Operational planning of smart microgrids considering intraday markets
ilustraciones, diagramas
- Autores:
-
Garcia Guarín, Pedro Julian
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2022
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/81389
- Palabra clave:
- 330 - Economía::333 - Economía de la tierra y de la energía
INTELIGENCIA ARTIFICIAL
Artificial intelligence
Renewable energy sources
RECURSOS ENERGETICOS RENOVABLES
Smart microgrid
intraday markets
heuristic optimization
Microrredes inteligentes
Mercados intradía
Optimización heurística
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_5e350c6bbe82992cf790f35725728a15 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/81389 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Operational planning of smart microgrids considering intraday markets |
dc.title.translated.spa.fl_str_mv |
Planificación operativa de microrredes inteligentes considerando mercados intradiarios |
title |
Operational planning of smart microgrids considering intraday markets |
spellingShingle |
Operational planning of smart microgrids considering intraday markets 330 - Economía::333 - Economía de la tierra y de la energía INTELIGENCIA ARTIFICIAL Artificial intelligence Renewable energy sources RECURSOS ENERGETICOS RENOVABLES Smart microgrid intraday markets heuristic optimization Microrredes inteligentes Mercados intradía Optimización heurística |
title_short |
Operational planning of smart microgrids considering intraday markets |
title_full |
Operational planning of smart microgrids considering intraday markets |
title_fullStr |
Operational planning of smart microgrids considering intraday markets |
title_full_unstemmed |
Operational planning of smart microgrids considering intraday markets |
title_sort |
Operational planning of smart microgrids considering intraday markets |
dc.creator.fl_str_mv |
Garcia Guarín, Pedro Julian |
dc.contributor.advisor.none.fl_str_mv |
Rivera Rodríguez, Sergio Raúl Álvarez Álvarez, David Leonardo |
dc.contributor.author.none.fl_str_mv |
Garcia Guarín, Pedro Julian |
dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Investigación Emc-Un |
dc.subject.ddc.spa.fl_str_mv |
330 - Economía::333 - Economía de la tierra y de la energía |
topic |
330 - Economía::333 - Economía de la tierra y de la energía INTELIGENCIA ARTIFICIAL Artificial intelligence Renewable energy sources RECURSOS ENERGETICOS RENOVABLES Smart microgrid intraday markets heuristic optimization Microrredes inteligentes Mercados intradía Optimización heurística |
dc.subject.lemb.none.fl_str_mv |
INTELIGENCIA ARTIFICIAL Artificial intelligence Renewable energy sources RECURSOS ENERGETICOS RENOVABLES |
dc.subject.proposal.eng.fl_str_mv |
Smart microgrid intraday markets heuristic optimization |
dc.subject.proposal.spa.fl_str_mv |
Microrredes inteligentes Mercados intradía Optimización heurística |
description |
ilustraciones, diagramas |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-03-25T18:03:04Z |
dc.date.available.none.fl_str_mv |
2022-03-25T18:03:04Z |
dc.date.issued.none.fl_str_mv |
2022-03-04 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/81389 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/81389 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
[1] H. Gharavi and R. Ghafurian, “Smart grid: The electric energy system of the future,” 2011, Accessed: Nov. 21, 2018. [Online]. Available: https://pdfs.semanticscholar.org/a2b1/e46ddd10e2b15691e33bf47832fad5c988cb.pdf. [2] M. Amin, “The case for Smart Grid,” Fortnightly, vol. 1, pp. 1–9, 2015, Accessed: Nov. 21, 2018. [Online]. Available: http://www.ourenergypolicy.org/wp-content/uploads/2015/06/20150604091846-Amin-Maaterials-PUF-1503.pdf. [3] P. Sarmiento, “Planificación Eficiente de Redes Inteligentes (Smart grids) Incluyendo la Gestión Activa de la Demanda: Aplicación a Ecuador.,” 2018. [4] J. García-Guarín, S. Rivera, and H. Rodriguez, “Revisión REI: realidad en Colombia y expectativas,” V encuentro Int. innovación tecnológica, vol. 5, pp. 1–7, 2018, [Online]. Available: https://eventos.ufpso.edu.co/evento/1383/v-encuentro-internacional-de-innovacion-tecnologica.html. [5] P. Siano, “Demand response and smart grids—A survey,” Renew. Sustain. Energy Rev., vol. 30, pp. 461–478, Feb. 2014, doi: 10.1016/J.RSER.2013.10.022. [6] S. Jadid and A. Zakariazadeh, “Energy and reserve scheduling of microgrid using multi-objective optimization,” in 22nd International Conference and Exhibition on Electricity Distribution (CIRED 2013), 2013, pp. 0660–0660, doi: 10.1049/cp.2013.0865. [7] J. Sánchez, “Estimación del impacto de las Redes Eléctricas Inteligentes (Smart Grids) en el precio de la electricidad en Colombia,” 2016. [8] C. Barreto, E. Mojica-Nava, and N. Quijano, “Design of mechanisms for demand response programs,” in Proceedings of the IEEE Conference on Decision and Control, 2013, pp. 1828–1833, doi: 10.1109/CDC.2013.6760148. [9] J. Soares, M. A. Fotouhi Ghazvini, N. Borges, and Z. Vale, “A stochastic model for energy resources management considering demand response in smart grids,” Electr. Power Syst. Res., vol. 143, pp. 599–610, 2017, doi: 10.1016/j.epsr.2016.10.056. [10] J. P. Fossati, “Revisión bibliográfica sobre micro redes inteligentes,” Lit. Rev. microgrids, vol. 9, pp. 13–20, 2011, Accessed: Mar. 19, 2019. [Online]. Available: http://www.um.edu.uy/_upload/_descarga/web_descarga_239_Revisinbibliogrficamicroredesinteligentes.-Fossati.pdf. [11] F. A. Pavas Martinez, O. A. Gonzalez Vivas, and Y. S. Sanchez Rosas, “Cuantificación del ahorro de energía eléctrica en clientes residenciales mediante acciones de gestión de demanda,” Rev. UIS Ing., vol. 16, no. 2, pp. 217–226, 2017, doi: 10.18273/revuin.v16n2-2017020. [12] F. Quilumba, W. Lee, H. Huang, and R. Szabados, “Using smart meter data to improve the accuracy of intraday load forecasting considering customer behavior similarities,” IEEE Trans. Smart Grid, vol. 6, no. 2, pp. 911–018, 2015, Accessed: Mar. 11, 2019. [Online]. Available: [13] M. Cortés, O. González, … E. S.-2018 I. P., and undefined 2018, “Opinion Dynamics and Social Incentives Applied to Demand Response Programs,” ieeexplore.ieee.org, Accessed: May 19, 2019. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/8511794/. [14] M. Ghazvini, J. Soares, and O. Abrishambaf, “Demand response implementation in smart households,” Energy Build., vol. 143, pp. 129–148, 2017, Accessed: Nov. 21, 2018. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S037877881730823X. [15] C. Cecati, C. Citro, and P. Siano, “Combined Operations of Renewable Energy Systems and Responsive Demand in a Smart Grid,” IEEE Trans. Sustain. Energy, vol. 2, no. 4, pp. 468–476, Oct. 2011, doi: 10.1109/TSTE.2011.2161624. [16] J. García, G. L. Álvarez, F. Marín, and J. Moncada, “Veinte años de funcionamiento del Mercado Eléctrico Mayorista en Colombia: algunas reflexiones,” 2015, Accessed: Nov. 21, 2018. [Online]. Available: http://repository.eafit.edu.co/handle/10784/7350. [17] F. Lezama, J. Soares, Z. Vale, J. Rueda, and M. Wagner, “CEC/GECCO 2019 Competition Evolutionary Computation in Uncertain Environments: A Smart Grid Application,” 2018, Accessed: Nov. 21, 2018. [Online]. Available: http://www.gecad.isep.ipp.pt/WCCI2018-SG-COMPETITION/files/WCCI2018_Guidelines_CISG.pdf. [18] J. Momoh and L. Mili, Eds., Economic Market Design and Planning for Electric Power Systems. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2009. [19] Y. Yang et al., “Review of Information Disclosure in Different Electricity Markets,” Energies, vol. 11, no. 12, p. 3424, Dec. 2018, doi: 10.3390/en11123424. [20] M. de la CREG, Propuesta para la implementación de un despacho vinculante-GREG-004B. 2016. [21] J. A. Juan, “Implementación de Mercados Intradiarios de Generación en Colombia,” 2017. [22] C. Bordons, F. Torres, and L. Valverde, “Gestión óptima de la energía en microrredes con generación renovable,” Rev. Iberoam. Automática e Informática Ind., vol. 12, no. 2, pp. 117–132, 2015, Accessed: Mar. 11, 2019. [Online]. Available: https://polipapers.upv.es/index.php/RIAI/article/view/9384. [23] J. Yue, Z. Hu, A. Anvari-Moghaddam, and J. Guerrero, “A Multi-Market-Driven Approach to Energy Scheduling of Smart Microgrids in Distribution Networks,” Sustainability, vol. 11, no. 2, pp. 1–16, 2019, Accessed: Mar. 10, 2019. [Online]. Available: https://www.mdpi.com/2071-1050/11/2/301. [24] J. Arévalo, F. Santos, and S. Rivera, “Application of Analytical Uncertainty Costs of Solar, Wind and Electric Vehicles in Optimal Power Dispatch,” Ingeniería, vol. 22, no. 3, pp. 324–346, 2017, doi: 10.14483/23448393.11673. [25] S. Manrique-Naranjo, M. Guzman, and S. Rodriguez, “Hybrid inference algorithm by combining genetic programming methods and nonlinear regression techniques,” 2018, Accessed: Nov. 21, 2018. [Online]. Available: https://www.researchgate.net/profile/Sergio_Rivera/publication/328096390_HYBRID_INFERENCE_ALGORITHM_BY_COMBINING_GENETIC_PROGRAMMING_METHODS_AND_NONLINEAR_REGRESSION_TECHNIQUES/links/5bb74a2f4585159e8d86f1d0/HYBRID-INFERENCE-ALGORITHM-BY-COMBINING-GENETIC. [26] I. Konstantelos, S. Giannelos, and G. Strbac, “Strategic valuation of smart grid technology options in distribution networks,” IEEE Trans. Power Syst., vol. 32(2), pp. 1293–1303, 2017, Accessed: Nov. 21, 2018. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/7508459/. [27] J. Chen, B. Yang, and X. Guan, “Optimal demand response scheduling with Stackelberg game approach under load uncertainty for smart grid,” IEEE SmartGridComm 2012, vol. 1, pp. 546–551, 2012, doi: 10.1109/SmartGridComm.2012.6486042. [28] T. Sousa, H. Morais, Z. Vale, P. Faria, and J. Soares, “Intelligent Energy Resource Management Considering Vehicle-to-Grid: A Simulated Annealing Approach,” IEEE Trans. Smart Grid, vol. 3, no. 1, pp. 535–542, Mar. 2012, doi: 10.1109/TSG.2011.2165303. [29] A. Y. Saber and G. K. Venayagamoorthy, “Resource scheduling under uncertainty in a smart grid with renewables and plug-in vehicles,” IEEE Syst. J., vol. 6, no. 1, pp. 103–109, 2012, doi: 10.1109/JSYST.2011.2163012. [30] B. M. Radhakrishnan, D. Srinivasan, and R. Mehta, “Fuzzy-Based Multi-Agent System for Distributed Energy Management in Smart Grids,” Int. J. Uncertainty, Fuzziness Knowlege-Based Syst., vol. 24, no. 5, pp. 781–803, Oct. 2016, doi: 10.1142/S0218488516500355. [31] C. Schwaegerl and L. Tao, “The Microgrids Concept,” in Microgrids, 1st ed., N. D. Hatziargyriou, Ed. Chichester, United Kingdom: John Wiley and Sons Ltd, 2013, pp. 1–24. [32] H. Liang and W. Zhuang, “Stochastic modeling and optimization in a microgrid: A survey,” Energies, vol. 7, pp. 2027–2050, 2014, doi: 10.3390/en7042027. [33] R. Brandl, P. Kotsampopoulos, G. Lauss, M. Maniatopoulos, and M. Nuschke, “Advanced Testing Chain Supporting the Validation of Smart Grid Systems and Technologies,” IEEE Work. Complex. Eng., pp. 1–6, 2018. [34] Y. Zhou, C. Wang, J. Wu, J. Wang, M. Cheng, and G. Li, “Optimal scheduling of aggregated thermostatically controlled loads with renewable generation in the intraday electricity market,” Appl. Energy, vol. 188, pp. 456–465, 2017, doi: 10.1016/j.apenergy.2016.12.008. [35] J. Felipe and J. Arenas, “Implementación de Mercados Intradiarios de Generación en Colombia,” 2017. [36] J. Giraldo, A. Cardenas, and N. Quijano, “Integrity Attacks on Real-Time Pricing in Smart Grids: Impact and Countermeasures,” IEEE Trans. Smart Grid, vol. 8, no. 5, pp. 2249–2257, Sep. 2017, doi: 10.1109/TSG.2016.2521339. [ [37] T. Strasser, F. Andrén, J. Kathan, and C. Cecati, “A review of architectures and concepts for intelligence in future electric energy systems,” IEEE Trans. Ind. Electron., vol. 62(4), pp. 2424–2438, 2015, Accessed: Nov. 21, 2018. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/6915899/. [38] J. Guacaneme, D. Velasco, and C. Trujillo, “Revisión de las características de sistemas de almacenamiento de energía para aplicaciones en micro redes,” Inf. tecnológica, vol. 25(2), pp. 175–188, 2014, Accessed: Nov. 21, 2018. [Online]. Available: https://scielo.conicyt.cl/scielo.php?pid=S0718-07642014000200020&script=sci_arttext&tlng=en. [39] T. Hong, P. Wang, and L. White, “Weather station selection for electric load forecasting,” Int. J. Forecast., vol. 31, no. 2, pp. 286–295, 2015, Accessed: Mar. 22, 2019. [Online]. Available: http://blog.drhongtao.com/2018/10/bigdeal-forecasting-competition-2018.html. [40] S. Vargas, D. Rodriguez, and S. Rivera, “Mathematical Formulation and Numerical Validation of Uncertainty Costs for Controllable Loads,” Rev. Int. Métodos Numéricos para Cálculo y Diseño en Ing., vol. 35, no. 1, Feb. 2019, Accessed: Mar. 06, 2019. [Online]. Available: https://www.scipedia.com/public/Vargas_et_al_2019a#. [41] F. Lezama, J. Soares, R. Faia, T. Pinto, and Z. Vale, “A New Hybrid-Adaptive Differential Evolution for a Smart Grid Application under Uncertainty,” in 2018 IEEE Congress on Evolutionary Computation, CEC 2018 - Proceedings, Jul. 2018, pp. 1–8, doi: 10.1109/CEC.2018.8477808. [42] B. Matthiss, A. Momenifarahaniy, K. Ohnmeissz, and M. Felderx, “Influence of Demand and Generation Uncertainty on the Operational Efficiency of Smart Grids,” in 7th International IEEE Conference on Renewable Energy Research and Applications, ICRERA 2018, 2018, pp. 751–756, doi: 10.1109/ICRERA.2018.8566733. [43] A. Nouri, A. Soroudi, and A. Kezne, “Strategic Scheduling in Smart Grids,” IEEE EEEIC, pp. 1–6, 2018. [44] W. Dickerson et al., “Smart grid measurement uncertainty: Definitional and influence quantity considerations,” in 2018 1st International Colloquium on Smart Grid Metrology, SmaGriMet 2018, Mar. 2018, pp. 1–5, doi: 10.23919/SMAGRIMET.2018.8369831. [45] A. R. Herrera-Orozco, J. J. Mora-Florez, and J. F. Patiño, “Simulation and Validation of Polynomial Electric Load Model Using ATP,” Sci. Tech., vol. 18, no. 01, pp. 11–18, 2013, Accessed: Aug. 27, 2020. [Online]. Available: http://revistas.utp.edu.co/index.php/revistaciencia/article/view/7571. [46] D. L. Alvarez, “Dynamic Line Rating State Estimation,” 2017. [47] B. Gu, Z. Chen, T. Jiv, L. Zhang, Q. Wu, and M. Li, “Quasi-monte Carlo simulation based economic dispatch with wind power integrated,” Innov. Smart Grid Technol., vol. 1, pp. 1–6, 2016, Accessed: Nov. 23, 2018. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/7796396/. [ [48] F. Molina, S. Perez, and S. Rivera, “Formulación de funciones de costo de incertidumbre en pequenas centrales hidroeléctricas dentro de una microgrid,” Ing. USBMed, vol. 8, p. 1, 2017, Accessed: Mar. 06, 2019. [Online]. Available: http://www.revistas.usb.edu.co/index.php/IngUSBmed/article/view/2683. [49] P. P. Verma, D. Srinivasan, K. S. Swarup, and R. Mehta, “A Review of Uncertainty Handling Techniques in Smart Grid,” Int. J. Uncertainty, Fuzziness Knowledge-Based Syst., vol. 26, no. 03, pp. 345–378, Jun. 2018, doi: 10.1142/S0218488518500186. [50 [50] J. Tello-maita and A. Marulanda-guerra, “Modelos de optimización para sistemas de potencia en la evolución hacia redes inteligentes: Una revisión,” DYNA, vol. 84, no. 202, pp. 102–111, 2017, doi: 10.15446/dyna.v84n202.63354. [51] M. Velasquez, J. Barreiro-Gomez, N. Quijano, and A. Cadena, “Intra-hour microgrid economic dispatch based on model predictive control,” ieeexplore.ieee.org, vol. 1, p. 12, 2019, Accessed: Feb. 09, 2020. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/8859230/. [52] M. Di Somma, G. Graditi, E. Heydarian-Forushani, M. Shafie-khah, and P. Siano, “Stochastic optimal scheduling of distributed energy resources with renewables considering economic and environmental aspects,” Renew. Energy, vol. 116, pp. 272–287, 2018, doi: 10.1016/j.renene.2017.09.074. [53] B. Mohammadi-Ivatloo, M. Moradi-Dalvand, and A. Rabiee, “Combined heat and power economic dispatch problem solution using particle swarm optimization with time varying acceleration coefficients,” Electr. Power Syst. Res., vol. 95, pp. 9–18, Feb. 2013, doi: 10.1016/j.epsr.2012.08.005. [54] M. Basu, “Bee colony optimization for combined heat and power economic dispatch,” Expert Syst. Appl., vol. 38, no. 11, pp. 13527–13531, Mar. 2011, doi: 10.1016/j.eswa.2011.03.067. [55] M. Basu, “Combined Heat and Power Economic Dispatch by Using Differential Evolution,” Electr. Power Components Syst., vol. 38, no. 8, pp. 996–1004, 2010, doi: 10.1080/15325000903571574. [56] A. Vasebi, M. Fesanghary, and S. M. T. Bathaee, “Combined heat and power economic dispatch by harmony search algorithm,” Int. J. Electr. Power Energy Syst., vol. 29, no. 10, pp. 713–719, Dec. 2007, doi: 10.1016/j.ijepes.2007.06.006. [57] Tao Guo, M. I. Henwood, and M. van Ooijen, “An algorithm for combined heat and power economic dispatch,” IEEE Trans. Power Syst., vol. 11, no. 4, pp. 1778–1784, 1996, doi: 10.1109/59.544642. [59] W. Tushar et al., “Three-Party Energy Management with Distributed Energy Resources in Smart Grid,” IEEE Trans. Ind. Electron., vol. 62, no. 4, pp. 2487–2498, 2015, doi: 10.1109/TIE.2014.2341556. [60] P. Faria, T. Soares, Z. Vale, and H. Morais, “Distributed generation and demand response dispatch for a virtual power player energy and reserve provision,” Renew. Energy, vol. 66, pp. 686–695, Jun. 2014, doi: 10.1016/J.RENENE.2014.01.019. [6 [61] R. Deng, Z. Yang, J. Chen, and M.-Y. Chow, “Load Scheduling With Price Uncertainty and Temporally-Coupled Constraints in Smart Grids,” IEEE Trans. Power Syst., vol. 29, no. 6, pp. 2823–2834, Nov. 2014, doi: 10.1109/TPWRS.2014.2311127. [62] M. Quashie, C. Marnay, F. Bouffard, and G. Jóos, “Optimal planning of microgrid power and operating reserve capacity,” Appl. Energy, vol. 210, pp. 1229–1236, 2018, Accessed: Mar. 10, 2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0306261917310309. [63] A. Khodaei, S. Bahramirad, and S. Mohammad, “Microgrid planning under uncertainty,” IEEE Trans. 2015, vol. 5, no. 30, pp. 2417–2425, 2015, Accessed: Mar. 10, 2019. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/6920097/. [64] A. Valibeygi, A. Habib, and R. de Callafon, “Robust Power Scheduling for Microgrids with Uncertainty in Renewable Energy Generation,” 2019 IEEE Power Energy Soc. Innov. Smart Grid Technol. Conf., vol. 1, no. 1, pp. 1–5, Feb. 2019, Accessed: Mar. 10, 2019. [Online]. Available: http://arxiv.org/abs/1902.07927. [65] M. Kazemi, B. Mohammadi-Ivatloo, and M. Ehsan, “Risk-constrained strategic bidding of GenCos considering demand response,” IEEE Trans. power Syst., vol. 30, no. 1, pp. 1–9, 2015, Accessed: Mar. 10, 2019. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/6832632/. [66] M. Tushar, C. Assi, and M. Uddin, “Smart microgrids: Optimal joint scheduling for electric vehicles and home appliances,” IEEE Trans. Smart Grid, vol. 5, no. 1, pp. 1–12, 2014, Accessed: Mar. 10, 2019. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/6693776/. [67] F. Farzan, M. Jafari, R. Masiello, and Y. Lu, “Toward optimal day-ahead scheduling and operation control of microgrids under uncertainty,” IEEE Trans. Smart Grid, vol. 6, no. 2, pp. 499–507, 2015, Accessed: Mar. 11, 2019. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/6965654/. [68] S. Parhizi, A. Khodaei, and M. Shahidehpour, “Market-based versus price-based microgrid optimal scheduling,” IEEE Trans. Smart Grid, vol. 9, no. 2, pp. 615–623, 2018, doi: 10.1109/TSG.2016.2558517. [69] A. Raab, E. Lauth, K. Strunz, and D. Göhlich, “Implementation Schemes for Electric Bus Fleets at Depots with Optimized Energy Procurements in Virtual Power Plant Operations,” World Electr. Veh., vol. 10, no. 1, pp. 1–14, 2019, Accessed: Mar. 11, 2019. [Online]. Available: https://www.mdpi.com/2032-6653/10/1/5. [70] I. Naharudinsyah and S. Limmer, “Optimal Charging of Electric Vehicles with Trading on the Intraday Electricity Market,” Energies, vol. 11, no. 6, pp. 1–12, 2018, Accessed: Mar. 11, 2019. [Online]. Available: https://www.mdpi.com/1996-1073/11/6/1416. [ [71] K. Pandya and S. Joshi, “CHAOS enhanced Flower Pollination Algorithm for Optimal Scheduling of Distributed Energy Resources in Smart Grid,” 2018 IEEE Innov. Smart Technol. (ISGT Asia), pp. 705–709, 2018, Accessed: Mar. 11, 2019. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/8467806/. [ [72] P. Rabanal, “Algoritmos heurísticos y aplicaciones a métodos formales,” 2010. [73] J. Soares, H. Morais, T. Sousa, Z. Vale, and P. Faria, “Day-Ahead Resource Scheduling Including Demand Response for Electric Vehicles,” IEEE Trans. Smart Grid, vol. 4, no. 1, pp. 596–605, Mar. 2013, doi: 10.1109/TSG.2012.2235865. [74] F. Lezama, J. Soares, Z. Vale, J. Rueda, S. Rivera, and I. Elrich, “2017 IEEE competition on modern heuristic optimizers for smart grid operation: Testbeds and results,” Swarm Evol. Comput., vol. 44, pp. 420–427, Feb. 2019, doi: 10.1016/J.SWEVO.2018.05.005. [75] J. Torres-Riveros and S. Rivera-Rodriguez, “Optimal energy dispatch in multiple periods of time considering the variability and uncertainty of generation from renewable sources,” Prospectiva, vol. 16, no. 2, pp. 75–81, 2018, doi: 10.15665/rp.v16i2.1642. [76] X. Z. and S. L. Y. Zhou, Z. Zhou, H. Xu, X. Zhang, “Adjustment of wave front time and overshoot in lightning impulse test for transformer insulation,” 2017 IEEE Conf. Electr. Insul. Dielectr. Phenom., pp. 270–273, 2017, doi: 10.1109/CEIDP.2017.8257526. [77] V. Miranda and R. Alves, “Differential Evolutionary Particle Swarm Optimization (DEEPSO): A successful hybrid,” in Proceedings - 1st BRICS Countries Congress on Computational Intelligence, BRICS-CCI 2013, 2013, pp. 368–374, doi: 10.1109/BRICS-CCI-CBIC.2013.68. [78] E. de V. Fortes, L. H. Macedo, P. B. de Araujo, and R. Romero, “A VNS algorithm for the design of supplementary damping controllers for small-signal stability analysis,” Int. J. Electr. Power Energy Syst., vol. 94, pp. 41–56, 2018, doi: 10.1016/j.ijepes.2017.06.017. [79] M. Tuballa and M. A. Reviews, “A review of the development of Smart Grid technologies,” Renew. Sustain. Energy, vol. 59, pp. 710–715, 2016, Accessed: Mar. 04, 2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1364032116000393. [80] F. Lezama, L. E. Sucar, E. M. de Cote, J. Soares, and Z. Vale, “Differential evolution strategies for large-scale energy resource management in smart grids,” Proc. Genet. Evol. Comput. Conf. Companion - GECCO ’17, pp. 1279–1286, 2017, doi: 10.1145/3067695.3082478. [81] A. R. Gonçalves Soares, “Integrated Management of Residential Energy Resources: Models, Algorithms and Application,” 2016. [82] Y.-Y. Hong et al., “Optimizing Capacities of Distributed Generation and Energy Storage in a Small Autonomous Power System Considering Uncertainty in Renewables,” Energies, vol. 8, no. 4, pp. 2473–2492, Mar. 2015, doi: 10.3390/en8042473. [83] J. Delgado Rivera, “Redes neuronales de propagación inversa,” Ing. e Investig., no. 27, pp. 48–51, 1992, Accessed: Aug. 28, 2020. [Online]. Available: https://revistas.unal.edu.co/index.php/ingeinv/article/view/20764. [84] O. Dzobo, A. M. Shehata, and C. L. Azimoh, “Optimal economic load dispatch in smart grids considering uncertainty,” in 2017 IEEE AFRICON, Sep. 2017, pp. 1277–1282, doi: 10.1109/AFRCON.2017.8095666. [85] P. Baratto-Callejas, “Implementación de un programa de respuesta de la demanda de energía eléctrica en un mercado de clientes no regulados en Colombia,” Rev. maest. derecho econ. Bogotá (Colombia N°, vol. 6, no. 6, pp. 259–292, 2010, [Online]. Available: https://search.proquest.com/openview/f9c6ca7d582333cfb170931ebf23db67/1?pq-origsite=gscholar&cbl=866386. [86] P. Rodilla and P. Mastropietro, Definición de las características de funcionamiento del despacho vinculante, los mercados intradiarios y el mecanismo de balance. 2018. [87] J. Garcia-Guarin, S. Rivera, and H. Rodriguez, “Smart grid review: Reality in Colombia and expectations,” J. Phys. Conf. Ser., vol. 1257, no. 1, p. 012011, Jun. 2019, doi: 10.1088/1742-6596/1257/1/012011. [88] J. Garcia Guarin, F. Lezama, J. Soares, and S. Rivera, “Operation scheduling of smart grids considering stochastic uncertainty modelling,” Far East J. Math. Sci., vol. 1, no. 115, pp. 77–98, 2019, doi: 10.17654/MS115010077. [89] J. Garcia, D. Alvarez, and S. Rivera, “Ensemble Based Optimization for Electric Demand Forecast: Genetic Programming and Heuristic Algorithms,” Rev. int. métodos numér. cálc. diseño ing., vol. 1, pp. 1–13, 2020, doi: 10.23967/j.rimni.2020.07.001. [90] J. Garcia-Guarin, J. Guerrero, D. Alvarez, and S. Rivera, “Multi-objective optimization of smart grids considering environments with uncertainty,” in Asia-Pacific Solar Research Conference, 2019, vol. 1409, no. 1, p. 2, Accessed: Feb. 19, 2020. [Online]. Available: http://apvi.org.au/solar-research-conference/wp-content/uploads/2019/12/122_GarciaJulian_DI_2019.pdf. [91] J. Garcia-Guarin, S. Rivera, and L. Trigos, “Multiobjective optimization of smart grids considering market power,” J. Phys. Conf. Ser., vol. 1409, p. 012006, Nov. 2019, doi: 10.1088/1742-6596/1409/1/012006. [92] J. Garcia-Guarin, W. Infante, J. Ma, D. Alvarez, and S. Rivera, “Optimal Scheduling of Smart Microgrids Considering Electric Vehicle Battery Swapping Stations,” Int. J. Electr. Comput. Eng., vol. 10, no. 5, pp. 5093–5107, 2020. [93] P. J. García-Guarín, J. Cantor-López, C. Cortés-Guerrero, M. A. Guzmán-Pardo, and S. Rivera, “Implementación del algoritmo VNS-DEEPSO para el despacho de energía en redes distribuidas inteligentes,” INGE CUC, vol. 15, no. 1, pp. 142–154, 2019, doi: 10.17981/ingecuc.15.1.2019.13. [94] J. Garcia-Guarin et al., “Smart microgrids operation considering a variable neighborhood search: The differential evolutionary particle swarm optimization algorithm,” Energies, vol. 12, no. 16, p. 3149, Aug. 2019, doi: 10.3390/en12163149. [95] J. Garcia-Guarin, D. Alvarez, A. Bretas, and S. Rivera, “Schedule Optimization in A Smart Microgrid Considering Demand Response Constraints,” Energies, vol. 13, no. 17, p. 4567, Sep. 2020, doi: 10.3390/en13174567. [96] J. Garcia-Guarin, W. Infante, D. Alvarez, and S. Rivera, “Scheduling optimization for smart microgrids considering twolevels transactions of electric vehicles and energy markets,” J. Phys. Conf. Ser., vol. 1708, no. 1, p. 012019, Dec. 2020, doi: 10.1088/1742-6596/1708/1/012019. [97] J. Garcia-Guarin, M. Duran-Pinzón, J. Paez-Arango, and S. Rivera, “Energy planning for aquaponics production considering intraday markets,” Arch. Electr. Eng., vol. 69, no. 1, pp. 89–100, 2020, doi: 10.24425/aee.2020.131760. [98] J. Garcia-Guarin, D. Alvarez, and S. Rivera, “Uncertainty Costs Optimization of Residential Solar Generators Considering Intraday Markets,” Electron. 2021, vol. 10, no. 22, p. 2826, Nov. 2021, doi: 10.3390/electronics10222826. [99] J. H. Zhao, F. Wen, Z. Y. Dong, Y. Xue, and K. P. Wong, “Optimal dispatch of electric vehicles and wind power using enhanced particle swarm optimization,” IEEE Trans. Ind. Informatics, vol. 8, no. 4, pp. 889–899, 2012, doi: 10.1109/TII.2012.2205398. [100] N. Nikmehr and S. Najafi Ravadanegh, “Optimal Power Dispatch of Multi-Microgrids at Future Smart Distribution Grids,” IEEE Trans. Smart Grid, vol. 6, no. 4, pp. 1648–1657, Jul. 2015, doi: 10.1109/TSG.2015.2396992. [101] J. A. Botero, J. J. Garcia, and L. G. Vélez, Mecanismos utilizados para monitorear el poder de mercado en mercados eléctricos: reflexiones para Colombia, vol. 32, no. 60. Departamento de Economía, Universidad Nacional de Colombia, 2013. [102] R. Zhang, S. Wu, Z. Cao, J. Lu, and F. Gao, “A Systematic Min-Max Optimization Design of Constrained Model Predictive Tracking Control for Industrial Processes against Uncertainty,” IEEE Trans. Control Syst. Technol., vol. 26, no. 6, pp. 2157–2164, Nov. 2018, doi: 10.1109/TCST.2017.2748059. [103] M. Gendreau and J. Potvin, Handbook of Metaheuristics, vol. 2. Boston, MA: Springer US, 2010. [ [104] D. Dabhi and K. Pandya, “Enhanced Velocity Differential Evolutionary Particle Swarm Optimization for Optimal Scheduling of a Distributed Energy Resources With Uncertain Scenarios,” IEEE Access, vol. 8, pp. 27001–27017, Jan. 2020, doi: 10.1109/access.2020.2970236. [105] J. Soares, C. Lobo, M. Silva, H. Morais, and Z. Vale, “Relaxation of non-convex problem as an initial solution of meta-heuristics for energy resource management,” in IEEE Power and Energy Society General Meeting, Sep. 2015, vol. 2015-September, doi: 10.1109/PESGM.2015.7286391. [106] J. Soares, N. Borges, C. Lobo, and Z. Vale, “VPP energy resources management considering emissions: The case of Northern Portugal 2020 to 2050,” in Proceedings - 2015 IEEE Symposium Series on Computational Intelligence, SSCI 2015, 2015, pp. 1259–1266, doi: 10.1109/SSCI.2015.180. [107] T. Sousa, H. Morais, R. Castro, and Z. Vale, “A new heuristic providing an effective initial solution for a simulated annealing approach to energy resource scheduling in smart grids,” in IEEE Symposium on Computational Intelligence Applications in Smart Grid, CIASG, Jan. 2015, vol. 2015-January, no. January, doi: 10.1109/CIASG.2014.7011563. [ [108] T. Sousa, H. Morais, R. Castro, and Z. Vale, “Evaluation of different initial solution algorithms to be used in the heuristics optimization to solve the energy resource scheduling in smart grids,” Appl. Soft Comput. J., vol. 48, pp. 491–506, Nov. 2016, doi: 10.1016/j.asoc.2016.07.028. [109] J. Garcia-Guarin, J. Cantor, C. Cortés, M. A. Guzmán, and S. Rivera Rodríguez, “Scheduling of distributed smart grid elements considering uncertainty with the algorithm VNS-DEEPSO,” Inge Cuc, vol. 1, pp. 1–10, 2019. [110] M. Ramli and H. Bouchekara, “Solving the Problem of Large-Scale Optimal Scheduling of Distributed Energy Resources in Smart Grids Using an Improved Variable Neighborhood Search,” IEEE Access, vol. XX, p. 15, 2020, doi: 10.1109/ACCESS.2020.2986895. [111] X. Xu, H. Rong, M. Trovati, M. Liptrott, and N. Bessis, “CS-PSO: chaotic particle swarm optimization algorithm for solving combinatorial optimization problems,” Soft Comput., vol. 22, no. 3, pp. 783–795, Feb. 2018, doi: 10.1007/s00500-016-2383-8. [112] N. Dong, X. Fang, A. W.-M. P. in Engineering, and undefined 2016, “A novel chaotic particle swarm optimization algorithm for parking space guidance,” hindawi.com, Accessed: Mar. 29, 2020. [Online]. Available: https://www.hindawi.com/journals/mpe/2016/5126808/abs/. [113] K. Du, M. S.-T. and A. I. by Nature;, and undefined 2016, “Search and optimization by metaheuristics,” Springer, Accessed: Mar. 29, 2020. [Online]. Available: https://link.springer.com/content/pdf/10.1007/978-3-319-41192-7.pdf. [114] S. Hui, P. S.-I. transactions on cybernetics, and undefined 2015, “Ensemble and arithmetic recombination-based speciation differential evolution for multimodal optimization,” ieeexplore.ieee.org, Accessed: Mar. 29, 2020. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/7059242/. [115] Y. Zhao, J. Cao, X. Lai, … C. Y.-2015 34th C. C., and undefined 2015, “Ensemble based constrained-optimization extreme learning machine for landmark recognition,” ieeexplore.ieee.org, Accessed: Mar. 29, 2020. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/7260239/. [116] X. Li, S. Ma, Y. W.-I. Access, and undefined 2016, “Multi-population based ensemble mutation method for single objective bilevel optimization problem,” ieeexplore.ieee.org, Accessed: Mar. 29, 2020. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/7590112/. [117] F. Lezama, J. Soares, Z. Vale, and J. Rueda, “Competition GECAD WCCI2018 Evolutionary Computation in Uncertain Environments: A Smart Grid Application,” IEEE World Congress on Computational Intelligence 2018 – WCCI 2018 Congress on Evolutionary Computation – CEC 2018, 2018. http://www.gecad.isep.ipp.pt/WCCI2018-SG-COMPETITION/ (accessed Mar. 31, 2020). [118] V. Miranda and N. Fonseca, “EPSO - best-of-two-worlds meta-heuristic applied to power system problems,” in Proceedings of the 2002 Congress on Evolutionary Computation. CEC’02 (Cat. No.02TH8600), 2002, vol. 2, pp. 1080–1085, doi: 10.1109/CEC.2002.1004393. [119] V. Miranda and N. Fonseca, “EPSO-evolutionary particle swarm optimization, a new algorithm with applications in power systems,” IEEE/PES Transm. Distrib. Conf. Exhib., vol. 2, no. 1, pp. 745–750, 2002, Accessed: Mar. 23, 2019. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/1177567/. [120] V. Palakonda, N. H. Awad, R. Mallipeddi, M. Z. Ali, K. C. Veluvolu, and P. N. Suganthan, “Differential Evolution with Stochastic Selection for Uncertain Environments: A Smart Grid Application,” Sep. 2018, doi: 10.1109/CEC.2018.8477809. [121] R. Storn, “Differential evolution design of an IIR-filter,” in Proceedings of the IEEE Conference on Evolutionary Computation, 1996, pp. 268–273, doi: 10.1109/icec.1996.542373. [ 122] M. Venu, R. Mallipeddi, and P. Suganthan, “Fiber Bragg grating sensor array interrogation using differential evolution,” Optoelectron. Adv. Mater., vol. 11, no. 2, pp. 682–685, 2008. [123] R. Mallipeddi and P. Suganthan, “Unit commitment - A survey and comparison of conventional and nature inspired algorithms,” Bio-Inspired Comput., vol. 6, no. 2, pp. 71–90, 2014. [124] S. Das and P. N. Suganthan, “Differential Evolution: A Survey of the State-of-the-Art,” IEEE Trans. Evol. Comput., vol. 15, no. 1, pp. 4–31, Feb. 2011, doi: 10.1109/TEVC.2010.2059031. [125] X. Qiu, J. X. Xu, Y. Xu, and K. C. Tan, “A New Differential Evolution Algorithm for Minimax Optimization in Robust Design,” IEEE Trans. Cybern., vol. 48, no. 5, pp. 1355–1368, May 2018, doi: 10.1109/TCYB.2017.2692963. [126] N. Johari, A. Mohd, N. Mustaffa, and A. Udin, “Firefly Algorithm for Optimization Problem,” Appl. Mech. Mater. 421, vol. 421, no. 1, pp. 512–517, 2013, doi: 10.4028/www.scientific.net/AMM.421.512. [127] G. S. Chaurasia, A. K. Singh, S. Agrawal, and N. K. Sharma, “A meta-heuristic firefly algorithm based smart control strategy and analysis of a grid connected hybrid photovoltaic/wind distributed generation system,” Sol. Energy, vol. 150, pp. 265–274, Jul. 2017, doi: 10.1016/j.solener.2017.03.079. [128] S. Mohammadi, S. Soleymani, and B. Mozafari, “Scenario-based stochastic operation management of MicroGrid including Wind, Photovoltaic, Micro-Turbine, Fuel Cell and Energy Storage Devices,” Int. J. Electr. Power Energy Syst., vol. 54, pp. 525–535, Jan. 2014, doi: 10.1016/j.ijepes.2013.08.004. [129] Y. Sun, G. Qi, Z. Wang, B. Wyk, and Y. Haman, “Chaotic Particle Swarm Optimization,” Genet. Evol. Comput. Conf. GEC Summit 2009, vol. 1, no. 1, pp. 1–6, 2009, doi: 10.1145/1543834.1543902. [130] Ma, Yuan, Han, Sun, and Ma, “Improved Chaotic Particle Swarm Optimization Algorithm with More Symmetric Distribution for Numerical Function Optimization,” Symmetry (Basel)., vol. 11, no. 7, p. 876, Jul. 2019, doi: 10.3390/sym11070876. [131] A. Biju, T. Victoire, and K. Mohanasundaram, “An Improved Differential Evolution Solution for Software Project Scheduling Problem,” Hindawi Publ. Corp. Sci. world J., vol. 1, no. 1, pp. 1–9, 2015, doi: 10.1155/2015/232193. [132] R. Faia, T. Pinto, Z. Vale, and J. M. Corchado, “Hybrid approach based on particle swarm optimization for electricity markets participation,” Energy Informatics, vol. 2, no. 1, p. 1, Dec. 2019, doi: 10.1186/s42162-018-0066-7. [133] A. S. Bouhouras, P. A. Gkaidatzis, and D. P. Labridis, “Optimal application order of network reconfiguration and ODGP for loss reduction in distribution networks,” Jul. 2017, doi: 10.1109/EEEIC.2017.7977443. [134] P. Gkaidatzis, A. Bouhouras, K. Sgouras, D. Doukas, G. Christoforidis, and D. Labridis, “Efficient RES Penetration under Optimal Distributed Generation Placement Approach,” Energies, vol. 12, no. 7, p. 1250, Apr. 2019, doi: 10.3390/en12071250. [135] K. Parsopoulos and M. Vrahatis, “UPSO: A Unified Particle Swarm Optimization Scheme,” Int. Conf. Comput. Methods Sci. Eng. 2004, vol. 1, pp. 868–873, 2004, doi: 10.1201/9780429081385-222. [136] P. A. Gkaidatzis, A. S. Bouhouras, D. I. Doukas, K. I. Sgouras, and D. P. Labridis, “Application and evaluation of UPSO to ODGP in radial Distribution Networks,” in International Conference on the European Energy Market, EEM, Jul. 2016, vol. 2016-July, doi: 10.1109/EEM.2016.7521223. [137] P. A. Gkaidatzis, D. I. Doukas, D. P. Labridis, and A. S. Bouhouras, “Comparative analysis of heuristic techniques applied to ODGP,” Jul. 2017, doi: 10.1109/EEEIC.2017.7977444. [138] G. A. Bula, C. Prodhon, F. A. Gonzalez, H. M. Afsar, and N. Velasco, “Variable neighborhood search to solve the vehicle routing problem for hazardous materials transportation,” J. Hazard. Mater., vol. 324, pp. 472–480, Feb. 2017, doi: 10.1016/j.jhazmat.2016.11.015. [139] M. Bazaraa, H. Sherali, and C. Shetty, “Nonlinear programming: theory and algorithms,” 2013, Accessed: Apr. 01, 2020. [Online]. Available: https://books.google.com/books?hl=es&lr=&id=nDYz-NIpIuEC&oi=fnd&pg=PT10&ots=qNnR4iphzm&sig=d62LCqeKIp1JOT6VmYYijPPfmgQ. [140] P. Hansen and N. Mladenović, “Variable neighborhood search: Principles and applications,” Eur. J. Oper. Res., vol. 130, no. 3, pp. 449–467, May 2001, doi: 10.1016/S0377-2217(00)00100-4. [141] M. S. Bazaraa, “An efficient cyclic coordinate method for optimizing penalty functions,” Nav. Res. Logist. Q., vol. 22, no. 2, pp. 399–404, Jun. 1975, doi: 10.1002/nav.3800220215. [142] M. Subasi, N. Yildirim, and B. Yildiz, “An improvement on Fibonacci search method in optimization theory,” Appl. Math. Comput., vol. 147, no. 3, pp. 893–901, Jan. 2004, doi: 10.1016/S0096-3003(02)00828-7. [143] J. Kennedy and R. Eberhart, “Particle swarm optimization,” Proc. ICNN’95 - Int. Conf. Neural Networks, vol. 4, no. 1, pp. 1942–1948, 1995, doi: 10.1109/ICNN.1995.488968. [144] D. Montgomery, Design and Analysis of Experiments Eighth Edition, vol. 3. 2013. [145] H. Abdi and L. Williams, “Tukeys honestly signi_cant difference (HSD) test,” Encycl. Res. Des., pp. 1–5, 2010, [Online]. Available: https://personal.utdallas.edu/~herve/abdi-HSD2010-pretty.pdf. [146] H. Harter, “Critical values for Duncan’s new multiple range test,” Biometrics, vol. 16, no. 4, pp. 671–685, 1960. [147] F. S. Molina Sanchez, S. J. Pérez Sichacá, and S. R. Rivera Rodriguez, “Formulación de Funciones de Costo de Incertidumbre en Pequeñas Centrales Hidroeléctricas dentro de una Microgrid,” Ing. USBMed, vol. 8, no. 1, pp. 29–36, 2017, doi: 10.21500/20275846.2683. [148] J. C. Arevalo, F. Santos, and S. Rivera, “Uncertainty cost functions for solar photovoltaic generation, wind energy generation, and plug-in electric vehicles: Mathematical expected value and verification by Monte Carlo simulation,” Int. J. Power Energy Convers., vol. 10, no. 2, pp. 171–207, 2019, doi: 10.1504/IJPEC.2019.098621. [149] A. Sanchez, A. Romero, G. Rattá, and S. Rivera, “Smart charging of PEVs to reduce the power transformer loss of life,” in 2017 IEEE PES Innovative Smart Grid Technologies Conference - Latin America, ISGT Latin America 2017, 2017, vol. 2017-Janua, no. 2, pp. 1–6, doi: 10.1109/ISGT-LA.2017.8126729. [150] J. D. Bastidas Rodríguez, C. A. Ramos Paja, and E. Franco Mejía, Modeling and parameter calculation of photovoltaic fields in irregular weather conditions, vol. 17, no. 1. Universidad Distrital Francisco Jose de Caldas, 2012. [151] T. P. Chang, “Investigation on frequency distribution of global radiation using different probability density functions,” Int. J. Appl. Sci. Eng., vol. 8, no. 2, pp. 99–107, 2010, Accessed: Mar. 30, 2019. [Online]. Available: https://www.cyut.edu.tw/~ijase/2010/8(2)/1_018002.pdf. [152] S. Surender Reddy, P. R. Bijwe, and A. R. Abhyankar, “Real-time economic dispatch considering renewable power generation variability and uncertainty over scheduling period,” IEEE Syst. J., vol. 9, no. 4, pp. 1440–1451, Dec. 2015, doi: 10.1109/JSYST.2014.2325967. [153] E. Abramova and D. Bunn, “Forecasting the Intra-Day Spread Densities of Electricity Prices,” Energies, vol. 13, no. 3, p. 687, Feb. 2020, doi: 10.3390/en13030687. [154] J. Soares, B. Canizes, M. A. F. Ghazvini, Z. Vale, and G. K. Venayagamoorthy, “Two-Stage Stochastic Model Using Benders’ Decomposition for Large-Scale Energy Resource Management in Smart Grids,” IEEE Trans. Ind. Appl., vol. 53, no. 6, pp. 5905–5914, Nov. 2017, doi: 10.1109/TIA.2017.2723339. [155] S. Fattler and C. Pellinger, “The value of flexibility and the effect of an integrated European Intraday-Market,” in International Conference on the European Energy Market, EEM, Jul. 2016, vol. 2016-July, doi: 10.1109/EEM.2016.7521195. [156] L. Xin, “Effectiveness of the intraday filter trading,” Sep. 2013, doi: 10.1109/ICEMSI.2013.6913989. [157] Automaker, “EVAdoption,” Analyzing Key Factors That Will Drive Mass Adoption of Electric Vehicles, 2019. https://evadoption.com/ev-sales/evs-percent-of-vehicle-sales-by-brand/ (accessed Dec. 29, 2019). [158] AEMO, “Electricity price and demand,” Australian Energy Market Operator-, 2019. https://www.aemo.com.au/Electricity/National-Electricity-Market-NEM/Data-dashboard (accessed Dec. 29, 2019). [159] W. Infante, J. Ma, X. Han, and A. Liebman, “Optimal Recourse Strategy for Battery Swapping Stations Considering Electric Vehicle Uncertainty,” IEEE Trans. Intell. Transp. Syst., vol. 1, no. 1, pp. 1–11, 2019, doi: 10.1109/TITS.2019.2905898. [160] H. Liu, Y. Zhang, S. Ge, C. Gu, and F. Li, “Day-Ahead Scheduling for an Electric Vehicle PV-Based Battery Swapping Station Considering the Dual Uncertainties,” IEEE Access, vol. 7, pp. 115625–115636, 2019, doi: 10.1109/ACCESS.2019.2935774. [161] M. Alipour, K. Zare, and B. Mohammadi-Ivatloo, “Short-term scheduling of combined heat and power generation units in the presence of demand response programs,” Energy, vol. 71, pp. 289–301, Jul. 2014, doi: 10.1016/j.energy.2014.04.059. [162] J. Aghaei and M.-I. Alizadeh, “Multi-objective self-scheduling of CHP (combined heat and power)-based microgrids considering demand response programs and ESSs (energy storage systems),” Energy, vol. 55, pp. 1044–1054, Jun. 2013, doi: 10.1016/j.energy.2013.04.048. [163] J. Owens, “Tesla motors to try out battery-swap station,” Bay Area News Group, 2014. https://www.eastbaytimes.com/2014/12/19/tesla-motors-to-try-out-battery-swap-station/ (accessed Mar. 04, 2019). [164] M. R. Sarker, H. Pandžić, and M. A. Ortega-Vazquez, “Optimal operation and services scheduling for an electric vehicle battery swapping station,” IEEE Trans. Power Syst., vol. 30, no. 2, pp. 901–910, Mar. 2015, doi: 10.1109/TPWRS.2014.2331560. [165] M. Silva, H. Morais, T. Sousa, and Z. Vale, “Energy resources management in three distinct time horizons considering a large variation in wind power,” EWE Annu. event 2013, vol. 1, no. 1, p. 10, 2013, Accessed: Mar. 27, 2020. [Online]. Available: https://www.researchgate.net/publication/264974366_Energy_resources_management_in_three_distinct_time_horizons_considering_a_large_variation_in_wind_power. [166] J. Soares, M. A. Fotouhi Ghazvini, M. Silva, and Z. Vale, “Multi-dimensional signaling method for population-based metaheuristics: Solving the large-scale scheduling problem in smart grids,” Swarm Evol. Comput., vol. 29, pp. 13–32, Aug. 2016, doi: 10.1016/j.swevo.2016.02.005. [167] M. Hemmati, … M. A.-E. V. in E., and undefined 2020, “Optimal scheduling of smart Microgrid in presence of battery swapping station of electrical vehicles,” Springer, Accessed: Apr. 13, 2020. [Online]. Available: https://link.springer.com/chapter/10.1007/978-3-030-34448-1_10. [168] M. Mahoor, Z. S. Hosseini, and A. Khodaei, “Least-cost operation of a battery swapping station with random customer requests,” Energy, vol. 172, pp. 913–921, 2019, doi: 10.1016/j.energy.2019.02.018. [169] M. Yilmaz and P. T. Krein, “Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles,” IEEE Transactions on Power Electronics, vol. 28, no. 5. pp. 2151–2169, 2013, doi: 10.1109/TPEL.2012.2212917. [170] J. Ferreira, “Mobi-System: towards an information system to support sustainable mobility with electric vehicle integration,” Minho Escola de Engenharia, 2013. [171] Y. Cheng and C. Zhang, “Configuration and operation combined optimization for EV battery swapping station considering PV consumption bundling,” Prot. Control Mod. Power Syst., vol. 2, no. 1, pp. 1–18, Dec. 2017, doi: 10.1186/s41601-017-0056-y. [172] T. Li et al., “An optimal design and analysis of a hybrid power charging station for electric vehicles considering uncertainties,” in Proceedings: IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society, Dec. 2018, pp. 5147–5152, doi: 10.1109/IECON.2018.8592855. [173] J. Li, X. Tan, and B. Sun, “Optimal Power Dispatch of a Centralized Electric Vehicle Battery Charging Station with Renewables,” IET J., vol. 12, no. 5, pp. 579–585, 2018, doi: 10.1049/iet-com.2017.0610. [174] E. Naderi, A. Azizivahed, H. Narimani, M. Fathi, and M. R. Narimani, “A comprehensive study of practical economic dispatch problems by a new hybrid evolutionary algorithm,” Appl. Soft Comput. J., vol. 61, pp. 1186–1206, 2017, doi: 10.1016/j.asoc.2017.06.041. [175] A. Najafi et al., “Uncertainty-based models for optimal management of energy hubs considering demand response,” Energies, vol. 12, no. 8, p. 1413, Apr. 2019, doi: 10.3390/en12081413. [176] J. Soares, M. Silva, B. Canizes, and Z. Vale, “MicroGrid der control including EVs in a residential area,” in 2015 IEEE Eindhoven PowerTech, PowerTech 2015, Aug. 2015, pp. 1–6, doi: 10.1109/PTC.2015.7232512. [177] F. Lezama, J. Soares, P. Hernandez-Leal, M. Kaisers, T. Pinto, and Z. Vale, “Local Energy Markets: Paving the Path Toward Fully Transactive Energy Systems,” IEEE Trans. Power Syst., vol. 34, no. 5, pp. 4081–4088, 2019, doi: 10.1109/TPWRS.2018.2833959. [178] B. Canizes, M. Silva, P. Faria, S. Ramos, and Z. Vale, “Resource scheduling in residential microgrids considering energy selling to external players,” 2015, doi: 10.1109/PSC.2015.7101700. [179] J. Soares, B. Canizes, C. Lobo, Z. Vale, and H. Morais, “Electric vehicle scenario simulator tool for smart grid operators,” Energies, vol. 5, no. 6, pp. 1881–1899, 2012, doi: 10.3390/en5061881. [180] D. Wackerly, W. Mendenhall, and R. Scheaffer, Estadística Matemática con Aplicaciones 7 ed. 2010. [181] W. Cox and T. Considdine, “Energy, micromarkets, and microgrids,” Grid-interop, vol. 1, no. 1, pp. 1–8, 2011. [182] S. Choi, S. Park, and H. M. Kim, “The application of the 0-1 knapsack problem to the load-shedding problem in microgrid operation,” in Communications in Computer and Information Science, 2011, vol. 256 CCIS, pp. 227–234, doi: 10.1007/978-3-642-26010-0_28. [183] M. S. Sapre, H. Patel, K. Vaishnani, R. Thaker, and A. S. Shastri, “Solution to small size 0–1 knapsack problem using cohort intelligence with educated approach,” in Studies in Computational Intelligence, vol. 828, Springer Verlag, 2019, pp. 137–149. [184] A. Trigos, J. Garcia-Guarin, and E. Blanco, “Design of a PID control for a prototype of an automated GMAW welding bench,” J. Phys. Conf. Ser., vol. 1257, no. 1, pp. 1–9, 2019, doi: 10.1088/1742-6596/1257/1/012001. [185] K. Ogata, Modern control engineering. 2002. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xx, 155 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Eléctrica |
dc.publisher.department.spa.fl_str_mv |
Departamento de Ingeniería Eléctrica y Electrónica |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/81389/3/Tesis1052388958.pdf https://repositorio.unal.edu.co/bitstream/unal/81389/4/license.txt https://repositorio.unal.edu.co/bitstream/unal/81389/5/Tesis1052388958.pdf.jpg |
bitstream.checksum.fl_str_mv |
119c85f3e9ea45fb6910255159cdbe95 8153f7789df02f0a4c9e079953658ab2 95cd2b6a15bc83d4c94fba3816fc40ee |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090239471255552 |
spelling |
Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Rivera Rodríguez, Sergio Raúlebc09c48c256e8bad61b48321e3a32c5Álvarez Álvarez, David Leonardo727decfbace3ea4e4527bc5a09926113Garcia Guarín, Pedro Julian8838bd61593d969081fdd40e6453445cGrupo de Investigación Emc-Un2022-03-25T18:03:04Z2022-03-25T18:03:04Z2022-03-04https://repositorio.unal.edu.co/handle/unal/81389Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasEnvironmental concerns and sustainable development promote the adoption of smart microgrids (SMGs). However, economic interests promote an increase in income, which can result in non-optimal situations, such as non-supply of demand, the formation of monopolies and the formation of essential agents to supply demand at peak times. In this context, this research analyses a SMG that negotiates energy commitments with intraday markets and binding dispatch. In the same way, this model quantifies penalties for uncertainty of renewables with intraday markets. Besides, the profits are estimated associated with managing the distributed generation, charging and discharging of energy storage systems, a battery swapping station and residential electric vehicles. This model introduces uncertainty in the operational planning problem of a SMG related to (1) renewable generation, (2) demand forecasting, (3) market price variations, (4) planning of electric vehicle trips and (5) battery demand forecast in an electric vehicle station. The literature shows that, due to the complexity of the problem, computational intelligence provides sub-optimal solutions efficiently, resulting in the development of the advanced metaheuristics called VNS-DEEPSO, which is a combination of the Variable Neighbourhood Search (VNS) and Differential Evolutionary Particle Swarm Optimization (DEEPSO) algorithms. The results show demand management strategies, such as reduction of maximum loads, demand supply restrictions satisfactorily met, market power indicators that prevent the emergence of monopolies and pivoting agents, and a greater number of intraday markets with equally time intervals spaced that show a reduction in costs due to the uncertainty of renewables. Finally, the results of this research will constitute a tool to make decisions in smart microgrids and will help to evaluate the implementation of intraday markets in future research.El desarrollo sostenible promueve la adopción de microrredes inteligentes. Sin embargo, intereses económicos estimulan el incremento de ingresos, que puede resultar en situaciones no óptimas, como el no abastecimiento de la demanda, la formación de monopolios y la formación de agentes esenciales para abastecer la demanda. En este contexto, está investigación analiza una microrred inteligente que negocia compromisos energéticos con mercados intradiarios y el despacho vinculante. De la misma manera, en este modelo se cuantifican penalidades por incertidumbre de renovables con mercados intradiarios. Además, se estiman las ganancias asociadas con la gestión de la generación distribuida, carga y descarga de sistemas de almacenamiento de energía, una estación de intercambio de baterías y vehículos eléctricos residenciales. Este modelo introduce la incertidumbre en el problema de planificación en una microrred inteligente relacionada con (1) generación renovable, (2) pronóstico de la demanda, (3) variaciones de precios de mercado, (4) planeación de viajes de vehículos eléctricos y (5) pronóstico de demanda de baterías en una estación de vehículos eléctricos. La literatura muestra que, debido a la complejidad del problema, la inteligencia computacional proporciona soluciones subóptimas de manera eficiente, lo que resulta en el desarrollo de la metaheurística avanzada, que es una combinación de los algoritmos Variable Neighborhood Search y Differential Evolutionary Particle Swarm Optimization. Los resultados evidencian estrategias de gestión de demanda como reducción de cargas máximas, las restricciones de abastecimiento de la demanda que se cumplen satisfactoriamente, indicadores de poder de mercado que evitan la aparición de monopolios y agentes pivotantes, y un mayor número de mercados intradiarios con intervalos de tiempo igualmente espaciados que demuestran una reducción de los costos por incertidumbre de generación solar. Finalmente, los resultados de esta investigación sirven para tomar decisiones en microrredes inteligentes y ayudar a evaluar la implementación de mercados intradiarios. (Texto tomado de la fuente)DoctoradoDoctor en IngenieríaPower Systems Analysis and Smart Gridsxx, 155 páginasapplication/pdfengUniversidad Nacional de ColombiaBogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería EléctricaDepartamento de Ingeniería Eléctrica y ElectrónicaFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá330 - Economía::333 - Economía de la tierra y de la energíaINTELIGENCIA ARTIFICIALArtificial intelligenceRenewable energy sourcesRECURSOS ENERGETICOS RENOVABLESSmart microgridintraday marketsheuristic optimizationMicrorredes inteligentesMercados intradíaOptimización heurísticaOperational planning of smart microgrids considering intraday marketsPlanificación operativa de microrredes inteligentes considerando mercados intradiariosTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TD[1] H. Gharavi and R. Ghafurian, “Smart grid: The electric energy system of the future,” 2011, Accessed: Nov. 21, 2018. [Online]. Available: https://pdfs.semanticscholar.org/a2b1/e46ddd10e2b15691e33bf47832fad5c988cb.pdf.[2] M. Amin, “The case for Smart Grid,” Fortnightly, vol. 1, pp. 1–9, 2015, Accessed: Nov. 21, 2018. [Online]. Available: http://www.ourenergypolicy.org/wp-content/uploads/2015/06/20150604091846-Amin-Maaterials-PUF-1503.pdf.[3] P. Sarmiento, “Planificación Eficiente de Redes Inteligentes (Smart grids) Incluyendo la Gestión Activa de la Demanda: Aplicación a Ecuador.,” 2018.[4] J. García-Guarín, S. Rivera, and H. Rodriguez, “Revisión REI: realidad en Colombia y expectativas,” V encuentro Int. innovación tecnológica, vol. 5, pp. 1–7, 2018, [Online]. Available: https://eventos.ufpso.edu.co/evento/1383/v-encuentro-internacional-de-innovacion-tecnologica.html.[5] P. Siano, “Demand response and smart grids—A survey,” Renew. Sustain. Energy Rev., vol. 30, pp. 461–478, Feb. 2014, doi: 10.1016/J.RSER.2013.10.022.[6] S. Jadid and A. Zakariazadeh, “Energy and reserve scheduling of microgrid using multi-objective optimization,” in 22nd International Conference and Exhibition on Electricity Distribution (CIRED 2013), 2013, pp. 0660–0660, doi: 10.1049/cp.2013.0865.[7] J. Sánchez, “Estimación del impacto de las Redes Eléctricas Inteligentes (Smart Grids) en el precio de la electricidad en Colombia,” 2016.[8] C. Barreto, E. Mojica-Nava, and N. Quijano, “Design of mechanisms for demand response programs,” in Proceedings of the IEEE Conference on Decision and Control, 2013, pp. 1828–1833, doi: 10.1109/CDC.2013.6760148.[9] J. Soares, M. A. Fotouhi Ghazvini, N. Borges, and Z. Vale, “A stochastic model for energy resources management considering demand response in smart grids,” Electr. Power Syst. Res., vol. 143, pp. 599–610, 2017, doi: 10.1016/j.epsr.2016.10.056.[10] J. P. Fossati, “Revisión bibliográfica sobre micro redes inteligentes,” Lit. Rev. microgrids, vol. 9, pp. 13–20, 2011, Accessed: Mar. 19, 2019. [Online]. Available: http://www.um.edu.uy/_upload/_descarga/web_descarga_239_Revisinbibliogrficamicroredesinteligentes.-Fossati.pdf.[11] F. A. Pavas Martinez, O. A. Gonzalez Vivas, and Y. S. Sanchez Rosas, “Cuantificación del ahorro de energía eléctrica en clientes residenciales mediante acciones de gestión de demanda,” Rev. UIS Ing., vol. 16, no. 2, pp. 217–226, 2017, doi: 10.18273/revuin.v16n2-2017020.[12] F. Quilumba, W. Lee, H. Huang, and R. Szabados, “Using smart meter data to improve the accuracy of intraday load forecasting considering customer behavior similarities,” IEEE Trans. Smart Grid, vol. 6, no. 2, pp. 911–018, 2015, Accessed: Mar. 11, 2019. [Online]. Available:[13] M. Cortés, O. González, … E. S.-2018 I. P., and undefined 2018, “Opinion Dynamics and Social Incentives Applied to Demand Response Programs,” ieeexplore.ieee.org, Accessed: May 19, 2019. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/8511794/.[14] M. Ghazvini, J. Soares, and O. Abrishambaf, “Demand response implementation in smart households,” Energy Build., vol. 143, pp. 129–148, 2017, Accessed: Nov. 21, 2018. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S037877881730823X.[15] C. Cecati, C. Citro, and P. Siano, “Combined Operations of Renewable Energy Systems and Responsive Demand in a Smart Grid,” IEEE Trans. Sustain. Energy, vol. 2, no. 4, pp. 468–476, Oct. 2011, doi: 10.1109/TSTE.2011.2161624.[16] J. García, G. L. Álvarez, F. Marín, and J. Moncada, “Veinte años de funcionamiento del Mercado Eléctrico Mayorista en Colombia: algunas reflexiones,” 2015, Accessed: Nov. 21, 2018. [Online]. Available: http://repository.eafit.edu.co/handle/10784/7350.[17] F. Lezama, J. Soares, Z. Vale, J. Rueda, and M. Wagner, “CEC/GECCO 2019 Competition Evolutionary Computation in Uncertain Environments: A Smart Grid Application,” 2018, Accessed: Nov. 21, 2018. [Online]. Available: http://www.gecad.isep.ipp.pt/WCCI2018-SG-COMPETITION/files/WCCI2018_Guidelines_CISG.pdf.[18] J. Momoh and L. Mili, Eds., Economic Market Design and Planning for Electric Power Systems. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2009.[19] Y. Yang et al., “Review of Information Disclosure in Different Electricity Markets,” Energies, vol. 11, no. 12, p. 3424, Dec. 2018, doi: 10.3390/en11123424.[20] M. de la CREG, Propuesta para la implementación de un despacho vinculante-GREG-004B. 2016.[21] J. A. Juan, “Implementación de Mercados Intradiarios de Generación en Colombia,” 2017.[22] C. Bordons, F. Torres, and L. Valverde, “Gestión óptima de la energía en microrredes con generación renovable,” Rev. Iberoam. Automática e Informática Ind., vol. 12, no. 2, pp. 117–132, 2015, Accessed: Mar. 11, 2019. [Online]. Available: https://polipapers.upv.es/index.php/RIAI/article/view/9384.[23] J. Yue, Z. Hu, A. Anvari-Moghaddam, and J. Guerrero, “A Multi-Market-Driven Approach to Energy Scheduling of Smart Microgrids in Distribution Networks,” Sustainability, vol. 11, no. 2, pp. 1–16, 2019, Accessed: Mar. 10, 2019. [Online]. Available: https://www.mdpi.com/2071-1050/11/2/301.[24] J. Arévalo, F. Santos, and S. Rivera, “Application of Analytical Uncertainty Costs of Solar, Wind and Electric Vehicles in Optimal Power Dispatch,” Ingeniería, vol. 22, no. 3, pp. 324–346, 2017, doi: 10.14483/23448393.11673.[25] S. Manrique-Naranjo, M. Guzman, and S. Rodriguez, “Hybrid inference algorithm by combining genetic programming methods and nonlinear regression techniques,” 2018, Accessed: Nov. 21, 2018. [Online]. Available: https://www.researchgate.net/profile/Sergio_Rivera/publication/328096390_HYBRID_INFERENCE_ALGORITHM_BY_COMBINING_GENETIC_PROGRAMMING_METHODS_AND_NONLINEAR_REGRESSION_TECHNIQUES/links/5bb74a2f4585159e8d86f1d0/HYBRID-INFERENCE-ALGORITHM-BY-COMBINING-GENETIC.[26] I. Konstantelos, S. Giannelos, and G. Strbac, “Strategic valuation of smart grid technology options in distribution networks,” IEEE Trans. Power Syst., vol. 32(2), pp. 1293–1303, 2017, Accessed: Nov. 21, 2018. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/7508459/.[27] J. Chen, B. Yang, and X. Guan, “Optimal demand response scheduling with Stackelberg game approach under load uncertainty for smart grid,” IEEE SmartGridComm 2012, vol. 1, pp. 546–551, 2012, doi: 10.1109/SmartGridComm.2012.6486042.[28] T. Sousa, H. Morais, Z. Vale, P. Faria, and J. Soares, “Intelligent Energy Resource Management Considering Vehicle-to-Grid: A Simulated Annealing Approach,” IEEE Trans. Smart Grid, vol. 3, no. 1, pp. 535–542, Mar. 2012, doi: 10.1109/TSG.2011.2165303.[29] A. Y. Saber and G. K. Venayagamoorthy, “Resource scheduling under uncertainty in a smart grid with renewables and plug-in vehicles,” IEEE Syst. J., vol. 6, no. 1, pp. 103–109, 2012, doi: 10.1109/JSYST.2011.2163012.[30] B. M. Radhakrishnan, D. Srinivasan, and R. Mehta, “Fuzzy-Based Multi-Agent System for Distributed Energy Management in Smart Grids,” Int. J. Uncertainty, Fuzziness Knowlege-Based Syst., vol. 24, no. 5, pp. 781–803, Oct. 2016, doi: 10.1142/S0218488516500355.[31] C. Schwaegerl and L. Tao, “The Microgrids Concept,” in Microgrids, 1st ed., N. D. Hatziargyriou, Ed. Chichester, United Kingdom: John Wiley and Sons Ltd, 2013, pp. 1–24.[32] H. Liang and W. Zhuang, “Stochastic modeling and optimization in a microgrid: A survey,” Energies, vol. 7, pp. 2027–2050, 2014, doi: 10.3390/en7042027.[33] R. Brandl, P. Kotsampopoulos, G. Lauss, M. Maniatopoulos, and M. Nuschke, “Advanced Testing Chain Supporting the Validation of Smart Grid Systems and Technologies,” IEEE Work. Complex. Eng., pp. 1–6, 2018.[34] Y. Zhou, C. Wang, J. Wu, J. Wang, M. Cheng, and G. Li, “Optimal scheduling of aggregated thermostatically controlled loads with renewable generation in the intraday electricity market,” Appl. Energy, vol. 188, pp. 456–465, 2017, doi: 10.1016/j.apenergy.2016.12.008.[35] J. Felipe and J. Arenas, “Implementación de Mercados Intradiarios de Generación en Colombia,” 2017.[36] J. Giraldo, A. Cardenas, and N. Quijano, “Integrity Attacks on Real-Time Pricing in Smart Grids: Impact and Countermeasures,” IEEE Trans. Smart Grid, vol. 8, no. 5, pp. 2249–2257, Sep. 2017, doi: 10.1109/TSG.2016.2521339. [[37] T. Strasser, F. Andrén, J. Kathan, and C. Cecati, “A review of architectures and concepts for intelligence in future electric energy systems,” IEEE Trans. Ind. Electron., vol. 62(4), pp. 2424–2438, 2015, Accessed: Nov. 21, 2018. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/6915899/.[38] J. Guacaneme, D. Velasco, and C. Trujillo, “Revisión de las características de sistemas de almacenamiento de energía para aplicaciones en micro redes,” Inf. tecnológica, vol. 25(2), pp. 175–188, 2014, Accessed: Nov. 21, 2018. [Online]. Available: https://scielo.conicyt.cl/scielo.php?pid=S0718-07642014000200020&script=sci_arttext&tlng=en.[39] T. Hong, P. Wang, and L. White, “Weather station selection for electric load forecasting,” Int. J. Forecast., vol. 31, no. 2, pp. 286–295, 2015, Accessed: Mar. 22, 2019. [Online]. Available: http://blog.drhongtao.com/2018/10/bigdeal-forecasting-competition-2018.html.[40] S. Vargas, D. Rodriguez, and S. Rivera, “Mathematical Formulation and Numerical Validation of Uncertainty Costs for Controllable Loads,” Rev. Int. Métodos Numéricos para Cálculo y Diseño en Ing., vol. 35, no. 1, Feb. 2019, Accessed: Mar. 06, 2019. [Online]. Available: https://www.scipedia.com/public/Vargas_et_al_2019a#.[41] F. Lezama, J. Soares, R. Faia, T. Pinto, and Z. Vale, “A New Hybrid-Adaptive Differential Evolution for a Smart Grid Application under Uncertainty,” in 2018 IEEE Congress on Evolutionary Computation, CEC 2018 - Proceedings, Jul. 2018, pp. 1–8, doi: 10.1109/CEC.2018.8477808.[42] B. Matthiss, A. Momenifarahaniy, K. Ohnmeissz, and M. Felderx, “Influence of Demand and Generation Uncertainty on the Operational Efficiency of Smart Grids,” in 7th International IEEE Conference on Renewable Energy Research and Applications, ICRERA 2018, 2018, pp. 751–756, doi: 10.1109/ICRERA.2018.8566733.[43] A. Nouri, A. Soroudi, and A. Kezne, “Strategic Scheduling in Smart Grids,” IEEE EEEIC, pp. 1–6, 2018.[44] W. Dickerson et al., “Smart grid measurement uncertainty: Definitional and influence quantity considerations,” in 2018 1st International Colloquium on Smart Grid Metrology, SmaGriMet 2018, Mar. 2018, pp. 1–5, doi: 10.23919/SMAGRIMET.2018.8369831.[45] A. R. Herrera-Orozco, J. J. Mora-Florez, and J. F. Patiño, “Simulation and Validation of Polynomial Electric Load Model Using ATP,” Sci. Tech., vol. 18, no. 01, pp. 11–18, 2013, Accessed: Aug. 27, 2020. [Online]. Available: http://revistas.utp.edu.co/index.php/revistaciencia/article/view/7571.[46] D. L. Alvarez, “Dynamic Line Rating State Estimation,” 2017.[47] B. Gu, Z. Chen, T. Jiv, L. Zhang, Q. Wu, and M. Li, “Quasi-monte Carlo simulation based economic dispatch with wind power integrated,” Innov. Smart Grid Technol., vol. 1, pp. 1–6, 2016, Accessed: Nov. 23, 2018. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/7796396/. [[48] F. Molina, S. Perez, and S. Rivera, “Formulación de funciones de costo de incertidumbre en pequenas centrales hidroeléctricas dentro de una microgrid,” Ing. USBMed, vol. 8, p. 1, 2017, Accessed: Mar. 06, 2019. [Online]. Available: http://www.revistas.usb.edu.co/index.php/IngUSBmed/article/view/2683.[49] P. P. Verma, D. Srinivasan, K. S. Swarup, and R. Mehta, “A Review of Uncertainty Handling Techniques in Smart Grid,” Int. J. Uncertainty, Fuzziness Knowledge-Based Syst., vol. 26, no. 03, pp. 345–378, Jun. 2018, doi: 10.1142/S0218488518500186. [50[50] J. Tello-maita and A. Marulanda-guerra, “Modelos de optimización para sistemas de potencia en la evolución hacia redes inteligentes: Una revisión,” DYNA, vol. 84, no. 202, pp. 102–111, 2017, doi: 10.15446/dyna.v84n202.63354.[51] M. Velasquez, J. Barreiro-Gomez, N. Quijano, and A. Cadena, “Intra-hour microgrid economic dispatch based on model predictive control,” ieeexplore.ieee.org, vol. 1, p. 12, 2019, Accessed: Feb. 09, 2020. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/8859230/.[52] M. Di Somma, G. Graditi, E. Heydarian-Forushani, M. Shafie-khah, and P. Siano, “Stochastic optimal scheduling of distributed energy resources with renewables considering economic and environmental aspects,” Renew. Energy, vol. 116, pp. 272–287, 2018, doi: 10.1016/j.renene.2017.09.074.[53] B. Mohammadi-Ivatloo, M. Moradi-Dalvand, and A. Rabiee, “Combined heat and power economic dispatch problem solution using particle swarm optimization with time varying acceleration coefficients,” Electr. Power Syst. Res., vol. 95, pp. 9–18, Feb. 2013, doi: 10.1016/j.epsr.2012.08.005.[54] M. Basu, “Bee colony optimization for combined heat and power economic dispatch,” Expert Syst. Appl., vol. 38, no. 11, pp. 13527–13531, Mar. 2011, doi: 10.1016/j.eswa.2011.03.067.[55] M. Basu, “Combined Heat and Power Economic Dispatch by Using Differential Evolution,” Electr. Power Components Syst., vol. 38, no. 8, pp. 996–1004, 2010, doi: 10.1080/15325000903571574.[56] A. Vasebi, M. Fesanghary, and S. M. T. Bathaee, “Combined heat and power economic dispatch by harmony search algorithm,” Int. J. Electr. Power Energy Syst., vol. 29, no. 10, pp. 713–719, Dec. 2007, doi: 10.1016/j.ijepes.2007.06.006.[57] Tao Guo, M. I. Henwood, and M. van Ooijen, “An algorithm for combined heat and power economic dispatch,” IEEE Trans. Power Syst., vol. 11, no. 4, pp. 1778–1784, 1996, doi: 10.1109/59.544642.[59] W. Tushar et al., “Three-Party Energy Management with Distributed Energy Resources in Smart Grid,” IEEE Trans. Ind. Electron., vol. 62, no. 4, pp. 2487–2498, 2015, doi: 10.1109/TIE.2014.2341556.[60] P. Faria, T. Soares, Z. Vale, and H. Morais, “Distributed generation and demand response dispatch for a virtual power player energy and reserve provision,” Renew. Energy, vol. 66, pp. 686–695, Jun. 2014, doi: 10.1016/J.RENENE.2014.01.019. [6[61] R. Deng, Z. Yang, J. Chen, and M.-Y. Chow, “Load Scheduling With Price Uncertainty and Temporally-Coupled Constraints in Smart Grids,” IEEE Trans. Power Syst., vol. 29, no. 6, pp. 2823–2834, Nov. 2014, doi: 10.1109/TPWRS.2014.2311127.[62] M. Quashie, C. Marnay, F. Bouffard, and G. Jóos, “Optimal planning of microgrid power and operating reserve capacity,” Appl. Energy, vol. 210, pp. 1229–1236, 2018, Accessed: Mar. 10, 2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0306261917310309.[63] A. Khodaei, S. Bahramirad, and S. Mohammad, “Microgrid planning under uncertainty,” IEEE Trans. 2015, vol. 5, no. 30, pp. 2417–2425, 2015, Accessed: Mar. 10, 2019. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/6920097/.[64] A. Valibeygi, A. Habib, and R. de Callafon, “Robust Power Scheduling for Microgrids with Uncertainty in Renewable Energy Generation,” 2019 IEEE Power Energy Soc. Innov. Smart Grid Technol. Conf., vol. 1, no. 1, pp. 1–5, Feb. 2019, Accessed: Mar. 10, 2019. [Online]. Available: http://arxiv.org/abs/1902.07927.[65] M. Kazemi, B. Mohammadi-Ivatloo, and M. Ehsan, “Risk-constrained strategic bidding of GenCos considering demand response,” IEEE Trans. power Syst., vol. 30, no. 1, pp. 1–9, 2015, Accessed: Mar. 10, 2019. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/6832632/.[66] M. Tushar, C. Assi, and M. Uddin, “Smart microgrids: Optimal joint scheduling for electric vehicles and home appliances,” IEEE Trans. Smart Grid, vol. 5, no. 1, pp. 1–12, 2014, Accessed: Mar. 10, 2019. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/6693776/.[67] F. Farzan, M. Jafari, R. Masiello, and Y. Lu, “Toward optimal day-ahead scheduling and operation control of microgrids under uncertainty,” IEEE Trans. Smart Grid, vol. 6, no. 2, pp. 499–507, 2015, Accessed: Mar. 11, 2019. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/6965654/.[68] S. Parhizi, A. Khodaei, and M. Shahidehpour, “Market-based versus price-based microgrid optimal scheduling,” IEEE Trans. Smart Grid, vol. 9, no. 2, pp. 615–623, 2018, doi: 10.1109/TSG.2016.2558517.[69] A. Raab, E. Lauth, K. Strunz, and D. Göhlich, “Implementation Schemes for Electric Bus Fleets at Depots with Optimized Energy Procurements in Virtual Power Plant Operations,” World Electr. Veh., vol. 10, no. 1, pp. 1–14, 2019, Accessed: Mar. 11, 2019. [Online]. Available: https://www.mdpi.com/2032-6653/10/1/5.[70] I. Naharudinsyah and S. Limmer, “Optimal Charging of Electric Vehicles with Trading on the Intraday Electricity Market,” Energies, vol. 11, no. 6, pp. 1–12, 2018, Accessed: Mar. 11, 2019. [Online]. Available: https://www.mdpi.com/1996-1073/11/6/1416. [[71] K. Pandya and S. Joshi, “CHAOS enhanced Flower Pollination Algorithm for Optimal Scheduling of Distributed Energy Resources in Smart Grid,” 2018 IEEE Innov. Smart Technol. (ISGT Asia), pp. 705–709, 2018, Accessed: Mar. 11, 2019. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/8467806/. [[72] P. Rabanal, “Algoritmos heurísticos y aplicaciones a métodos formales,” 2010.[73] J. Soares, H. Morais, T. Sousa, Z. Vale, and P. Faria, “Day-Ahead Resource Scheduling Including Demand Response for Electric Vehicles,” IEEE Trans. Smart Grid, vol. 4, no. 1, pp. 596–605, Mar. 2013, doi: 10.1109/TSG.2012.2235865.[74] F. Lezama, J. Soares, Z. Vale, J. Rueda, S. Rivera, and I. Elrich, “2017 IEEE competition on modern heuristic optimizers for smart grid operation: Testbeds and results,” Swarm Evol. Comput., vol. 44, pp. 420–427, Feb. 2019, doi: 10.1016/J.SWEVO.2018.05.005.[75] J. Torres-Riveros and S. Rivera-Rodriguez, “Optimal energy dispatch in multiple periods of time considering the variability and uncertainty of generation from renewable sources,” Prospectiva, vol. 16, no. 2, pp. 75–81, 2018, doi: 10.15665/rp.v16i2.1642.[76] X. Z. and S. L. Y. Zhou, Z. Zhou, H. Xu, X. Zhang, “Adjustment of wave front time and overshoot in lightning impulse test for transformer insulation,” 2017 IEEE Conf. Electr. Insul. Dielectr. Phenom., pp. 270–273, 2017, doi: 10.1109/CEIDP.2017.8257526.[77] V. Miranda and R. Alves, “Differential Evolutionary Particle Swarm Optimization (DEEPSO): A successful hybrid,” in Proceedings - 1st BRICS Countries Congress on Computational Intelligence, BRICS-CCI 2013, 2013, pp. 368–374, doi: 10.1109/BRICS-CCI-CBIC.2013.68.[78] E. de V. Fortes, L. H. Macedo, P. B. de Araujo, and R. Romero, “A VNS algorithm for the design of supplementary damping controllers for small-signal stability analysis,” Int. J. Electr. Power Energy Syst., vol. 94, pp. 41–56, 2018, doi: 10.1016/j.ijepes.2017.06.017.[79] M. Tuballa and M. A. Reviews, “A review of the development of Smart Grid technologies,” Renew. Sustain. Energy, vol. 59, pp. 710–715, 2016, Accessed: Mar. 04, 2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1364032116000393.[80] F. Lezama, L. E. Sucar, E. M. de Cote, J. Soares, and Z. Vale, “Differential evolution strategies for large-scale energy resource management in smart grids,” Proc. Genet. Evol. Comput. Conf. Companion - GECCO ’17, pp. 1279–1286, 2017, doi: 10.1145/3067695.3082478.[81] A. R. Gonçalves Soares, “Integrated Management of Residential Energy Resources: Models, Algorithms and Application,” 2016.[82] Y.-Y. Hong et al., “Optimizing Capacities of Distributed Generation and Energy Storage in a Small Autonomous Power System Considering Uncertainty in Renewables,” Energies, vol. 8, no. 4, pp. 2473–2492, Mar. 2015, doi: 10.3390/en8042473.[83] J. Delgado Rivera, “Redes neuronales de propagación inversa,” Ing. e Investig., no. 27, pp. 48–51, 1992, Accessed: Aug. 28, 2020. [Online]. Available: https://revistas.unal.edu.co/index.php/ingeinv/article/view/20764.[84] O. Dzobo, A. M. Shehata, and C. L. Azimoh, “Optimal economic load dispatch in smart grids considering uncertainty,” in 2017 IEEE AFRICON, Sep. 2017, pp. 1277–1282, doi: 10.1109/AFRCON.2017.8095666.[85] P. Baratto-Callejas, “Implementación de un programa de respuesta de la demanda de energía eléctrica en un mercado de clientes no regulados en Colombia,” Rev. maest. derecho econ. Bogotá (Colombia N°, vol. 6, no. 6, pp. 259–292, 2010, [Online]. Available: https://search.proquest.com/openview/f9c6ca7d582333cfb170931ebf23db67/1?pq-origsite=gscholar&cbl=866386.[86] P. Rodilla and P. Mastropietro, Definición de las características de funcionamiento del despacho vinculante, los mercados intradiarios y el mecanismo de balance. 2018.[87] J. Garcia-Guarin, S. Rivera, and H. Rodriguez, “Smart grid review: Reality in Colombia and expectations,” J. Phys. Conf. Ser., vol. 1257, no. 1, p. 012011, Jun. 2019, doi: 10.1088/1742-6596/1257/1/012011.[88] J. Garcia Guarin, F. Lezama, J. Soares, and S. Rivera, “Operation scheduling of smart grids considering stochastic uncertainty modelling,” Far East J. Math. Sci., vol. 1, no. 115, pp. 77–98, 2019, doi: 10.17654/MS115010077.[89] J. Garcia, D. Alvarez, and S. Rivera, “Ensemble Based Optimization for Electric Demand Forecast: Genetic Programming and Heuristic Algorithms,” Rev. int. métodos numér. cálc. diseño ing., vol. 1, pp. 1–13, 2020, doi: 10.23967/j.rimni.2020.07.001.[90] J. Garcia-Guarin, J. Guerrero, D. Alvarez, and S. Rivera, “Multi-objective optimization of smart grids considering environments with uncertainty,” in Asia-Pacific Solar Research Conference, 2019, vol. 1409, no. 1, p. 2, Accessed: Feb. 19, 2020. [Online]. Available: http://apvi.org.au/solar-research-conference/wp-content/uploads/2019/12/122_GarciaJulian_DI_2019.pdf.[91] J. Garcia-Guarin, S. Rivera, and L. Trigos, “Multiobjective optimization of smart grids considering market power,” J. Phys. Conf. Ser., vol. 1409, p. 012006, Nov. 2019, doi: 10.1088/1742-6596/1409/1/012006.[92] J. Garcia-Guarin, W. Infante, J. Ma, D. Alvarez, and S. Rivera, “Optimal Scheduling of Smart Microgrids Considering Electric Vehicle Battery Swapping Stations,” Int. J. Electr. Comput. Eng., vol. 10, no. 5, pp. 5093–5107, 2020.[93] P. J. García-Guarín, J. Cantor-López, C. Cortés-Guerrero, M. A. Guzmán-Pardo, and S. Rivera, “Implementación del algoritmo VNS-DEEPSO para el despacho de energía en redes distribuidas inteligentes,” INGE CUC, vol. 15, no. 1, pp. 142–154, 2019, doi: 10.17981/ingecuc.15.1.2019.13.[94] J. Garcia-Guarin et al., “Smart microgrids operation considering a variable neighborhood search: The differential evolutionary particle swarm optimization algorithm,” Energies, vol. 12, no. 16, p. 3149, Aug. 2019, doi: 10.3390/en12163149.[95] J. Garcia-Guarin, D. Alvarez, A. Bretas, and S. Rivera, “Schedule Optimization in A Smart Microgrid Considering Demand Response Constraints,” Energies, vol. 13, no. 17, p. 4567, Sep. 2020, doi: 10.3390/en13174567.[96] J. Garcia-Guarin, W. Infante, D. Alvarez, and S. Rivera, “Scheduling optimization for smart microgrids considering twolevels transactions of electric vehicles and energy markets,” J. Phys. Conf. Ser., vol. 1708, no. 1, p. 012019, Dec. 2020, doi: 10.1088/1742-6596/1708/1/012019.[97] J. Garcia-Guarin, M. Duran-Pinzón, J. Paez-Arango, and S. Rivera, “Energy planning for aquaponics production considering intraday markets,” Arch. Electr. Eng., vol. 69, no. 1, pp. 89–100, 2020, doi: 10.24425/aee.2020.131760.[98] J. Garcia-Guarin, D. Alvarez, and S. Rivera, “Uncertainty Costs Optimization of Residential Solar Generators Considering Intraday Markets,” Electron. 2021, vol. 10, no. 22, p. 2826, Nov. 2021, doi: 10.3390/electronics10222826.[99] J. H. Zhao, F. Wen, Z. Y. Dong, Y. Xue, and K. P. Wong, “Optimal dispatch of electric vehicles and wind power using enhanced particle swarm optimization,” IEEE Trans. Ind. Informatics, vol. 8, no. 4, pp. 889–899, 2012, doi: 10.1109/TII.2012.2205398.[100] N. Nikmehr and S. Najafi Ravadanegh, “Optimal Power Dispatch of Multi-Microgrids at Future Smart Distribution Grids,” IEEE Trans. Smart Grid, vol. 6, no. 4, pp. 1648–1657, Jul. 2015, doi: 10.1109/TSG.2015.2396992.[101] J. A. Botero, J. J. Garcia, and L. G. Vélez, Mecanismos utilizados para monitorear el poder de mercado en mercados eléctricos: reflexiones para Colombia, vol. 32, no. 60. Departamento de Economía, Universidad Nacional de Colombia, 2013.[102] R. Zhang, S. Wu, Z. Cao, J. Lu, and F. Gao, “A Systematic Min-Max Optimization Design of Constrained Model Predictive Tracking Control for Industrial Processes against Uncertainty,” IEEE Trans. Control Syst. Technol., vol. 26, no. 6, pp. 2157–2164, Nov. 2018, doi: 10.1109/TCST.2017.2748059.[103] M. Gendreau and J. Potvin, Handbook of Metaheuristics, vol. 2. Boston, MA: Springer US, 2010. [[104] D. Dabhi and K. Pandya, “Enhanced Velocity Differential Evolutionary Particle Swarm Optimization for Optimal Scheduling of a Distributed Energy Resources With Uncertain Scenarios,” IEEE Access, vol. 8, pp. 27001–27017, Jan. 2020, doi: 10.1109/access.2020.2970236.[105] J. Soares, C. Lobo, M. Silva, H. Morais, and Z. Vale, “Relaxation of non-convex problem as an initial solution of meta-heuristics for energy resource management,” in IEEE Power and Energy Society General Meeting, Sep. 2015, vol. 2015-September, doi: 10.1109/PESGM.2015.7286391.[106] J. Soares, N. Borges, C. Lobo, and Z. Vale, “VPP energy resources management considering emissions: The case of Northern Portugal 2020 to 2050,” in Proceedings - 2015 IEEE Symposium Series on Computational Intelligence, SSCI 2015, 2015, pp. 1259–1266, doi: 10.1109/SSCI.2015.180.[107] T. Sousa, H. Morais, R. Castro, and Z. Vale, “A new heuristic providing an effective initial solution for a simulated annealing approach to energy resource scheduling in smart grids,” in IEEE Symposium on Computational Intelligence Applications in Smart Grid, CIASG, Jan. 2015, vol. 2015-January, no. January, doi: 10.1109/CIASG.2014.7011563. [[108] T. Sousa, H. Morais, R. Castro, and Z. Vale, “Evaluation of different initial solution algorithms to be used in the heuristics optimization to solve the energy resource scheduling in smart grids,” Appl. Soft Comput. J., vol. 48, pp. 491–506, Nov. 2016, doi: 10.1016/j.asoc.2016.07.028.[109] J. Garcia-Guarin, J. Cantor, C. Cortés, M. A. Guzmán, and S. Rivera Rodríguez, “Scheduling of distributed smart grid elements considering uncertainty with the algorithm VNS-DEEPSO,” Inge Cuc, vol. 1, pp. 1–10, 2019.[110] M. Ramli and H. Bouchekara, “Solving the Problem of Large-Scale Optimal Scheduling of Distributed Energy Resources in Smart Grids Using an Improved Variable Neighborhood Search,” IEEE Access, vol. XX, p. 15, 2020, doi: 10.1109/ACCESS.2020.2986895.[111] X. Xu, H. Rong, M. Trovati, M. Liptrott, and N. Bessis, “CS-PSO: chaotic particle swarm optimization algorithm for solving combinatorial optimization problems,” Soft Comput., vol. 22, no. 3, pp. 783–795, Feb. 2018, doi: 10.1007/s00500-016-2383-8.[112] N. Dong, X. Fang, A. W.-M. P. in Engineering, and undefined 2016, “A novel chaotic particle swarm optimization algorithm for parking space guidance,” hindawi.com, Accessed: Mar. 29, 2020. [Online]. Available: https://www.hindawi.com/journals/mpe/2016/5126808/abs/.[113] K. Du, M. S.-T. and A. I. by Nature;, and undefined 2016, “Search and optimization by metaheuristics,” Springer, Accessed: Mar. 29, 2020. [Online]. Available: https://link.springer.com/content/pdf/10.1007/978-3-319-41192-7.pdf.[114] S. Hui, P. S.-I. transactions on cybernetics, and undefined 2015, “Ensemble and arithmetic recombination-based speciation differential evolution for multimodal optimization,” ieeexplore.ieee.org, Accessed: Mar. 29, 2020. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/7059242/.[115] Y. Zhao, J. Cao, X. Lai, … C. Y.-2015 34th C. C., and undefined 2015, “Ensemble based constrained-optimization extreme learning machine for landmark recognition,” ieeexplore.ieee.org, Accessed: Mar. 29, 2020. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/7260239/.[116] X. Li, S. Ma, Y. W.-I. Access, and undefined 2016, “Multi-population based ensemble mutation method for single objective bilevel optimization problem,” ieeexplore.ieee.org, Accessed: Mar. 29, 2020. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/7590112/.[117] F. Lezama, J. Soares, Z. Vale, and J. Rueda, “Competition GECAD WCCI2018 Evolutionary Computation in Uncertain Environments: A Smart Grid Application,” IEEE World Congress on Computational Intelligence 2018 – WCCI 2018 Congress on Evolutionary Computation – CEC 2018, 2018. http://www.gecad.isep.ipp.pt/WCCI2018-SG-COMPETITION/ (accessed Mar. 31, 2020).[118] V. Miranda and N. Fonseca, “EPSO - best-of-two-worlds meta-heuristic applied to power system problems,” in Proceedings of the 2002 Congress on Evolutionary Computation. CEC’02 (Cat. No.02TH8600), 2002, vol. 2, pp. 1080–1085, doi: 10.1109/CEC.2002.1004393.[119] V. Miranda and N. Fonseca, “EPSO-evolutionary particle swarm optimization, a new algorithm with applications in power systems,” IEEE/PES Transm. Distrib. Conf. Exhib., vol. 2, no. 1, pp. 745–750, 2002, Accessed: Mar. 23, 2019. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/1177567/.[120] V. Palakonda, N. H. Awad, R. Mallipeddi, M. Z. Ali, K. C. Veluvolu, and P. N. Suganthan, “Differential Evolution with Stochastic Selection for Uncertain Environments: A Smart Grid Application,” Sep. 2018, doi: 10.1109/CEC.2018.8477809.[121] R. Storn, “Differential evolution design of an IIR-filter,” in Proceedings of the IEEE Conference on Evolutionary Computation, 1996, pp. 268–273, doi: 10.1109/icec.1996.542373. [122] M. Venu, R. Mallipeddi, and P. Suganthan, “Fiber Bragg grating sensor array interrogation using differential evolution,” Optoelectron. Adv. Mater., vol. 11, no. 2, pp. 682–685, 2008.[123] R. Mallipeddi and P. Suganthan, “Unit commitment - A survey and comparison of conventional and nature inspired algorithms,” Bio-Inspired Comput., vol. 6, no. 2, pp. 71–90, 2014.[124] S. Das and P. N. Suganthan, “Differential Evolution: A Survey of the State-of-the-Art,” IEEE Trans. Evol. Comput., vol. 15, no. 1, pp. 4–31, Feb. 2011, doi: 10.1109/TEVC.2010.2059031.[125] X. Qiu, J. X. Xu, Y. Xu, and K. C. Tan, “A New Differential Evolution Algorithm for Minimax Optimization in Robust Design,” IEEE Trans. Cybern., vol. 48, no. 5, pp. 1355–1368, May 2018, doi: 10.1109/TCYB.2017.2692963.[126] N. Johari, A. Mohd, N. Mustaffa, and A. Udin, “Firefly Algorithm for Optimization Problem,” Appl. Mech. Mater. 421, vol. 421, no. 1, pp. 512–517, 2013, doi: 10.4028/www.scientific.net/AMM.421.512.[127] G. S. Chaurasia, A. K. Singh, S. Agrawal, and N. K. Sharma, “A meta-heuristic firefly algorithm based smart control strategy and analysis of a grid connected hybrid photovoltaic/wind distributed generation system,” Sol. Energy, vol. 150, pp. 265–274, Jul. 2017, doi: 10.1016/j.solener.2017.03.079.[128] S. Mohammadi, S. Soleymani, and B. Mozafari, “Scenario-based stochastic operation management of MicroGrid including Wind, Photovoltaic, Micro-Turbine, Fuel Cell and Energy Storage Devices,” Int. J. Electr. Power Energy Syst., vol. 54, pp. 525–535, Jan. 2014, doi: 10.1016/j.ijepes.2013.08.004.[129] Y. Sun, G. Qi, Z. Wang, B. Wyk, and Y. Haman, “Chaotic Particle Swarm Optimization,” Genet. Evol. Comput. Conf. GEC Summit 2009, vol. 1, no. 1, pp. 1–6, 2009, doi: 10.1145/1543834.1543902.[130] Ma, Yuan, Han, Sun, and Ma, “Improved Chaotic Particle Swarm Optimization Algorithm with More Symmetric Distribution for Numerical Function Optimization,” Symmetry (Basel)., vol. 11, no. 7, p. 876, Jul. 2019, doi: 10.3390/sym11070876.[131] A. Biju, T. Victoire, and K. Mohanasundaram, “An Improved Differential Evolution Solution for Software Project Scheduling Problem,” Hindawi Publ. Corp. Sci. world J., vol. 1, no. 1, pp. 1–9, 2015, doi: 10.1155/2015/232193.[132] R. Faia, T. Pinto, Z. Vale, and J. M. Corchado, “Hybrid approach based on particle swarm optimization for electricity markets participation,” Energy Informatics, vol. 2, no. 1, p. 1, Dec. 2019, doi: 10.1186/s42162-018-0066-7.[133] A. S. Bouhouras, P. A. Gkaidatzis, and D. P. Labridis, “Optimal application order of network reconfiguration and ODGP for loss reduction in distribution networks,” Jul. 2017, doi: 10.1109/EEEIC.2017.7977443.[134] P. Gkaidatzis, A. Bouhouras, K. Sgouras, D. Doukas, G. Christoforidis, and D. Labridis, “Efficient RES Penetration under Optimal Distributed Generation Placement Approach,” Energies, vol. 12, no. 7, p. 1250, Apr. 2019, doi: 10.3390/en12071250.[135] K. Parsopoulos and M. Vrahatis, “UPSO: A Unified Particle Swarm Optimization Scheme,” Int. Conf. Comput. Methods Sci. Eng. 2004, vol. 1, pp. 868–873, 2004, doi: 10.1201/9780429081385-222.[136] P. A. Gkaidatzis, A. S. Bouhouras, D. I. Doukas, K. I. Sgouras, and D. P. Labridis, “Application and evaluation of UPSO to ODGP in radial Distribution Networks,” in International Conference on the European Energy Market, EEM, Jul. 2016, vol. 2016-July, doi: 10.1109/EEM.2016.7521223.[137] P. A. Gkaidatzis, D. I. Doukas, D. P. Labridis, and A. S. Bouhouras, “Comparative analysis of heuristic techniques applied to ODGP,” Jul. 2017, doi: 10.1109/EEEIC.2017.7977444.[138] G. A. Bula, C. Prodhon, F. A. Gonzalez, H. M. Afsar, and N. Velasco, “Variable neighborhood search to solve the vehicle routing problem for hazardous materials transportation,” J. Hazard. Mater., vol. 324, pp. 472–480, Feb. 2017, doi: 10.1016/j.jhazmat.2016.11.015.[139] M. Bazaraa, H. Sherali, and C. Shetty, “Nonlinear programming: theory and algorithms,” 2013, Accessed: Apr. 01, 2020. [Online]. Available: https://books.google.com/books?hl=es&lr=&id=nDYz-NIpIuEC&oi=fnd&pg=PT10&ots=qNnR4iphzm&sig=d62LCqeKIp1JOT6VmYYijPPfmgQ.[140] P. Hansen and N. Mladenović, “Variable neighborhood search: Principles and applications,” Eur. J. Oper. Res., vol. 130, no. 3, pp. 449–467, May 2001, doi: 10.1016/S0377-2217(00)00100-4.[141] M. S. Bazaraa, “An efficient cyclic coordinate method for optimizing penalty functions,” Nav. Res. Logist. Q., vol. 22, no. 2, pp. 399–404, Jun. 1975, doi: 10.1002/nav.3800220215.[142] M. Subasi, N. Yildirim, and B. Yildiz, “An improvement on Fibonacci search method in optimization theory,” Appl. Math. Comput., vol. 147, no. 3, pp. 893–901, Jan. 2004, doi: 10.1016/S0096-3003(02)00828-7.[143] J. Kennedy and R. Eberhart, “Particle swarm optimization,” Proc. ICNN’95 - Int. Conf. Neural Networks, vol. 4, no. 1, pp. 1942–1948, 1995, doi: 10.1109/ICNN.1995.488968.[144] D. Montgomery, Design and Analysis of Experiments Eighth Edition, vol. 3. 2013.[145] H. Abdi and L. Williams, “Tukeys honestly signi_cant difference (HSD) test,” Encycl. Res. Des., pp. 1–5, 2010, [Online]. Available: https://personal.utdallas.edu/~herve/abdi-HSD2010-pretty.pdf.[146] H. Harter, “Critical values for Duncan’s new multiple range test,” Biometrics, vol. 16, no. 4, pp. 671–685, 1960.[147] F. S. Molina Sanchez, S. J. Pérez Sichacá, and S. R. Rivera Rodriguez, “Formulación de Funciones de Costo de Incertidumbre en Pequeñas Centrales Hidroeléctricas dentro de una Microgrid,” Ing. USBMed, vol. 8, no. 1, pp. 29–36, 2017, doi: 10.21500/20275846.2683.[148] J. C. Arevalo, F. Santos, and S. Rivera, “Uncertainty cost functions for solar photovoltaic generation, wind energy generation, and plug-in electric vehicles: Mathematical expected value and verification by Monte Carlo simulation,” Int. J. Power Energy Convers., vol. 10, no. 2, pp. 171–207, 2019, doi: 10.1504/IJPEC.2019.098621.[149] A. Sanchez, A. Romero, G. Rattá, and S. Rivera, “Smart charging of PEVs to reduce the power transformer loss of life,” in 2017 IEEE PES Innovative Smart Grid Technologies Conference - Latin America, ISGT Latin America 2017, 2017, vol. 2017-Janua, no. 2, pp. 1–6, doi: 10.1109/ISGT-LA.2017.8126729.[150] J. D. Bastidas Rodríguez, C. A. Ramos Paja, and E. Franco Mejía, Modeling and parameter calculation of photovoltaic fields in irregular weather conditions, vol. 17, no. 1. Universidad Distrital Francisco Jose de Caldas, 2012.[151] T. P. Chang, “Investigation on frequency distribution of global radiation using different probability density functions,” Int. J. Appl. Sci. Eng., vol. 8, no. 2, pp. 99–107, 2010, Accessed: Mar. 30, 2019. [Online]. Available: https://www.cyut.edu.tw/~ijase/2010/8(2)/1_018002.pdf.[152] S. Surender Reddy, P. R. Bijwe, and A. R. Abhyankar, “Real-time economic dispatch considering renewable power generation variability and uncertainty over scheduling period,” IEEE Syst. J., vol. 9, no. 4, pp. 1440–1451, Dec. 2015, doi: 10.1109/JSYST.2014.2325967.[153] E. Abramova and D. Bunn, “Forecasting the Intra-Day Spread Densities of Electricity Prices,” Energies, vol. 13, no. 3, p. 687, Feb. 2020, doi: 10.3390/en13030687.[154] J. Soares, B. Canizes, M. A. F. Ghazvini, Z. Vale, and G. K. Venayagamoorthy, “Two-Stage Stochastic Model Using Benders’ Decomposition for Large-Scale Energy Resource Management in Smart Grids,” IEEE Trans. Ind. Appl., vol. 53, no. 6, pp. 5905–5914, Nov. 2017, doi: 10.1109/TIA.2017.2723339.[155] S. Fattler and C. Pellinger, “The value of flexibility and the effect of an integrated European Intraday-Market,” in International Conference on the European Energy Market, EEM, Jul. 2016, vol. 2016-July, doi: 10.1109/EEM.2016.7521195.[156] L. Xin, “Effectiveness of the intraday filter trading,” Sep. 2013, doi: 10.1109/ICEMSI.2013.6913989.[157] Automaker, “EVAdoption,” Analyzing Key Factors That Will Drive Mass Adoption of Electric Vehicles, 2019. https://evadoption.com/ev-sales/evs-percent-of-vehicle-sales-by-brand/ (accessed Dec. 29, 2019).[158] AEMO, “Electricity price and demand,” Australian Energy Market Operator-, 2019. https://www.aemo.com.au/Electricity/National-Electricity-Market-NEM/Data-dashboard (accessed Dec. 29, 2019).[159] W. Infante, J. Ma, X. Han, and A. Liebman, “Optimal Recourse Strategy for Battery Swapping Stations Considering Electric Vehicle Uncertainty,” IEEE Trans. Intell. Transp. Syst., vol. 1, no. 1, pp. 1–11, 2019, doi: 10.1109/TITS.2019.2905898.[160] H. Liu, Y. Zhang, S. Ge, C. Gu, and F. Li, “Day-Ahead Scheduling for an Electric Vehicle PV-Based Battery Swapping Station Considering the Dual Uncertainties,” IEEE Access, vol. 7, pp. 115625–115636, 2019, doi: 10.1109/ACCESS.2019.2935774.[161] M. Alipour, K. Zare, and B. Mohammadi-Ivatloo, “Short-term scheduling of combined heat and power generation units in the presence of demand response programs,” Energy, vol. 71, pp. 289–301, Jul. 2014, doi: 10.1016/j.energy.2014.04.059.[162] J. Aghaei and M.-I. Alizadeh, “Multi-objective self-scheduling of CHP (combined heat and power)-based microgrids considering demand response programs and ESSs (energy storage systems),” Energy, vol. 55, pp. 1044–1054, Jun. 2013, doi: 10.1016/j.energy.2013.04.048.[163] J. Owens, “Tesla motors to try out battery-swap station,” Bay Area News Group, 2014. https://www.eastbaytimes.com/2014/12/19/tesla-motors-to-try-out-battery-swap-station/ (accessed Mar. 04, 2019).[164] M. R. Sarker, H. Pandžić, and M. A. Ortega-Vazquez, “Optimal operation and services scheduling for an electric vehicle battery swapping station,” IEEE Trans. Power Syst., vol. 30, no. 2, pp. 901–910, Mar. 2015, doi: 10.1109/TPWRS.2014.2331560.[165] M. Silva, H. Morais, T. Sousa, and Z. Vale, “Energy resources management in three distinct time horizons considering a large variation in wind power,” EWE Annu. event 2013, vol. 1, no. 1, p. 10, 2013, Accessed: Mar. 27, 2020. [Online]. Available: https://www.researchgate.net/publication/264974366_Energy_resources_management_in_three_distinct_time_horizons_considering_a_large_variation_in_wind_power.[166] J. Soares, M. A. Fotouhi Ghazvini, M. Silva, and Z. Vale, “Multi-dimensional signaling method for population-based metaheuristics: Solving the large-scale scheduling problem in smart grids,” Swarm Evol. Comput., vol. 29, pp. 13–32, Aug. 2016, doi: 10.1016/j.swevo.2016.02.005.[167] M. Hemmati, … M. A.-E. V. in E., and undefined 2020, “Optimal scheduling of smart Microgrid in presence of battery swapping station of electrical vehicles,” Springer, Accessed: Apr. 13, 2020. [Online]. Available: https://link.springer.com/chapter/10.1007/978-3-030-34448-1_10.[168] M. Mahoor, Z. S. Hosseini, and A. Khodaei, “Least-cost operation of a battery swapping station with random customer requests,” Energy, vol. 172, pp. 913–921, 2019, doi: 10.1016/j.energy.2019.02.018.[169] M. Yilmaz and P. T. Krein, “Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles,” IEEE Transactions on Power Electronics, vol. 28, no. 5. pp. 2151–2169, 2013, doi: 10.1109/TPEL.2012.2212917.[170] J. Ferreira, “Mobi-System: towards an information system to support sustainable mobility with electric vehicle integration,” Minho Escola de Engenharia, 2013.[171] Y. Cheng and C. Zhang, “Configuration and operation combined optimization for EV battery swapping station considering PV consumption bundling,” Prot. Control Mod. Power Syst., vol. 2, no. 1, pp. 1–18, Dec. 2017, doi: 10.1186/s41601-017-0056-y.[172] T. Li et al., “An optimal design and analysis of a hybrid power charging station for electric vehicles considering uncertainties,” in Proceedings: IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society, Dec. 2018, pp. 5147–5152, doi: 10.1109/IECON.2018.8592855.[173] J. Li, X. Tan, and B. Sun, “Optimal Power Dispatch of a Centralized Electric Vehicle Battery Charging Station with Renewables,” IET J., vol. 12, no. 5, pp. 579–585, 2018, doi: 10.1049/iet-com.2017.0610.[174] E. Naderi, A. Azizivahed, H. Narimani, M. Fathi, and M. R. Narimani, “A comprehensive study of practical economic dispatch problems by a new hybrid evolutionary algorithm,” Appl. Soft Comput. J., vol. 61, pp. 1186–1206, 2017, doi: 10.1016/j.asoc.2017.06.041.[175] A. Najafi et al., “Uncertainty-based models for optimal management of energy hubs considering demand response,” Energies, vol. 12, no. 8, p. 1413, Apr. 2019, doi: 10.3390/en12081413.[176] J. Soares, M. Silva, B. Canizes, and Z. Vale, “MicroGrid der control including EVs in a residential area,” in 2015 IEEE Eindhoven PowerTech, PowerTech 2015, Aug. 2015, pp. 1–6, doi: 10.1109/PTC.2015.7232512.[177] F. Lezama, J. Soares, P. Hernandez-Leal, M. Kaisers, T. Pinto, and Z. Vale, “Local Energy Markets: Paving the Path Toward Fully Transactive Energy Systems,” IEEE Trans. Power Syst., vol. 34, no. 5, pp. 4081–4088, 2019, doi: 10.1109/TPWRS.2018.2833959.[178] B. Canizes, M. Silva, P. Faria, S. Ramos, and Z. Vale, “Resource scheduling in residential microgrids considering energy selling to external players,” 2015, doi: 10.1109/PSC.2015.7101700.[179] J. Soares, B. Canizes, C. Lobo, Z. Vale, and H. Morais, “Electric vehicle scenario simulator tool for smart grid operators,” Energies, vol. 5, no. 6, pp. 1881–1899, 2012, doi: 10.3390/en5061881.[180] D. Wackerly, W. Mendenhall, and R. Scheaffer, Estadística Matemática con Aplicaciones 7 ed. 2010.[181] W. Cox and T. Considdine, “Energy, micromarkets, and microgrids,” Grid-interop, vol. 1, no. 1, pp. 1–8, 2011.[182] S. Choi, S. Park, and H. M. Kim, “The application of the 0-1 knapsack problem to the load-shedding problem in microgrid operation,” in Communications in Computer and Information Science, 2011, vol. 256 CCIS, pp. 227–234, doi: 10.1007/978-3-642-26010-0_28.[183] M. S. Sapre, H. Patel, K. Vaishnani, R. Thaker, and A. S. Shastri, “Solution to small size 0–1 knapsack problem using cohort intelligence with educated approach,” in Studies in Computational Intelligence, vol. 828, Springer Verlag, 2019, pp. 137–149.[184] A. Trigos, J. Garcia-Guarin, and E. Blanco, “Design of a PID control for a prototype of an automated GMAW welding bench,” J. Phys. Conf. Ser., vol. 1257, no. 1, pp. 1–9, 2019, doi: 10.1088/1742-6596/1257/1/012001.[185] K. Ogata, Modern control engineering. 2002.Proyecto 785ColcienciasEstudiantesORIGINALTesis1052388958.pdfTesis1052388958.pdfTesis de Doctorado en Ingeniería Eléctricaapplication/pdf3936088https://repositorio.unal.edu.co/bitstream/unal/81389/3/Tesis1052388958.pdf119c85f3e9ea45fb6910255159cdbe95MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81389/4/license.txt8153f7789df02f0a4c9e079953658ab2MD54THUMBNAILTesis1052388958.pdf.jpgTesis1052388958.pdf.jpgGenerated Thumbnailimage/jpeg5508https://repositorio.unal.edu.co/bitstream/unal/81389/5/Tesis1052388958.pdf.jpg95cd2b6a15bc83d4c94fba3816fc40eeMD55unal/81389oai:repositorio.unal.edu.co:unal/813892024-08-05 23:10:12.067Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK |