Catálisis de la hidrogenación del ácido levulínico a γ-valerolactona con nanopartículas de oro soportadas en sílice mesoporosa
fotografías en color, gráficas, ilustraciones, tablas
- Autores:
-
Rodriguez Gonzalez, Carolina
- Tipo de recurso:
- Fecha de publicación:
- 2022
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/81803
- Palabra clave:
- 546 - Química inorgánica
540 - Química y ciencias afines::547 - Química orgánica
542 - Técnicas, procedimientos, aparatos, equipos, materiales
661 - Tecnología de químicos industriales
668 - Tecnología de otros productos orgánicos
Valorización de biomasa
ácido levulínico
hidrogenación
γ-valerolactona
nanopartículas de oro
sílice mesoporosa.
Biomass valorization
levulinic acid
hydrogenation
γ-valerolactone
gold nanoparticles
mesoporous silica.
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_5e320ea5c4eafbe3b365a3308d4198bf |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/81803 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Catálisis de la hidrogenación del ácido levulínico a γ-valerolactona con nanopartículas de oro soportadas en sílice mesoporosa |
dc.title.translated.eng.fl_str_mv |
Gold nanoparticles supported on mesoporous silica as catalyst for the production of γ-valerolactone by levulinic acid hydrogenation catalysts |
title |
Catálisis de la hidrogenación del ácido levulínico a γ-valerolactona con nanopartículas de oro soportadas en sílice mesoporosa |
spellingShingle |
Catálisis de la hidrogenación del ácido levulínico a γ-valerolactona con nanopartículas de oro soportadas en sílice mesoporosa 546 - Química inorgánica 540 - Química y ciencias afines::547 - Química orgánica 542 - Técnicas, procedimientos, aparatos, equipos, materiales 661 - Tecnología de químicos industriales 668 - Tecnología de otros productos orgánicos Valorización de biomasa ácido levulínico hidrogenación γ-valerolactona nanopartículas de oro sílice mesoporosa. Biomass valorization levulinic acid hydrogenation γ-valerolactone gold nanoparticles mesoporous silica. |
title_short |
Catálisis de la hidrogenación del ácido levulínico a γ-valerolactona con nanopartículas de oro soportadas en sílice mesoporosa |
title_full |
Catálisis de la hidrogenación del ácido levulínico a γ-valerolactona con nanopartículas de oro soportadas en sílice mesoporosa |
title_fullStr |
Catálisis de la hidrogenación del ácido levulínico a γ-valerolactona con nanopartículas de oro soportadas en sílice mesoporosa |
title_full_unstemmed |
Catálisis de la hidrogenación del ácido levulínico a γ-valerolactona con nanopartículas de oro soportadas en sílice mesoporosa |
title_sort |
Catálisis de la hidrogenación del ácido levulínico a γ-valerolactona con nanopartículas de oro soportadas en sílice mesoporosa |
dc.creator.fl_str_mv |
Rodriguez Gonzalez, Carolina |
dc.contributor.advisor.none.fl_str_mv |
Guerrero Fajardo, Carlos Alberto |
dc.contributor.author.none.fl_str_mv |
Rodriguez Gonzalez, Carolina |
dc.contributor.researchgroup.spa.fl_str_mv |
Aprovechamiento Energético de Recursos Naturales |
dc.subject.ddc.spa.fl_str_mv |
546 - Química inorgánica 540 - Química y ciencias afines::547 - Química orgánica 542 - Técnicas, procedimientos, aparatos, equipos, materiales 661 - Tecnología de químicos industriales 668 - Tecnología de otros productos orgánicos |
topic |
546 - Química inorgánica 540 - Química y ciencias afines::547 - Química orgánica 542 - Técnicas, procedimientos, aparatos, equipos, materiales 661 - Tecnología de químicos industriales 668 - Tecnología de otros productos orgánicos Valorización de biomasa ácido levulínico hidrogenación γ-valerolactona nanopartículas de oro sílice mesoporosa. Biomass valorization levulinic acid hydrogenation γ-valerolactone gold nanoparticles mesoporous silica. |
dc.subject.proposal.spa.fl_str_mv |
Valorización de biomasa ácido levulínico hidrogenación γ-valerolactona nanopartículas de oro sílice mesoporosa. |
dc.subject.proposal.eng.fl_str_mv |
Biomass valorization levulinic acid hydrogenation γ-valerolactone gold nanoparticles mesoporous silica. |
description |
fotografías en color, gráficas, ilustraciones, tablas |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-08-08T17:27:29Z |
dc.date.available.none.fl_str_mv |
2022-08-08T17:27:29Z |
dc.date.issued.none.fl_str_mv |
2022 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/81803 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/81803 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
S. K. Maity, “Opportunities, recent trends and challenges of integrated biorefinery: Part i,” Renewable and Sustainable Energy Reviews, vol. 43. Elsevier Ltd, pp. 1427–1445, 01-Mar-2015. S. Kang, J. Fu, and G. Zhang, “From lignocellulosic biomass to levulinic acid: A review on acid-catalyzed hydrolysis,” Renewable and Sustainable Energy Reviews, vol. 94. Elsevier Ltd, pp. 340–362, 01-Oct-2018. I. T. Horváth, H. Mehdi, V. Fábos, L. Boda, and L. T. Mika, “γ-Valerolactone-a sustainable liquid for energy and carbon-based chemicals,” Green Chem., vol. 10, no. 2, pp. 238–242, Feb. 2008. N. Savage, “Fuel options: The ideal biofuel,” Nature, vol. 474, no. 7352 SUPPL., pp. S9–S11, Jun. 2011. J. Zhang, S. Wu, B. Li, and H. Zhang, “Advances in the Catalytic Production of Valuable Levulinic Acid Derivatives,” ChemCatChem, vol. 4, no. 9, pp. 1230–1237, Sep. 2012. P. A. Son, S. Nishimura, and K. Ebitani, “Production of γ-valerolactone from biomass-derived compounds using formic acid as a hydrogen source over supported metal catalysts in water solvent,” RSC Adv., vol. 4, no. 21, pp. 10525–10530, Feb. 2014. Z. Zhang, “Synthesis of γ-Valerolactone from Carbohydrates and its Applications,” ChemSusChem, vol. 9, no. 2. Wiley-VCH Verlag, pp. 156–171, 21-Jan-2016. G. C. Bond, “Gold: A relatively new catalyst,” in Catalysis Today, 2002, vol. 72, no. 1–2, pp. 5–9. A. S. K. Hashmi, “Homogeneous catalysis by gold,” Gold Bull., vol. 37, no. 1–2, pp. 51–65, 2004. A. Z. Moshfegh, “Nanoparticle catalysts,” J. Phys. D. Appl. Phys., vol. 42, no. 23, 2009. P. W. N. M. van Leeuwen, Homogeneous Catalysis. Springer Netherlands, 2004. B. Hvolbæk, T. V. W. Janssens, B. S. Clausen, H. Falsig, C. H. Christensen, and J. K. Nørskov, “Catalytic activity of Au nanoparticles,” Nano Today, vol. 2, no. 4. Elsevier, pp. 14–18, 01-Aug-2007. C. Sievers, S. L. Scott, Y. Noda, L. Qi, E. M. Albuquerque, and R. M. Rioux, “Phenomena affecting catalytic reactions at solid−Liquid interfaces,” ACS Catal., vol. 6, no. 12, 2016. X. Li, L. Zhang, S. Wang, and Y. Wu, “Recent Advances in Aqueous-Phase Catalytic Conversions of Biomass Platform Chemicals Over Heterogeneous Catalysts,” Frontiers in Chemistry, vol. 7. Frontiers Media S.A., p. 948, 07-Feb-2020. M. B. Cortie, “The weird world of nanoscale gold,” Gold Bull., vol. 37, no. 1–2, pp. 12–19, 2004. C. N. R. Rao, G. U. Kulkarni, P. J. Thomas, and P. P. Edwards, “Metal nanoparticles and their assemblies,” Chem. Soc. Rev., vol. 29, no. 1, pp. 27–35, 2000. R. Meyer, C. Lemire, S. K. Shaikhutdinov, and H. J. Freund, “Surface chemistry of catalysis by gold,” Gold Bull., vol. 37, no. 1–2, pp. 72–124, 2004. C. Articles and R. Results, “Web of Knowledge [ v . 5 . 5 ] - All Databases Citing Articles Web of Knowledge [ v . 5 . 5 ] - All Databases Citing Articles,” Chem. Rev., vol. 7641, pp. 1–5, 2012. A. Thirumurugan, S. Ramachandran, and A. Shiamala Gowri, “Combined effect of bacteriocin with gold nanoparticles against food spoiling bacteria - an approach for food packaging material preparation,” Int. Food Res. J., vol. 20, no. 4, pp. 1909–1912, 2013. M. L. Sánchez-Martínez, M. P. Aguilar-Caballos, and A. Gómez-Hens, “Homogeneous immunoassay for soy protein determination in food samples using gold nanoparticles as labels and light scattering detection,” Anal. Chim. Acta, vol. 636, no. 1, pp. 58–62, Mar. 2009. M. Falahati et al., “Gold nanomaterials as key suppliers in biological and chemical sensing, catalysis, and medicine,” Biochimica et Biophysica Acta - General Subjects, vol. 1864, no. 1. Elsevier B.V., p. 129435, 01-Jan-2020. A. S. Emrani, N. M. Danesh, P. Lavaee, M. Ramezani, K. Abnous, and S. M. Taghdisi, “Colorimetric and fluorescence quenching aptasensors for detection of streptomycin in blood serum and milk based on double-stranded DNA and gold nanoparticles,” Food Chem., vol. 190, pp. 115–121, May 2016. M. Nilam, A. Hennig, W. M. Nau, and K. I. Assaf, “Gold nanoparticle aggregation enables colorimetric sensing assays for enzymatic decarboxylation,” Anal. Methods, vol. 9, no. 19, pp. 2784–2787, May 2017. C. Cheng, H. Y. Chen, C. S. Wu, J. S. Meena, T. Simon, and F. H. Ko, “A highly sensitive and selective cyanide detection using a gold nanoparticle-based dual fluorescence-colorimetric sensor with a wide concentration range,” Sensors Actuators, B Chem., vol. 227, pp. 283–290, May 2016. C. C. Chang, C. P. Chen, C. Y. Chen, and C. W. Lin, “DNA base-stacking assay utilizing catalytic hairpin assembly-induced gold nanoparticle aggregation for colorimetric protein sensing,” Chem. Commun., vol. 52, no. 22, pp. 4167–4170, Mar. 2016. J. Tashkhourian, M. Afsharinejad, and A. R. Zolghadr, “Colorimetric chiral discrimination and determination of S-citalopram based on induced aggregation of gold nanoparticles,” Sensors Actuators, B Chem., vol. 232, pp. 52–59, Sep. 2016. A. Safavi, R. Ahmadi, and Z. Mohammadpour, “Colorimetric sensing of silver ion based on anti aggregation of gold nanoparticles,” Sensors Actuators, B Chem., vol. 242, pp. 609–615, Apr. 2017. J. Yang et al., “Analyte-triggered autocatalytic amplification combined with gold nanoparticle probes for colorimetric detection of heavy-metal ions,” Chem. Commun., vol. 53, no. 54, pp. 7477–7480, Jul. 2017. D. Zhang et al., “Colorimetric detection of bisphenol A based on unmodified aptamer and cationic polymer aggregated gold nanoparticles,” Anal. Biochem., vol. 499, pp. 51–56, Apr. 2016. Y. Huo, L. Qi, X. J. Lv, T. Lai, J. Zhang, and Z. Q. Zhang, “A sensitive aptasensor for colorimetric detection of adenosine triphosphate based on the protective effect of ATP-aptamer complexes on unmodified gold nanoparticles,” Biosens. Bioelectron., vol. 78, pp. 315–320, Apr. 2016. Y. Mao et al., “A simple and sensitive aptasensor for colorimetric detection of adenosine triphosphate based on unmodified gold nanoparticles,” Talanta, vol. 168, pp. 279–285, Jun. 2017. H. yan Shi et al., “A gold nanoparticle-based colorimetric strategy coupled to duplex-specific nuclease signal amplification for the determination of microRNA,” Microchim. Acta, vol. 184, no. 2, pp. 525–531, Feb. 2017. S. Thatai, P. Khurana, S. Prasad, S. K. Soni, and D. Kumar, “Trace colorimetric detection of Pb2+ using plasmonic gold nanoparticles and silica-gold nanocomposites,” Microchem. J., vol. 124, pp. 104–110, Jan. 2016. M. K. Lam et al., “Tuning Toehold Length and Temperature to Achieve Rapid, Colorimetric Detection of DNA from the Disassembly of DNA-Gold Nanoparticle Aggregates,” Langmuir, vol. 32, no. 6, pp. 1585–1590, Feb. 2016. R. Kumvongpin et al., “High sensitivity, loop-mediated isothermal amplification combined with colorimetric gold-nanoparticle probes for visual detection of high risk human papillomavirus genotypes 16 and 18,” J. Virol. Methods, vol. 234, pp. 90–95, Aug. 2016. Y. S. Borghei, M. Hosseini, M. Dadmehr, S. Hosseinkhani, M. R. Ganjali, and R. Sheikhnejad, “Visual detection of cancer cells by colorimetric aptasensor based on aggregation of gold nanoparticles induced by DNA hybridization,” Anal. Chim. Acta, vol. 904, pp. 92–97, Jan. 2016. X. Liu, Z. Wu, Q. Zhang, W. Zhao, C. Zong, and H. Gai, “Single Gold Nanoparticle-Based Colorimetric Detection of Picomolar Mercury Ion with Dark-Field Microscopy,” Anal. Chem., vol. 88, no. 4, pp. 2119–2124, Feb. 2016. A. I. Dar, S. Walia, and A. Acharya, “Citric acid-coated gold nanoparticles for visual colorimetric recognition of pesticide dimethoate,” J. Nanoparticle Res., vol. 18, no. 8, pp. 1–8, Aug. 2016. N. Fahimi-Kashani and M. R. Hormozi-Nezhad, “Gold-nanoparticle-based colorimetric sensor array for discrimination of organophosphate pesticides,” Anal. Chem., vol. 88, no. 16, pp. 8099–8106, Aug. 2016. L. Gong et al., “Colorimetric aggregation assay for arsenic(III) using gold nanoparticles,” Microchim. Acta, vol. 184, no. 4, pp. 1185–1190, Apr. 2017. H. Du, R. Chen, J. Du, J. Fan, and X. Peng, “Gold nanoparticle-based colorimetric recognition of creatinine with good selectivity and sensitivity,” Ind. Eng. Chem. Res., vol. 55, no. 48, pp. 12334–12340, 2016. P. Huang, J. Li, X. Liu, and F. Wu, “Colorimetric determination of aluminum(III) based on the aggregation of Schiff base-functionalized gold nanoparticles,” Microchim. Acta, vol. 183, no. 2, pp. 863–869, Feb. 2016. J. Du, H. Du, X. Li, J. Fan, and X. Peng, “In-situ colorimetric recognition of arylamine based on chemodosimeter-functionalized gold nanoparticle,” Sensors Actuators, B Chem., vol. 248, pp. 318–323, Sep. 2017. Y. Wu, M. R. K. Ali, K. Chen, N. Fang, and M. A. El-Sayed, “Gold nanoparticles in biological optical imaging,” Nano Today, vol. 24. Elsevier B.V., pp. 120–140, 01-Feb-2019. M. R. K. Ali, I. M. Ibrahim, H. R. Ali, S. A. Selim, and M. A. El-Sayed, “Treatment of natural mammary gland tumors in canines and felines using gold nanorods-assisted plasmonic photothermal therapy to induce tumor apoptosis,” Int. J. Nanomedicine, vol. 11, pp. 4849–4863, Sep. 2016. S. Dhar, E. Maheswara Reddy, A. Shiras, V. Pokharkar, and B. L. V. Prasad, “Natural gum reduced/stabilized gold nanoparticles for drug delivery formulations,” Chem. - A Eur. J., vol. 14, no. 33, pp. 10244–10250, Nov. 2008. K. S. Chen, T. S. Hung, H. M. Wu, J. Y. Wu, M. T. Lin, and C. K. Feng, “Preparation of thermosensitive gold nanoparticles by plasma pretreatment and UV grafted polymerization,” in Thin Solid Films, 2010, vol. 518, no. 24, pp. 7557–7562. T. S. Rezende, G. R. S. Andrade, L. S. Barreto, N. B. Costa, I. F. Gimenez, and L. E. Almeida, “Facile preparation of catalytically active gold nanoparticles on a thiolated chitosan,” Mater. Lett., vol. 64, no. 7, pp. 882–884, Apr. 2010. M. Okumura, T. Akita, and M. Haruta, “Hydrogenation of 1,3-butadiene and of crotonaldehyde over highly dispersed Au catalysts,” in Catalysis Today, 2002, vol. 74, no. 3–4, pp. 265–269. A. Hugon, L. Delannoy, and C. Louis, “Supported gold catalysts for selective hydrogenation of 1,3-butadiene in the presence of an excess of alkenes,” Gold Bull., vol. 41, no. 2, pp. 127–138, 2008. P. A. Son, D. H. Hoang, and K. T. Canh, “The Role of Gold Nanoparticles on Different Supports for the In-Air Conversion of Levulinic Acid into γ-Valerolactone with Formic Acid as an Alternative Hydrogen Source,” Russ. J. Appl. Chem., vol. 92, no. 9, pp. 1316–1323, Sep. 2019. X. L. Du et al., “Hydrogen-independent reductive transformation of carbohydrate biomass into γ-valerolactone and pyrrolidone derivatives with supported gold catalysts,” Angew. Chemie - Int. Ed., vol. 50, no. 34, pp. 7815–7819, Aug. 2011. G. Budroni and A. Corma, “Gold and gold-platinum as active and selective catalyst for biomass conversion: Synthesis of γ-butyrolactone and one-pot synthesis of pyrrolidone,” J. Catal., vol. 257, no. 2, pp. 403–408, Jul. 2008. F. Cárdenas-Lizana, S. Gómez-Quero, and M. A. Keane, “Ultra-selective gas phase catalytic hydrogenation of aromatic nitro compounds over Au/Al2O3,” Catal. Commun., vol. 9, no. 3, pp. 475–481, Mar. 2008. K. Shanmugaraj, T. M. Bustamante, C. H. Campos, and C. C. Torres, “Liquid phase hydrogenation of pharmaceutical interest nitroarenes over gold-supported alumina nanowires catalysts,” Materials (Basel)., vol. 13, no. 4, p. 925, Feb. 2020. G. Zhao, H. Hu, M. Deng, M. Ling, and Y. Lu, “Au/Cu-fiber catalyst with enhanced low-temperature activity and heat transfer for the gas-phase oxidation of alcohols,” Green Chem., vol. 13, no. 1, pp. 55–58, Jan. 2011. L. A. Parreira et al., “Nanocrystalline gold supported on Fe-, Ti- and Ce-modified hexagonal mesoporous silica as a catalyst for the aerobic oxidative esterification of benzyl alcohol,” Appl. Catal. A Gen., vol. 397, no. 1–2, pp. 145–152, Apr. 2011. D. Han, T. Xu, J. Su, X. Xu, and Y. Ding, “Gas-Phase Selective Oxidation of Benzyl Alcohol to Benzaldehyde with Molecular Oxygen over Unsupported Nanoporous Gold,” ChemCatChem, vol. 2, no. 4, pp. 383–386, Apr. 2010. M. Kokate, S. Dapurkar, K. Garadkar, and A. Gole, “Magnetite-silica-gold nanocomposite: One-pot single-step synthesis and its application for solvent-free oxidation of benzyl alcohol,” J. Phys. Chem. C, vol. 119, no. 25, pp. 14214–14223, Jun. 2015. Y. Liu et al., “Mesoporous Co3O4-supported gold nanocatalysts: Highly active for the oxidation of carbon monoxide, benzene, toluene, and o-xylene,” J. Catal., vol. 309, pp. 408–418, Jan. 2014. Y. Liu, H. Tsunoyama, T. Akita, S. Xie, and T. Tsukuda, “Aerobic oxidation of cyclohexane catalyzed by size-controlled au clusters on hydroxyapatite: Size effect in the sub-2 nm regime,” ACS Catal., vol. 1, no. 1, pp. 2–6, Jan. 2011. L. Aschwanden, T. Mallat, M. Maciejewski, F. Krumeich, and A. Baiker, “Development of a new generation of gold catalysts for amine oxidation,” ChemCatChem, vol. 2, no. 6, pp. 666–673, Jun. 2010. M. Comotti, C. Della Pina, R. Matarrese, M. Rossi, and A. Siani, “Oxidation of alcohols and sugars using Au/C catalysts: Part 2. Sugars,” in Applied Catalysis A: General, 2005, vol. 291, no. 1–2, pp. 204–209. T. Ishida, S. Okamoto, R. Makiyama, and M. Haruta, “Aerobic oxidation of glucose and 1-phenylethanol over gold nanoparticles directly deposited on ion-exchange resins,” Appl. Catal. A Gen., vol. 353, no. 2, pp. 243–248, Feb. 2009. T. Ishida, K. Kuroda, N. Kinoshita, W. Minagawa, and M. Haruta, “Direct deposition of gold nanoparticles onto polymer beads and glucose oxidation with H2O2,” J. Colloid Interface Sci., vol. 323, no. 1, pp. 105–111, Jul. 2008. S. Wei, W. W. Wang, X. P. Fu, S. Q. Li, and C. J. Jia, “The effect of reactants adsorption and products desorption for Au/TiO2 in catalyzing CO oxidation,” J. Catal., vol. 376, pp. 134–145, Aug. 2019. C. N. Jia, Y. Liu, H. Bongard, and F. Schüth, “Very low temperature CO oxidation over colloidally deposited gold nanoparticles on Mg(OH)2 and MgO,” J. Am. Chem. Soc., vol. 132, no. 5, pp. 1520–1522, Feb. 2010. M. Comotti, W. C. Li, B. Spliethoff, and F. Schüth, “Support effect in high activity gold catalysts for CO oxidation,” J. Am. Chem. Soc., vol. 128, no. 3, pp. 917–924, Jan. 2006. Y. Guo et al., “Uniform 2 nm gold nanoparticles supported on iron oxides as active catalysts for CO oxidation reaction: Structure-activity relationship,” Nanoscale, vol. 7, no. 11, pp. 4920–4928, Mar. 2015. S. Wei, X. P. Fu, W. W. Wang, Z. Jin, Q. S. Song, and C. J. Jia, “Au/TiO2 Catalysts for CO Oxidation: Effect of Gold State to Reactivity,” J. Phys. Chem. C, vol. 122, no. 9, pp. 4928–4936, Mar. 2018. J. Oliver-Meseguer, J. R. Cabrero-Antonino, I. Domínguez, A. Leyva-Pérez, and A. Corma, “Small gold clusters formed in solution give reaction turnover numbers of 107at room temperature,” Science (80-. )., vol. 338, no. 6113, pp. 1452–1455, Dec. 2012. S. F. R. Taylor, J. Sá, and C. Hardacre, “Friedel-Crafts Alkylation of Aromatics with Benzyl Alcohol over Gold-Modified Silica,” ChemCatChem, vol. 3, no. 1, pp. 119–121, Jan. 2011. C. H. Tang, L. He, Y. M. Liu, Y. Cao, H. Y. He, and K. N. Fan, “Direct one-pot reductive N-alkylation of nitroarenes by using alcohols with supported gold catalysts,” Chem. - A Eur. J., vol. 17, no. 26, pp. 7172–7177, Jun. 2011. X. L. Du, Q. Y. Bi, Y. M. Liu, Y. Cao, and K. N. Fan, “Conversion of biomass-derived levulinate and formate esters into γ-valerolactone over supported gold catalysts,” ChemSusChem, vol. 4, no. 12, pp. 1838–1843, Dec. 2011. “United States Patent - Dittgen et al.,” 2001. G. C. Bond and P. A. Sermon, “Gold catalysts for olefin hydrogenation - Transmutation of catalytic properties,” Gold Bull., vol. 6, no. 4, pp. 102–105, 1973. M. Haruta, N. Yamada, T. Kobayashi, and S. Iijima, “Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide,” J. Catal., vol. 115, no. 2, pp. 301–309, 1989. G. J. Hutchings, “Vapor phase hydrochlorination of acetylene: Correlation of catalytic activity of supported metal chloride catalysts,” J. Catal., vol. 96, no. 1, pp. 292–295, 1985. R. Ciriminna, E. Falletta, C. Della Pina, J. H. Teles, and M. Pagliaro, “Industrial Applications of Gold Catalysis,” Angewandte Chemie - International Edition, vol. 55, no. 46. pp. 14210–14217, 07-Nov-2016. J. H. Teles, S. Brode, and M. Chabanas, “Cationic gold(I) complexes: Highly efficient catalysts for the addition of alcohols to alkynes,” Angew. Chemie - Int. Ed., vol. 37, no. 10, pp. 1415–1418, Jun. 1998. T. Ishida, M. Nagaoka, T. Akita, and M. Haruta, “Deposition of gold clusters on porous coordination polymers by solid grinding and their catalytic activity in aerobic oxidation of alcohols,” Chem. - A Eur. J., vol. 14, no. 28, pp. 8456–8460, Sep. 2008. Q. Shi, Z. Qin, H. Xu, and G. Li, “Heterogeneous cross-coupling over gold nanoclusters,” Nanomaterials, vol. 9, no. 6. MDPI AG, p. 838, 01-Jun-2019. J. H. Kim, J. S. Park, H. W. Chung, B. W. Boote, and T. R. Lee, “Palladium nanoshells coated with self-assembled monolayers and their catalytic properties,” RSC Adv., vol. 2, no. 9, pp. 3968–3977, Apr. 2012. Y. Hui, S. Zhang, and W. Wang, “Recent Progress in Catalytic Oxidative Transformations of Alcohols by Supported Gold Nanoparticles,” Advanced Synthesis and Catalysis, vol. 361, no. 10. Wiley-VCH Verlag, pp. 2215–2235, 14-May-2019. IUPAC Compendium of Chemical Terminology. IUPAC, 2009. O. C. Gobin, “SBA-16 Materials Synthesis, Diffusion and Sorption Properties,” Thesis, no. January, p. 80, 2006. R. Ryoo, C. H. Ko, M. Kruk, V. Antochshuk, and M. Jaroniec, “Block-copolymer-templated ordered mesoporous silica: Array of uniform mesopores or mesopore-micropore network?,” J. Phys. Chem. B, vol. 104, no. 48, pp. 11465–11471, Dec. 2000. M. Haruta, “Gold as a novel catalyst in the 21st century: Preparation, working mechanism and applications,” Gold Bull., vol. 37, no. 1–2, pp. 27–36, 2004. B. L. Moroz, P. A. Pyrjaev, V. I. Zaikovskii, and V. I. Bukhtiyarov, “Nanodispersed Au/Al2O3 catalysts for low-temperature CO oxidation: Results of research activity at the Boreskov Institute of Catalysis,” Catal. Today, vol. 144, no. 3–4, pp. 292–305, Jun. 2009. T. Takei, I. Okuda, K. K. Bando, T. Akita, and M. Haruta, “Gold clusters supported on La(OH)3 for CO oxidation at 193 K,” Chem. Phys. Lett., vol. 493, no. 4–6, pp. 207–211, Jun. 2010. T. Ishida, H. Watanabe, T. Bebeko, T. Akita, and M. Haruta, “Aerobic oxidation of glucose over gold nanoparticles deposited on cellulose,” Appl. Catal. A Gen., vol. 377, no. 1–2, pp. 42–46, Apr. 2010. K. Miyazaki et al., “Influence of supporting materials on catalytic activities of gold nanoparticles as CO-tolerant catalysts in DMFC,” Electrochemistry, vol. 75, no. 2, pp. 217–220, Feb. 2007. X. D. Luong et al., “Facile Synthesis of MnO2@SiO2/Carbon Nanocomposite-based Gold Catalysts from Rice Husk for Low-Temperature CO Oxidation,” Catal. Letters, vol. 150, no. 9, pp. 2726–2733, Sep. 2020. L. X. Dien et al., “Supported gold cluster catalysts prepared by solid grinding using a non-volatile organogold complex for low-temperature CO oxidation and the effect of potassium on gold particle size,” Appl. Catal. B Environ., vol. 241, pp. 539–547, 2019. S. Hermes et al., “Metal@MOF: Loading of highly porous coordination polymers host lattices by metal organic chemical vapor deposition,” Angew. Chemie - Int. Ed., vol. 44, no. 38, pp. 6237–6241, Sep. 2005. T. Fujitani and I. Nakamura, “Mechanism and Active Sites of the Oxidation of CO over Au/TiO2,” Angew. Chemie, vol. 123, no. 43, pp. 10326–10329, Oct. 2011. B. Cojocaru, Ş. Neaţu, E. Sacaliuc-Pârvulescu, F. Lévy, V. I. Pârvulescu, and H. Garcia, “Influence of gold particle size on the photocatalytic activity for acetone oxidation of Au/TiO2 catalysts prepared by dc-magnetron sputtering,” Appl. Catal. B Environ., vol. 107, no. 1–2, pp. 140–149, Aug. 2011. Z. Ma, S. Brown, J. Y. Howe, S. H. Overbury, and S. Dai, “Surface modification of Au/TiO2 catalysts by SiO2 via atomic layer deposition,” J. Phys. Chem. C, vol. 112, no. 25, pp. 9448–9457, Jun. 2008. W. Luo, W. Cao, P. C. A. Bruijnincx, L. Lin, A. Wang, and T. Zhang, “Zeolite-supported metal catalysts for selective hydrodeoxygenation of biomass-derived platform molecules,” Green Chem., vol. 21, no. 14, pp. 3744–3768, 2019. T. Takei et al., “Heterogeneous Catalysis by Gold,” in Advances in Catalysis, vol. 55, Academic Press Inc., 2012, pp. 1–126. Y. Sunagawa, K. Yamamoto, H. Takahashi, and A. Muramatsu, “Liquid-phase reductive deposition as a novel nanoparticle synthesis method and its application to supported noble metal catalyst preparation,” Catal. Today, vol. 132, no. 1–4, pp. 81–87, Mar. 2008. M. B. E. Griffiths, P. J. Pallister, D. J. Mandia, and S. T. Barry, “Atomic Layer Deposition of Gold Metal,” Chem. Mater., vol. 28, no. 1, pp. 44–46, 2016. A. Villa et al., “Characterisation of gold catalysts,” Chemical Society Reviews, vol. 45, no. 18. Royal Society of Chemistry, pp. 4953–4994, 21-Sep-2016. S. K. Kulkarni, Nanotechnology: Principles and Practices. Springer, 2014. I. E. Wachs and C. A. Roberts, “Monitoring surface metal oxide catalytic active sites with Raman spectroscopy,” Chem. Soc. Rev., vol. 39, no. 12, pp. 5002–5017, Nov. 2010. C. E. Wyman, B. E. Dale, R. T. Elander, M. Holtzapple, M. R. Ladisch, and Y. Y. Lee, “Coordinated development of leading biomass pretreatment technologies,” Bioresour. Technol., vol. 96, no. 18 SPEC. ISS., pp. 1959–1966, Dec. 2005. D. M. Alonso, S. G. Wettstein, and J. A. Dumesic, “Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass,” Green Chemistry, vol. 15, no. 3. Royal Society of Chemistry, pp. 584–595, 25-Feb-2013. J. C. Serrano-Ruiz, R. Luque, and A. Sepúlveda-Escribano, “Transformations of biomass-derived platform molecules: From high added-value chemicals to fuels via aqueous-phase processing,” Chemical Society Reviews, vol. 40, no. 11. The Royal Society of Chemistry, pp. 5266–5281, 17-Nov-2011. S. Fernando, S. Adhikari, C. Chandrapal, and N. Murali, “Biorefineries: Current status, challenges, and future direction,” Energy and Fuels, vol. 20, no. 4. American Chemical Society, pp. 1727–1737, Jul-2006. L. R. Lynd, C. Wyman, M. Laser, D. Johnson, and R. Landucci, “Strategic Biorefinery Analysis: Analysis of Biorefineries,” Subcontract Rep. NREL/SR-510-35578, no. October, p. 40, 2005. T. Werpy and G. Petersen, “Top Value Added Chemicals from Biomass Volume I-Results of Screening for Potential Candidates from Sugars and Synthesis Gas Produced by the Staff at Pacific Northwest National Laboratory (PNNL) National Renewable Energy Laboratory (NREL) Office of Biomass,” 2004. K. Yan, T. Lafleur, C. Jarvis, and G. Wu, “Clean and selective production of γ-valerolactone from biomass-derived levulinic acid catalyzed by recyclable Pd nanoparticle catalyst,” J. Clean. Prod., vol. 72, pp. 230–232, Jun. 2014. H. Mehdi, V. Fábos, R. Tuba, A. Bodor, L. T. Mika, and I. T. Horváth, “Integration of homogeneous and heterogeneous catalytic processes for a multi-step conversion of biomass: From sucrose to levulinic acid, γ-valerolactone, 1,4-pentanediol, 2-methyl-tetrahydrofuran, and alkanes,” in Topics in Catalysis, 2008, vol. 48, no. 1–4, pp. 49–54. L. Deng, J. Li, D. M. Lai, Y. Fu, and Q. X. Guo, “Catalytic conversion of biomass-derived carbohydrates into γ-valerolactone without using an external h2 supply,” Angew. Chemie - Int. Ed., vol. 48, no. 35, pp. 6529–6532, Aug. 2009. L. D. Almeida, A. L. A. Rocha, T. S. Rodrigues, and P. A. Robles-Azocar, “Highly selective hydrogenation of levulinic acid catalyzed by Ru on TiO2-SiO2 hybrid support,” Catal. Today, vol. 344, pp. 158–165, Mar. 2020. H. Xiong, H. N. Pham, and A. K. Datye, “Hydrothermally stable heterogeneous catalysts for conversion of biorenewables,” Green Chemistry, vol. 16, no. 11. Royal Society of Chemistry, pp. 4627–4643, 01-Nov-2014. Y. Zhang, X. Cui, F. Shi, and Y. Deng, “Nano-gold catalysis in fine chemical synthesis,” Chemical Reviews, vol. 112, no. 4. American Chemical Society, pp. 2467–2505, 11-Apr-2012. W. Luo et al., “High performing and stable supported nano-alloys for the catalytic hydrogenation of levulinic acid to γ-valerolactone,” Nat. Commun., vol. 6, no. 1, pp. 1–10, Mar. 2015. H. Zhang, M. Zhao, T. Zhao, L. Li, and Z. Zhu, “Hydrogenative cyclization of levulinic acid into γ-valerolactone by photocatalytic intermolecular hydrogen transfer,” Green Chem., vol. 18, no. 8, pp. 2296–2301, Apr. 2016. K. Dhanalaxmi et al., “Magnetic Nanohybrid Decorated Porous Organic Polymer: Synergistic Catalyst for High Performance Levulinic Acid Hydrogenation,” ACS Sustain. Chem. Eng., vol. 5, no. 1, pp. 1033–1045, Jan. 2017. J. Feng et al., “Hydrogenation of levulinic acid to γ-valerolactone over Pd@UiO-66-NH2 with high metal dispersion and excellent reusability,” Microporous Mesoporous Mater., vol. 294, p. 109858, Mar. 2020. A. M. R. Galletti, C. Antonetti, V. De Luise, and M. Martinelli, “A sustainable process for the production of γ-valerolactone by hydrogenation of biomass-derived levulinic acid,” Green Chem., vol. 14, no. 3, pp. 688–694, Mar. 2012. B. Zhang et al., “A Robust Ru/ZSM-5 Hydrogenation Catalyst: Insights into the Resistances to Ruthenium Aggregation and Carbon Deposition,” ChemCatChem, vol. 9, no. 19, pp. 3646–3654, Oct. 2017. O. Abdelrahman, A. Heyden, J. B.-A. catalysis, and undefined 2014, “Analysis of kinetics and reaction pathways in the aqueous-phase hydrogenation of levulinic acid to form γ-valerolactone over Ru/C,” ACS Publ. S. C. Moldoveanu and V. David, “Short Overviews of the Main Analytical Techniques Containing a Separation Step,” in Selection of the HPLC Method in Chemical Analysis, Elsevier, 2017, pp. 55–85. S. C. Moldoveanu and V. David, “Basic Information Regarding the HPLC Techniques,” in Selection of the HPLC Method in Chemical Analysis, Elsevier, 2017, pp. 87–187. F. S. M. Hashemi et al., “Thermal atomic layer deposition of gold nanoparticles: Controlled growth and size selection for photocatalysis,” Nanoscale, vol. 12, no. 16, pp. 9005–9013, Apr. 2020. C. Balachandran, J. F. Muñoz, and T. Arnold, “Characterization of alkali silica reaction gels using Raman spectroscopy,” Cem. Concr. Res., vol. 92, pp. 66–74, Feb. 2017. B. Sadeghi, M. Mohammadzadeh, and B. Babakhani, “Green synthesis of gold nanoparticles using Stevia rebaudiana leaf extracts: Characterization and their stability,” J. Photochem. Photobiol. B Biol., vol. 148, pp. 101–106, Jul. 2015. P. Wu, P. Bai, Z. Yan, and G. X. S. Zhao, “Gold nanoparticles supported on mesoporous silica: Origin of high activity and role of Au NPs in selective oxidation of cyclohexane,” Sci. Rep., vol. 6, no. 1, pp. 1–11, Jan. 2016. R. A. Mitran, C. Matei, and D. Berger, “Correlation of mesoporous silica structural and morphological features with theoretical three-parameter model for drug release kinetics,” J. Phys. Chem. C, vol. 120, no. 51, pp. 29202–29209, 2016. N. Syazaliyana Azali, N. Hidayatul Nazirah Kamarudin, J. Adira Jaafar, S. Najiha Timmiati, and M. Shaiful Sajab, “Modification of mesoporous silica nanoparticles with pH responsive polymer poly (2-vinylpyrrolidone) for the release of 5-Florouracil,” Mater. Today Proc., Oct. 2020. S. A. Speakman, “Estimating Crystallite Size Using XRD Using XRD Using XRD Using XRD,” p. 105, 2011. H. J. Yvon, “Raman Spectroscopy for Analysis and Monitoring,” Horiba Jobin Yvon, Raman Appl. Note, pp. 1–2, 2017. A. S. Alshammari, “Heterogeneous gold catalysis: From discovery to applications,” Catalysts, vol. 9, no. 5. Multidisciplinary Digital Publishing Institute, p. 402, 29-Apr-2019. I. Sádaba, M. López Granados, A. Riisager, and E. Taarning, “Deactivation of solid catalysts in liquid media: the case of leaching of active sites in biomass conversion reactions,” Green Chem., vol. 17, no. 8, pp. 4133–4145, Aug. 2015. J. P. Lange, “Renewable Feedstocks: The Problem of Catalyst Deactivation and its Mitigation,” Angew. Chemie - Int. Ed., vol. 54, no. 45, pp. 13187–13197, Nov. 2015. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xix, 109 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Química |
dc.publisher.department.spa.fl_str_mv |
Departamento de Ingeniería Química y Ambiental |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/81803/3/1015450117.2022.pdf https://repositorio.unal.edu.co/bitstream/unal/81803/4/license.txt https://repositorio.unal.edu.co/bitstream/unal/81803/5/1015450117.2022.pdf.jpg |
bitstream.checksum.fl_str_mv |
8921b42260b10549b6687e8531cfc4bf 8153f7789df02f0a4c9e079953658ab2 5c9b3a2681ec629854b86f5df2397dee |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090257927241728 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Guerrero Fajardo, Carlos Alberto8158c2ed082a222d8fcff4117ee21159Rodriguez Gonzalez, Carolina53f82c87d3dba748e9c8b567f73b5994Aprovechamiento Energético de Recursos Naturales2022-08-08T17:27:29Z2022-08-08T17:27:29Z2022https://repositorio.unal.edu.co/handle/unal/81803Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/fotografías en color, gráficas, ilustraciones, tablasActualmente, obtener productos de interés industrial a partir de fuentes renovables ha adquirido relevancia, debido al impacto ambiental que generan los métodos de obtención tradicional y al inminente agotamiento de las fuentes fósiles. Esto ha dado paso al surgimiento de diversos procesos de valorización, con los cuales se obtienen productos de alto valor agregado a partir de biomasa. Sin embargo, una de las principales limitantes en dicha valorización es la obtención de productos con aplicación directa en la industria, debido a que la transformación de biomasa por hidrólisis, procesos termoquímicos, fermentación, entre otros métodos, da como resultado la obtención de compuestos conocidos como moléculas plataforma, que si bien son un paso adelante en el proceso de valorización, requieren un proceso de transformación adicional que permita la obtención de productos con aplicación directa. Tal es el caso del ácido levulínico, como molécula plataforma obtenida a partir de biomasa lignocelulósica, que puede valorizarse hacia γ-valerolactona, un compuesto de interés para la industria de alimentos y de biocombustibles. Por medio de esta tesis de maestría se evaluó la obtención de γ-valerolactona a partir de ácido levulínico, por medio de una reacción de hidrogenación utilizando un catalizador heterogéneo de nanopartículas de oro soportadas en sílice mesoporosa. Para esto se realizó la síntesis de la sílice mesoporosa con el método sol-gel, luego se depositaron las nanopartículas de oro (1-5% Au) empleando el método deposición-precipitación, y los catalizadores obtenidos se caracterizaron por medio de FTIR, XRD y espectroscopia Raman. Con este método, se obtuvieron efectivamente catalizadores con nanopartículas de oro (8-21 nm) cristalinas, soportadas en sílice mesoporosa, posteriormente empleados para la hidrogenación del ácido levulínico. Esta reacción se desarrolló utilizando un diseño experimental factorial multinivel en donde se evaluaron tres factores: % Au en el catalizador (0-5%), temperatura (93-177 °C) y tiempo de reacción (1-6 h), con una alimentación constante de H2, y dos variables de respuesta: conversión del ácido levulínico y selectividad de la reacción hacia γ-valerolactona. Los productos de la reacción se cuantificaron por HPLC. Como resultado se obtuvo una conversión total (100%) del ácido levulínico en temperaturas entre 135 °C y 177 °C y tiempos entre 2 h y 5 h, y una selectividad hacia γ-valerolactona del 99.49% empleando como condiciones de reacción: catalizador 5% Au, 135 °C y 3.5 h. (Texto tomado de la fuente)Currently, obtaining products of interest for industry from renewable sources has gained relevance due to the environmental impact generated by traditional production methods and the imminent depletion of fossil fuels. This has given way to the emergence of various valorization processes, with which high value-added products are obtained from biomass. However, one of the main limitations of such valorization is obtaining products with direct application in industry, because the transformation of biomass by hydrolysis, thermochemical processes, fermentation, among other methods, results in obtaining compounds known as platform molecules, which, although they are a step forward in the valorization process, require an additional transformation process that allows obtaining products with direct application. Such is the case of levulinic acid, a platform molecule obtained from lignocellulosic biomass, which can be valorized to γ-valerolactone, a compound of interest in the food and biofuel industry. By means of this master thesis, the obtaining of γ-valerolactone from levulinic acid was evaluated by a hydrogenation reaction using a heterogeneous catalyst of gold nanoparticles supported on mesoporous silica. For catalyst, the synthesis of the mesoporous silica was carried out with sol-gel method, then gold nanoparticles (1-5% Au) were deposited using deposition-precipitation method, and the catalysts obtained were dcharacterized by FTIR, XRD and Raman spectroscopy. With this method, catalysts with crystalline gold nanoparticles (8-21 nm), supported on mesoporous silica, were effectively obtained and subsequently used for the hydrogenation of levulinic acid. Hydrogenation reaction was developed using a multilevel factorial experimental design where three factors were evaluated: % Au in the catalyst (0-5%), temperature (93-177 °C) and reaction time (1-6 h), with a constant H2 feed, and two response variables: levulinic acid conversion and selectivity of the reaction to γ-valerolactone. Reaction products were quantified by HPLC. As result, a total conversion (100%) of levulinic acid was obtained at temperatures between 135 °C and 177 °C and times between 2 h and 5 h, and selectivity to γ-valerolactone of 99.49% using as reaction conditions: 5% Au catalyst, 135 °C and 3.5 h. (Text taken of the source)MaestríaProcesos catalíticos y petroquímicosxix, 109 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería QuímicaDepartamento de Ingeniería Química y AmbientalFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá546 - Química inorgánica540 - Química y ciencias afines::547 - Química orgánica542 - Técnicas, procedimientos, aparatos, equipos, materiales661 - Tecnología de químicos industriales668 - Tecnología de otros productos orgánicosValorización de biomasaácido levulínicohidrogenaciónγ-valerolactonananopartículas de orosílice mesoporosa.Biomass valorizationlevulinic acidhydrogenationγ-valerolactonegold nanoparticlesmesoporous silica.Catálisis de la hidrogenación del ácido levulínico a γ-valerolactona con nanopartículas de oro soportadas en sílice mesoporosaGold nanoparticles supported on mesoporous silica as catalyst for the production of γ-valerolactone by levulinic acid hydrogenation catalystsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMS. K. Maity, “Opportunities, recent trends and challenges of integrated biorefinery: Part i,” Renewable and Sustainable Energy Reviews, vol. 43. Elsevier Ltd, pp. 1427–1445, 01-Mar-2015.S. Kang, J. Fu, and G. Zhang, “From lignocellulosic biomass to levulinic acid: A review on acid-catalyzed hydrolysis,” Renewable and Sustainable Energy Reviews, vol. 94. Elsevier Ltd, pp. 340–362, 01-Oct-2018.I. T. Horváth, H. Mehdi, V. Fábos, L. Boda, and L. T. Mika, “γ-Valerolactone-a sustainable liquid for energy and carbon-based chemicals,” Green Chem., vol. 10, no. 2, pp. 238–242, Feb. 2008.N. Savage, “Fuel options: The ideal biofuel,” Nature, vol. 474, no. 7352 SUPPL., pp. S9–S11, Jun. 2011.J. Zhang, S. Wu, B. Li, and H. Zhang, “Advances in the Catalytic Production of Valuable Levulinic Acid Derivatives,” ChemCatChem, vol. 4, no. 9, pp. 1230–1237, Sep. 2012.P. A. Son, S. Nishimura, and K. Ebitani, “Production of γ-valerolactone from biomass-derived compounds using formic acid as a hydrogen source over supported metal catalysts in water solvent,” RSC Adv., vol. 4, no. 21, pp. 10525–10530, Feb. 2014.Z. Zhang, “Synthesis of γ-Valerolactone from Carbohydrates and its Applications,” ChemSusChem, vol. 9, no. 2. Wiley-VCH Verlag, pp. 156–171, 21-Jan-2016.G. C. Bond, “Gold: A relatively new catalyst,” in Catalysis Today, 2002, vol. 72, no. 1–2, pp. 5–9.A. S. K. Hashmi, “Homogeneous catalysis by gold,” Gold Bull., vol. 37, no. 1–2, pp. 51–65, 2004.A. Z. Moshfegh, “Nanoparticle catalysts,” J. Phys. D. Appl. Phys., vol. 42, no. 23, 2009.P. W. N. M. van Leeuwen, Homogeneous Catalysis. Springer Netherlands, 2004.B. Hvolbæk, T. V. W. Janssens, B. S. Clausen, H. Falsig, C. H. Christensen, and J. K. Nørskov, “Catalytic activity of Au nanoparticles,” Nano Today, vol. 2, no. 4. Elsevier, pp. 14–18, 01-Aug-2007.C. Sievers, S. L. Scott, Y. Noda, L. Qi, E. M. Albuquerque, and R. M. Rioux, “Phenomena affecting catalytic reactions at solid−Liquid interfaces,” ACS Catal., vol. 6, no. 12, 2016.X. Li, L. Zhang, S. Wang, and Y. Wu, “Recent Advances in Aqueous-Phase Catalytic Conversions of Biomass Platform Chemicals Over Heterogeneous Catalysts,” Frontiers in Chemistry, vol. 7. Frontiers Media S.A., p. 948, 07-Feb-2020.M. B. Cortie, “The weird world of nanoscale gold,” Gold Bull., vol. 37, no. 1–2, pp. 12–19, 2004.C. N. R. Rao, G. U. Kulkarni, P. J. Thomas, and P. P. Edwards, “Metal nanoparticles and their assemblies,” Chem. Soc. Rev., vol. 29, no. 1, pp. 27–35, 2000.R. Meyer, C. Lemire, S. K. Shaikhutdinov, and H. J. Freund, “Surface chemistry of catalysis by gold,” Gold Bull., vol. 37, no. 1–2, pp. 72–124, 2004.C. Articles and R. Results, “Web of Knowledge [ v . 5 . 5 ] - All Databases Citing Articles Web of Knowledge [ v . 5 . 5 ] - All Databases Citing Articles,” Chem. Rev., vol. 7641, pp. 1–5, 2012.A. Thirumurugan, S. Ramachandran, and A. Shiamala Gowri, “Combined effect of bacteriocin with gold nanoparticles against food spoiling bacteria - an approach for food packaging material preparation,” Int. Food Res. J., vol. 20, no. 4, pp. 1909–1912, 2013.M. L. Sánchez-Martínez, M. P. Aguilar-Caballos, and A. Gómez-Hens, “Homogeneous immunoassay for soy protein determination in food samples using gold nanoparticles as labels and light scattering detection,” Anal. Chim. Acta, vol. 636, no. 1, pp. 58–62, Mar. 2009.M. Falahati et al., “Gold nanomaterials as key suppliers in biological and chemical sensing, catalysis, and medicine,” Biochimica et Biophysica Acta - General Subjects, vol. 1864, no. 1. Elsevier B.V., p. 129435, 01-Jan-2020.A. S. Emrani, N. M. Danesh, P. Lavaee, M. Ramezani, K. Abnous, and S. M. Taghdisi, “Colorimetric and fluorescence quenching aptasensors for detection of streptomycin in blood serum and milk based on double-stranded DNA and gold nanoparticles,” Food Chem., vol. 190, pp. 115–121, May 2016.M. Nilam, A. Hennig, W. M. Nau, and K. I. Assaf, “Gold nanoparticle aggregation enables colorimetric sensing assays for enzymatic decarboxylation,” Anal. Methods, vol. 9, no. 19, pp. 2784–2787, May 2017.C. Cheng, H. Y. Chen, C. S. Wu, J. S. Meena, T. Simon, and F. H. Ko, “A highly sensitive and selective cyanide detection using a gold nanoparticle-based dual fluorescence-colorimetric sensor with a wide concentration range,” Sensors Actuators, B Chem., vol. 227, pp. 283–290, May 2016.C. C. Chang, C. P. Chen, C. Y. Chen, and C. W. Lin, “DNA base-stacking assay utilizing catalytic hairpin assembly-induced gold nanoparticle aggregation for colorimetric protein sensing,” Chem. Commun., vol. 52, no. 22, pp. 4167–4170, Mar. 2016.J. Tashkhourian, M. Afsharinejad, and A. R. Zolghadr, “Colorimetric chiral discrimination and determination of S-citalopram based on induced aggregation of gold nanoparticles,” Sensors Actuators, B Chem., vol. 232, pp. 52–59, Sep. 2016.A. Safavi, R. Ahmadi, and Z. Mohammadpour, “Colorimetric sensing of silver ion based on anti aggregation of gold nanoparticles,” Sensors Actuators, B Chem., vol. 242, pp. 609–615, Apr. 2017.J. Yang et al., “Analyte-triggered autocatalytic amplification combined with gold nanoparticle probes for colorimetric detection of heavy-metal ions,” Chem. Commun., vol. 53, no. 54, pp. 7477–7480, Jul. 2017.D. Zhang et al., “Colorimetric detection of bisphenol A based on unmodified aptamer and cationic polymer aggregated gold nanoparticles,” Anal. Biochem., vol. 499, pp. 51–56, Apr. 2016.Y. Huo, L. Qi, X. J. Lv, T. Lai, J. Zhang, and Z. Q. Zhang, “A sensitive aptasensor for colorimetric detection of adenosine triphosphate based on the protective effect of ATP-aptamer complexes on unmodified gold nanoparticles,” Biosens. Bioelectron., vol. 78, pp. 315–320, Apr. 2016.Y. Mao et al., “A simple and sensitive aptasensor for colorimetric detection of adenosine triphosphate based on unmodified gold nanoparticles,” Talanta, vol. 168, pp. 279–285, Jun. 2017.H. yan Shi et al., “A gold nanoparticle-based colorimetric strategy coupled to duplex-specific nuclease signal amplification for the determination of microRNA,” Microchim. Acta, vol. 184, no. 2, pp. 525–531, Feb. 2017.S. Thatai, P. Khurana, S. Prasad, S. K. Soni, and D. Kumar, “Trace colorimetric detection of Pb2+ using plasmonic gold nanoparticles and silica-gold nanocomposites,” Microchem. J., vol. 124, pp. 104–110, Jan. 2016.M. K. Lam et al., “Tuning Toehold Length and Temperature to Achieve Rapid, Colorimetric Detection of DNA from the Disassembly of DNA-Gold Nanoparticle Aggregates,” Langmuir, vol. 32, no. 6, pp. 1585–1590, Feb. 2016.R. Kumvongpin et al., “High sensitivity, loop-mediated isothermal amplification combined with colorimetric gold-nanoparticle probes for visual detection of high risk human papillomavirus genotypes 16 and 18,” J. Virol. Methods, vol. 234, pp. 90–95, Aug. 2016.Y. S. Borghei, M. Hosseini, M. Dadmehr, S. Hosseinkhani, M. R. Ganjali, and R. Sheikhnejad, “Visual detection of cancer cells by colorimetric aptasensor based on aggregation of gold nanoparticles induced by DNA hybridization,” Anal. Chim. Acta, vol. 904, pp. 92–97, Jan. 2016.X. Liu, Z. Wu, Q. Zhang, W. Zhao, C. Zong, and H. Gai, “Single Gold Nanoparticle-Based Colorimetric Detection of Picomolar Mercury Ion with Dark-Field Microscopy,” Anal. Chem., vol. 88, no. 4, pp. 2119–2124, Feb. 2016.A. I. Dar, S. Walia, and A. Acharya, “Citric acid-coated gold nanoparticles for visual colorimetric recognition of pesticide dimethoate,” J. Nanoparticle Res., vol. 18, no. 8, pp. 1–8, Aug. 2016.N. Fahimi-Kashani and M. R. Hormozi-Nezhad, “Gold-nanoparticle-based colorimetric sensor array for discrimination of organophosphate pesticides,” Anal. Chem., vol. 88, no. 16, pp. 8099–8106, Aug. 2016.L. Gong et al., “Colorimetric aggregation assay for arsenic(III) using gold nanoparticles,” Microchim. Acta, vol. 184, no. 4, pp. 1185–1190, Apr. 2017.H. Du, R. Chen, J. Du, J. Fan, and X. Peng, “Gold nanoparticle-based colorimetric recognition of creatinine with good selectivity and sensitivity,” Ind. Eng. Chem. Res., vol. 55, no. 48, pp. 12334–12340, 2016.P. Huang, J. Li, X. Liu, and F. Wu, “Colorimetric determination of aluminum(III) based on the aggregation of Schiff base-functionalized gold nanoparticles,” Microchim. Acta, vol. 183, no. 2, pp. 863–869, Feb. 2016.J. Du, H. Du, X. Li, J. Fan, and X. Peng, “In-situ colorimetric recognition of arylamine based on chemodosimeter-functionalized gold nanoparticle,” Sensors Actuators, B Chem., vol. 248, pp. 318–323, Sep. 2017.Y. Wu, M. R. K. Ali, K. Chen, N. Fang, and M. A. El-Sayed, “Gold nanoparticles in biological optical imaging,” Nano Today, vol. 24. Elsevier B.V., pp. 120–140, 01-Feb-2019.M. R. K. Ali, I. M. Ibrahim, H. R. Ali, S. A. Selim, and M. A. El-Sayed, “Treatment of natural mammary gland tumors in canines and felines using gold nanorods-assisted plasmonic photothermal therapy to induce tumor apoptosis,” Int. J. Nanomedicine, vol. 11, pp. 4849–4863, Sep. 2016.S. Dhar, E. Maheswara Reddy, A. Shiras, V. Pokharkar, and B. L. V. Prasad, “Natural gum reduced/stabilized gold nanoparticles for drug delivery formulations,” Chem. - A Eur. J., vol. 14, no. 33, pp. 10244–10250, Nov. 2008.K. S. Chen, T. S. Hung, H. M. Wu, J. Y. Wu, M. T. Lin, and C. K. Feng, “Preparation of thermosensitive gold nanoparticles by plasma pretreatment and UV grafted polymerization,” in Thin Solid Films, 2010, vol. 518, no. 24, pp. 7557–7562.T. S. Rezende, G. R. S. Andrade, L. S. Barreto, N. B. Costa, I. F. Gimenez, and L. E. Almeida, “Facile preparation of catalytically active gold nanoparticles on a thiolated chitosan,” Mater. Lett., vol. 64, no. 7, pp. 882–884, Apr. 2010.M. Okumura, T. Akita, and M. Haruta, “Hydrogenation of 1,3-butadiene and of crotonaldehyde over highly dispersed Au catalysts,” in Catalysis Today, 2002, vol. 74, no. 3–4, pp. 265–269.A. Hugon, L. Delannoy, and C. Louis, “Supported gold catalysts for selective hydrogenation of 1,3-butadiene in the presence of an excess of alkenes,” Gold Bull., vol. 41, no. 2, pp. 127–138, 2008.P. A. Son, D. H. Hoang, and K. T. Canh, “The Role of Gold Nanoparticles on Different Supports for the In-Air Conversion of Levulinic Acid into γ-Valerolactone with Formic Acid as an Alternative Hydrogen Source,” Russ. J. Appl. Chem., vol. 92, no. 9, pp. 1316–1323, Sep. 2019.X. L. Du et al., “Hydrogen-independent reductive transformation of carbohydrate biomass into γ-valerolactone and pyrrolidone derivatives with supported gold catalysts,” Angew. Chemie - Int. Ed., vol. 50, no. 34, pp. 7815–7819, Aug. 2011.G. Budroni and A. Corma, “Gold and gold-platinum as active and selective catalyst for biomass conversion: Synthesis of γ-butyrolactone and one-pot synthesis of pyrrolidone,” J. Catal., vol. 257, no. 2, pp. 403–408, Jul. 2008.F. Cárdenas-Lizana, S. Gómez-Quero, and M. A. Keane, “Ultra-selective gas phase catalytic hydrogenation of aromatic nitro compounds over Au/Al2O3,” Catal. Commun., vol. 9, no. 3, pp. 475–481, Mar. 2008.K. Shanmugaraj, T. M. Bustamante, C. H. Campos, and C. C. Torres, “Liquid phase hydrogenation of pharmaceutical interest nitroarenes over gold-supported alumina nanowires catalysts,” Materials (Basel)., vol. 13, no. 4, p. 925, Feb. 2020.G. Zhao, H. Hu, M. Deng, M. Ling, and Y. Lu, “Au/Cu-fiber catalyst with enhanced low-temperature activity and heat transfer for the gas-phase oxidation of alcohols,” Green Chem., vol. 13, no. 1, pp. 55–58, Jan. 2011.L. A. Parreira et al., “Nanocrystalline gold supported on Fe-, Ti- and Ce-modified hexagonal mesoporous silica as a catalyst for the aerobic oxidative esterification of benzyl alcohol,” Appl. Catal. A Gen., vol. 397, no. 1–2, pp. 145–152, Apr. 2011.D. Han, T. Xu, J. Su, X. Xu, and Y. Ding, “Gas-Phase Selective Oxidation of Benzyl Alcohol to Benzaldehyde with Molecular Oxygen over Unsupported Nanoporous Gold,” ChemCatChem, vol. 2, no. 4, pp. 383–386, Apr. 2010.M. Kokate, S. Dapurkar, K. Garadkar, and A. Gole, “Magnetite-silica-gold nanocomposite: One-pot single-step synthesis and its application for solvent-free oxidation of benzyl alcohol,” J. Phys. Chem. C, vol. 119, no. 25, pp. 14214–14223, Jun. 2015.Y. Liu et al., “Mesoporous Co3O4-supported gold nanocatalysts: Highly active for the oxidation of carbon monoxide, benzene, toluene, and o-xylene,” J. Catal., vol. 309, pp. 408–418, Jan. 2014.Y. Liu, H. Tsunoyama, T. Akita, S. Xie, and T. Tsukuda, “Aerobic oxidation of cyclohexane catalyzed by size-controlled au clusters on hydroxyapatite: Size effect in the sub-2 nm regime,” ACS Catal., vol. 1, no. 1, pp. 2–6, Jan. 2011.L. Aschwanden, T. Mallat, M. Maciejewski, F. Krumeich, and A. Baiker, “Development of a new generation of gold catalysts for amine oxidation,” ChemCatChem, vol. 2, no. 6, pp. 666–673, Jun. 2010.M. Comotti, C. Della Pina, R. Matarrese, M. Rossi, and A. Siani, “Oxidation of alcohols and sugars using Au/C catalysts: Part 2. Sugars,” in Applied Catalysis A: General, 2005, vol. 291, no. 1–2, pp. 204–209.T. Ishida, S. Okamoto, R. Makiyama, and M. Haruta, “Aerobic oxidation of glucose and 1-phenylethanol over gold nanoparticles directly deposited on ion-exchange resins,” Appl. Catal. A Gen., vol. 353, no. 2, pp. 243–248, Feb. 2009.T. Ishida, K. Kuroda, N. Kinoshita, W. Minagawa, and M. Haruta, “Direct deposition of gold nanoparticles onto polymer beads and glucose oxidation with H2O2,” J. Colloid Interface Sci., vol. 323, no. 1, pp. 105–111, Jul. 2008.S. Wei, W. W. Wang, X. P. Fu, S. Q. Li, and C. J. Jia, “The effect of reactants adsorption and products desorption for Au/TiO2 in catalyzing CO oxidation,” J. Catal., vol. 376, pp. 134–145, Aug. 2019.C. N. Jia, Y. Liu, H. Bongard, and F. Schüth, “Very low temperature CO oxidation over colloidally deposited gold nanoparticles on Mg(OH)2 and MgO,” J. Am. Chem. Soc., vol. 132, no. 5, pp. 1520–1522, Feb. 2010.M. Comotti, W. C. Li, B. Spliethoff, and F. Schüth, “Support effect in high activity gold catalysts for CO oxidation,” J. Am. Chem. Soc., vol. 128, no. 3, pp. 917–924, Jan. 2006.Y. Guo et al., “Uniform 2 nm gold nanoparticles supported on iron oxides as active catalysts for CO oxidation reaction: Structure-activity relationship,” Nanoscale, vol. 7, no. 11, pp. 4920–4928, Mar. 2015.S. Wei, X. P. Fu, W. W. Wang, Z. Jin, Q. S. Song, and C. J. Jia, “Au/TiO2 Catalysts for CO Oxidation: Effect of Gold State to Reactivity,” J. Phys. Chem. C, vol. 122, no. 9, pp. 4928–4936, Mar. 2018.J. Oliver-Meseguer, J. R. Cabrero-Antonino, I. Domínguez, A. Leyva-Pérez, and A. Corma, “Small gold clusters formed in solution give reaction turnover numbers of 107at room temperature,” Science (80-. )., vol. 338, no. 6113, pp. 1452–1455, Dec. 2012.S. F. R. Taylor, J. Sá, and C. Hardacre, “Friedel-Crafts Alkylation of Aromatics with Benzyl Alcohol over Gold-Modified Silica,” ChemCatChem, vol. 3, no. 1, pp. 119–121, Jan. 2011.C. H. Tang, L. He, Y. M. Liu, Y. Cao, H. Y. He, and K. N. Fan, “Direct one-pot reductive N-alkylation of nitroarenes by using alcohols with supported gold catalysts,” Chem. - A Eur. J., vol. 17, no. 26, pp. 7172–7177, Jun. 2011.X. L. Du, Q. Y. Bi, Y. M. Liu, Y. Cao, and K. N. Fan, “Conversion of biomass-derived levulinate and formate esters into γ-valerolactone over supported gold catalysts,” ChemSusChem, vol. 4, no. 12, pp. 1838–1843, Dec. 2011.“United States Patent - Dittgen et al.,” 2001.G. C. Bond and P. A. Sermon, “Gold catalysts for olefin hydrogenation - Transmutation of catalytic properties,” Gold Bull., vol. 6, no. 4, pp. 102–105, 1973.M. Haruta, N. Yamada, T. Kobayashi, and S. Iijima, “Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide,” J. Catal., vol. 115, no. 2, pp. 301–309, 1989.G. J. Hutchings, “Vapor phase hydrochlorination of acetylene: Correlation of catalytic activity of supported metal chloride catalysts,” J. Catal., vol. 96, no. 1, pp. 292–295, 1985.R. Ciriminna, E. Falletta, C. Della Pina, J. H. Teles, and M. Pagliaro, “Industrial Applications of Gold Catalysis,” Angewandte Chemie - International Edition, vol. 55, no. 46. pp. 14210–14217, 07-Nov-2016.J. H. Teles, S. Brode, and M. Chabanas, “Cationic gold(I) complexes: Highly efficient catalysts for the addition of alcohols to alkynes,” Angew. Chemie - Int. Ed., vol. 37, no. 10, pp. 1415–1418, Jun. 1998.T. Ishida, M. Nagaoka, T. Akita, and M. Haruta, “Deposition of gold clusters on porous coordination polymers by solid grinding and their catalytic activity in aerobic oxidation of alcohols,” Chem. - A Eur. J., vol. 14, no. 28, pp. 8456–8460, Sep. 2008.Q. Shi, Z. Qin, H. Xu, and G. Li, “Heterogeneous cross-coupling over gold nanoclusters,” Nanomaterials, vol. 9, no. 6. MDPI AG, p. 838, 01-Jun-2019.J. H. Kim, J. S. Park, H. W. Chung, B. W. Boote, and T. R. Lee, “Palladium nanoshells coated with self-assembled monolayers and their catalytic properties,” RSC Adv., vol. 2, no. 9, pp. 3968–3977, Apr. 2012.Y. Hui, S. Zhang, and W. Wang, “Recent Progress in Catalytic Oxidative Transformations of Alcohols by Supported Gold Nanoparticles,” Advanced Synthesis and Catalysis, vol. 361, no. 10. Wiley-VCH Verlag, pp. 2215–2235, 14-May-2019.IUPAC Compendium of Chemical Terminology. IUPAC, 2009.O. C. Gobin, “SBA-16 Materials Synthesis, Diffusion and Sorption Properties,” Thesis, no. January, p. 80, 2006.R. Ryoo, C. H. Ko, M. Kruk, V. Antochshuk, and M. Jaroniec, “Block-copolymer-templated ordered mesoporous silica: Array of uniform mesopores or mesopore-micropore network?,” J. Phys. Chem. B, vol. 104, no. 48, pp. 11465–11471, Dec. 2000.M. Haruta, “Gold as a novel catalyst in the 21st century: Preparation, working mechanism and applications,” Gold Bull., vol. 37, no. 1–2, pp. 27–36, 2004.B. L. Moroz, P. A. Pyrjaev, V. I. Zaikovskii, and V. I. Bukhtiyarov, “Nanodispersed Au/Al2O3 catalysts for low-temperature CO oxidation: Results of research activity at the Boreskov Institute of Catalysis,” Catal. Today, vol. 144, no. 3–4, pp. 292–305, Jun. 2009.T. Takei, I. Okuda, K. K. Bando, T. Akita, and M. Haruta, “Gold clusters supported on La(OH)3 for CO oxidation at 193 K,” Chem. Phys. Lett., vol. 493, no. 4–6, pp. 207–211, Jun. 2010.T. Ishida, H. Watanabe, T. Bebeko, T. Akita, and M. Haruta, “Aerobic oxidation of glucose over gold nanoparticles deposited on cellulose,” Appl. Catal. A Gen., vol. 377, no. 1–2, pp. 42–46, Apr. 2010.K. Miyazaki et al., “Influence of supporting materials on catalytic activities of gold nanoparticles as CO-tolerant catalysts in DMFC,” Electrochemistry, vol. 75, no. 2, pp. 217–220, Feb. 2007.X. D. Luong et al., “Facile Synthesis of MnO2@SiO2/Carbon Nanocomposite-based Gold Catalysts from Rice Husk for Low-Temperature CO Oxidation,” Catal. Letters, vol. 150, no. 9, pp. 2726–2733, Sep. 2020.L. X. Dien et al., “Supported gold cluster catalysts prepared by solid grinding using a non-volatile organogold complex for low-temperature CO oxidation and the effect of potassium on gold particle size,” Appl. Catal. B Environ., vol. 241, pp. 539–547, 2019.S. Hermes et al., “Metal@MOF: Loading of highly porous coordination polymers host lattices by metal organic chemical vapor deposition,” Angew. Chemie - Int. Ed., vol. 44, no. 38, pp. 6237–6241, Sep. 2005.T. Fujitani and I. Nakamura, “Mechanism and Active Sites of the Oxidation of CO over Au/TiO2,” Angew. Chemie, vol. 123, no. 43, pp. 10326–10329, Oct. 2011.B. Cojocaru, Ş. Neaţu, E. Sacaliuc-Pârvulescu, F. Lévy, V. I. Pârvulescu, and H. Garcia, “Influence of gold particle size on the photocatalytic activity for acetone oxidation of Au/TiO2 catalysts prepared by dc-magnetron sputtering,” Appl. Catal. B Environ., vol. 107, no. 1–2, pp. 140–149, Aug. 2011.Z. Ma, S. Brown, J. Y. Howe, S. H. Overbury, and S. Dai, “Surface modification of Au/TiO2 catalysts by SiO2 via atomic layer deposition,” J. Phys. Chem. C, vol. 112, no. 25, pp. 9448–9457, Jun. 2008.W. Luo, W. Cao, P. C. A. Bruijnincx, L. Lin, A. Wang, and T. Zhang, “Zeolite-supported metal catalysts for selective hydrodeoxygenation of biomass-derived platform molecules,” Green Chem., vol. 21, no. 14, pp. 3744–3768, 2019.T. Takei et al., “Heterogeneous Catalysis by Gold,” in Advances in Catalysis, vol. 55, Academic Press Inc., 2012, pp. 1–126.Y. Sunagawa, K. Yamamoto, H. Takahashi, and A. Muramatsu, “Liquid-phase reductive deposition as a novel nanoparticle synthesis method and its application to supported noble metal catalyst preparation,” Catal. Today, vol. 132, no. 1–4, pp. 81–87, Mar. 2008.M. B. E. Griffiths, P. J. Pallister, D. J. Mandia, and S. T. Barry, “Atomic Layer Deposition of Gold Metal,” Chem. Mater., vol. 28, no. 1, pp. 44–46, 2016.A. Villa et al., “Characterisation of gold catalysts,” Chemical Society Reviews, vol. 45, no. 18. Royal Society of Chemistry, pp. 4953–4994, 21-Sep-2016.S. K. Kulkarni, Nanotechnology: Principles and Practices. Springer, 2014.I. E. Wachs and C. A. Roberts, “Monitoring surface metal oxide catalytic active sites with Raman spectroscopy,” Chem. Soc. Rev., vol. 39, no. 12, pp. 5002–5017, Nov. 2010.C. E. Wyman, B. E. Dale, R. T. Elander, M. Holtzapple, M. R. Ladisch, and Y. Y. Lee, “Coordinated development of leading biomass pretreatment technologies,” Bioresour. Technol., vol. 96, no. 18 SPEC. ISS., pp. 1959–1966, Dec. 2005.D. M. Alonso, S. G. Wettstein, and J. A. Dumesic, “Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass,” Green Chemistry, vol. 15, no. 3. Royal Society of Chemistry, pp. 584–595, 25-Feb-2013.J. C. Serrano-Ruiz, R. Luque, and A. Sepúlveda-Escribano, “Transformations of biomass-derived platform molecules: From high added-value chemicals to fuels via aqueous-phase processing,” Chemical Society Reviews, vol. 40, no. 11. The Royal Society of Chemistry, pp. 5266–5281, 17-Nov-2011.S. Fernando, S. Adhikari, C. Chandrapal, and N. Murali, “Biorefineries: Current status, challenges, and future direction,” Energy and Fuels, vol. 20, no. 4. American Chemical Society, pp. 1727–1737, Jul-2006.L. R. Lynd, C. Wyman, M. Laser, D. Johnson, and R. Landucci, “Strategic Biorefinery Analysis: Analysis of Biorefineries,” Subcontract Rep. NREL/SR-510-35578, no. October, p. 40, 2005.T. Werpy and G. Petersen, “Top Value Added Chemicals from Biomass Volume I-Results of Screening for Potential Candidates from Sugars and Synthesis Gas Produced by the Staff at Pacific Northwest National Laboratory (PNNL) National Renewable Energy Laboratory (NREL) Office of Biomass,” 2004.K. Yan, T. Lafleur, C. Jarvis, and G. Wu, “Clean and selective production of γ-valerolactone from biomass-derived levulinic acid catalyzed by recyclable Pd nanoparticle catalyst,” J. Clean. Prod., vol. 72, pp. 230–232, Jun. 2014.H. Mehdi, V. Fábos, R. Tuba, A. Bodor, L. T. Mika, and I. T. Horváth, “Integration of homogeneous and heterogeneous catalytic processes for a multi-step conversion of biomass: From sucrose to levulinic acid, γ-valerolactone, 1,4-pentanediol, 2-methyl-tetrahydrofuran, and alkanes,” in Topics in Catalysis, 2008, vol. 48, no. 1–4, pp. 49–54.L. Deng, J. Li, D. M. Lai, Y. Fu, and Q. X. Guo, “Catalytic conversion of biomass-derived carbohydrates into γ-valerolactone without using an external h2 supply,” Angew. Chemie - Int. Ed., vol. 48, no. 35, pp. 6529–6532, Aug. 2009.L. D. Almeida, A. L. A. Rocha, T. S. Rodrigues, and P. A. Robles-Azocar, “Highly selective hydrogenation of levulinic acid catalyzed by Ru on TiO2-SiO2 hybrid support,” Catal. Today, vol. 344, pp. 158–165, Mar. 2020.H. Xiong, H. N. Pham, and A. K. Datye, “Hydrothermally stable heterogeneous catalysts for conversion of biorenewables,” Green Chemistry, vol. 16, no. 11. Royal Society of Chemistry, pp. 4627–4643, 01-Nov-2014.Y. Zhang, X. Cui, F. Shi, and Y. Deng, “Nano-gold catalysis in fine chemical synthesis,” Chemical Reviews, vol. 112, no. 4. American Chemical Society, pp. 2467–2505, 11-Apr-2012.W. Luo et al., “High performing and stable supported nano-alloys for the catalytic hydrogenation of levulinic acid to γ-valerolactone,” Nat. Commun., vol. 6, no. 1, pp. 1–10, Mar. 2015.H. Zhang, M. Zhao, T. Zhao, L. Li, and Z. Zhu, “Hydrogenative cyclization of levulinic acid into γ-valerolactone by photocatalytic intermolecular hydrogen transfer,” Green Chem., vol. 18, no. 8, pp. 2296–2301, Apr. 2016.K. Dhanalaxmi et al., “Magnetic Nanohybrid Decorated Porous Organic Polymer: Synergistic Catalyst for High Performance Levulinic Acid Hydrogenation,” ACS Sustain. Chem. Eng., vol. 5, no. 1, pp. 1033–1045, Jan. 2017.J. Feng et al., “Hydrogenation of levulinic acid to γ-valerolactone over Pd@UiO-66-NH2 with high metal dispersion and excellent reusability,” Microporous Mesoporous Mater., vol. 294, p. 109858, Mar. 2020.A. M. R. Galletti, C. Antonetti, V. De Luise, and M. Martinelli, “A sustainable process for the production of γ-valerolactone by hydrogenation of biomass-derived levulinic acid,” Green Chem., vol. 14, no. 3, pp. 688–694, Mar. 2012.B. Zhang et al., “A Robust Ru/ZSM-5 Hydrogenation Catalyst: Insights into the Resistances to Ruthenium Aggregation and Carbon Deposition,” ChemCatChem, vol. 9, no. 19, pp. 3646–3654, Oct. 2017.O. Abdelrahman, A. Heyden, J. B.-A. catalysis, and undefined 2014, “Analysis of kinetics and reaction pathways in the aqueous-phase hydrogenation of levulinic acid to form γ-valerolactone over Ru/C,” ACS Publ.S. C. Moldoveanu and V. David, “Short Overviews of the Main Analytical Techniques Containing a Separation Step,” in Selection of the HPLC Method in Chemical Analysis, Elsevier, 2017, pp. 55–85.S. C. Moldoveanu and V. David, “Basic Information Regarding the HPLC Techniques,” in Selection of the HPLC Method in Chemical Analysis, Elsevier, 2017, pp. 87–187.F. S. M. Hashemi et al., “Thermal atomic layer deposition of gold nanoparticles: Controlled growth and size selection for photocatalysis,” Nanoscale, vol. 12, no. 16, pp. 9005–9013, Apr. 2020.C. Balachandran, J. F. Muñoz, and T. Arnold, “Characterization of alkali silica reaction gels using Raman spectroscopy,” Cem. Concr. Res., vol. 92, pp. 66–74, Feb. 2017.B. Sadeghi, M. Mohammadzadeh, and B. Babakhani, “Green synthesis of gold nanoparticles using Stevia rebaudiana leaf extracts: Characterization and their stability,” J. Photochem. Photobiol. B Biol., vol. 148, pp. 101–106, Jul. 2015.P. Wu, P. Bai, Z. Yan, and G. X. S. Zhao, “Gold nanoparticles supported on mesoporous silica: Origin of high activity and role of Au NPs in selective oxidation of cyclohexane,” Sci. Rep., vol. 6, no. 1, pp. 1–11, Jan. 2016.R. A. Mitran, C. Matei, and D. Berger, “Correlation of mesoporous silica structural and morphological features with theoretical three-parameter model for drug release kinetics,” J. Phys. Chem. C, vol. 120, no. 51, pp. 29202–29209, 2016.N. Syazaliyana Azali, N. Hidayatul Nazirah Kamarudin, J. Adira Jaafar, S. Najiha Timmiati, and M. Shaiful Sajab, “Modification of mesoporous silica nanoparticles with pH responsive polymer poly (2-vinylpyrrolidone) for the release of 5-Florouracil,” Mater. Today Proc., Oct. 2020.S. A. Speakman, “Estimating Crystallite Size Using XRD Using XRD Using XRD Using XRD,” p. 105, 2011.H. J. Yvon, “Raman Spectroscopy for Analysis and Monitoring,” Horiba Jobin Yvon, Raman Appl. Note, pp. 1–2, 2017.A. S. Alshammari, “Heterogeneous gold catalysis: From discovery to applications,” Catalysts, vol. 9, no. 5. Multidisciplinary Digital Publishing Institute, p. 402, 29-Apr-2019.I. Sádaba, M. López Granados, A. Riisager, and E. Taarning, “Deactivation of solid catalysts in liquid media: the case of leaching of active sites in biomass conversion reactions,” Green Chem., vol. 17, no. 8, pp. 4133–4145, Aug. 2015.J. P. Lange, “Renewable Feedstocks: The Problem of Catalyst Deactivation and its Mitigation,” Angew. Chemie - Int. Ed., vol. 54, no. 45, pp. 13187–13197, Nov. 2015.InvestigadoresORIGINAL1015450117.2022.pdf1015450117.2022.pdfTesis de Maestría en Ingeniería Químicaapplication/pdf2455513https://repositorio.unal.edu.co/bitstream/unal/81803/3/1015450117.2022.pdf8921b42260b10549b6687e8531cfc4bfMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81803/4/license.txt8153f7789df02f0a4c9e079953658ab2MD54THUMBNAIL1015450117.2022.pdf.jpg1015450117.2022.pdf.jpgGenerated Thumbnailimage/jpeg5805https://repositorio.unal.edu.co/bitstream/unal/81803/5/1015450117.2022.pdf.jpg5c9b3a2681ec629854b86f5df2397deeMD55unal/81803oai:repositorio.unal.edu.co:unal/818032023-08-06 23:03:51.055Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK |