Beneficios técnicos y económicos de los sistemas de almacenamiento de energía basados en baterías para el suministro de servicios complementarios en el sistema eléctrico colombiano
En este documento se realiza un estado del arte de los sistemas de almacenamiento de energía (SAE), en donde se presentan los diferentes tipos, características y consideraciones a tener en cuenta de este tipo de elementos, junto al estudio de las diferentes aplicaciones y beneficios que pueden brind...
- Autores:
-
Peñaranda Bayona, Andrés Felipe
- Tipo de recurso:
- Fecha de publicación:
- 2022
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/81835
- Palabra clave:
- 620 - Ingeniería y operaciones afines
SAEB
Arbitraje de energía
Reservas de energía
Regulación de frecuencia
Co-optimización
Mercado Eléctrico Colombiano
MILP
BESS
Energy arbitrage
Energy reserve
Frequency regulation
Co-optimization
Colombian Energy Market
- Rights
- openAccess
- License
- Reconocimiento 4.0 Internacional
id |
UNACIONAL2_5dfa9d3f1d534656b04159a9d39855e7 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/81835 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Beneficios técnicos y económicos de los sistemas de almacenamiento de energía basados en baterías para el suministro de servicios complementarios en el sistema eléctrico colombiano |
dc.title.translated.eng.fl_str_mv |
Technical and economic benefits of battery-based energy storage systems for the supply of ancillary services in the Colombian electricity system |
title |
Beneficios técnicos y económicos de los sistemas de almacenamiento de energía basados en baterías para el suministro de servicios complementarios en el sistema eléctrico colombiano |
spellingShingle |
Beneficios técnicos y económicos de los sistemas de almacenamiento de energía basados en baterías para el suministro de servicios complementarios en el sistema eléctrico colombiano 620 - Ingeniería y operaciones afines SAEB Arbitraje de energía Reservas de energía Regulación de frecuencia Co-optimización Mercado Eléctrico Colombiano MILP BESS Energy arbitrage Energy reserve Frequency regulation Co-optimization Colombian Energy Market |
title_short |
Beneficios técnicos y económicos de los sistemas de almacenamiento de energía basados en baterías para el suministro de servicios complementarios en el sistema eléctrico colombiano |
title_full |
Beneficios técnicos y económicos de los sistemas de almacenamiento de energía basados en baterías para el suministro de servicios complementarios en el sistema eléctrico colombiano |
title_fullStr |
Beneficios técnicos y económicos de los sistemas de almacenamiento de energía basados en baterías para el suministro de servicios complementarios en el sistema eléctrico colombiano |
title_full_unstemmed |
Beneficios técnicos y económicos de los sistemas de almacenamiento de energía basados en baterías para el suministro de servicios complementarios en el sistema eléctrico colombiano |
title_sort |
Beneficios técnicos y económicos de los sistemas de almacenamiento de energía basados en baterías para el suministro de servicios complementarios en el sistema eléctrico colombiano |
dc.creator.fl_str_mv |
Peñaranda Bayona, Andrés Felipe |
dc.contributor.advisor.none.fl_str_mv |
Cortés Guerrero, Camilo Andrés Romero Quete, David Fernando |
dc.contributor.author.none.fl_str_mv |
Peñaranda Bayona, Andrés Felipe |
dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Investigación Emc-Un |
dc.subject.ddc.spa.fl_str_mv |
620 - Ingeniería y operaciones afines |
topic |
620 - Ingeniería y operaciones afines SAEB Arbitraje de energía Reservas de energía Regulación de frecuencia Co-optimización Mercado Eléctrico Colombiano MILP BESS Energy arbitrage Energy reserve Frequency regulation Co-optimization Colombian Energy Market |
dc.subject.proposal.spa.fl_str_mv |
SAEB Arbitraje de energía Reservas de energía Regulación de frecuencia Co-optimización Mercado Eléctrico Colombiano |
dc.subject.proposal.eng.fl_str_mv |
MILP BESS Energy arbitrage Energy reserve Frequency regulation Co-optimization Colombian Energy Market |
description |
En este documento se realiza un estado del arte de los sistemas de almacenamiento de energía (SAE), en donde se presentan los diferentes tipos, características y consideraciones a tener en cuenta de este tipo de elementos, junto al estudio de las diferentes aplicaciones y beneficios que pueden brindar los SAE. Se propone y evalúa la formulación para arbitraje de energía en el sistema eléctrico colombiano por medio de sistemas de almacenamiento de energía basados en baterías (SAEB), en donde se incluyen elementos como la degradación de las baterías y el costo generado por dicha degradación. Además, dados los beneficios que tienen los SAEB para suministrar múltiples servicios, se propone un modelo de co-optimización que permite evaluar la participación simultanea de los sistemas de almacenamiento de energía (SAEB) en aplicaciones de arbitraje, reserva de energía y regulación de frecuencia. Los modelos son evaluados haciendo uso de datos históricos del mercado de energía mayorista colombiano. Dos escenarios, relacionados con la penetración de renovables, son analizados. Además, para cada modelo se efectúa una evaluación financiera, en donde se analiza uno a uno los casos de estudio, tanto desde el punto de vista del sistema como desde el punto de vista del inversionista. Los resultados muestran que el uso exclusivo de SAEB para prestar arbitraje no es viable económicamente en Colombia, mientras que prestar de forma simultanea los servicios de regulación de frecuencia y arbitraje resultaría rentable, tanto para el sistema como para un agente inversionista. (Texto tomado de la fuente) |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-08-10T15:32:29Z |
dc.date.available.none.fl_str_mv |
2022-08-10T15:32:29Z |
dc.date.issued.none.fl_str_mv |
2022 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/81835 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/81835 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Chapter 2 - Technologies of energy storage systems. In Wu, F.-B., Yang, B., Ye, J.-L. B. T. G.-s. E. S. S., and Applications, editors, Grid-scale Energy Storage Systems and Applications, pages 17–56. Academic Press. Chapter 6 - Application of energy storage technology in gridconnected new energy power generation. pages 203–241. Academic Press. Acuity, E. (2019). 2018 U . S . Integrated Resource Plans ( IRP ) Report. Adewuyi, O. B., Shigenobu, R., Ooya, K., Senjyu, T., and Howlader, A. M. (2019). Static voltage stability improvement with battery energy storage considering optimal control of active and reactive power injection. Electric Power Systems Research, 172(October 2018):303–312. Agency, I. E. (2021). Renewables. Akram, U., Nadarajah, M., Shah, R., and Milano, F. (2020). A review on rapid responsive energy storage technologies for frequency regulation in modern power systems. Renewable and Sustainable Energy Reviews, 120(December 2019):109626. Al kez, D., Foley, A., McIlwaine, N., Morrow, D. J., Hayes, B., Zehir, M. A., Mehigan, L., Papari, B., Edrington, C. S., and Baran, M. (2020). A critical evaluation of grid stability and codes, energy storage and smart loads in power systems with wind generation. Energy, page 117671. Aneke, M. and Wang, M. (2016). Energy storage technologies and real life applications – A state of the art review. Applied Energy, 179:350–377. Argyrou, M. C., Christodoulides, P., and Kalogirou, S. A. (2018). Energy storage for electricity generation and related processes: Technologies appraisal and grid scale applications. Renewable and Sustainable Energy Reviews, 94(June):804–821. Badesa, L., Teng, F., and Strbac, G. (2019). Simultaneous Scheduling of Multiple Frequency Services in Stochastic Unit Commitment. IEEE Transactions on Power Systems, 34(5):3858–3868. Beaudin, M., Zareipour, H., Schellenberglabe, A., and Rosehart, W. (2010). Energy storage for mitigating the variability of renewable electricity sources: An updated review. Energy for Sustainable Development, 14(4):302–314. Belonogova, N., Tikka, V., Honkapuro, S., Lassila, J., Haakana, J., Lana, A., Romanenko, A., Haapaniemi, J., Narayanan, A., Kaipia, T., and Others (2018). Multi-objective role of battery energy storages in an energy system. LUT Scientific and Expertise Publications/Tutkimusraportit–Research Reports, (0494):7–8. Bera, A., Almasabi, S., Tian, Y., Byrne, R. H., Chalamala, B., Nguyen, T. A., and Mitra, J. (2020). Maximising the investment returns of a gridconnected battery considering degradation cost. IET Generation, Transmission and Distribution, 14(21):4711–4718. BloombergNEF (2019). Energy Storage Investments Boom As Battery Costs Halve the Next Decade. BloombergNEF and Goldie-Scot, L. (2019). Behind the Scenes Take on Lithium-ion Battery Prices. Brivio, C., Mandelli, S., and Merlo, M. (2016). Battery energy storage system for primary control reserve and energy arbitrage. Sustainable Energy, Grids and Networks, 6:152–165. Cheng, B., Asamov, T., and Powell, W. B. (2018). Low-rank value function approximation for co-optimization of battery storage. IEEE Transactions on Smart Grid, 9(6):6590–6598. CREG (2019). Resoluciónn 098 Por la cual se definen los mecanismos para incorporar sistemas de almacenamiento con el propósito de mitigar inconvenientes presentados por la falta o insuficiencia de redes de transporte de energía en el Sistema Interconectado Nacional. Crotogino, F., Mohmeyer, K.-U., and Scharf, R. (2001). Huntorf CAES: More than 20 Years of Successful Operation. Solution Mining Research Institute (SMRI) Spring Meeting, (April):351–357. Damato, G., Minear, E., Kaun, B., MacLaren-Wray, V., and Hoffman, S. (2016). Energy Storage Cost Summary for Utility Planning : Executive Summary. Technical Report November. Dehghani-Sanij, A. R., Tharumalingam, E., Dusseault, M. B., and Fraser, R. (2019). Study of energy storage systems and environmental challenges of batteries. Renewable and Sustainable Energy Reviews, 104(January):192–208. Díaz-González, F., Sumper, A., Gomis-Bellmunt, O., and Villafáfila-Robles, R. (2012). A review of energy storage technologies for wind power applications. Renewable and Sustainable Energy Reviews, 16(4):2154–2171. DOE (2021). DOE Global Energy Storage Database. Ehsani, A., Ranjbar, A. M., and Fotuhi-Firuzabad, M. (2009). A proposed model for co-optimization of energy and reserve in competitive electricity markets. Applied Mathematical Modelling, 33(1):92–109. Ellison, J. F., Rashkin, L. J., Serio, J., and Byrne, R. H. (2018). The benefits of grid-scale storage on Oahu. Journal of Energy Storage, 15:336–344. Englberger, S., Jossen, A., and Hesse, H. (2020). Unlocking the Potential of Battery Storage with the Dynamic Stacking of Multiple Applications. Cell Reports Physical Science, 1(11):100238. Eyer, J. (2011). Electric utility transmission and distribution upgrade deferral benefits from modular electricity storage. Modular Electricity Storage: Benefits and Costs, (June):1–77. Eyer, J., Corey, G. P., and SANDIA (2010a). Energy storage for the electricity grid: Benefits and market potential assessment guide. Technical Report SAND20100815. Fernández-Muñoz, D., Pérez-Díaz, J. I., Guisández, I., Chazarra, M., and Fernández-Espina, A. (2020). Fast frequency control ancillary services: An international review. Renewable and Sustainable Energy Reviews, 120(November 2018). Fluence Energy and Siemens (2019). Energy Storage MythBusters. Fu, R., Remo, T., Margolis, R., Fu, R., Remo, T., and Margolis, R. (2018). 2018 U . S . Utility-Scale Photovoltaics- Plus-Energy Storage System Costs Benchmark. National Renewable Energy Laboratory, (November):32. GRISEC- UPME (2018). Informe de vigilancia tecnológica en dispositivos de almacenamiento de energía producida por fuentes de energía renovables no convencionales. page 35. Hassan, M. W., Rasheed, M. B., Javaid, N., Nazar, W., and Akmal, M. (2018). Co-optimization of energy and reserve capacity considering renewable energy unit with uncertainty. Energies, 11(10). Hidalgo-Leon, R., Siguenza, D., Sanchez, C., Leon, J., JacomeRuiz, P., Wu, J., and Ortiz, D. (2018). A survey of battery energy storage system (BESS), applications and environmental impacts in power systems. 2017 IEEE 2nd Ecuador Technical Chapters Meeting, ETCM 2017, 2017-Janua:1–6. IRENA (2015). Battery Storage Report. (January). IRENA (2017). Electricity storage and renewables: Costs and markets to 2030. Number October. Kadri, A. and Mohammadi, F. (2020). Energy storage optimization for global adjustment charge reduction in Ontario. Journal of Energy Storage, 30(January):101491. Kim, D. K., Yoneoka, S., Banatwala, A. Z., and Kim, Y.-t. (2018). Handbook on Battery Energy Storage System. Number December. Kuravi, S., Trahan, J., Goswami, D. Y., Rahman, M. M., and Stefanakos, E. K. (2013). Thermal energy storage technologies and systems for concentrating solar power plants. Kyriakopoulos, G. L. and Arabatzis, G. (2016). Electrical energy storage systems in electricity generation: Energy policies, innovative technologies, and regulatory regimes. Renewable and Sustainable Energy Reviews, 56:1044–1067. Li, L., Liu, P., Li, Z., and Wang, X. (2018). A multi-objective optimization approach for selection of energy storage systems. Computers and Chemical Engineering, 115:213–225. Luo, F., Meng, K., Dong, Z. Y., Zheng, Y., Chen, Y., and Wong, K. P. (2015). Coordinated operational planning for wind farm with battery energy storage system. IEEE Transactions on Sustainable Energy, 6(1):253–262. Luo, J., Teng, F., and Bu, S. (2020). Stability-constrained Power System Scheduling: A Review. IEEE Access, 8. Ma, K., Wang, D., Lian, J., Wu, D., and Katipamula, S. (2020). Marketbased co-optimization of energy and ancillary services with distributed energy resource flexibilities. In 2020 IEEE/PES Transmission and Distribution Conference and Exposition (T D), pages 1–5. Maeyaert, L., Vandevelde, L., and D¨oring, T. (2020). Battery Storage for Ancillary Services in Smart Distribution Grids. Journal of Energy Storage, 30(May):101524. Mallon, K. R., Assadian, F., and Fu, B. (2017). Analysis of on-board photovoltaics for a battery electric bus and their impact on battery lifespan. Energies, 10(7). Marchgraber, J. and Gawlik, W. (2021). Dynamic Prioritization of Functions during Real-Time Multi-Use Operation of Battery Energy Storage Systems. Energies, 14(3):655. McKinsey & Company (2021). Global energy perspective 2021. McKinsey & Company, (January):9. Mekhilef, S., Saidur, R., and Safari, A. (2012). Comparative study of different fuel cell technologies. Renewable and Sustainable Energy Reviews, 16(1):981–989. Melaina, M. and Eichman, J. (2015). Hydrogen Energy Storage: Grid and Transportation Services (Technical Report). Related Information: NREL (National Renewable Energy Laboratory), (February):Medium: ED; Size: 66 pp. Mohseni-Bonab, S. M., Kamwa, I., Moeini, A., and Rabiee, A. (2020). Voltage Security Constrained Stochastic Programming Model for Day-Ahead BESS Schedule in Co-Optimization of T&D Systems. IEEE Transactions on Sustainable Energy, 11(1):391–404. Nadeem, F., Hussain, S. M. S., Tiwari, P. K., Goswami, A. K., and Ustun, T. S. (2019). Comparative Review of Energy Storage Systems, Their Roles, and Impacts on Future Power Systems. IEEE Access, 7:4555–4585. Ortega, A. and Milano, F. (2019). Voltage Stability of ConverterInterfaced Energy Storage Systems. IFAC-PapersOnLine, 52(4):222–227. Pereira, M., Granville, S., Fampa, M., Dix, R., and Barroso, L. (2005). Strategic bidding under uncertainty: a binary expansion approach. IEEE Transactions on Power Systems, 20(1):180–188. Pires, V. F., Pombo, A. V., and Louren¸co, J. M. (2019). Multi-objective optimization with post-pareto optimality analysis for the integration of storage systems with reactive-power compensation in distribution networks. Journal of Energy Storage, 24(January):100769. PSR and Di - Avante (2019). Análisis de los servicios complementarios para el sistema interconectado nacional. Rampersadh, N. and Davidson, I. E. (2017). Grid energy storage devices. Proceedings - 2017 IEEE PES-IAS PowerAfrica Conference: Harnessing Energy, Information and Communications Technology (ICT) for A ffordable Electrification of Africa, PowerAfrica 2017, pages 121–125. Rampokanyo, M., Kamera, P., Aronovich, I., Bos, J., Modi, N., and Quint, R. (2021). Impact of High Penetration of Inverter-based Generation on System Inertia of networks. Impact of High Penetration of Inverter-based Generation on System Inertia of networks, 1(December):14–15. Rossi, A., Stabile, M., Puglisi, C., Falabretti, D., and Merlo, M. (2019). Evaluation of the energy storage systems impact on the Italian ancillary market. Sustainable Energy, Grids and Networks, 17:100178. Schneider, S. F., Nov´ak, P., and Kober, T. (2021). Rechargeable Batteries for Simultaneous Demand Peak Shaving and Price Arbitrage Business. IEEE Transactions on Sustainable Energy, 12(1):148–157. Shi, Y., Xu, B., Wang, D., and Zhang, B. (2017). Using battery storage for peak shaving and frequency regulation: Joint optimization for superlinear gains. arXiv, 33(3):2882–2894. Sorés, P., Divényi, D., Polgári, B., Raisz, D., and Sleisz, A. (2015). Day-ahead market structures for co-optimized energy and reserve allocation. International Conference on the European Energy Market, EEM, 2015-Augus. Sun, L. and Fahim, F. (2019). Reliability enhancement of distribution networks using ESSs ancillary services: A probabilistic MILP methodology. Electric Power Systems Research, 175(June):105889. Tan, Y. T. and Kirschen, D. S. (2006). Co-optimization of energy and reserve in electricity markets with demand-side participation in reserve services. 2006 IEEE PES Power Systems Conference and Exposition, PSCE 2006 - Proceedings, (December 2006):1182–1189. Wang, Y., Zhou, Z., Botterud, A., Zhang, K., and Ding, Q. (2016). Stochastic coordinated operation of wind and battery energy storage system considering battery degradation. Journal of Modern Power Systems and Clean Energy, 4(4):581–592. Wen, Y., Li, W., Huang, G., and Liu, X. (2016). Frequency Dynamics Constrained Unit Commitment with Battery Energy Storage. IEEE Transactions on Power Systems, 31(6):5115–5125. Wu, F.-B., Yang, B., and Ye, J.-L. (2019). Chapter 5 - Integrated ESS application and economic analysis. In Grid-scale Energy Storage Systems and Applications, pages 153–201. Elsevier. XM (2021). XM Compañía de Expertos de Mercados. Xu, Y., Zhao, T., Zhao, S., Zhang, J., and Wang, Y. (2018). Multi-objective chance-constrained optimal day-ahead scheduling considering BESS degradation. CSEE Journal of Power and Energy Systems, 4(3):316–325. Yamada, S., Tanino, T., and Inuiguchi, M. (2000). An Inner Approximation Method for Optimization over the Weakly Efficient Set. Journal of Global Optimization, 16(3):197–217. Yao, L., Yang, B., Cui, H., Zhuang, J., Ye, J., and Xue, J. (2016). Challenges and progresses of energy storage technology and its application in power systems. Journal of Modern Power Systems and Clean Energy, 4(4):519–528. Zhang, L., Zhang, Q., Fan, H., Wu, H., and Xu, C. (2021). Big-m based milp method for scuc considering allowable wind power output interval and its adjustable conservativeness. Global Energy Interconnection, 4(2):193–203. Zhuo, W. and Savkin, A. V. (2019). Profit maximizing control of a microgrid with renewable generation and BESS based on a battery cycle life model and energy price forecasting. Energies, 12(15). |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Reconocimiento 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Reconocimiento 4.0 Internacional http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xviii, 114 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Eléctrica |
dc.publisher.department.spa.fl_str_mv |
Departamento de Ingeniería Eléctrica y Electrónica |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/81835/1/1010225903.2022.pdf https://repositorio.unal.edu.co/bitstream/unal/81835/2/license.txt https://repositorio.unal.edu.co/bitstream/unal/81835/3/1010225903.2022.pdf.jpg |
bitstream.checksum.fl_str_mv |
735e8926dbe7773ced8eb1f1ef23f6de 8153f7789df02f0a4c9e079953658ab2 67bc7c6b061b6b6efcbe37b5f982d8a3 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090221353959424 |
spelling |
Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cortés Guerrero, Camilo Andrés7f8ae2adc53274e372e9ae39030efb28Romero Quete, David Fernando978963252e3940ee2ef78373806825dbPeñaranda Bayona, Andrés Felipec725ab234b340b17f5f2405362aebc83Grupo de Investigación Emc-Un2022-08-10T15:32:29Z2022-08-10T15:32:29Z2022https://repositorio.unal.edu.co/handle/unal/81835Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/En este documento se realiza un estado del arte de los sistemas de almacenamiento de energía (SAE), en donde se presentan los diferentes tipos, características y consideraciones a tener en cuenta de este tipo de elementos, junto al estudio de las diferentes aplicaciones y beneficios que pueden brindar los SAE. Se propone y evalúa la formulación para arbitraje de energía en el sistema eléctrico colombiano por medio de sistemas de almacenamiento de energía basados en baterías (SAEB), en donde se incluyen elementos como la degradación de las baterías y el costo generado por dicha degradación. Además, dados los beneficios que tienen los SAEB para suministrar múltiples servicios, se propone un modelo de co-optimización que permite evaluar la participación simultanea de los sistemas de almacenamiento de energía (SAEB) en aplicaciones de arbitraje, reserva de energía y regulación de frecuencia. Los modelos son evaluados haciendo uso de datos históricos del mercado de energía mayorista colombiano. Dos escenarios, relacionados con la penetración de renovables, son analizados. Además, para cada modelo se efectúa una evaluación financiera, en donde se analiza uno a uno los casos de estudio, tanto desde el punto de vista del sistema como desde el punto de vista del inversionista. Los resultados muestran que el uso exclusivo de SAEB para prestar arbitraje no es viable económicamente en Colombia, mientras que prestar de forma simultanea los servicios de regulación de frecuencia y arbitraje resultaría rentable, tanto para el sistema como para un agente inversionista. (Texto tomado de la fuente)In this document, a state of the art of energy storage system (ESS) is performed, where the different types, characteristics, and considerations of this type of elements are presented, together with a study of the different applications and benefits that ESS can provide. The formulation for energy arbitrage in the Colombian electrical system through battery-based energy storage systems (BESS) is proposed and evaluated, where elements such as battery degradation and the cost generated by such degradation are included. In addition, given the benefits that BESS have when supplying multiple services, a co-optimization model is proposed that allows evaluating the simultaneous participation of BESS in arbitrage, energy reserve, and frequency regulation applications. The models are evaluated using historical data from the Colombian wholesale energy market. Two scenarios related to the penetration of renewables are analyzed. In addition, a financial evaluation is carried out for each case study, both from the point of view of the system and from the investor's point of view. The results show that the exclusive use of BESS to provide energy arbitrage is not economically viable in Colombia, while simultaneously providing frequency regulation and energy arbitrage services would be profitable, both for the system and for an investor agent. (Text taken from the source)MaestríaMagíster en Ingeniería - Ingeniería EléctricaSistemas de potenciaSistemas de almacenamiento de energíaxviii, 114 páginasapplication/pdfspaUniversidad Nacional de ColombiaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería EléctricaDepartamento de Ingeniería Eléctrica y ElectrónicaFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afinesSAEBArbitraje de energíaReservas de energíaRegulación de frecuenciaCo-optimizaciónMercado Eléctrico ColombianoMILPBESSEnergy arbitrageEnergy reserveFrequency regulationCo-optimizationColombian Energy MarketBeneficios técnicos y económicos de los sistemas de almacenamiento de energía basados en baterías para el suministro de servicios complementarios en el sistema eléctrico colombianoTechnical and economic benefits of battery-based energy storage systems for the supply of ancillary services in the Colombian electricity systemTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMChapter 2 - Technologies of energy storage systems. In Wu, F.-B., Yang, B., Ye, J.-L. B. T. G.-s. E. S. S., and Applications, editors, Grid-scale Energy Storage Systems and Applications, pages 17–56. Academic Press.Chapter 6 - Application of energy storage technology in gridconnected new energy power generation. pages 203–241. Academic Press.Acuity, E. (2019). 2018 U . S . Integrated Resource Plans ( IRP ) Report.Adewuyi, O. B., Shigenobu, R., Ooya, K., Senjyu, T., and Howlader, A. M. (2019). Static voltage stability improvement with battery energy storage considering optimal control of active and reactive power injection. Electric Power Systems Research, 172(October 2018):303–312.Agency, I. E. (2021). Renewables.Akram, U., Nadarajah, M., Shah, R., and Milano, F. (2020). A review on rapid responsive energy storage technologies for frequency regulation in modern power systems. Renewable and Sustainable Energy Reviews, 120(December 2019):109626.Al kez, D., Foley, A., McIlwaine, N., Morrow, D. J., Hayes, B., Zehir, M. A., Mehigan, L., Papari, B., Edrington, C. S., and Baran, M. (2020). A critical evaluation of grid stability and codes, energy storage and smart loads in power systems with wind generation. Energy, page 117671.Aneke, M. and Wang, M. (2016). Energy storage technologies and real life applications – A state of the art review. Applied Energy, 179:350–377.Argyrou, M. C., Christodoulides, P., and Kalogirou, S. A. (2018). Energy storage for electricity generation and related processes: Technologies appraisal and grid scale applications. Renewable and Sustainable Energy Reviews, 94(June):804–821.Badesa, L., Teng, F., and Strbac, G. (2019). Simultaneous Scheduling of Multiple Frequency Services in Stochastic Unit Commitment. IEEE Transactions on Power Systems, 34(5):3858–3868.Beaudin, M., Zareipour, H., Schellenberglabe, A., and Rosehart, W. (2010). Energy storage for mitigating the variability of renewable electricity sources: An updated review. Energy for Sustainable Development, 14(4):302–314.Belonogova, N., Tikka, V., Honkapuro, S., Lassila, J., Haakana, J., Lana, A., Romanenko, A., Haapaniemi, J., Narayanan, A., Kaipia, T., and Others (2018). Multi-objective role of battery energy storages in an energy system. LUT Scientific and Expertise Publications/Tutkimusraportit–Research Reports, (0494):7–8.Bera, A., Almasabi, S., Tian, Y., Byrne, R. H., Chalamala, B., Nguyen, T. A., and Mitra, J. (2020). Maximising the investment returns of a gridconnected battery considering degradation cost. IET Generation, Transmission and Distribution, 14(21):4711–4718.BloombergNEF (2019). Energy Storage Investments Boom As Battery Costs Halve the Next Decade.BloombergNEF and Goldie-Scot, L. (2019). Behind the Scenes Take on Lithium-ion Battery Prices.Brivio, C., Mandelli, S., and Merlo, M. (2016). Battery energy storage system for primary control reserve and energy arbitrage. Sustainable Energy, Grids and Networks, 6:152–165.Cheng, B., Asamov, T., and Powell, W. B. (2018). Low-rank value function approximation for co-optimization of battery storage. IEEE Transactions on Smart Grid, 9(6):6590–6598.CREG (2019). Resoluciónn 098 Por la cual se definen los mecanismos para incorporar sistemas de almacenamiento con el propósito de mitigar inconvenientes presentados por la falta o insuficiencia de redes de transporte de energía en el Sistema Interconectado Nacional.Crotogino, F., Mohmeyer, K.-U., and Scharf, R. (2001). Huntorf CAES: More than 20 Years of Successful Operation. Solution Mining Research Institute (SMRI) Spring Meeting, (April):351–357.Damato, G., Minear, E., Kaun, B., MacLaren-Wray, V., and Hoffman, S. (2016). Energy Storage Cost Summary for Utility Planning : Executive Summary. Technical Report November.Dehghani-Sanij, A. R., Tharumalingam, E., Dusseault, M. B., and Fraser, R. (2019). Study of energy storage systems and environmental challenges of batteries. Renewable and Sustainable Energy Reviews, 104(January):192–208.Díaz-González, F., Sumper, A., Gomis-Bellmunt, O., and Villafáfila-Robles, R. (2012). A review of energy storage technologies for wind power applications. Renewable and Sustainable Energy Reviews, 16(4):2154–2171.DOE (2021). DOE Global Energy Storage Database.Ehsani, A., Ranjbar, A. M., and Fotuhi-Firuzabad, M. (2009). A proposed model for co-optimization of energy and reserve in competitive electricity markets. Applied Mathematical Modelling, 33(1):92–109.Ellison, J. F., Rashkin, L. J., Serio, J., and Byrne, R. H. (2018). The benefits of grid-scale storage on Oahu. Journal of Energy Storage, 15:336–344.Englberger, S., Jossen, A., and Hesse, H. (2020). Unlocking the Potential of Battery Storage with the Dynamic Stacking of Multiple Applications. Cell Reports Physical Science, 1(11):100238.Eyer, J. (2011). Electric utility transmission and distribution upgrade deferral benefits from modular electricity storage. Modular Electricity Storage: Benefits and Costs, (June):1–77.Eyer, J., Corey, G. P., and SANDIA (2010a). Energy storage for the electricity grid: Benefits and market potential assessment guide. Technical Report SAND20100815.Fernández-Muñoz, D., Pérez-Díaz, J. I., Guisández, I., Chazarra, M., and Fernández-Espina, A. (2020). Fast frequency control ancillary services: An international review. Renewable and Sustainable Energy Reviews, 120(November 2018).Fluence Energy and Siemens (2019). Energy Storage MythBusters.Fu, R., Remo, T., Margolis, R., Fu, R., Remo, T., and Margolis, R. (2018). 2018 U . S . Utility-Scale Photovoltaics- Plus-Energy Storage System Costs Benchmark. National Renewable Energy Laboratory, (November):32.GRISEC- UPME (2018). Informe de vigilancia tecnológica en dispositivos de almacenamiento de energía producida por fuentes de energía renovables no convencionales. page 35.Hassan, M. W., Rasheed, M. B., Javaid, N., Nazar, W., and Akmal, M. (2018). Co-optimization of energy and reserve capacity considering renewable energy unit with uncertainty. Energies, 11(10).Hidalgo-Leon, R., Siguenza, D., Sanchez, C., Leon, J., JacomeRuiz, P., Wu, J., and Ortiz, D. (2018). A survey of battery energy storage system (BESS), applications and environmental impacts in power systems. 2017 IEEE 2nd Ecuador Technical Chapters Meeting, ETCM 2017, 2017-Janua:1–6.IRENA (2015). Battery Storage Report. (January).IRENA (2017). Electricity storage and renewables: Costs and markets to 2030. Number October.Kadri, A. and Mohammadi, F. (2020). Energy storage optimization for global adjustment charge reduction in Ontario. Journal of Energy Storage, 30(January):101491.Kim, D. K., Yoneoka, S., Banatwala, A. Z., and Kim, Y.-t. (2018). Handbook on Battery Energy Storage System. Number December.Kuravi, S., Trahan, J., Goswami, D. Y., Rahman, M. M., and Stefanakos, E. K. (2013). Thermal energy storage technologies and systems for concentrating solar power plants.Kyriakopoulos, G. L. and Arabatzis, G. (2016). Electrical energy storage systems in electricity generation: Energy policies, innovative technologies, and regulatory regimes. Renewable and Sustainable Energy Reviews, 56:1044–1067.Li, L., Liu, P., Li, Z., and Wang, X. (2018). A multi-objective optimization approach for selection of energy storage systems. Computers and Chemical Engineering, 115:213–225.Luo, F., Meng, K., Dong, Z. Y., Zheng, Y., Chen, Y., and Wong, K. P. (2015). Coordinated operational planning for wind farm with battery energy storage system. IEEE Transactions on Sustainable Energy, 6(1):253–262.Luo, J., Teng, F., and Bu, S. (2020). Stability-constrained Power System Scheduling: A Review. IEEE Access, 8.Ma, K., Wang, D., Lian, J., Wu, D., and Katipamula, S. (2020). Marketbased co-optimization of energy and ancillary services with distributed energy resource flexibilities. In 2020 IEEE/PES Transmission and Distribution Conference and Exposition (T D), pages 1–5.Maeyaert, L., Vandevelde, L., and D¨oring, T. (2020). Battery Storage for Ancillary Services in Smart Distribution Grids. Journal of Energy Storage, 30(May):101524.Mallon, K. R., Assadian, F., and Fu, B. (2017). Analysis of on-board photovoltaics for a battery electric bus and their impact on battery lifespan. Energies, 10(7).Marchgraber, J. and Gawlik, W. (2021). Dynamic Prioritization of Functions during Real-Time Multi-Use Operation of Battery Energy Storage Systems. Energies, 14(3):655.McKinsey & Company (2021). Global energy perspective 2021. McKinsey & Company, (January):9.Mekhilef, S., Saidur, R., and Safari, A. (2012). Comparative study of different fuel cell technologies. Renewable and Sustainable Energy Reviews, 16(1):981–989.Melaina, M. and Eichman, J. (2015). Hydrogen Energy Storage: Grid and Transportation Services (Technical Report). Related Information: NREL (National Renewable Energy Laboratory), (February):Medium: ED; Size: 66 pp.Mohseni-Bonab, S. M., Kamwa, I., Moeini, A., and Rabiee, A. (2020). Voltage Security Constrained Stochastic Programming Model for Day-Ahead BESS Schedule in Co-Optimization of T&D Systems. IEEE Transactions on Sustainable Energy, 11(1):391–404.Nadeem, F., Hussain, S. M. S., Tiwari, P. K., Goswami, A. K., and Ustun, T. S. (2019). Comparative Review of Energy Storage Systems, Their Roles, and Impacts on Future Power Systems. IEEE Access, 7:4555–4585.Ortega, A. and Milano, F. (2019). Voltage Stability of ConverterInterfaced Energy Storage Systems. IFAC-PapersOnLine, 52(4):222–227.Pereira, M., Granville, S., Fampa, M., Dix, R., and Barroso, L. (2005). Strategic bidding under uncertainty: a binary expansion approach. IEEE Transactions on Power Systems, 20(1):180–188.Pires, V. F., Pombo, A. V., and Louren¸co, J. M. (2019). Multi-objective optimization with post-pareto optimality analysis for the integration of storage systems with reactive-power compensation in distribution networks. Journal of Energy Storage, 24(January):100769.PSR and Di - Avante (2019). Análisis de los servicios complementarios para el sistema interconectado nacional.Rampersadh, N. and Davidson, I. E. (2017). Grid energy storage devices. Proceedings - 2017 IEEE PES-IAS PowerAfrica Conference: Harnessing Energy, Information and Communications Technology (ICT) for A ffordable Electrification of Africa, PowerAfrica 2017, pages 121–125.Rampokanyo, M., Kamera, P., Aronovich, I., Bos, J., Modi, N., and Quint, R. (2021). Impact of High Penetration of Inverter-based Generation on System Inertia of networks. Impact of High Penetration of Inverter-based Generation on System Inertia of networks, 1(December):14–15.Rossi, A., Stabile, M., Puglisi, C., Falabretti, D., and Merlo, M. (2019). Evaluation of the energy storage systems impact on the Italian ancillary market. Sustainable Energy, Grids and Networks, 17:100178.Schneider, S. F., Nov´ak, P., and Kober, T. (2021). Rechargeable Batteries for Simultaneous Demand Peak Shaving and Price Arbitrage Business. IEEE Transactions on Sustainable Energy, 12(1):148–157.Shi, Y., Xu, B., Wang, D., and Zhang, B. (2017). Using battery storage for peak shaving and frequency regulation: Joint optimization for superlinear gains. arXiv, 33(3):2882–2894.Sorés, P., Divényi, D., Polgári, B., Raisz, D., and Sleisz, A. (2015). Day-ahead market structures for co-optimized energy and reserve allocation. International Conference on the European Energy Market, EEM, 2015-Augus.Sun, L. and Fahim, F. (2019). Reliability enhancement of distribution networks using ESSs ancillary services: A probabilistic MILP methodology. Electric Power Systems Research, 175(June):105889.Tan, Y. T. and Kirschen, D. S. (2006). Co-optimization of energy and reserve in electricity markets with demand-side participation in reserve services. 2006 IEEE PES Power Systems Conference and Exposition, PSCE 2006 - Proceedings, (December 2006):1182–1189.Wang, Y., Zhou, Z., Botterud, A., Zhang, K., and Ding, Q. (2016). Stochastic coordinated operation of wind and battery energy storage system considering battery degradation. Journal of Modern Power Systems and Clean Energy, 4(4):581–592.Wen, Y., Li, W., Huang, G., and Liu, X. (2016). Frequency Dynamics Constrained Unit Commitment with Battery Energy Storage. IEEE Transactions on Power Systems, 31(6):5115–5125.Wu, F.-B., Yang, B., and Ye, J.-L. (2019). Chapter 5 - Integrated ESS application and economic analysis. In Grid-scale Energy Storage Systems and Applications, pages 153–201. Elsevier.XM (2021). XM Compañía de Expertos de Mercados.Xu, Y., Zhao, T., Zhao, S., Zhang, J., and Wang, Y. (2018). Multi-objective chance-constrained optimal day-ahead scheduling considering BESS degradation. CSEE Journal of Power and Energy Systems, 4(3):316–325.Yamada, S., Tanino, T., and Inuiguchi, M. (2000). An Inner Approximation Method for Optimization over the Weakly Efficient Set. Journal of Global Optimization, 16(3):197–217.Yao, L., Yang, B., Cui, H., Zhuang, J., Ye, J., and Xue, J. (2016). Challenges and progresses of energy storage technology and its application in power systems. Journal of Modern Power Systems and Clean Energy, 4(4):519–528.Zhang, L., Zhang, Q., Fan, H., Wu, H., and Xu, C. (2021). Big-m based milp method for scuc considering allowable wind power output interval and its adjustable conservativeness. Global Energy Interconnection, 4(2):193–203.Zhuo, W. and Savkin, A. V. (2019). Profit maximizing control of a microgrid with renewable generation and BESS based on a battery cycle life model and energy price forecasting. Energies, 12(15).Fundación CEIBAGrupo Energía BogotáORIGINAL1010225903.2022.pdf1010225903.2022.pdfTesis de Maestría en Ingeniería Eléctricaapplication/pdf6177829https://repositorio.unal.edu.co/bitstream/unal/81835/1/1010225903.2022.pdf735e8926dbe7773ced8eb1f1ef23f6deMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81835/2/license.txt8153f7789df02f0a4c9e079953658ab2MD52THUMBNAIL1010225903.2022.pdf.jpg1010225903.2022.pdf.jpgGenerated Thumbnailimage/jpeg5288https://repositorio.unal.edu.co/bitstream/unal/81835/3/1010225903.2022.pdf.jpg67bc7c6b061b6b6efcbe37b5f982d8a3MD53unal/81835oai:repositorio.unal.edu.co:unal/818352024-08-08 23:11:32.364Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK |