycans in spike proteins influence viral interactions. Dalton Transactions, 49(39), 13538–13543. https://doi.org/10.1039/D0DT02932G Jiang, S. Y., Ma, Z., & Ramachandran, S. (2010). Evolutionary history and stress regulation of the lectin superfamily in higher plants. BMC Evolutionary Biology, 10(1), 1–24. https://doi.org/10.1186/1471-2148-10-79 Jung, M. G., Lee, K. P., Choi, H. G., Kang, S. H., Klochkova, T. A., Han, J. W., & Kim, G. H. (2010). Characterization of carbohydrate combining sites of Bryohealin, an algal lectin from Bryopsis plumosa. Journal of Applied Phycology, 22(6), 793–802. https://doi.org/10.1007/S10811-010-9521-Y Junkunlo, K., Prachumwat, A., Tangprasittipap, A., Senapin, S., Borwornpinyo, S., Flegel, T., & Sritunyalucksana, K. (2012). A novel lectin domain-containing protein (LvCTLD) associated with response of the whiteleg shrimp Penaeus (Litopenaeus) vannamei to yellow head virus (YHV). Developmental and Comparative Immunology, 37(3–4), 334–341. https://doi.org/10.1016/J.DCI.2011.12.010 Kamiya, H., Ogata, K., & Hori, K. (1982). Isolation and Characterization of a New Agglutinin in the Red Alga Palmaria palmata (L.) O. Kuntze. Botanica Marina, 25(11), 537–540. https://doi.org/10.1515/BOTM.1982.25.11.537 Kamiya, H., Shimomi, K., & Shimizu, Y. (1980). Marine biopolymers with cell specificity--III--Agglutinins in the red alga Cystoclonium purpureum: isolation and characterization. Journal of Natural Products, 43(1), 136–139. https://doi.org/10.1021/NP50007A012 Kawakubo, A., Makino, H., Ohnishi, J., Hirohara, H., & Hori, K. (1997). The marine red alga Eucheuma serra J. Agardh, a high yielding source of two isolectins. Journal of Applied Phycology, 9(4), 331–338. https://doi.org/10.1023/A:1007915006334 Kawakubo, A., Makino, H., Ohnishi, J., Hirohara, H., & Hori, K. (1999). Occurrence of highly yielded lectins homologous within the genus Eucheuma. Journal of Applied Phycology, 11(2), 149–156. https://doi.org/10.1023/A:1008062127564 Kelman, D., Posner, E. K., McDermid, K. J., Tabandera, N. K., Wright, P. R., & Wright, A. D. (2012). Antioxidant Activity of Hawaiian Marine Algae. Marine Drugs, 10(2), 403–416. https://doi.org/10.3390/MD10020403 Kim, G. H., Klochkova, T. A., Yoon, K. S., Song, Y. S., & Lee, K. P. (2006). Purification and characterization of a lectin, bryohealin, involved in the protoplast formation of a marine green alga Bryopsis plumosa (Chlorophyta). Journal of Phycology, 42(1), 86–95. https://doi.org/10.1111/j.1529-8817.2006.00162.x Klyosov, A, Witczak, Z., Platt, D. (2008). Galectins. John Wiley & Sons, Inc. ISBN: 978-0-470-37318-7. 296 p. Kozlowski, L. P. (2017). Proteome-pI: proteome isoelectric pointdatabase. Nucleic Acids Research, 45(Database issue), D1112. https://doi.org/10.1093/NAR/GKW978 Kumar, K., Reddy, G., Reddy, B., Shekar, P., Sumanthi, J., & Chandra, K. (2012). Biological role of lectins: A review. Journal of Orofacial Sciences, 4(1), 20. https://doi.org/10.4103/0975-8844.99883 Kumar, S., & Barros, U. (2020). Purification and Partial Characterization of a Haemagglutinin from Ulva fasciata. Current Science, 118(4), 621–625. https://doi.org/10.18520/CS/V118/I4/621-625 Laemmli, U. K. (1970). Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature, 227(5259), 680–685. https://doi.org/10.1038/227680A0 Lambin, J., Demirel Asci, S., Dubiel, M., Tsaneva, M., Verbeke, I., Wytynck, P., De Zaeytijd, J., Smagghe, G., Subramanyam, K., & Van Damme, E. J. M. (2020). OsEUL Lectin Gene Expression in Rice: Stress Regulation, Subcellular Localization and Tissue Specificity. Frontiers in Plant Science, 11, 185. https://doi.org/10.3389/FPLS.2020.00185/BIBTEX Le, H. D., Sato, T., Shibata, H., & Hori, K. (2009). Biochemical comparison of lectins among three different color strains of the red alga Kappaphycus alvarezii. Fisheries Science, 75(3), 723–730. https://doi.org/10.1007/s12562-009-0088-y Lebreton, A., Bonnardel, F., Dai, Y. C., Imberty, A., Martin, F. M., & Lisacek, F. (2021). A comprehensive phylogenetic and bioinformatics survey of lectins in the fungal kingdom. Journal of Fungi, 7(6), 453. https://doi.org/10.3390/JOF7060453/S1 Leiner, Irvin, Sharon, Nathan, Goldstein, I. (1986). The Lectins: Properties, Functions, and Applications in Biology and Medicine. Elsevier. ISBN: 0124499457 9780124499454. 600 p. Leite, Y., Silva, L., Amorim, R., Freire, E., de Melo, D., Grangeiro, T., & Benevides, N. (2005). Purification of a lectin from the marine red alga Gracilaria ornata and its effect on the development of the cowpea weevil Callosobruchus maculatus (Coleoptera: Bruchidae). Biochimica et Biophysica Acta, 1724(1–2), 137–145. https://doi.org/10.1016/J.BBAGEN.2005.03.017 Liao, J. H., Chien, C. T. H., Wu, H. Y., Huang, K. F., Wang, I., Ho, M. R., Tu, I. F., Lee, I. M., Li, W., Shih, Y. L., Wu, C. Y., Lukyanov, P. A., Hsu, S. T. D., & Wu, S. H. (2016). A Multivalent Marine Lectin from Crenomytilus grayanus Possesses Anti-cancer Activity through Recognizing Globotriose Gb3. Journal of the American Chemical Society, 138(14), 4787–4795. https://doi.org/10.1021/jacs.6b00111 Liener, Irvin, Nathan, Sharon, Goldstein, I. (1986). The lectins. Biochemical Education, 7(1), 19. https://doi.org/10.1016/0307-4412(79)90018-9 Lima, M., Carneiro, M., Nascimento, A., Grangeiro, T., Holanda, M., Amorim, R., & Benevides, N. (2005). Purification of a lectin from the marine red alga Gracilaria cornea and its effects on the cattle tick Boophilus microplus (Acari: Ixodidae). Journal of Agricultural and Food Chemistry, 53(16), 6414–6419. https://doi.org/10.1021/JF0509660 Lindberg, L., Johansson, S., Liu, J., Grufman, P., & Holgersson, J. (2011). Is there a clinical need for a diagnostic test allowing detection of chain type-specific anti-A and anti-B? Transfusion, 51(3), 494–503. https://doi.org/10.1111/J.1537-2995.2010.02870.X Lindberg, L., Theinert, K., Liu, J., & Holgersson, J. (2012). Adsorption of chain type-specific ABO antibodies on Sepharose-linked A and B tetrasaccharides. Transfusion, 52(11), 2356–2367. https://doi.org/10.1111/J.1537-2995.2012.03706.X Lomonte, B., & Calvete, J. J. (2017). Strategies in ‘snake venomics’ aiming at an integrative view of compositional, functional, and immunological characteristics of venoms. The Journal of Venomous Animals and Toxins Including Tropical Diseases, 23(1), 12. https://doi.org/10.1186/S40409-017-0117-8 Lourenço, S. O., Barbarino, E., De-Paula, J. C., Pereira, L. O. da S., & Marquez, U. M. L. (2002). Amino acid composition, protein content and calculation of nitrogen-to-protein conversion factors for 19 tropical seaweeds. Phycological Research, 50(3), 233–241. https://doi.org/10.1046/J.1440-1835.2002.00278.X Lovrien, R., & Matulis, D. (2001). Selective precipitation of proteins. Current Protocols in Protein Science, Chapter 4(1). https://doi.org/10.1002/0471140864.PS0405S07 Luo, T., Yang, H., Li, F., Zhang, X., & Xu, X. (2006). Purification, characterization and cDNA cloning of a novel lipopolysaccharide-binding lectin from the shrimp Penaeus monodon. Developmental and Comparative Immunology, 30(7), 607–617. https://doi.org/10.1016/J.DCI.2005.10.004 Malini, M., Jansi, M., Margret, M., & Anooj, E. (2019). Characterization of lectin from Colpomenia sinuosa and the effect of physicochemical parameters on haemagglutination activity. A Journal of Composition Theory, XII(VII), 247–257. ISSN : 0731-6755. Mancera, J. E., Pinto, G., & Vilardy, S. (2013). Patrones de distribución estacional de masas de agua en la bahía de Santa Marta, Caribe colombiano: importancia relativa del Upwelling y Outwelling. Boletín de Investigaciones Marinas y Costeras, 42(2), 329–260. ISSN 0122-9761. Marchalonis, J.J., Edelman, J. M. (1968). Isolation and characterization of a hemagglutinin from Limulus polyphemus. Journal of Molecular Biology, 32(2), 453–465. https://doi.org/10.1016/0022-2836(68)90022-3 Mathieu, E., Mati, N., Walet, M.-L., Lerouge, P., & Bardor, M. (2020). N- and O-Glycosylation Pathways in the Microalgae Polyphyletic Group. Frontiers in Plant Science, 11, 2027. https://doi.org/10.3389/FPLS.2020.609993 Medina, G., Gibbs, R. V., Calvete, J. J., & Carpenter, B. G. (2007). Micro-heterogeneity and molecular assembly of the haemagglutinins from the red algae Bryothamnion seaforthii and B. triquetrum from the Caribbean Sea. European Journal of Phycology, 42(1), 105–112. https://doi.org/10.1080/09670260601012438 Melo, F. R., Benevides, N. M. B., Pereira, M. G., Holanda, M. L., Mendes, F. N. P., Oliveira, S. R. M., Freitas, A. L. P., & Silva, L. M. C. M. (2004). Purification and partial characterisation of a lectin from the red marine alga Vidalia obtusiloba C. Agardh. Revista Brasileira de Botânica, 27(2), 263-269. https://doi.org/10.1590/S0100-84042004000200006 Merck. (2017). Cromolith HPLC columns: Race through sepasations with revolutionary technology. In Catálogo Cromolith HPLC columns (pp. 1–52). Merck. http://www.supelco.com.tw/B-new-03-chromolith.pdf Mesquita, J. X., de Brito, T. V., Fontenelle, T. P. C., Damasceno, R. O. S., de Souza, M. H. L. P., de Souza Lopes, J. L., Beltramini, L. M., Barbosa, A. L. dos R., & Freitas, A. L. P. (2021). Lectin from red algae Amansia multifida Lamouroux: Extraction, characterization and anti-inflammatory activity. International Journal of Biological Macromolecules, 170, 532–539. https://doi.org/10.1016/J.IJBIOMAC.2020.12.203 Millet, J. K., Séron, K., Labitt, R. N., Danneels, A., Palmer, K. E., Whittaker, G. R., Dubuisson, J., & Belouzard, S. (2016). Middle East respiratory syndrome coronavirus infection is inhibited by griffithsin. Antiviral Research, 133, 1–8. https://doi.org/10.1016/J.ANTIVIRAL.2016.07.011 Mishra, A., Behura, A., Mawatwal, S., Kumar, A., Naik, L., Mohanty, S. S., Manna, D., Dokania, P., Mishra, A., Patra, S. K., & Dhiman, R. (2019). Structure-function and application of plant lectins in disease biology and immunity. Food and Chemical Toxicology, 134, 110827. https://doi.org/10.1016/j.fct.2019.110827 Mitchell, C. A., Ramessar, K., & O’Keefe, B. R. (2017). Antiviral lectins: Selective inhibitors of viral entry. Antiviral Research, 142, 37-54. https://doi.org/10.1016/J.ANTIVIRAL.2017.03.007 Molchanova, V., Chernikov, O., Chikalovets, I., & Lukyanov, P. (2010). Purification and partial characterization of the lectin from the marine red alga Tichocarpus crinitus (Gmelin) Rupr. (Rhodophyta). Botanica marina, 53(1), 69–78. https://doi.org/10.1515/BOT.2010.001 Motohashi, S., Jimbo, M., Naito, T., Suzuki, T., Sakai, R., & Kamiya, H. (2017). Isolation, amino acid sequences, and plausible functions of the galacturonic acid-binding egg lectin of the sea hare Aplysia kurodai. Marine Drugs, 15(6), 1–14. https://doi.org/10.3390/md15060161 Moulaei, T., Shenoy, S. R., Giomarelli, B., Thomas, C., McMahon, J. B., Dauter, Z., O’Keefe, B. R., & Wlodawer, A. (2010). Monomerization of Viral Entry Inhibitor Griffithsin Elucidates the Relationship between Multivalent Binding to Carbohydrates and anti-HIV Activity. Structure, 18(9), 1104-1115. https://doi.org/10.1016/J.STR.2010.05.016 Mu, J., Hirayama, M., Sato, Y., Morimoto, K., & Hori, K. (2017). A novel high-mannose specific lectin from the green alga Halimeda renschii exhibits a potent anti-influenza virus activity through high-affinity binding to the viral hemagglutinin. Marine Drugs, 15(8), 255. https://doi.org/10.3390/md15080255 Muthana, S., Gulley, J., Hodge, J., Schlom, J., & Gildersleeve, J. (2015). ABO blood type correlates with survival on prostate cancer vaccine therapy. Oncotarget, 6(31), 32244–32256. https://doi.org/10.18632/ONCOTARGET.4993 Nagano, C. (2007). Estudios estructurales de lectinas de algas marinas y de vegetales superiores. Universidad de Valencia. Tesis Doctotal, 171 p. Nagano, C., Debray, H., Nascimento, K. S., Pinto, V. P. T., Cavada, B. S., Saker-Sampaio, S., Farias, W. R. L., Sampaio, A. H., & Calvete, J. J. (2005a). HCA and HML isolated from the red marine algae Hypnea cervicornis and Hypnea musciformis define a novel lectin family. Protein Science, 14(8), 2167–2176. https://doi.org/10.1110/PS.051498505 Nagano, C., Moreno, F., Bloch Jr, C., Prates, M., Calvete, J., Saker-Sampaio, S., Farias, W., Tavares, T., Nascimento, K., Grangeiro, T., Cavada, B., & Sampaio, A. (2005b). Purification and Characterization of a new Lectin from the Red Marine Alga Hypnea Musciformis. Protein & Peptide Letters, 9(2), 159–165. https://doi.org/10.2174/0929866023408931 Naganuma, T., Hoshino, W., Shikanai, Y., Sato, R., Liu, K., Sato, S., Muramoto, K., Osada, M., Yoshimi, K., & Ogawa, T. (2014). Novel Matrix Proteins of Pteria penguin Pearl Oyster Shell Nacre Homologous to the Jacalin-Related β-Prism Fold Lectins. PLOS ONE, 9(11), e112326. https://doi.org/10.1371/JOURNAL.PONE.0112326 Nascimento, K., Nagano, C., Nunes, E., Rodrigues, R., Goersch, G., Cavada, B., Calvete, J., Saker, S., Farias, W., & Sampaio, A. (2006). Isolation and characterization of a new agglutinin from the red marine alga Hypnea cervicornis J. Agardh. Biochemistry and Cell Biology, 84(1), 49–54. https://doi.org/10.1139/O05-152 Neves, S. A., Freitas, A. L. P., Sousa, B. W., Rocha, M. I. A., Correia, M. V. O., Sampaio, D. A., & Viana, G. S. B. (2007). Antinociceptive properties in mice of a lectin isolated from the marine alga Amansia multifida Lamouroux. Brazilian Journal of Medical and Biological Research, 40(1), 127–134. https://doi.org/10.1590/S0100-879X2007000100016 Niu, J., Wang, G., Lü, F., Zhou, B., & Peng, G. (2009). Characterization of a new lectin involved in the protoplast regeneration of Bryopsis hypnoides. Chinese Journal of Oceanology and Limnology, 27(3), 502–512. https://doi.org/10.1007/s00343-009-9157-4 Nizet, V., Varki, A., & Aebi, M. (2017). Microbial Lectins: Hemagglutinins, Adhesins, and Toxins. Essentials of Glycobiology. https://doi.org/10.1101/GLYCOBIOLOGY.3E.037 Ogawa, T., Watanabe, M., Naganuma, T., & Muramoto, K. (2011). Diversified Carbohydrate-Binding Lectins from Marine Resources. Journal of Amino Acids, 2011, 1–20. https://doi.org/10.4061/2011/838914 Okuyama, S., Nakamura-Tsuruta, S., Tateno, H., Hirabayashi, J., Matsubara, K., & Hori, K. (2009). Strict binding specificity of small-sized lectins from the red alga Hypnea japonica for core (α1-6) fucosylated N-glycans. Bioscience, Biotechnology and Biochemistry, 73(4), 912–920. https://doi.org/10.1271/bbb.80881 Oliveira, S., Nascimento, A., Lima, M., Leite, Y., & Benevides, N. (2002). Purification and characterisation of a lectin from the red marine alga Pterocladiella capillacea (S.G. Gmel.) Santel & Hommers. Brazilian Journal of Botany, 25(4), 397–403. https://doi.org/10.1590/S0100-84042002012000003 Omokawa, Y., Miyazaki, T., Walde, P., Akiyama, K., Sugahara, T., Masuda, S., Inada, A., Ohnishi, Y., Saeki, T., & Kato, K. (2010). In vitro and in vivo anti-tumor effects of novel Span 80 vesicles containing immobilized Eucheuma serra agglutinin. International Journal of Pharmaceutics, 389(1–2), 157–167. https://doi.org/10.1016/j.ijpharm.2010.01.033 Osório, C., Machado, S., Peixoto, J., Bessada, S., Pimentel, F. B., Alves, R. C., & Oliveira, M. B. P. P. (2020). Pigments Content (Chlorophylls, Fucoxanthin and Phycobiliproteins) of Different Commercial Dried Algae. Separations, 7(2), 33. https://doi.org/10.3390/SEPARATIONS7020033 Pan, S., Tang, J., & Gu, X. (2010). Isolation and characterization of a novel fucose-binding lectin from the gill of bighead carp (Aristichthys nobilis). Veterinary Immunology and Immunopathology, 133(2–4), 154–164. https://doi.org/10.1016/J.VETIMM.2009.07.015 Parseptiangga, D. (2015). Algal lectins and their potential uses. Squalen Bulletin of Marine & Fisheries Postharvest & Biotechnology, 10(2), 89–98. https://doi.org/http://dx.doi.org/10.15578/squalen.v10i2.125 Pereira, L., & Critchley, A. T. (2020). The COVID 19 novel coronavirus pandemic 2020: seaweeds to the rescue? Why does substantial, supporting research about the antiviral properties of seaweed polysaccharides seem to go unrecognized by the pharmaceutical community in these desperate times? Journal of Applied Phycology, 32(3), 1. https://doi.org/10.1007/S10811-020-02143-Y Peumans, W. J., Van Damme, E. J. M., Barre, A., & Rougé, P. (2001). Classification of plant lectins in families of structurally and evolutionary related proteins. Advances in Experimental Medicine and Biology, 491, 27–54. https://doi.org/10.1007/978-1-4615-1267-7_3 Pinto, R., de Castro, F., de Santiago-Aguiar, R., & Ponte, M. (2018). Ultrasound-assisted extraction of phycobiliproteins from Spirulina (Arthrospira) platensis using protic ionic liquids as solvent. Algal Research, 31, 454–462. https://doi.org/10.1016/J.ALGAL.2018.02.021 Pinto, V., Debray, H., Dus, D., Teixeira, E., De Oliveira, T., Carneiro, V., Teixeira, A., Filho, G., Nagano, C., Nascimento, K. S., Sampaio, A. H., & Cavada, B. S. (2009). Lectins from the red marine algal species Bryothamnion seaforthii and Bryothamnion triquetrum as tools to differentiate human colon carcinoma cells. Advances in Pharmacological Sciences, 2009, 1-9. https://doi.org/10.1155/2009/862162 Pita, R., Anadón, A., & Martínez-Larrañaga, M. R. (2004). Ricina: una fitotoxina de uso potencial como arma. Revista de Toxicología, 51–63. ISSN: 0212-7113. Quintana, J. I., Delgado, S., Núñez-Franco, R., Cañada, F. J., Jiménez-Osés, G., Jiménez-Barbero, J., & Ardá, A. (2021). Galectin-4 N-Terminal Domain: Binding Preferences Toward A and B Antigens With Different Peripheral Core Presentations. Frontiers in Chemistry, 9, 664097. https://doi.org/10.3389/FCHEM.2021.664097 Ramírez, J. S., Franco, A., García, L. M., & López, D. A. (2010). La comunidad fitoplanctónica durante eventos de surgencia y no surgencia, en la zona costera del departamento del magdalena, caribe colombiano. Boletin de Investigaciones Marinas y Costeras, 39(2), 233–263. https://doi.org/10.25268/BIMC.INVEMAR.2010.39.2.150 Ravn, V., & Dabelsteen, E. (2000). Tissue distribution of histo-blood group antigens. APMIS : Acta Pathologica, Microbiologica, et Immunologica Scandinavica, 108(1), 1–28. https://doi.org/10.1034/J.1600-0463.2000.D01-1.X Rozo, G. (2019). Algas del Caribe Colombiano: Fuente alternativa de alimentos, nutracéuticos y biomateriales. Universidad de Bogotá Jorge Tadeo Lozano, Departamento de Ciencias Biológicas y Ambientales. Tesis Doctoral, 113 p. Rüdiger, H. (2008). Structure and Function of Plant Lectins In Glycosciences (Hans, J. & Sigrun, G. eds.). 415–438p. https://doi.org/10.1002/9783527614738.CH23 Sáez, P., Michałowski, T., Navas, M. J., Asuero, A. G., & Wybraniec, S. (2013). An Overview of the Kjeldahl Method of Nitrogen Determination. Part I. Early History, Chemistry of the Procedure, and Titrimetric Finish. Critical Reviews in Analytical Chemistry, 43(4), 178–223. https://doi.org/10.1080/10408347.2012.751786 Sampaio, A., Rogers, C., & Barwell, C. (1998b). A galactose-specific lectin from the red marine alga Ptilota filicina. Phytochemistry, 48(5), 765–769. https://doi.org/10.1016/S0031-9422(97)00966-7 Sampaio, A., Rogers, D., Barwell, C., Saker-Sampaio, S., Costa, F. H., & Ramos, M. (1998a). A new isolation procedure and further characterisation of the lectin from the red marine alga Ptilota serrata. Journal of Applied Phycology, 10(6), 539–546. https://doi.org/10.1023/A:1008061327247 Sampaio, A., Rogers, D., Barwell, C., Saker-Sampaio, S., Nascimento, K., Nagano, C., & Farias, W. (2002). New affinity procedure for the isolation and further characterization of the blood group B specific lectin from the red marine alga Ptilota plumosa. Journal of Applied Phycology, 14(6), 489–495. https://doi.org/10.1023/A:1022327010736 Sansone, C., & Brunet, C. (2020). Marine Algal Antioxidants. Antioxidants, 9(3), 206. https://doi.org/10.3390/ANTIOX9030206 Sato, Y., Hirayama, M., Morimoto, K., Yamamoto, N., Okuyama, S., & Hori, K. (2011a). High mannose-binding lectin with preference for the cluster of alpha1-2-mannose from the green alga Boodlea coacta is a potent entry inhibitor of HIV-1 and influenza viruses. The Journal of Biological Chemistry, 286(22), 19446–19458. https://doi.org/10.1074/JBC.M110.216655 Sato, Y., Morimoto, K., Hirayama, M., & Hori, K. (2011b). High mannose-specific lectin (KAA-2) from the red alga Kappaphycus alvarezii potently inhibits influenza virus infection in a strain-independent manner. Biochemical and Biophysical Research Communications, 405(2), 291–296. https://doi.org/10.1016/J.BBRC.2011.01.031 Schägger, H., & von Jagow, G. (1987). Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Analytical Biochemistry, 166(2), 368–379. https://doi.org/10.1016/0003-2697(87)90587-2 Schiener, P., Black, K. D., Stanley, M. S., & Green, D. H. (2014). The seasonal variation in the chemical composition of the kelp species Laminaria digitata, Laminaria hyperborea, Saccharina latissima and Alaria esculenta. Journal of Applied Phycology, 27(1), 363–373. https://doi.org/10.1007/S10811-014-0327-1 Sehnal, D., Bittrich, S., Deshpande, M., Svobodová, R., Berka, K., Bazgier, V., Velankar, S., Burley, S. K., Koča, J., & Rose, A. S. (2021). Mol∗Viewer: Modern web app for 3D visualization and analysis of large biomolecular structures. Nucleic Acids Research, 49(W1), W431–W437. https://doi.org/10.1093/NAR/GKAB314 Sharon, N. (1987). Bacterial lectins, cell-cell recognition and infectious disease. FEBS Letters, 217(2), 145–157. https://doi.org/10.1016/0014-5793(87)80654-3 Sharon, N., & Lis, H. (2004). History of lectins: From hemagglutinins to biological recognition molecules. Glycobiology, 14(11), 53–62. https://doi.org/10.1093/glycob/cwh122 Sharon, N., & Lis, H. (2007). Lectins: Second edition. Springer. ISBN: 978-1-4020-6605-4. 454 p. Shiomi, K., Kamiya, H., & Shimizu, Y. (1979). Purification and characterization of an agglutinin in the red alga agardhiella tenera. Biochimica et Biophysica Acta (BBA) - Protein Structure, 576(1), 118–127. https://doi.org/10.1016/0005-2795(79)90490-2 Shiomi, K., Yamanaka, H., & Kichuchi, T. (1980). Biochemical Properties of Hemagglutinins in the Red Alga Serraticardia maxima. The Japanese Society of Fisheries Science, 46(11), 1369–1373. https://doi.org/10.2331/SUISAN.46.1369 Shiomi, K., Yamanaka, H., & Kikuchi, T. (1981). Purification and Physicochemical Properties of a Hemagglutinin (GVA-1) in the Red Alga Gracilaria verrucosa. J-STAGE, 47(8), 1079–1084. https://doi.org/10.2331/SUISAN.47.1079 Silva, L., Lima, V., Holanda, M., Pinheiro, P., Rodrigues, J., Lima, M., & Benevides, N. (2010). Antinociceptive and anti-inflammatory activities of lectin from marine red alga Pterocladiella capillacea. Biological & Pharmaceutical Bulletin, 33(5), 830–835. https://doi.org/10.1248/BPB.33.830 Silva, S. (2013). Purificação e caracterização de CiL-2, uma nova lectina isolada da alga marinha verde Codium isthmocladum Vickers. Universidade Federal do Ceará, Departamento de Engenharia de Pesca. Tesis de Mestría, 72 p. Singh, R. S., Thakur, S. R., & Bansal, P. (2015). Algal lectins as promising biomolecules for biomedical research. Critical Reviews in Microbiology, 41(1), 77–88. https://doi.org/10.3109/1040841X.2013.798780 Singh, R. S., & Walia, A. K. (2018). Lectins from red algae and their biomedical potential. Journal of Applied Phycology, 30(3), 1833–1858. https://doi.org/10.1007/s10811-017-1338-5 Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J., & Klenk, D. C. (1985). Measurement of protein using bicinchoninic acid. Analytical Biochemistry, 150(1), 76–85. https://doi.org/10.1016/0003-2697(85)90442-7 Stepanchenko, N. S., Novikova, G. V., & Moshkov, I. E. (2011). Protein quantification. Russian Journal of Plant Physiology, 58(4), 737–742. https://doi.org/10.1134/S1021443711040182 Sun, J., Wang, L., Wang, B., Guo, Z., Liu, M., Jiang, K., Tao, R., & Zhang, G. (2008). Purification and characterization of a natural lectin from the plasma of the shrimp Fenneropenaeus chinensis. Fish & Shellfish Immunology, 25(3), 290–297. https://doi.org/10.1016/J.FSI.2008.06.001 Sun, L., Wang, S., Gong, X., Zhao, M., Fu, X., & Wang, L. (2009). Isolation, purification and characteristics of R-phycoerythrin from a marine macroalga Heterosiphonia japonica. Protein Expression and Purification, 64(2), 146–154. https://doi.org/10.1016/J.PEP.2008.09.013 Swamy, J. M., Sastry, V. M., & Surolia, A. (1985). Prediction and comparison of the secondary structure of legume lectins. Journal of Biosciences, 9(3–4), 203–212. https://doi.org/10.1007/BF02702696 Tan, C. H., Tan, K. Y., Yap, M. K. K., & Tan, N. H. (2017). Venomics of Tropidolaemus wagleri, the sexually dimorphic temple pit viper: Unveiling a deeply conserved atypical toxin arsenal. Scientific Reports, 7, 12. https://doi.org/10.1038/SREP43237 Tasumi, S., Yang, W. J., Usami, T., Tsutsui, S., Ohira, T., Kawazoe, I., Wilder, M. N., Aida, K., & Suzuki, Y. (2004). Characteristics and primary structure of a galectin in the skin mucus of the Japanese eel, Anguilla japonica. Developmental and Comparative Immunology, 28(4), 325–335. https://doi.org/10.1016/J.DCI.2003.08.006 Taylor, M. E., Drickamer, K., Schnaar, R. L., Etzler, M. E., & Varki, A. (2017). Discovery and Classification of Glycan-Binding Proteins In Essentials of Glycobiology (Chapter 27). https://doi.org/10.1101/GLYCOBIOLOGY.3E.028 Teixeira, E., Sousa, F., do Nascimento, K., Carneiro, V., Nagano, C., da Silva, B., Sampaio, A., & Cavada, B. (2012). Biological applications of plants and algae lectins: an overview In Comprehensive Studies on Glycobiology and Glycotechnology (C. Chang Ed.) (354 p.). IntechOpen. https://doi.org/10.5772/50632 Thompson, M., Owen, L., Wilkinson, K., Wood, R., & Damant, A. (2002). A comparison of the Kjeldahl and Dumas methods for the determination of protein in foods, using data from a proficiency testing scheme. Analyst, 127(12), 1666–1668. https://doi.org/10.1039/B208973B Torres, J. (2010). Purificación y caracterización parcial de mucina citoplasmática utilizando la lectina de Salvia bogotensis / Partial purification and characterization of citoplasmatic mucin using the Salvia bogotensis lectin. Universidad Nacional de Colombia, Departamento de Química. Tesis de Maestría, 82 p. Tsaneva, M., de Schutter, K., Verstraeten, B., & Van Damme, E. J. M. (2019). Lectin sequence distribution in QTLs from rice (Oryza sativa) suggest a role in morphological traits and stress responses. International Journal of Molecular Sciences, 20(2). https://doi.org/10.3390/ijms20020437 Tsutsui, S., Komatsu, Y., Sugiura, T., Araki, K., & Nakamura, O. (2011). A unique epidermal mucus lectin identified from catfish (Silurus asotus): first evidence of intelectin in fish skin slime. Journal of Biochemistry, 150(5), 501–514. https://doi.org/10.1093/JB/MVR085 Van Damme, E. (2021). 35 years in plant lectin research: a journey from basic science to applications in agriculture and medicine. Glycoconjugate Journal 2021, 1–15. https://doi.org/10.1007/S10719-021-10015-X Vanderlei, E., Patoilo, K., Lima, N., Lima, A., Rodrigues, J., Silva, L., Lima, M., Lima, V., & Benevides, N. (2010). Antinociceptive and anti-inflammatory activities of lectin from the marine green alga Caulerpa cupressoides. International Immunopharmacology, 10(9), 1113–1118. https://doi.org/10.1016/J.INTIMP.2010.06.014 Varki, A, Etzler, M. E., Cummings, R. D., & Esko, J. D. (2009). Discovery and Classification of Glycan-Binding Proteins. In Essentials of Glycobiology, second edition. Cold Spring Harbor Laboratory Press. https://www.ncbi.nlm.nih.gov/books/NBK1923/ Varki, Ajit, Cummings, R. D., Esko, J. D., Stanley, P., Hart, G. W., Aebi, M., Darvill, A. G., Kinoshita, T., Packer, N. H., Prestegard, J. H., Schnaar, R. L., & Seeberger, P. H. (2017). Essentials of glycobiology, third edition. Cold Spring Harbor Laboratory Press. Varki, Ajit, & Kornfeld, S. (2017). Historical Background and Overview. In Essentials of Glycobiology, third edition. Cold Spring Harbor Laboratory Press. https://doi.org/10.1101/GLYCOBIOLOGY.3E.001 Vasta, G. R., Nita-Lazar, M., Giomarelli, B., Ahmed, H., Du, S., Cammarata, M., Parrinello, N., Bianchet, M. A., & Amzel, L. M. (2011). Structural and functional diversity of the lectin repertoire in teleost fish: Relevance to innate and adaptive immunity. Developmental & Comparative Immunology, 35(12), 1388–1399. https://doi.org/10.1016/J.DCI.2011.08.011 Vattuone, M. A., Prado, F. E., Sayago, J. E., & Rodolfo Sampietro, A. (1991). Effect of lectins on Ricinus invertase. Phytochemistry, 30(2), 419–422. https://doi.org/10.1016/0031-9422(91)83696-I Verhaest, M., Lammens, W., Le Roy, K., De Coninck, B., De Ranter, C. J., Van Laere, A., Van Den Ende, W., & Rabijns, A. (2006). X-ray diffraction structure of a cell-wall invertase from Arabidopsis thaliana. Acta Crystallographica Section D: Biological Crystallography, 62(12), 1555–1563. https://doi.org/10.1107/S0907444906044489 Vimala, T. P. T. V. (2015). Estimation of Pigments from Seaweeds by Using Acetone and DMSO. International Journal of Science and Research (IJSR), 4(10), 1850–1854. ISSN: 2319-7064 Wang, S., Zhong, F., Zhang, Y., Wu, Z., Lin, Q., & Xie, L. (2004). Molecular characterization of a new lectin from the marine alga Ulva pertusa. Acta Biochimica et Biophysica Sinica, 36(2), 111–117. https://doi.org/10.1093/ABBS/36.2.111 Wang, X., & Wang, J. (2013). Diversity and multiple functions of lectins in shrimp immunity. Developmental & Comparative Immunology, 39(1–2), 27–38. https://doi.org/10.1016/J.DCI.2012.04.009 Wang, Y., Bu, L., Yang, L., Li, H., & Zhang, S. (2016). Identification and functional characterization of fish-egg lectin in zebrafish. Fish & Shellfish Immunology, 52, 23–30. https://doi.org/10.1016/J.FSI.2016.03.016 Wells, M. L., Potin, P., Craigie, J. S., Raven, J. A., Merchant, S. S., Helliwell, K. E., Smith, A. G., Camire, M. E., & Brawley, S. H. (2017). Algae as nutritional and functional food sources: revisiting our understanding. Journal of Applied Phycology, 29(2), 949. https://doi.org/10.1007/S10811-016-0974-5 Widmann, M., Trodler, P., & Pleiss, J. (2010). The Isoelectric Region of Proteins: A Systematic Analysis. PLoS ONE, 5(5), e10546. https://doi.org/10.1371/JOURNAL.PONE.0010546 Wiltshire, K. H., Boersma, M., Möller, A., & Buhtz, H. (2000). Extraction of pigments and fatty acids from the green alga Scenedesmus obliquus (Chlorophyceae). Aquatic Ecology 2000 34:2, 34(2), 119–126. https://doi.org/10.1023/A:1009911418606 Wingfield, P. T. (1998). Protein Precipitation Using Ammonium Sulfate. Current Protocols in Protein Science, 13(1), A.3F.1-A.3F.8. https://doi.org/10.1002/0471140864.PSA03FS13 Wingfield, P. T. (2001). Protein Precipitation Using Ammonium Sulfate. Current Protocols in Protein Science, APPENDIX 3, Appendix. https://doi.org/10.1002/0471140864.PSA03FS13 Wingfield, P. T. (2016). Protein Precipitation Using Ammonium Sulfate. Current Protocols in Protein Science, 84(1), A.3F.1-A.3F.9. https://doi.org/10.1002/0471140864.PSA03FS84 Wiriyadamrikul, J., Geraldino, P. J. L., Huisman, J. M., Lewmanomont, K., & Boo, S. M. (2019). Molecular diversity of the calcified red algal genus Tricleocarpa (Galaxauraceae, Nemaliales) with the description of T. jejuensis and T. natalensis. Phycologia, 52(4), 338–351. https://doi.org/https://doi.org/10.2216/13-155.1 Wu, M., Tong, C., Wu, Y., Liu, S., & Li, W. (2016). A novel thyroglobulin-binding lectin from the brown alga Hizikia fusiformis and its antioxidant activities. Food Chemistry, 201, 7–13. https://doi.org/10.1016/J.FOODCHEM.2016.01.061 Xu, W.-T., Wang, X.-W., Zhang, X.-W., Zhao, X.-F., Yu, X.-Q., & Wang, J.-X. (2010). A new C-type lectin (FcLec5) from the Chinese white shrimp Fenneropenaeus chinensis. Amino Acids, 39(5), 1227–1239. https://doi.org/10.1007/S00726-010-0558-7 Yang, Y., Zhang, M., Alalawy, A. I., Almutairi, F. M., Al-Duais, M. A., Wang, J., & Salama, E. S. (2021). Identification and characterization of marine seaweeds for biocompounds production. Environmental Technology and Innovation, 24. https://doi.org/10.1016/J.ETI.2021.101848 Yoon, K. S., Lee, K. P., Klochkova, T. A., & Kim, G. H. (2008). Molecular characterization of the lectin, Bryohealin, involved in the protoplast regeneration in the marine alga Bryopsis plumosa (Chlorophyta). Journal of Phycology, 44(1), 103–112. https://doi.org/10.1111/J.1529-8817.2007.00457.X Zhang, Y., Qiu, L., Song, L., Zhang, H., Zhao, J., Wang, L., Yu, Y., Li, C., Li, F., Xing, K., & Huang, B. (2009). Cloning and characterization of a novel C-type lectin gene from shrimp Litopenaeus vannamei. Fish & Shellfish Immunology, 26(1), 183–192. https://doi.org/10.1016/J.FSI.2008.03.008 Zhao, Z.-Y., Yin, Z.-X., Xu, X.-P., Weng, S.-P., Rao, X.-Y., Dai, Z.-X., Luo, Y.-W., Yang, G., Li, Z.-S., Guan, H.-J., Li, S.-D., Chan, S.-M., Yu, X.-Q., & He, J.-G. (2009). A Novel C-Type Lectin from the Shrimp Litopenaeus vannamei Possesses Anti-White Spot Syndrome Virus Activity . Journal of Virology, 83(1), 347–356. https://doi.org/10.1128/JVI.00707-08 Zimba, P. V. (2012). An improved phycobilin extraction method. Harmful Algae, 17, 35–39. https://doi.org/10.1016/J.HAL.2012.02.009 Ziółkowska, N. E., Shenoy, S. R., O’Keefe, B. R., & Wlodawer, A. (2007). Crystallographic studies of the complexes of antiviral protein griffithsin with glucose and N-acetylglucosamine. Protein Science : A Publication of the Protein Society, 16(7), 1485. https://doi.org/10.1110/PS.072889407 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xvi, 116 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Maestría en Ciencias - Bioquímica |
dc.publisher.department.spa.fl_str_mv |
Departamento de Química |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/81388/3/1018479298.2021.pdf https://repositorio.unal.edu.co/bitstream/unal/81388/4/license.txt https://repositorio.unal.edu.co/bitstream/unal/81388/5/1018479298.2021.pdf.jpg |
bitstream.checksum.fl_str_mv |
b6e031920f4c7ec1e443eeac7d762146 8153f7789df02f0a4c9e079953658ab2 c7cf64068048a0110447b604a9f4de9c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090138579369984 |
spelling |
Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Vega Castro, Nohora Angélica1bac60b0381f939db8d6c334f123ddc1Puyana Hegedus, Mónica7c87af3e9533802a30d322ede662b51dDuarte Tayo, Angie Patricia591f029a4d7c7412bddf3593ebfb5473Grupo de Investigación en Proteinas Grip2022-03-25T17:05:54Z2022-03-25T17:05:54Z2021https://repositorio.unal.edu.co/handle/unal/81388Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, fotografías, graficasEl estudio en lectinas de algas es menor comparado con vegetales o animales, sin embargo, se han estudiado principalmente en algas rojas (Phylum Rhodophyta). Por otra parte, la purificación de estas moléculas es dispendiosa dada la cantidad de pigmentos que contienen sus extractos proteicos. En este estudio se llevaron a cabo ensayos de purificación de las lectinas del alga roja Tricleocarpa cylindrica, dado que previamente se detectó su actividad aglutinante; por otra parte, se ha reportado que estas lectinas tienen diferentes actividades biológicas que las postulan como moléculas de gran interés farmacológico. Inicialmente se realizó un tratamiento con acetona a la harina del alga para eliminar interferentes que producen hemólisis de eritrocitos, por precipitación con sulfato de amonio se detectó únicamente actividad aglutinante en la fracción del 50-80%s, los ensayos de inhibición con carbohidratos mostraron reconocimiento principalmente por D-glucosa. Aglutinó preferentemente eritrocitos de humano tipo B con cantidades de 0.6 g de proteína pura, similar a lo reportado para lectinas de otras especies de algas rojas. La lectina de Tricleocarpa cylindrica (LTC) se purificó con una combinación de métodos cromatográficos, que incluyeron intercambio iónico, afinidad y un paso final con HPLC. Esta nueva proteína se caracterizó por ser una glicoproteína con un peso molecular de 29 kDa por SDS PAGE, un punto isoeléctrico ácido (5.7) y alta estabilidad en un rango de pH de 3.0-7.4 y temperatura hasta los 58ºC. (Texto tomado de la fuente)Lectins from marine algae have not been studied such as vegetables or animals, even though, their study is centered in red algae (Phylum Rhodophyta). Furthermore, purification of these proteins is difficult due to pigments in saline extracts. In this study, purification of the lectins from the red algae Tricleocarpa cylindrica were carried out because hemagglutination activity was detected previously; additionally, these lectins could be molecules of great pharmacological potential for its various biological activities. First, removal of pigments was achieved by washing the algae flour with cool acetone to avoid hemolysis, precipitation assays from PBS extracts showed that the whole lectin was obtained in the fractions precipitated with ammonium sulphate 50-80%s. The lectin was able to agglutinate human RBCs from B and O donors; although it agglutinated preferentially B erythrocytes with a minimum lectin quantity of 0.6 g, like other species studied. Several purification procedures were assayed which included DEAE-sephadex, affinity chromatography, and the last step on HPLC. It led to obtaining a pure lectin having high specific agglutination activity (SAA). The PI showed a unique band at pH 5.7, in SDS-PAGE a band around 29 kDa, thermal stability (58 0C), and activity in the pH range 3.0-7.4.MaestríaMagíster en Ciencias - BioquímicaEstudios de Lectinas de algas marinas del Caribe Colombianoxvi, 116 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - BioquímicaDepartamento de QuímicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá570 - Biología::572 - BioquímicaProtectinasEXTRACCION (QUIMICA)Extraction (chemistry)LectinasAlgas marinasAglutinaciónCaracterización bioquímicaCarbohidratosInteracciones proteínaTricleocarpa cylindricaLectinsSeaweedAgglutinationBiochemical characterizationCarbohydratesProtein interactionsEstudio de las lectinas presentes en el alga roja Tricleocarpa cylindricaStudy of the lectins from the red algae Tricleocarpa cylindricaTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAlam, T. (2018). Extraction of Natural Colors from Marine Algae. Journal of Agricultural and Marine Sciences, 23, 81–91. https://doi.org/10.24200/jams.vol23iss1pp81-91Alexandre, K. B., Gray, E. S., Lambson, B. E., Moore, P. L., Choge, I. A., Mlisana, K., Karim, S. S. A., McMahon, J., O’Keefe, B., Chikwamba, R., & Morris, L. (2010). Mannose-rich glycosylation patterns on HIV-1 subtype C gp120 and sensitivity to the lectins, Griffithsin, Cyanovirin-N and Scytovirin. Virology, 402(1), 187–196. https://doi.org/10.1016/J.VIROL.2010.03.021Alpuche, J., Pereyra, A., Agundis, C., Rosas, C., Pascual, C., Slomianny, M. C., Vázquez, L., & Zenteno, E. (2005). Purification and characterization of a lectin from the white shrimp Litopenaeus setiferus (Crustacea decapoda) hemolymph. Biochimica et Biophysica Acta (BBA) - General Subjects, 1724(1–2), 86–93. https://doi.org/10.1016/J.BBAGEN.2005.04.014Anam, C., Chasanah, E., Perdhana, B. P., Fajarningsih, N. D., Yusro, N. F., Sari, A. M., Nursiwi, A., Praseptiangga, D., & Yunus, A. (2017). Cytotoxicity of Crude Lectins from Red Macroalgae from the Southern Coast of Java Island, Gunung Kidul Regency, Yogyakarta, Indonesia. IOP Conference Series: Materials Science and Engineering, 193(1), 012017. https://doi.org/10.1088/1757-899X/193/1/012017Barre, A., Damme, E. J. M. V., Simplicien, M., Benoist, H., & Rougé, P. (2020). Man-Specific, GalNAc/T/Tn-Specific and Neu5Ac-Specific Seaweed Lectins as Glycan Probes for the SARS-CoV-2 (COVID-19) Coronavirus. Marine Drugs 2020, Vol. 18, Page 543, 18(11), 543. https://doi.org/10.3390/MD18110543Barre, A., Simplicien, M., Benoist, H., Van Damme, E. J. M., & Rougé, P. (2019). Mannose-Specific Lectins from Marine Algae: Diverse Structural Scaffolds Associated to Common Virucidal and Anti-Cancer Properties. Marine Drugs, 17(8), 440. https://doi.org/10.3390/md17080440Benevides, N., Holanda, M., Melo, F., Freitas, A., & Sampaio, A. (1998). Purification and Partial Characterisation of the Lectin from the Marine Red Alga Enantiocladia duperreyi (C. Agardh) Falkenberg. Botanica Marina, 41(5), 521–526. https://doi.org/10.1515/BOTM.1998.41.1-6.521Benevides, N., Holanda, M., Melo, F., Pereira, M., Monteiro, A., & Freitas, A. (2001). Purification and Partial Characterization of the Lectin from the Marine Green Alga Caulerpa cupressoides (Vahl) C. Agardh. Botanica Marina, 44(1), 17–22. https://doi.org/10.1515/BOT.2001.003Benevides, N., Leite, A., & Ponte, A. (1996). Atividade hemaglutinante na alga vermelha Solieria filiformis. Revista Brasileira de Fisiologia Vegetal, 6(2), 117–122.Bitencourt, F. D. S., Figueiredo, J. G., Mota, M. R. L., Bezerra, C. C. R., Silvestre, P. P., Vale, M. R., Nascimento, K. S., Sampaio, A. H., Nagano, C. S., Saker-Sampaio, S., Farias, W. R. L., Cavada, B. S., Assreuy, A. M. S., & De Alencar, N. M. N. (2008). Antinociceptive and anti-inflammatory effects of a mucin-binding agglutinin isolated from the red marine alga Hypnea cervicornis. Naunyn-Schmiedeberg’s Archives of Pharmacology, 377(2), 139–148. https://doi.org/10.1007/S00210-008-0262-2Bleakley, S., & Hayes, M. (2017). Algal Proteins: Extraction, Application, and Challenges Concerning Production. Foods, 6(5), 1–34. https://doi.org/10.3390/FOODS6050033Bollag, D., & Edelstein, S. (1994). Protein Methods. Wiley-Liss. 162-171 p.Bonnardel, F., Haslam, S., Dell, A., Feizi, T., Liu, Y., Tajadura, V., Akune, Y., Sykes, L., Bennett, P., MacIntyre, D., Lisacek, F., & Imberty, A. (2021a). Proteome-wide prediction of bacterial carbohydrate-binding proteins as a tool for understanding commensal and pathogen colonisation of the vaginal microbiome. Biofilms and Microbiomes, 7(1), 1–10. https://doi.org/10.1038/s41522-021-00220-9Bonnardel, F., Mariethoz, J., Pérez, S., Imberty, A., & Lisacek, F. (2021b). LectomeXplore, an update of UniLectin for the discovery of carbohydrate-binding proteins based on a new lectin classification. Nucleic Acids Research, 49(D1), D1548. https://doi.org/10.1093/NAR/GKAA1019Boonsri, N., Rudtanatip, T., Withyachumnarnkul, B., & Wongprasert, K. (2016). Protein extract from red seaweed Gracilaria fisheri prevents acute hepatopancreatic necrosis disease (AHPND) infection in shrimp. Journal of Applied Phycology, 29(3), 1597–1608. https://doi.org/10.1007/S10811-016-0969-2Boyd, W. C., Almodóvar, L. R., & Boyd, L. G. (1966). Agglutinins in Marine Algae for Human Erythrocytes. Transfusion, 6(1), 82–83. https://doi.org/10.1111/j.1537-2995.1966.tb04699.xCalvete, J. J., Costa, F. H. F., Saker-Sampaio, S., Murciano, M. P. M., Nagano, C. S., Cavada, B. S., Grangeiro, T. B., Ramos, M. V., Bloch, C., Silveira, S. B., Freitas, B. T., & Sampaio, A. H. (2000). The amino acid sequence of the agglutinin isolated from the red marine alga Bryothamnion triquetrum defines a novel lectin structure. Cellular and Molecular Life Sciences, 57(2). https://doi.org/10.1007/PL00000696Carneiro, R. F., Duarte, P. L., Chaves, R. P., da Silva, S. R., Feitosa, R. R., de Sousa, B. L., da Silva Alves, A. W., de Vasconcelos, M. A., da Rocha, B. A. M., Teixeira, E. H., Sampaio, A. H., & Nagano, C. S. (2020). New lectins from Codium isthmocladum Vickers show unique amino acid sequence and antibiofilm effect on pathogenic bacteria. Journal of Applied Phycology, 32(6), 4263–4276. https://doi.org/10.1007/S10811-020-02198-XCatanzaro, E., Calcabrini, C., Bishayee, A., & Fimognari, C. (2019). Antitumor Potential of Marine and Freshwater Lectins. Marine Drugs, 18(1). https://doi.org/10.3390/MD18010011Chaves, R., da Silva, S., da Silva, J., Carneiro, R., de Sousa, B., Abreu, J. O., de Carvalho, F., Rocha, C., Farias, W., de Sousa, O., Silva, A., Sampaio, A., & Nagano, C. (2018a). Meristiella echinocarpa lectin (MEL): a new member of the OAAH-lectin family. Journal of Applied Phycology, 30(4), 2629–2638. https://doi.org/10.1007/S10811-018-1473-7Chaves, R., da Silva, S., Nascimento, L., Carneiro, R., Silva, A., Sampaio, A., Sousa, B., Cabral, M., Videira, P., Teixeira, E., & Nagano, C. (2018b). Structural characterization of two isolectins from the marine red alga Solieria filiformis (Kützing) P.W. Gabrielson and their anticancer effect on MCF-7 breast cancer cells. International Journal of Biological Macromolecules, 107(Pt A), 1320–1329. https://doi.org/10.1016/J.IJBIOMAC.2017.09.116Clausen, H., & Hakomori, S. (1989). ABH and related histo-blood group antigens; immunochemical differences in carrier isotypes and their distribution. Vox Sanguinis, 56(1), 1–20. https://doi.org/10.1111/J.1423-0410.1989.TB03040.XCortés, J., Zárate, A. M., Figueroa, J. D., Medina, J., Fuentes-Lemus, E., Rodríguez-Fernández, M., Aliaga, M., & López-Alarcón, C. (2020). Protein quantification by bicinchoninic acid (BCA) assay follows complex kinetics and can be performed at short incubation times. Analytical Biochemistry, 608, 113904. https://doi.org/10.1016/J.AB.2020.113904Cummings, R. D., Darvill, A. G., Etzler, M. E., & Hahn, M. G. (2017). Glycan-Recognizing Probes as Tools. In Essentials of Glycobiology (3rd ed.). Cold Spring Harbor Laboratory Press. https://doi.org/10.1101/GLYCOBIOLOGY.3E.048De Coninck, T., & Van Damme, E. (2021). Review: The multiple roles of plant lectins. Plant Science, 313, 111096. https://doi.org/10.1016/J.PLANTSCI.2021.111096De Souza, G. A., Ferreira, B. S., Dias, J. M., Queiroz, K. S., Branco, A. T., Bressan, R. E., Oliveira, J. G., & Garcia, A. B. (2003). Accumulation of SALT protein in rice plants as a response to environmental stresses. Plant Science, 164(4), 623–628. https://doi.org/10.1016/S0168-9452(03)00014-1Delatorre, P., Rocha, B., Gadelha, C., Santi, T., Cajazeiras, J., Souza, E., Nascimento, K., Freire, V., Sampaio, A., Azevedo, W., & Cavada, B. (2006). Crystal structure of a lectin from Canavalia maritima (ConM) in complex with trehalose and maltose reveals relevant mutation in ConA-like lectins. Journal of Structural Biology, 154(3), 280–286. https://doi.org/10.1016/J.JSB.2006.03.011Dinh, H. Le, Hori, K., & Quang, N. H. (2008). Screening and preliminary characterization of hemagglutinins in Vietnamese marine algae. Journal of Applied Phycology, 21(1), 89–97. https://doi.org/10.1007/S10811-008-9330-8Do Nascimento, L., Carneiro, R., Da Silva, S., Da Silva, B., Arruda, F., Carneiro, V., Do Nascimento, K., Saker, S., Da Silva, V., Porto, A., Cavada, B., Sampaio, A., Teixeira, E., & Nagano, C. (2012). Characterization of isoforms of the lectin isolated from the red algae Bryothamnion seaforthii and its pro-healing effect. Marine Drugs, 10(9), 1936–1954. https://doi.org/10.3390/md10091936Domingo, M. (2018). Caracterización y aplicaciones potenciales de una columna monolítica funcionalizada con magnetita. Universidad Politécnica de Valencia. Tesis de Pregrado. 52 p.Domínguez, A. (2008). Regulación de la expresión y función de las lectinas mieloides DC-SIGN y LSECtin. Univesidad Complutense de Madrid, Departamento de Bioquímica y Biología Molecular. Tesis Doctoral. 134 p.Dumontier, R., Mareck, A., Mati-Baouche, N., Lerouge, P., & Bardor, M. (2018). Toward Future Engineering of the N-Glycosylation Pathways in Microalgae for Optimizing the Production of Biopharmaceuticals. Microalgal Biotechnology. https://doi.org/10.5772/INTECHOPEN.73401Duong, K. C., & Gabelli, S. B. (2014). Salting out of Proteins Using Ammonium Sulfate Precipitation. Methods in Enzymology, 541, 85–94. https://doi.org/10.1016/B978-0-12-420119-4.00007-0Elayabharathi, T., Vinoliya, J., & Bai, S. (2020). Characterization of a novel O-acetyl sialic acid specific lectin from the hemolymph of the marine crab, Atergatis integerrimus (Lamarck, 1818). Fish & Shellfish Immunology, 106, 1131–1138. https://doi.org/10.1016/J.FSI.2020.07.039Elumalai, P., Rubeena, A. S., Arockiaraj, J., Wongpanya, R., Cammarata, M., Ringø, E., & Vaseeharan, B. (2019). The Role of Lectins in Finfish: A Review. Revieew in Fisherires Science & Aquaculture, 27(2), 152–169. https://doi.org/10.1080/23308249.2018.1520191Englard, S., & Seifter, S. (1990). Precipitation techniques. Methods in Enzymology, 182(C), 285–300. https://doi.org/10.1016/0076-6879(90)82024-VFajarningsih, N., Intaqta, N., Praseptiangga, D., & Anam, C. (2019). Extraction and Partial Characterization of Lectin from Indonesian Brown Algae Padina australis and Padina minor. Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology, 14, 103–111. https://doi.org/10.15578/squalen.v14i3.400Figueiredo, J. G., Bitencourt, F. S., Cunha, T. M., Luz, P. B., Nascimento, K. S., Mota, M. R. L., Sampaio, A. H., Cavada, B. S., Cunha, F. Q., & Alencar, N. M. N. (2010). Agglutinin isolated from the red marine alga Hypnea cervicornis J. Agardh reduces inflammatory hypernociception: involvement of nitric oxide. Pharmacology, Biochemistry, and Behavior, 96(4), 371–377. https://doi.org/10.1016/J.PBB.2010.06.008Fontenelle, T. P. C., Lima, G. C., Mesquita, J. X., Lopes, J. L. de S., de Brito, T. V., Vieira Junior, F. das C., Sales, A. B., Aragao, K. S., Souza, M. H. L. P., Barbosa, A. L. D. R., & Freitas, A. L. P. (2018). Lectin obtained from the red seaweed Bryothamnion triquetrum: Secondary structure and anti-inflammatory activity in mice. International Journal of Biological Macromolecules, 112, 1122–1130. https://doi.org/10.1016/j.ijbiomac.2018.02.058Fricke, A., Nguyen, X. V., Stuhr, M., Hoang, T. D., Dao, V. H., Tran, M. D., Pham, T. S., Le, H. C., Le, M. H., Pham, Q. L., Schmid, M., Kunzmann, A., Gärdes, A., von Hagen, J., & Teichberg, M. (2021). Subtidal macrophyte diversity and potentials in Nha Trang Bay - baseline data for monitoring a rising natural resource. Estuarine, Coastal and Shelf Science, 259, 107460. https://doi.org/10.1016/j.ecss.2021.107460 https://doi.org/10.1016/J.ECSS.2021.107460Fujii, Y., Gerdol, M., Hasan, I., Koide, Y., Matsuzaki, R., Ikeda, M., Rajia, S., Ogawa, Y., Kawsar, S. M. A., & Ozeki, Y. (2018). Phylogeny and properties of a novel lectin family with β-trefoil folding in mussels. Trends in Glycoscience and Glycotechnology, 30(177), E195–E208. https://doi.org/10.4052/tigg.1717.1EFujimoto, Z., Tateno, H., & Hirabayashi, J. (2014). Lectin structures: classification based on the 3-D structures. Methods in Molecular Biology (Clifton, N.J.), 1200, 579–606. https://doi.org/10.1007/978-1-4939-1292-6_46Fukuda, Y., Sugahara, T., Ueno, M., Fukuta, Y., Ochi, Y., Akiyama, K., Miyazaki, T., Masuda, S., Kawakubo, A., & Kato, K. (2006). The anti-tumor effect of Euchema serra agglutinin on colon cancer cells in vitro and in vivo. Anti-Cancer Drugs, 17(8), 943–947. https://doi.org/10.1097/01.cad.0000224458.13651.b4Galland, A. V., Fleurence, J., Lamghari, R., Luçon, M., Rouxel, C., Barbaroux, O., Bronowicki, J. P., Villaume, C., & Guéant, J. L. (1999). Nutritional value of proteins from edible seaweed Palmaria palmata (dulse). The Journal of Nutritional Biochemistry, 10(6), 353–359. https://doi.org/10.1016/S0955-2863(99)00014-5Goldring, J. P. D. (2012). Protein Quantification Methods to Determine Protein Concentration Prior to Electrophoresis. Methods in Molecular Biology, 869, 29–35. https://doi.org/10.1007/978-1-61779-821-4_3Gondim, A. C. S., Roberta Da Silva, S., Mathys, L., Noppen, S., Liekens, S., Holanda Sampaio, A., Nagano, C. S., Renata Costa Rocha, C., Nascimento, K. S., Cavada, B. S., Sadler, P. J., & Balzarini, J. (2019). Potent antiviral activity of carbohydrate-specific algal and leguminous lectins from the Brazilian biodiversity. MedChemComm, 10(3), 390–398. https://doi.org/10.1039/c8md00508gHammarston, S., & Kabat, E. (1969). Purification and Characterization of a Blood-Group A Reactive Hemagglutinin from the Snail Helix pomatia and a Study of Its Combining Site. Biochemistry, 8(7), 2696–2705. https://doi.org/doi:10.1021/bi00835a002Han, J. W., Yoon, K. S., Klochkova, T. A., Hwang, M.-S., & Kim, G. H. (2010). Purification and characterization of a lectin, BPL-3, from the marine green alga Bryopsis plumosa. Journal of Applied Phycology, 23(4), 745–753. https://doi.org/10.1007/S10811-010-9575-XHara, A., Imamura, A., Ando, H., Ishida, H., & Kiso, M. (2014). A New Chemical Approach to Human ABO Histo-Blood Group Type 2 Antigens. Molecules, 19(1), 414. https://doi.org/10.3390/MOLECULES19010414Hayes, M. (2020). Measuring Protein Content in Food: An Overview of Methods. Foods, 9(10). https://doi.org/10.3390/FOODS9101340Heljo, V. P., Filipe, V., Romeijn, S., Jiskoot, W., & Juppo, A. M. (2013). Stability of Rituximab in Freeze-Dried Formulations Containing Trehalose or Melibiose Under Different Relative Humidity Atmospheres. Journal of Pharmaceutical Sciences, 102(2), 401–414. https://doi.org/10.1002/JPS.23392Hermanson, G., Mallia, A., & Smith, P. (1992). Immobilized affinity ligand techniques. In Immobilized affinity ligand techniques. Academic Press. 88-90 p.Hichrom. (2018). Chromatography ranges acquired from Grace manufactured by Hichrom in the UK. In Catálogo Hichrom Limited (pp. 1–28). Hichrim Limited. www.hichrom.comHidalgo, D. (2017). Detección , purificación y caracterización parcial de lectinas presentes en algas marinas colombianas. Universidad Nacional de Colombia, Departamento de Química. Tesis de Maestría, 125 p.Hori, K., Matsubara, K., & Miyazawa, K. (2000). Primary structures of two hemagglutinins from the marine red alga, Hypnea japonica. Biochimica et Biophysica Acta (BBA) - General Subjects, 1474(2), 226–236. https://doi.org/10.1016/s0304-4165(00)00008-8Hori, K., Miyazawa, K., & Ito, K. (1981). Hemagglutinins in Marine Algae. Bulletin of the Japanese Society of Scientific Fisheries, 47(6), 793–798. https://www.jstage.jst.go.jp/article/suisan1932/47/6/47_6_793/_pdf/-char/enHori, K., Miyazawa, K., & Ito, K. (1990). Some common properties of lectins from marine algae. Hydrobiologia, 204–205(1), 561–566. https://doi.org/10.1007/BF00040287Hori, K., Sato, Y., Ito, K., Fujiwara, Y., Iwamoto, Y., Makino, H., & Kawakubo, A. (2007). Strict specificity for high-mannose type N-glycans and primary structure of a red alga Eucheuma serra lectin. Glycobiology, 17(5), 479–491. https://doi.org/10.1093/GLYCOB/CWM007Huisman, J. (2006). Algae of Australia: Nemaliales (1st ed., Vol. 1). CSIRO Publishing. ISBN: 9780643093782. 164 p.Hung, L. D., & Trinh, P. T. H. (2020). Structure and anticancer activity of a new lectin from the cultivated red alga, Kappaphycus striatus. Journal of Natural Medicines 2020 75:1, 75(1), 223–231. https://doi.org/10.1007/S11418-020-01455-0Hung, L. D., Sato, Y., & Hori, K. (2011). High-mannose N-glycan-specific lectin from the red alga Kappaphycus striatum (Carrageenophyte). Phytochemistry, 72(9), 855–861. https://doi.org/10.1016/J.PHYTOCHEM.2011.03.009Hwang, H. J., Han, J. W., Jeon, H., Cho, K., Kim, J. hee, Lee, D. S., & Han, J. W. (2020). Characterization of a Novel Mannose-Binding Lectin with Antiviral Activities from Red Alga, Grateloupia chiangii. Biomolecules, 10(2), 333. https://doi.org/10.3390/BIOM10020333Hwang, H. J., Han, J. W., Jeon, H., & Han, J. W. (2018a). Induction of recombinant lectin expression by an artificially constructed tandem repeat structure: A case study using Bryopsis plumosa mannose-binding lectin. Biomolecules, 8(4), 146. https://doi.org/10.3390/biom8040146Hwang, H. J., Han, J. W., Kim, G. H., & Han, J. W. (2018b). Functional expression and characterization of the recombinant n-acetyl-glucosamine/n-acetyl-galactosamine-specific marine algal lectin BPL3. Marine Drugs, 16(1), 13. https://doi.org/10.3390/md16010013Imberty, A. (2011). Synthesis and biological applications of glycoconjugates: Bacterial lectins and adhesins: Structures, Ligands and Functions. In O. Renaudet & N. Spinelli (Eds.), Synthesis and Biological Applications of Glycoconjugates, (1), 3–11. Bentham Science Publishers Ltd. https://doi.org/10.2174/97816080527761110101Ingram, G. (1985). Lectins and lectin-like molecules in lower plants. I. Marine algae (review). Developmental and Comparative Immunology, 9(1), 1–10. https://doi.org/10.1016/0145-305X(85)90054-0Jang, H., Lee, D.-H., Kang, H. G., & Lee, S. J. (2020). Concanavalin A targeting N-linked glycans in spike proteins influence viral interactions. Dalton Transactions, 49(39), 13538–13543. https://doi.org/10.1039/D0DT02932GJiang, S. Y., Ma, Z., & Ramachandran, S. (2010). Evolutionary history and stress regulation of the lectin superfamily in higher plants. BMC Evolutionary Biology, 10(1), 1–24. https://doi.org/10.1186/1471-2148-10-79Jung, M. G., Lee, K. P., Choi, H. G., Kang, S. H., Klochkova, T. A., Han, J. W., & Kim, G. H. (2010). Characterization of carbohydrate combining sites of Bryohealin, an algal lectin from Bryopsis plumosa. Journal of Applied Phycology, 22(6), 793–802. https://doi.org/10.1007/S10811-010-9521-YJunkunlo, K., Prachumwat, A., Tangprasittipap, A., Senapin, S., Borwornpinyo, S., Flegel, T., & Sritunyalucksana, K. (2012). A novel lectin domain-containing protein (LvCTLD) associated with response of the whiteleg shrimp Penaeus (Litopenaeus) vannamei to yellow head virus (YHV). Developmental and Comparative Immunology, 37(3–4), 334–341. https://doi.org/10.1016/J.DCI.2011.12.010Kamiya, H., Ogata, K., & Hori, K. (1982). Isolation and Characterization of a New Agglutinin in the Red Alga Palmaria palmata (L.) O. Kuntze. Botanica Marina, 25(11), 537–540. https://doi.org/10.1515/BOTM.1982.25.11.537Kamiya, H., Shimomi, K., & Shimizu, Y. (1980). Marine biopolymers with cell specificity--III--Agglutinins in the red alga Cystoclonium purpureum: isolation and characterization. Journal of Natural Products, 43(1), 136–139. https://doi.org/10.1021/NP50007A012Kawakubo, A., Makino, H., Ohnishi, J., Hirohara, H., & Hori, K. (1997). The marine red alga Eucheuma serra J. Agardh, a high yielding source of two isolectins. Journal of Applied Phycology, 9(4), 331–338. https://doi.org/10.1023/A:1007915006334Kawakubo, A., Makino, H., Ohnishi, J., Hirohara, H., & Hori, K. (1999). Occurrence of highly yielded lectins homologous within the genus Eucheuma. Journal of Applied Phycology, 11(2), 149–156. https://doi.org/10.1023/A:1008062127564Kelman, D., Posner, E. K., McDermid, K. J., Tabandera, N. K., Wright, P. R., & Wright, A. D. (2012). Antioxidant Activity of Hawaiian Marine Algae. Marine Drugs, 10(2), 403–416. https://doi.org/10.3390/MD10020403Kim, G. H., Klochkova, T. A., Yoon, K. S., Song, Y. S., & Lee, K. P. (2006). Purification and characterization of a lectin, bryohealin, involved in the protoplast formation of a marine green alga Bryopsis plumosa (Chlorophyta). Journal of Phycology, 42(1), 86–95. https://doi.org/10.1111/j.1529-8817.2006.00162.xKlyosov, A, Witczak, Z., Platt, D. (2008). Galectins. John Wiley & Sons, Inc. ISBN: 978-0-470-37318-7. 296 p.Kozlowski, L. P. (2017). Proteome-pI: proteome isoelectric pointdatabase. Nucleic Acids Research, 45(Database issue), D1112. https://doi.org/10.1093/NAR/GKW978Kumar, K., Reddy, G., Reddy, B., Shekar, P., Sumanthi, J., & Chandra, K. (2012). Biological role of lectins: A review. Journal of Orofacial Sciences, 4(1), 20. https://doi.org/10.4103/0975-8844.99883Kumar, S., & Barros, U. (2020). Purification and Partial Characterization of a Haemagglutinin from Ulva fasciata. Current Science, 118(4), 621–625. https://doi.org/10.18520/CS/V118/I4/621-625Laemmli, U. K. (1970). Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature, 227(5259), 680–685. https://doi.org/10.1038/227680A0Lambin, J., Demirel Asci, S., Dubiel, M., Tsaneva, M., Verbeke, I., Wytynck, P., De Zaeytijd, J., Smagghe, G., Subramanyam, K., & Van Damme, E. J. M. (2020). OsEUL Lectin Gene Expression in Rice: Stress Regulation, Subcellular Localization and Tissue Specificity. Frontiers in Plant Science, 11, 185. https://doi.org/10.3389/FPLS.2020.00185/BIBTEXLe, H. D., Sato, T., Shibata, H., & Hori, K. (2009). Biochemical comparison of lectins among three different color strains of the red alga Kappaphycus alvarezii. Fisheries Science, 75(3), 723–730. https://doi.org/10.1007/s12562-009-0088-yLebreton, A., Bonnardel, F., Dai, Y. C., Imberty, A., Martin, F. M., & Lisacek, F. (2021). A comprehensive phylogenetic and bioinformatics survey of lectins in the fungal kingdom. Journal of Fungi, 7(6), 453. https://doi.org/10.3390/JOF7060453/S1Leiner, Irvin, Sharon, Nathan, Goldstein, I. (1986). The Lectins: Properties, Functions, and Applications in Biology and Medicine. Elsevier. ISBN: 0124499457 9780124499454. 600 p.Leite, Y., Silva, L., Amorim, R., Freire, E., de Melo, D., Grangeiro, T., & Benevides, N. (2005). Purification of a lectin from the marine red alga Gracilaria ornata and its effect on the development of the cowpea weevil Callosobruchus maculatus (Coleoptera: Bruchidae). Biochimica et Biophysica Acta, 1724(1–2), 137–145. https://doi.org/10.1016/J.BBAGEN.2005.03.017Liao, J. H., Chien, C. T. H., Wu, H. Y., Huang, K. F., Wang, I., Ho, M. R., Tu, I. F., Lee, I. M., Li, W., Shih, Y. L., Wu, C. Y., Lukyanov, P. A., Hsu, S. T. D., & Wu, S. H. (2016). A Multivalent Marine Lectin from Crenomytilus grayanus Possesses Anti-cancer Activity through Recognizing Globotriose Gb3. Journal of the American Chemical Society, 138(14), 4787–4795. https://doi.org/10.1021/jacs.6b00111Liener, Irvin, Nathan, Sharon, Goldstein, I. (1986). The lectins. Biochemical Education, 7(1), 19. https://doi.org/10.1016/0307-4412(79)90018-9Lima, M., Carneiro, M., Nascimento, A., Grangeiro, T., Holanda, M., Amorim, R., & Benevides, N. (2005). Purification of a lectin from the marine red alga Gracilaria cornea and its effects on the cattle tick Boophilus microplus (Acari: Ixodidae). Journal of Agricultural and Food Chemistry, 53(16), 6414–6419. https://doi.org/10.1021/JF0509660Lindberg, L., Johansson, S., Liu, J., Grufman, P., & Holgersson, J. (2011). Is there a clinical need for a diagnostic test allowing detection of chain type-specific anti-A and anti-B? Transfusion, 51(3), 494–503. https://doi.org/10.1111/J.1537-2995.2010.02870.XLindberg, L., Theinert, K., Liu, J., & Holgersson, J. (2012). Adsorption of chain type-specific ABO antibodies on Sepharose-linked A and B tetrasaccharides. Transfusion, 52(11), 2356–2367. https://doi.org/10.1111/J.1537-2995.2012.03706.XLomonte, B., & Calvete, J. J. (2017). Strategies in ‘snake venomics’ aiming at an integrative view of compositional, functional, and immunological characteristics of venoms. The Journal of Venomous Animals and Toxins Including Tropical Diseases, 23(1), 12. https://doi.org/10.1186/S40409-017-0117-8Lourenço, S. O., Barbarino, E., De-Paula, J. C., Pereira, L. O. da S., & Marquez, U. M. L. (2002). Amino acid composition, protein content and calculation of nitrogen-to-protein conversion factors for 19 tropical seaweeds. Phycological Research, 50(3), 233–241. https://doi.org/10.1046/J.1440-1835.2002.00278.XLovrien, R., & Matulis, D. (2001). Selective precipitation of proteins. Current Protocols in Protein Science, Chapter 4(1). https://doi.org/10.1002/0471140864.PS0405S07Luo, T., Yang, H., Li, F., Zhang, X., & Xu, X. (2006). Purification, characterization and cDNA cloning of a novel lipopolysaccharide-binding lectin from the shrimp Penaeus monodon. Developmental and Comparative Immunology, 30(7), 607–617. https://doi.org/10.1016/J.DCI.2005.10.004Malini, M., Jansi, M., Margret, M., & Anooj, E. (2019). Characterization of lectin from Colpomenia sinuosa and the effect of physicochemical parameters on haemagglutination activity. A Journal of Composition Theory, XII(VII), 247–257. ISSN : 0731-6755.Mancera, J. E., Pinto, G., & Vilardy, S. (2013). Patrones de distribución estacional de masas de agua en la bahía de Santa Marta, Caribe colombiano: importancia relativa del Upwelling y Outwelling. Boletín de Investigaciones Marinas y Costeras, 42(2), 329–260. ISSN 0122-9761.Marchalonis, J.J., Edelman, J. M. (1968). Isolation and characterization of a hemagglutinin from Limulus polyphemus. Journal of Molecular Biology, 32(2), 453–465. https://doi.org/10.1016/0022-2836(68)90022-3Mathieu, E., Mati, N., Walet, M.-L., Lerouge, P., & Bardor, M. (2020). N- and O-Glycosylation Pathways in the Microalgae Polyphyletic Group. Frontiers in Plant Science, 11, 2027. https://doi.org/10.3389/FPLS.2020.609993Medina, G., Gibbs, R. V., Calvete, J. J., & Carpenter, B. G. (2007). Micro-heterogeneity and molecular assembly of the haemagglutinins from the red algae Bryothamnion seaforthii and B. triquetrum from the Caribbean Sea. European Journal of Phycology, 42(1), 105–112. https://doi.org/10.1080/09670260601012438Melo, F. R., Benevides, N. M. B., Pereira, M. G., Holanda, M. L., Mendes, F. N. P., Oliveira, S. R. M., Freitas, A. L. P., & Silva, L. M. C. M. (2004). Purification and partial characterisation of a lectin from the red marine alga Vidalia obtusiloba C. Agardh. Revista Brasileira de Botânica, 27(2), 263-269. https://doi.org/10.1590/S0100-84042004000200006Merck. (2017). Cromolith HPLC columns: Race through sepasations with revolutionary technology. In Catálogo Cromolith HPLC columns (pp. 1–52). Merck. http://www.supelco.com.tw/B-new-03-chromolith.pdfMesquita, J. X., de Brito, T. V., Fontenelle, T. P. C., Damasceno, R. O. S., de Souza, M. H. L. P., de Souza Lopes, J. L., Beltramini, L. M., Barbosa, A. L. dos R., & Freitas, A. L. P. (2021). Lectin from red algae Amansia multifida Lamouroux: Extraction, characterization and anti-inflammatory activity. International Journal of Biological Macromolecules, 170, 532–539. https://doi.org/10.1016/J.IJBIOMAC.2020.12.203Millet, J. K., Séron, K., Labitt, R. N., Danneels, A., Palmer, K. E., Whittaker, G. R., Dubuisson, J., & Belouzard, S. (2016). Middle East respiratory syndrome coronavirus infection is inhibited by griffithsin. Antiviral Research, 133, 1–8. https://doi.org/10.1016/J.ANTIVIRAL.2016.07.011Mishra, A., Behura, A., Mawatwal, S., Kumar, A., Naik, L., Mohanty, S. S., Manna, D., Dokania, P., Mishra, A., Patra, S. K., & Dhiman, R. (2019). Structure-function and application of plant lectins in disease biology and immunity. Food and Chemical Toxicology, 134, 110827. https://doi.org/10.1016/j.fct.2019.110827Mitchell, C. A., Ramessar, K., & O’Keefe, B. R. (2017). Antiviral lectins: Selective inhibitors of viral entry. Antiviral Research, 142, 37-54. https://doi.org/10.1016/J.ANTIVIRAL.2017.03.007Molchanova, V., Chernikov, O., Chikalovets, I., & Lukyanov, P. (2010). Purification and partial characterization of the lectin from the marine red alga Tichocarpus crinitus (Gmelin) Rupr. (Rhodophyta). Botanica marina, 53(1), 69–78. https://doi.org/10.1515/BOT.2010.001Motohashi, S., Jimbo, M., Naito, T., Suzuki, T., Sakai, R., & Kamiya, H. (2017). Isolation, amino acid sequences, and plausible functions of the galacturonic acid-binding egg lectin of the sea hare Aplysia kurodai. Marine Drugs, 15(6), 1–14. https://doi.org/10.3390/md15060161Moulaei, T., Shenoy, S. R., Giomarelli, B., Thomas, C., McMahon, J. B., Dauter, Z., O’Keefe, B. R., & Wlodawer, A. (2010). Monomerization of Viral Entry Inhibitor Griffithsin Elucidates the Relationship between Multivalent Binding to Carbohydrates and anti-HIV Activity. Structure, 18(9), 1104-1115. https://doi.org/10.1016/J.STR.2010.05.016Mu, J., Hirayama, M., Sato, Y., Morimoto, K., & Hori, K. (2017). A novel high-mannose specific lectin from the green alga Halimeda renschii exhibits a potent anti-influenza virus activity through high-affinity binding to the viral hemagglutinin. Marine Drugs, 15(8), 255. https://doi.org/10.3390/md15080255Muthana, S., Gulley, J., Hodge, J., Schlom, J., & Gildersleeve, J. (2015). ABO blood type correlates with survival on prostate cancer vaccine therapy. Oncotarget, 6(31), 32244–32256. https://doi.org/10.18632/ONCOTARGET.4993Nagano, C. (2007). Estudios estructurales de lectinas de algas marinas y de vegetales superiores. Universidad de Valencia. Tesis Doctotal, 171 p.Nagano, C., Debray, H., Nascimento, K. S., Pinto, V. P. T., Cavada, B. S., Saker-Sampaio, S., Farias, W. R. L., Sampaio, A. H., & Calvete, J. J. (2005a). HCA and HML isolated from the red marine algae Hypnea cervicornis and Hypnea musciformis define a novel lectin family. Protein Science, 14(8), 2167–2176. https://doi.org/10.1110/PS.051498505Nagano, C., Moreno, F., Bloch Jr, C., Prates, M., Calvete, J., Saker-Sampaio, S., Farias, W., Tavares, T., Nascimento, K., Grangeiro, T., Cavada, B., & Sampaio, A. (2005b). Purification and Characterization of a new Lectin from the Red Marine Alga Hypnea Musciformis. Protein & Peptide Letters, 9(2), 159–165. https://doi.org/10.2174/0929866023408931Naganuma, T., Hoshino, W., Shikanai, Y., Sato, R., Liu, K., Sato, S., Muramoto, K., Osada, M., Yoshimi, K., & Ogawa, T. (2014). Novel Matrix Proteins of Pteria penguin Pearl Oyster Shell Nacre Homologous to the Jacalin-Related β-Prism Fold Lectins. PLOS ONE, 9(11), e112326. https://doi.org/10.1371/JOURNAL.PONE.0112326Nascimento, K., Nagano, C., Nunes, E., Rodrigues, R., Goersch, G., Cavada, B., Calvete, J., Saker, S., Farias, W., & Sampaio, A. (2006). Isolation and characterization of a new agglutinin from the red marine alga Hypnea cervicornis J. Agardh. Biochemistry and Cell Biology, 84(1), 49–54. https://doi.org/10.1139/O05-152Neves, S. A., Freitas, A. L. P., Sousa, B. W., Rocha, M. I. A., Correia, M. V. O., Sampaio, D. A., & Viana, G. S. B. (2007). Antinociceptive properties in mice of a lectin isolated from the marine alga Amansia multifida Lamouroux. Brazilian Journal of Medical and Biological Research, 40(1), 127–134. https://doi.org/10.1590/S0100-879X2007000100016Niu, J., Wang, G., Lü, F., Zhou, B., & Peng, G. (2009). Characterization of a new lectin involved in the protoplast regeneration of Bryopsis hypnoides. Chinese Journal of Oceanology and Limnology, 27(3), 502–512. https://doi.org/10.1007/s00343-009-9157-4Nizet, V., Varki, A., & Aebi, M. (2017). Microbial Lectins: Hemagglutinins, Adhesins, and Toxins. Essentials of Glycobiology. https://doi.org/10.1101/GLYCOBIOLOGY.3E.037Ogawa, T., Watanabe, M., Naganuma, T., & Muramoto, K. (2011). Diversified Carbohydrate-Binding Lectins from Marine Resources. Journal of Amino Acids, 2011, 1–20. https://doi.org/10.4061/2011/838914Okuyama, S., Nakamura-Tsuruta, S., Tateno, H., Hirabayashi, J., Matsubara, K., & Hori, K. (2009). Strict binding specificity of small-sized lectins from the red alga Hypnea japonica for core (α1-6) fucosylated N-glycans. Bioscience, Biotechnology and Biochemistry, 73(4), 912–920. https://doi.org/10.1271/bbb.80881Oliveira, S., Nascimento, A., Lima, M., Leite, Y., & Benevides, N. (2002). Purification and characterisation of a lectin from the red marine alga Pterocladiella capillacea (S.G. Gmel.) Santel & Hommers. Brazilian Journal of Botany, 25(4), 397–403. https://doi.org/10.1590/S0100-84042002012000003Omokawa, Y., Miyazaki, T., Walde, P., Akiyama, K., Sugahara, T., Masuda, S., Inada, A., Ohnishi, Y., Saeki, T., & Kato, K. (2010). In vitro and in vivo anti-tumor effects of novel Span 80 vesicles containing immobilized Eucheuma serra agglutinin. International Journal of Pharmaceutics, 389(1–2), 157–167. https://doi.org/10.1016/j.ijpharm.2010.01.033Osório, C., Machado, S., Peixoto, J., Bessada, S., Pimentel, F. B., Alves, R. C., & Oliveira, M. B. P. P. (2020). Pigments Content (Chlorophylls, Fucoxanthin and Phycobiliproteins) of Different Commercial Dried Algae. Separations, 7(2), 33. https://doi.org/10.3390/SEPARATIONS7020033Pan, S., Tang, J., & Gu, X. (2010). Isolation and characterization of a novel fucose-binding lectin from the gill of bighead carp (Aristichthys nobilis). Veterinary Immunology and Immunopathology, 133(2–4), 154–164. https://doi.org/10.1016/J.VETIMM.2009.07.015Parseptiangga, D. (2015). Algal lectins and their potential uses. Squalen Bulletin of Marine & Fisheries Postharvest & Biotechnology, 10(2), 89–98. https://doi.org/http://dx.doi.org/10.15578/squalen.v10i2.125Pereira, L., & Critchley, A. T. (2020). The COVID 19 novel coronavirus pandemic 2020: seaweeds to the rescue? Why does substantial, supporting research about the antiviral properties of seaweed polysaccharides seem to go unrecognized by the pharmaceutical community in these desperate times? Journal of Applied Phycology, 32(3), 1. https://doi.org/10.1007/S10811-020-02143-YPeumans, W. J., Van Damme, E. J. M., Barre, A., & Rougé, P. (2001). Classification of plant lectins in families of structurally and evolutionary related proteins. Advances in Experimental Medicine and Biology, 491, 27–54. https://doi.org/10.1007/978-1-4615-1267-7_3Pinto, R., de Castro, F., de Santiago-Aguiar, R., & Ponte, M. (2018). Ultrasound-assisted extraction of phycobiliproteins from Spirulina (Arthrospira) platensis using protic ionic liquids as solvent. Algal Research, 31, 454–462. https://doi.org/10.1016/J.ALGAL.2018.02.021Pinto, V., Debray, H., Dus, D., Teixeira, E., De Oliveira, T., Carneiro, V., Teixeira, A., Filho, G., Nagano, C., Nascimento, K. S., Sampaio, A. H., & Cavada, B. S. (2009). Lectins from the red marine algal species Bryothamnion seaforthii and Bryothamnion triquetrum as tools to differentiate human colon carcinoma cells. Advances in Pharmacological Sciences, 2009, 1-9. https://doi.org/10.1155/2009/862162Pita, R., Anadón, A., & Martínez-Larrañaga, M. R. (2004). Ricina: una fitotoxina de uso potencial como arma. Revista de Toxicología, 51–63. ISSN: 0212-7113.Quintana, J. I., Delgado, S., Núñez-Franco, R., Cañada, F. J., Jiménez-Osés, G., Jiménez-Barbero, J., & Ardá, A. (2021). Galectin-4 N-Terminal Domain: Binding Preferences Toward A and B Antigens With Different Peripheral Core Presentations. Frontiers in Chemistry, 9, 664097. https://doi.org/10.3389/FCHEM.2021.664097Ramírez, J. S., Franco, A., García, L. M., & López, D. A. (2010). La comunidad fitoplanctónica durante eventos de surgencia y no surgencia, en la zona costera del departamento del magdalena, caribe colombiano. Boletin de Investigaciones Marinas y Costeras, 39(2), 233–263. https://doi.org/10.25268/BIMC.INVEMAR.2010.39.2.150Ravn, V., & Dabelsteen, E. (2000). Tissue distribution of histo-blood group antigens. APMIS : Acta Pathologica, Microbiologica, et Immunologica Scandinavica, 108(1), 1–28. https://doi.org/10.1034/J.1600-0463.2000.D01-1.XRozo, G. (2019). Algas del Caribe Colombiano: Fuente alternativa de alimentos, nutracéuticos y biomateriales. Universidad de Bogotá Jorge Tadeo Lozano, Departamento de Ciencias Biológicas y Ambientales. Tesis Doctoral, 113 p.Rüdiger, H. (2008). Structure and Function of Plant Lectins In Glycosciences (Hans, J. & Sigrun, G. eds.). 415–438p. https://doi.org/10.1002/9783527614738.CH23Sáez, P., Michałowski, T., Navas, M. J., Asuero, A. G., & Wybraniec, S. (2013). An Overview of the Kjeldahl Method of Nitrogen Determination. Part I. Early History, Chemistry of the Procedure, and Titrimetric Finish. Critical Reviews in Analytical Chemistry, 43(4), 178–223. https://doi.org/10.1080/10408347.2012.751786Sampaio, A., Rogers, C., & Barwell, C. (1998b). A galactose-specific lectin from the red marine alga Ptilota filicina. Phytochemistry, 48(5), 765–769. https://doi.org/10.1016/S0031-9422(97)00966-7Sampaio, A., Rogers, D., Barwell, C., Saker-Sampaio, S., Costa, F. H., & Ramos, M. (1998a). A new isolation procedure and further characterisation of the lectin from the red marine alga Ptilota serrata. Journal of Applied Phycology, 10(6), 539–546. https://doi.org/10.1023/A:1008061327247Sampaio, A., Rogers, D., Barwell, C., Saker-Sampaio, S., Nascimento, K., Nagano, C., & Farias, W. (2002). New affinity procedure for the isolation and further characterization of the blood group B specific lectin from the red marine alga Ptilota plumosa. Journal of Applied Phycology, 14(6), 489–495. https://doi.org/10.1023/A:1022327010736Sansone, C., & Brunet, C. (2020). Marine Algal Antioxidants. Antioxidants, 9(3), 206. https://doi.org/10.3390/ANTIOX9030206Sato, Y., Hirayama, M., Morimoto, K., Yamamoto, N., Okuyama, S., & Hori, K. (2011a). High mannose-binding lectin with preference for the cluster of alpha1-2-mannose from the green alga Boodlea coacta is a potent entry inhibitor of HIV-1 and influenza viruses. The Journal of Biological Chemistry, 286(22), 19446–19458. https://doi.org/10.1074/JBC.M110.216655Sato, Y., Morimoto, K., Hirayama, M., & Hori, K. (2011b). High mannose-specific lectin (KAA-2) from the red alga Kappaphycus alvarezii potently inhibits influenza virus infection in a strain-independent manner. Biochemical and Biophysical Research Communications, 405(2), 291–296. https://doi.org/10.1016/J.BBRC.2011.01.031Schägger, H., & von Jagow, G. (1987). Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Analytical Biochemistry, 166(2), 368–379. https://doi.org/10.1016/0003-2697(87)90587-2Schiener, P., Black, K. D., Stanley, M. S., & Green, D. H. (2014). The seasonal variation in the chemical composition of the kelp species Laminaria digitata, Laminaria hyperborea, Saccharina latissima and Alaria esculenta. Journal of Applied Phycology, 27(1), 363–373. https://doi.org/10.1007/S10811-014-0327-1Sehnal, D., Bittrich, S., Deshpande, M., Svobodová, R., Berka, K., Bazgier, V., Velankar, S., Burley, S. K., Koča, J., & Rose, A. S. (2021). Mol∗Viewer: Modern web app for 3D visualization and analysis of large biomolecular structures. Nucleic Acids Research, 49(W1), W431–W437. https://doi.org/10.1093/NAR/GKAB314Sharon, N. (1987). Bacterial lectins, cell-cell recognition and infectious disease. FEBS Letters, 217(2), 145–157. https://doi.org/10.1016/0014-5793(87)80654-3Sharon, N., & Lis, H. (2004). History of lectins: From hemagglutinins to biological recognition molecules. Glycobiology, 14(11), 53–62. https://doi.org/10.1093/glycob/cwh122Sharon, N., & Lis, H. (2007). Lectins: Second edition. Springer. ISBN: 978-1-4020-6605-4. 454 p.Shiomi, K., Kamiya, H., & Shimizu, Y. (1979). Purification and characterization of an agglutinin in the red alga agardhiella tenera. Biochimica et Biophysica Acta (BBA) - Protein Structure, 576(1), 118–127. https://doi.org/10.1016/0005-2795(79)90490-2Shiomi, K., Yamanaka, H., & Kichuchi, T. (1980). Biochemical Properties of Hemagglutinins in the Red Alga Serraticardia maxima. The Japanese Society of Fisheries Science, 46(11), 1369–1373. https://doi.org/10.2331/SUISAN.46.1369Shiomi, K., Yamanaka, H., & Kikuchi, T. (1981). Purification and Physicochemical Properties of a Hemagglutinin (GVA-1) in the Red Alga Gracilaria verrucosa. J-STAGE, 47(8), 1079–1084. https://doi.org/10.2331/SUISAN.47.1079Silva, L., Lima, V., Holanda, M., Pinheiro, P., Rodrigues, J., Lima, M., & Benevides, N. (2010). Antinociceptive and anti-inflammatory activities of lectin from marine red alga Pterocladiella capillacea. Biological & Pharmaceutical Bulletin, 33(5), 830–835. https://doi.org/10.1248/BPB.33.830Silva, S. (2013). Purificação e caracterização de CiL-2, uma nova lectina isolada da alga marinha verde Codium isthmocladum Vickers. Universidade Federal do Ceará, Departamento de Engenharia de Pesca. Tesis de Mestría, 72 p.Singh, R. S., Thakur, S. R., & Bansal, P. (2015). Algal lectins as promising biomolecules for biomedical research. Critical Reviews in Microbiology, 41(1), 77–88. https://doi.org/10.3109/1040841X.2013.798780Singh, R. S., & Walia, A. K. (2018). Lectins from red algae and their biomedical potential. Journal of Applied Phycology, 30(3), 1833–1858. https://doi.org/10.1007/s10811-017-1338-5Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J., & Klenk, D. C. (1985). Measurement of protein using bicinchoninic acid. Analytical Biochemistry, 150(1), 76–85. https://doi.org/10.1016/0003-2697(85)90442-7Stepanchenko, N. S., Novikova, G. V., & Moshkov, I. E. (2011). Protein quantification. Russian Journal of Plant Physiology, 58(4), 737–742. https://doi.org/10.1134/S1021443711040182Sun, J., Wang, L., Wang, B., Guo, Z., Liu, M., Jiang, K., Tao, R., & Zhang, G. (2008). Purification and characterization of a natural lectin from the plasma of the shrimp Fenneropenaeus chinensis. Fish & Shellfish Immunology, 25(3), 290–297. https://doi.org/10.1016/J.FSI.2008.06.001Sun, L., Wang, S., Gong, X., Zhao, M., Fu, X., & Wang, L. (2009). Isolation, purification and characteristics of R-phycoerythrin from a marine macroalga Heterosiphonia japonica. Protein Expression and Purification, 64(2), 146–154. https://doi.org/10.1016/J.PEP.2008.09.013Swamy, J. M., Sastry, V. M., & Surolia, A. (1985). Prediction and comparison of the secondary structure of legume lectins. Journal of Biosciences, 9(3–4), 203–212. https://doi.org/10.1007/BF02702696Tan, C. H., Tan, K. Y., Yap, M. K. K., & Tan, N. H. (2017). Venomics of Tropidolaemus wagleri, the sexually dimorphic temple pit viper: Unveiling a deeply conserved atypical toxin arsenal. Scientific Reports, 7, 12. https://doi.org/10.1038/SREP43237Tasumi, S., Yang, W. J., Usami, T., Tsutsui, S., Ohira, T., Kawazoe, I., Wilder, M. N., Aida, K., & Suzuki, Y. (2004). Characteristics and primary structure of a galectin in the skin mucus of the Japanese eel, Anguilla japonica. Developmental and Comparative Immunology, 28(4), 325–335. https://doi.org/10.1016/J.DCI.2003.08.006Taylor, M. E., Drickamer, K., Schnaar, R. L., Etzler, M. E., & Varki, A. (2017). Discovery and Classification of Glycan-Binding Proteins In Essentials of Glycobiology (Chapter 27). https://doi.org/10.1101/GLYCOBIOLOGY.3E.028Teixeira, E., Sousa, F., do Nascimento, K., Carneiro, V., Nagano, C., da Silva, B., Sampaio, A., & Cavada, B. (2012). Biological applications of plants and algae lectins: an overview In Comprehensive Studies on Glycobiology and Glycotechnology (C. Chang Ed.) (354 p.). IntechOpen. https://doi.org/10.5772/50632Thompson, M., Owen, L., Wilkinson, K., Wood, R., & Damant, A. (2002). A comparison of the Kjeldahl and Dumas methods for the determination of protein in foods, using data from a proficiency testing scheme. Analyst, 127(12), 1666–1668. https://doi.org/10.1039/B208973BTorres, J. (2010). Purificación y caracterización parcial de mucina citoplasmática utilizando la lectina de Salvia bogotensis / Partial purification and characterization of citoplasmatic mucin using the Salvia bogotensis lectin. Universidad Nacional de Colombia, Departamento de Química. Tesis de Maestría, 82 p.Tsaneva, M., de Schutter, K., Verstraeten, B., & Van Damme, E. J. M. (2019). Lectin sequence distribution in QTLs from rice (Oryza sativa) suggest a role in morphological traits and stress responses. International Journal of Molecular Sciences, 20(2). https://doi.org/10.3390/ijms20020437Tsutsui, S., Komatsu, Y., Sugiura, T., Araki, K., & Nakamura, O. (2011). A unique epidermal mucus lectin identified from catfish (Silurus asotus): first evidence of intelectin in fish skin slime. Journal of Biochemistry, 150(5), 501–514. https://doi.org/10.1093/JB/MVR085Van Damme, E. (2021). 35 years in plant lectin research: a journey from basic science to applications in agriculture and medicine. Glycoconjugate Journal 2021, 1–15. https://doi.org/10.1007/S10719-021-10015-XVanderlei, E., Patoilo, K., Lima, N., Lima, A., Rodrigues, J., Silva, L., Lima, M., Lima, V., & Benevides, N. (2010). Antinociceptive and anti-inflammatory activities of lectin from the marine green alga Caulerpa cupressoides. International Immunopharmacology, 10(9), 1113–1118. https://doi.org/10.1016/J.INTIMP.2010.06.014Varki, A, Etzler, M. E., Cummings, R. D., & Esko, J. D. (2009). Discovery and Classification of Glycan-Binding Proteins. In Essentials of Glycobiology, second edition. Cold Spring Harbor Laboratory Press. https://www.ncbi.nlm.nih.gov/books/NBK1923/Varki, Ajit, Cummings, R. D., Esko, J. D., Stanley, P., Hart, G. W., Aebi, M., Darvill, A. G., Kinoshita, T., Packer, N. H., Prestegard, J. H., Schnaar, R. L., & Seeberger, P. H. (2017). Essentials of glycobiology, third edition. Cold Spring Harbor Laboratory Press.Varki, Ajit, & Kornfeld, S. (2017). Historical Background and Overview. In Essentials of Glycobiology, third edition. Cold Spring Harbor Laboratory Press. https://doi.org/10.1101/GLYCOBIOLOGY.3E.001Vasta, G. R., Nita-Lazar, M., Giomarelli, B., Ahmed, H., Du, S., Cammarata, M., Parrinello, N., Bianchet, M. A., & Amzel, L. M. (2011). Structural and functional diversity of the lectin repertoire in teleost fish: Relevance to innate and adaptive immunity. Developmental & Comparative Immunology, 35(12), 1388–1399. https://doi.org/10.1016/J.DCI.2011.08.011Vattuone, M. A., Prado, F. E., Sayago, J. E., & Rodolfo Sampietro, A. (1991). Effect of lectins on Ricinus invertase. Phytochemistry, 30(2), 419–422. https://doi.org/10.1016/0031-9422(91)83696-IVerhaest, M., Lammens, W., Le Roy, K., De Coninck, B., De Ranter, C. J., Van Laere, A., Van Den Ende, W., & Rabijns, A. (2006). X-ray diffraction structure of a cell-wall invertase from Arabidopsis thaliana. Acta Crystallographica Section D: Biological Crystallography, 62(12), 1555–1563. https://doi.org/10.1107/S0907444906044489Vimala, T. P. T. V. (2015). Estimation of Pigments from Seaweeds by Using Acetone and DMSO. International Journal of Science and Research (IJSR), 4(10), 1850–1854. ISSN: 2319-7064Wang, S., Zhong, F., Zhang, Y., Wu, Z., Lin, Q., & Xie, L. (2004). Molecular characterization of a new lectin from the marine alga Ulva pertusa. Acta Biochimica et Biophysica Sinica, 36(2), 111–117. https://doi.org/10.1093/ABBS/36.2.111Wang, X., & Wang, J. (2013). Diversity and multiple functions of lectins in shrimp immunity. Developmental & Comparative Immunology, 39(1–2), 27–38. https://doi.org/10.1016/J.DCI.2012.04.009Wang, Y., Bu, L., Yang, L., Li, H., & Zhang, S. (2016). Identification and functional characterization of fish-egg lectin in zebrafish. Fish & Shellfish Immunology, 52, 23–30. https://doi.org/10.1016/J.FSI.2016.03.016Wells, M. L., Potin, P., Craigie, J. S., Raven, J. A., Merchant, S. S., Helliwell, K. E., Smith, A. G., Camire, M. E., & Brawley, S. H. (2017). Algae as nutritional and functional food sources: revisiting our understanding. Journal of Applied Phycology, 29(2), 949. https://doi.org/10.1007/S10811-016-0974-5Widmann, M., Trodler, P., & Pleiss, J. (2010). The Isoelectric Region of Proteins: A Systematic Analysis. PLoS ONE, 5(5), e10546. https://doi.org/10.1371/JOURNAL.PONE.0010546Wiltshire, K. H., Boersma, M., Möller, A., & Buhtz, H. (2000). Extraction of pigments and fatty acids from the green alga Scenedesmus obliquus (Chlorophyceae). Aquatic Ecology 2000 34:2, 34(2), 119–126. https://doi.org/10.1023/A:1009911418606Wingfield, P. T. (1998). Protein Precipitation Using Ammonium Sulfate. Current Protocols in Protein Science, 13(1), A.3F.1-A.3F.8. https://doi.org/10.1002/0471140864.PSA03FS13Wingfield, P. T. (2001). Protein Precipitation Using Ammonium Sulfate. Current Protocols in Protein Science, APPENDIX 3, Appendix. https://doi.org/10.1002/0471140864.PSA03FS13Wingfield, P. T. (2016). Protein Precipitation Using Ammonium Sulfate. Current Protocols in Protein Science, 84(1), A.3F.1-A.3F.9. https://doi.org/10.1002/0471140864.PSA03FS84Wiriyadamrikul, J., Geraldino, P. J. L., Huisman, J. M., Lewmanomont, K., & Boo, S. M. (2019). Molecular diversity of the calcified red algal genus Tricleocarpa (Galaxauraceae, Nemaliales) with the description of T. jejuensis and T. natalensis. Phycologia, 52(4), 338–351. https://doi.org/https://doi.org/10.2216/13-155.1Wu, M., Tong, C., Wu, Y., Liu, S., & Li, W. (2016). A novel thyroglobulin-binding lectin from the brown alga Hizikia fusiformis and its antioxidant activities. Food Chemistry, 201, 7–13. https://doi.org/10.1016/J.FOODCHEM.2016.01.061Xu, W.-T., Wang, X.-W., Zhang, X.-W., Zhao, X.-F., Yu, X.-Q., & Wang, J.-X. (2010). A new C-type lectin (FcLec5) from the Chinese white shrimp Fenneropenaeus chinensis. Amino Acids, 39(5), 1227–1239. https://doi.org/10.1007/S00726-010-0558-7Yang, Y., Zhang, M., Alalawy, A. I., Almutairi, F. M., Al-Duais, M. A., Wang, J., & Salama, E. S. (2021). Identification and characterization of marine seaweeds for biocompounds production. Environmental Technology and Innovation, 24. https://doi.org/10.1016/J.ETI.2021.101848Yoon, K. S., Lee, K. P., Klochkova, T. A., & Kim, G. H. (2008). Molecular characterization of the lectin, Bryohealin, involved in the protoplast regeneration in the marine alga Bryopsis plumosa (Chlorophyta). Journal of Phycology, 44(1), 103–112. https://doi.org/10.1111/J.1529-8817.2007.00457.XZhang, Y., Qiu, L., Song, L., Zhang, H., Zhao, J., Wang, L., Yu, Y., Li, C., Li, F., Xing, K., & Huang, B. (2009). Cloning and characterization of a novel C-type lectin gene from shrimp Litopenaeus vannamei. Fish & Shellfish Immunology, 26(1), 183–192. https://doi.org/10.1016/J.FSI.2008.03.008Zhao, Z.-Y., Yin, Z.-X., Xu, X.-P., Weng, S.-P., Rao, X.-Y., Dai, Z.-X., Luo, Y.-W., Yang, G., Li, Z.-S., Guan, H.-J., Li, S.-D., Chan, S.-M., Yu, X.-Q., & He, J.-G. (2009). A Novel C-Type Lectin from the Shrimp Litopenaeus vannamei Possesses Anti-White Spot Syndrome Virus Activity . Journal of Virology, 83(1), 347–356. https://doi.org/10.1128/JVI.00707-08Zimba, P. V. (2012). An improved phycobilin extraction method. Harmful Algae, 17, 35–39. https://doi.org/10.1016/J.HAL.2012.02.009Ziółkowska, N. E., Shenoy, S. R., O’Keefe, B. R., & Wlodawer, A. (2007). Crystallographic studies of the complexes of antiviral protein griffithsin with glucose and N-acetylglucosamine. Protein Science : A Publication of the Protein Society, 16(7), 1485. https://doi.org/10.1110/PS.072889407ORIGINAL1018479298.2021.pdf1018479298.2021.pdfTesis de Maestría en Bioquímicaapplication/pdf2901622https://repositorio.unal.edu.co/bitstream/unal/81388/3/1018479298.2021.pdfb6e031920f4c7ec1e443eeac7d762146MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81388/4/license.txt8153f7789df02f0a4c9e079953658ab2MD54THUMBNAIL1018479298.2021.pdf.jpg1018479298.2021.pdf.jpgGenerated Thumbnailimage/jpeg4299https://repositorio.unal.edu.co/bitstream/unal/81388/5/1018479298.2021.pdf.jpgc7cf64068048a0110447b604a9f4de9cMD55unal/81388oai:repositorio.unal.edu.co:unal/813882024-08-05 23:10:22.612Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK |