Degradación de colorantes presentes en aguas residuales usando un mineral natural basado en óxidos de hierro como catalizador

ilustraciones

Autores:
Contreras Patiño, Julián Esteban
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/83915
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/83915
https://repositorio.unal.edu.co/
Palabra clave:
540 - Química y ciencias afines::543 - Química analítica
Coloring matter
Catalysts
water pollutants
Colorantes
Catalizadores
Contaminantes del agua
Proceso Fenton
Procesos Avanzados de Oxidación (AOP´s)
Cristal violeta
Fucsina ácida
Material de hierro
Advanced Oxidation Processes (AOP)
Crystal violet
Fenton process
Acid fuchsine
Iron ore
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_5de300df3ef6168b572487191c305217
oai_identifier_str oai:repositorio.unal.edu.co:unal/83915
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Degradación de colorantes presentes en aguas residuales usando un mineral natural basado en óxidos de hierro como catalizador
dc.title.translated.none.fl_str_mv Degradation of dyes present in wastewater using a natural material based on iron oxides as catalyst
title Degradación de colorantes presentes en aguas residuales usando un mineral natural basado en óxidos de hierro como catalizador
spellingShingle Degradación de colorantes presentes en aguas residuales usando un mineral natural basado en óxidos de hierro como catalizador
540 - Química y ciencias afines::543 - Química analítica
Coloring matter
Catalysts
water pollutants
Colorantes
Catalizadores
Contaminantes del agua
Proceso Fenton
Procesos Avanzados de Oxidación (AOP´s)
Cristal violeta
Fucsina ácida
Material de hierro
Advanced Oxidation Processes (AOP)
Crystal violet
Fenton process
Acid fuchsine
Iron ore
title_short Degradación de colorantes presentes en aguas residuales usando un mineral natural basado en óxidos de hierro como catalizador
title_full Degradación de colorantes presentes en aguas residuales usando un mineral natural basado en óxidos de hierro como catalizador
title_fullStr Degradación de colorantes presentes en aguas residuales usando un mineral natural basado en óxidos de hierro como catalizador
title_full_unstemmed Degradación de colorantes presentes en aguas residuales usando un mineral natural basado en óxidos de hierro como catalizador
title_sort Degradación de colorantes presentes en aguas residuales usando un mineral natural basado en óxidos de hierro como catalizador
dc.creator.fl_str_mv Contreras Patiño, Julián Esteban
dc.contributor.advisor.spa.fl_str_mv Hincapie Triviño, Gina Marcela
Pérez Flórez, Alejandro
dc.contributor.author.spa.fl_str_mv Contreras Patiño, Julián Esteban
dc.contributor.researchgroup.spa.fl_str_mv Estado Sólido y Catálisis Ambiental
dc.subject.ddc.spa.fl_str_mv 540 - Química y ciencias afines::543 - Química analítica
topic 540 - Química y ciencias afines::543 - Química analítica
Coloring matter
Catalysts
water pollutants
Colorantes
Catalizadores
Contaminantes del agua
Proceso Fenton
Procesos Avanzados de Oxidación (AOP´s)
Cristal violeta
Fucsina ácida
Material de hierro
Advanced Oxidation Processes (AOP)
Crystal violet
Fenton process
Acid fuchsine
Iron ore
dc.subject.lemb.eng.fl_str_mv Coloring matter
Catalysts
water pollutants
dc.subject.lemb.spa.fl_str_mv Colorantes
Catalizadores
Contaminantes del agua
dc.subject.proposal.spa.fl_str_mv Proceso Fenton
Procesos Avanzados de Oxidación (AOP´s)
Cristal violeta
Fucsina ácida
Material de hierro
dc.subject.proposal.eng.fl_str_mv Advanced Oxidation Processes (AOP)
Crystal violet
Fenton process
Acid fuchsine
Iron ore
description ilustraciones
publishDate 2022
dc.date.issued.none.fl_str_mv 2022
dc.date.accessioned.none.fl_str_mv 2023-05-30T18:56:26Z
dc.date.available.none.fl_str_mv 2023-05-30T18:56:26Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/83915
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/83915
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Ángel, M., José, H., Velasco, A., Rojas, F., Hugo, V., Alicia, M., Víctor, S., Mesoporos, E. D. E., & Arcillas, Y. C. D. E. (2003). Revista Internacional de Contaminación Ambiental DEL ESTADO DE PUEBLA , MÉXICO Departamento de Investigación en Zeolitas , Instituto de Ciencias de la Universidad Autónoma de Puebla . Edif . 76 , Complejo de Ciencias , C . U ., San Manuel , Puebla 72570 P. 19, 183–190.
Arias, A., Bernal, L., González, H., López, J., Primelles, R. F. L., Arenas, D. M. M., Moreno, G., Rodríguez, Á. M., & Melo, C. U. (2019). Recursos minerales de Colombia. In Servicio Geológico Colombiano (Vol. 2).
Augusto, T. D. M., Chagas, P., Sangiorge, D. L., Mac Leod, T. C. D. O., Oliveira, L. C. A., & Castro, C. S. De. (2018). Iron ore tailings as catalysts for oxidation of the drug paracetamol and dyes by heterogeneous Fenton. Journal of Environmental Chemical Engineering, 6(5), 6545–6553. https://doi.org/10.1016/j.jece.2018.09.052
Bello, M. M., Abdul Raman, A. A., & Asghar, A. (2019). A review on approaches for addressing the limitations of Fenton oxidation for recalcitrant wastewater treatment. Process Safety and Environmental Protection, 126, 119–140. https://doi.org/10.1016/j.psep.2019.03.028
Benavides, V., & Vasquez Sarria, N. (2015). Diseño del plan de gestión ambiental para la industria textil Aritex de Colombia S.A.
Biń, A. K., & Sobera-Madej, S. (2012). Comparison of the Advanced Oxidation Processes (UV, UV/H 2O 2 and O 3) for the Removal of Antibiotic Substances during Wastewater Treatment. Ozone: Science and Engineering, 34(2), 136–139. https://doi.org/10.1080/01919512.2012.650130
Bokare, A. D., & Choi, W. (2014). Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. Journal of Hazardous Materials, 275, 121–135. https://doi.org/10.1016/j.jhazmat.2014.04.054
Botero Camacho, L. A. (2020). La Paradoja de la Disponibilidad de Agua de Mala Calidad en el Sector Rural Colombiano. Revista de Ingeniera. Universidad de Los Andes, 49, 38–51. https://doi.org/10.16924/revinge.49.6
Carvalho, S. S. F., & Carvalho, N. M. F. (2017). Dye degradation by green heterogeneous Fenton catalysts prepared in presence of Camellia sinensis. Journal of Environmental Management, 187, 82–88. https://doi.org/10.1016/j.jenvman.2016.11.032
Chaibakhsh, N., Ahmadi, N., & Zanjanchi, M. A. (2014). Use of Plantago major L. as a natural coagulant for optimized decolorization of dye-containing wastewater. Industrial Crops and Products, 61, 169–175. https://doi.org/10.1016/j.indcrop.2014.06.056
Clarizia, L., Russo, D., Di Somma, I., Marotta, R., & Andreozzi, R. (2017). Homogeneous photo-Fenton processes at near neutral pH: A review. Applied Catalysis B: Environmental, 209, 358–371. https://doi.org/10.1016/j.apcatb.2017.03.011
de Freitas, V. A. A., Breder, S. M., Silvas, F. P. C., Radino Rouse, P., & de Oliveira, L. C. A. (2019). Use of iron ore tailing from tailing dam as catalyst in a fenton-like process for methylene blue oxidation in continuous flow mode. Chemosphere, 219, 328–334. https://doi.org/10.1016/j.chemosphere.2018.12.052
Dil, E. A., Ghaedi, M., Ghaedi, A., Asfaram, A., Jamshidi, M., & Purkait, M. K. (2016). Application of artificial neural network and response surface methodology for the removal of crystal violet by zinc oxide nanorods loaded on activate carbon: Kinetics and equilibrium study. Journal of the Taiwan Institute of Chemical Engineers, 59, 210–220. https://doi.org/10.1016/j.jtice.2015.07.023
Donado, R. (2013). Plan de gestión para lodos generados en las PTAR-D de los municipios de Cumaral y San Martín de los Llanos en departamento del Meta. Pontificia Universidad Javeriana.
Ertl, G., Knözinger, H., Schüth, F., & Weitkamp, J. (Eds.). (2008). Handbook of Heterogeneous Catalysis (1st ed.). Wiley-VCH. https://doi.org/10.1002/9783527610044
Fida, H., Zhang, G., Guo, S., & Naeem, A. (2017). Heterogeneous Fenton degradation of organic dyes in batch and fixed bed using La-Fe montmorillonite as catalyst. Journal of Colloid and Interface Science, 490, 859–868. https://doi.org/10.1016/j.jcis.2016.11.085
Fónagy, O., Szabó-Bárdos, E., & Horváth, O. (2021). 1,4-Benzoquinone and 1,4-hydroquinone based determination of electron and superoxide radical formed in heterogeneous photocatalytic systems. Journal of Photochemistry and Photobiology A: Chemistry, 407. https://doi.org/10.1016/j.jphotochem.2020.113057
Fraume Restrepo, N. J. (2006). Diccionario Ambiental. ECOE Ediciones.
Garcia Herrera, J. C. (2014). Procesos fenton y foto-fenton para el tratamiento de aguas residuales de laboratorio microbiológico empleando Fe2O3 soportado en nanotubos de carbono. Repositorio Ujaveriana, 65. https://repository.javeriana.edu.co/bitstream/handle/10554/11853/GarciaHerreraJulianCamilo2014.pdf?sequence=1
Garrido-Ramírez, E. G., Theng, B. K. G., & Mora, M. L. (2010). Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions - A review. Applied Clay Science, 47(3–4), 182–192. https://doi.org/10.1016/j.clay.2009.11.044
Global Environment Outlook – GEO-6: Summary for Policymakers. (2019). Global Environment Outlook – GEO-6: Summary for Policymakers. https://doi.org/10.1017/9781108639217
Gosetti, F., Gianotti, V., Angioi, S., Polati, S., Marengo, E., & Gennaro, M. C. (2004). Oxidative degradation of food dye E133 Brilliant Blue FCF: Liquid chromatography-electrospray mass spectrometry identification of the degradation pathway. Journal of Chromatography A, 1054(1–2), 379–387. https://doi.org/10.1016/j.chroma.2004.07.106
Guimaraes, I. R., Giroto, A., Oliveira, L. C. A., Guerreiro, M. C., Lima, D. Q., & Fabris, J. D. (2009). Synthesis and thermal treatment of cu-doped goethite: Oxidation of quinoline through heterogeneous fenton process. Applied Catalysis B: Environmental, 91(3–4), 581–586. https://doi.org/10.1016/j.apcatb.2009.06.030
Guo, S., Yuan, N., Zhang, G., & Yu, J. C. (2017). Graphene modified iron sludge derived from homogeneous Fenton process as an efficient heterogeneous Fenton catalyst for degradation of organic pollutants. Microporous and Mesoporous Materials, 238, 62–68. https://doi.org/10.1016/j.micromeso.2016.02.033
Hadjltaief, H. B., Sdiri, A., Gálvez, M. E., Zidi, H., Costa, P. Da, & Zina, M. Ben. (2018). Natural hematite and siderite as heterogeneous catalysts for an effective degradation of 4-chlorophenol via photo-fenton process. ChemEngineering, 2(3), 1–14. https://doi.org/10.3390/chemengineering2030029
Hitam, C. N. C., & Jalil, A. A. (2020). A review on exploration of Fe2O3 photocatalyst towards degradation of dyes and organic contaminants. Journal of Environmental Management, 258(January). https://doi.org/10.1016/j.jenvman.2019.110050
Hussain, T., & Wahab, A. (2018). A critical review of the current water conservation practices in textile wet processing. Journal of Cleaner Production, 198, 806–819. https://doi.org/10.1016/j.jclepro.2018.07.051
Hwang, S., Huling, S. G., & Ko, S. (2010). Fenton-like degradation of MTBE: Effects of iron counter anion and radical scavengers. Chemosphere, 78(5), 563–568. https://doi.org/10.1016/j.chemosphere.2009.11.005
IDEAM. (2019). Estudio Nacional del Agua 2018. http://www.andi.com.co/Uploads/ENA_2018-comprimido.pdf
IPCC. (2015). Cambio climático 2014: Mitigación del cambio climático. Resumen para responsables de políticas y Resumen técnico. Contribución del Grupo de Trabajo III al Quinto Informe de Evaluación del Grupo Intergubernamental de Expertos sobre Cambio Climático. In Ipcc.
Jaén, J., & de Araque, L. (2014). Carbono En El Clima Tropical Marino De Sherman (Provincia De Colón, Panama). Tecnociencia, 8(February).
Kanagaraj, T., Thiripuranthagan, S., Paskalis, S. M. K., & Abe, H. (2017). Visible light photocatalytic activities of template free porous graphitic carbon nitride—BiOBr composite catalysts towards the mineralization of reactive dyes. Applied Surface Science, 426, 1030–1045. https://doi.org/10.1016/j.apsusc.2017.07.255
Kashyap, S. J., Sankannavar, R., & Madhu, G. M. (2022). Iron oxide (Fe2O3) synthesized via solution-combustion technique with varying fuel-to-oxidizer ratio: FT-IR, XRD, optical and dielectric characterization. Materials Chemistry and Physics, 286(April), 126118. https://doi.org/10.1016/j.matchemphys.2022.126118
Kassem, K. O., Hussein, M. A. T., Motawea, M. M., Gomaa, H., Alrowaili, Z. A., & Ezzeldien, M. (2021). Design of mesoporous ZnO @ silica fume-derived SiO2 nanocomposite as photocatalyst for efficient crystal violet removal: Effective route to recycle industrial waste. Journal of Cleaner Production, 326(February), 129416. https://doi.org/10.1016/j.jclepro.2021.129416
Khataee, A., Gholami, P., & Vahid, B. (2017). Catalytic performance of hematite nanostructures prepared by N2 glow discharge plasma in heterogeneous Fenton-like process for acid red 17 degradation. Journal of Industrial and Engineering Chemistry, 50, 86–95. https://doi.org/10.1016/j.jiec.2017.01.035
Kim, K. H., & Ihm, S. K. (2011). Heterogeneous catalytic wet air oxidation of refractory organic pollutants in industrial wastewaters: A review. Journal of Hazardous Materials, 186(1), 16–34. https://doi.org/10.1016/j.jhazmat.2010.11.011
Kong, L., Zhu, Y., Liu, M., Chang, X., Xiong, Y., & Chen, D. (2016). Conversion of Fe-rich waste sludge into nano-flake Fe-SC hybrid Fenton-like catalyst for degradation of AOII. Environmental Pollution, 216, 568–574. https://doi.org/10.1016/j.envpol.2016.06.012
Liu, Y., Zhang, G., Chong, S., Zhang, N., Chang, H., Huang, T., & Fang, S. (2017). NiFe(C2O4)x as a heterogeneous Fenton catalyst for removal of methyl orange. Journal of Environmental Management, 192, 150–155. https://doi.org/10.1016/j.jenvman.2017.01.064
Mazilu, I., Ciotonea, C., Chirieac, A., Dragoi, B., Catrinescu, C., Ungureanu, A., Petit, S., Royer, S., & Dumitriu, E. (2017). Synthesis of highly dispersed iron species within mesoporous (Al-)SBA-15 silica as efficient heterogeneous Fenton-type catalysts. Microporous and Mesoporous Materials, 241, 326–337. https://doi.org/10.1016/j.micromeso.2016.12.024
Meneses Madroñero, P. S. (2022). Remoción de colorantes presentes en aguas reales provenientes de un laboratorio de microbiología mediante el proceso CWAO con un catalizador Mn, Cu, y/o Fe soportado en carbón activado a partir de caucho de llanta. Universidad Nacional de Colombia.
Ministerio de Ambiente y Desarrollo Sostenible. (2004a). Plan de manejo de aguas residuales municipales lineamientos para tasa retributiva y plan de saneamiento y manejo de vertimientos. 1–19.
Ministerio de Ambiente y Desarrollo Sostenible. (2004b). Plan nacional de manejo de aguas residuales en Colombia. Vasa, 1–36. http://medcontent.metapress.com/index/A65RM03P4874243N.pdf
Ministerio de Ambiente y Desarrollo Sostenible. (2015). Resolución 615 de 2015 Vertimientos. 62.
Monge, S., Torres, A., Ribeiro, R., Silva, A., & Bengoa, C. (2018). Manual técnico sobre procesos de oxidación avanzada aplicados al tratamiento de aguas residuales industriles. http://triton-cyted.com/wp-content/uploads/2019/04/Manual-sobre-oxidaciones-avanzadas.pdf
Morató, J., Carneiro, A. P., Subirana, A., Vidal, G., Jarpa, M., Plaza de los Reyes, C., Belmonte, M., Mariangel, L., & Peñuela, G. (2016). Manual de Tecnologías Sostenibles en Tratamiento de Aguas (Red ALFA TECSPAR (Ed.); Vol. 4, Issue 1).
Nguyen, L. H., Nguyen, X. H., Van Thai, N., Le, H. N., Thi, T. T. B., Thi, K. T. B., Nguyen, H. M., Le, M. T., Van, H. T., & Nguyet, D. T. A. (2022). Promoted degradation of ofloxacin by ozone integrated with Fenton-like process using iron-containing waste mineral enriched by magnetic composite as heterogeneous catalyst. Journal of Water Process Engineering, 49(June), 103000. https://doi.org/10.1016/j.jwpe.2022.103000
Nie, X., Li, G., Li, S., Luo, Y., Luo, W., Wan, Q., & An, T. (2022). Highly efficient adsorption and catalytic degradation of ciprofloxacin by a novel heterogeneous Fenton catalyst of hexapod-like pyrite nanosheets mineral clusters. Applied Catalysis B: Environmental, 300(June 2021), 120734. https://doi.org/10.1016/j.apcatb.2021.120734
Nosaka, Y., & Nosaka, A. Y. (2017). Generation and Detection of Reactive Oxygen Species in Photocatalysis. Chemical Reviews, 117(17), 11302–11336. https://doi.org/10.1021/acs.chemrev.7b00161
Noyola, A., Morgan, J., & Guereca, L. (2013). Selección de Tecnologías para el Tratamiento de Aguas Residuales Municipales. Guía de apoyo para ciudades pequeñas y medianas. In UNAM (Ed.), Selección de tecnologías para el tratamiento de aguas residuales municipales. http://es.slideshare.net/EdwinMamaniVilcapaza/seleccion-de-tecnologias-para-el-tratamiento-de-aguas-residuales-municipales
Ozdemir, S., Cirik, K., Akman, D., Sahinkaya, E., & Cinar, O. (2013). Treatment of azo dye-containing synthetic textile dye effluent using sulfidogenic anaerobic baffled reactor. Bioresource Technology, 146, 135–143. https://doi.org/10.1016/j.biortech.2013.07.066
P, K. (2016). Degradation of Toxic Dyes- A Review. International Journal of Pure & Applied Bioscience, 4(5), 81–89. https://doi.org/10.18782/2320-7051.2400
Payá, J. mateo. (2020). Tratamiento de emisiones de COVs en la industria química farmacéutica mediante oxidación térmica regenerativa [Universidad de Murcia]. http://nadir.uc3m.es/alejandro/phd/thesisFinal.pdf%5Cnhttp://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Universidad+de+murcia#0
PBL Netherlands Environmental Assessment Agency. (2018). The geography of future water challenges. PBL Netherlands Environmental Assessment Agency, 47(3 Pt 1), 699–702. https://doi.org/10.2466/pr0.1980.47.3.699
Pérez Bedoya, J. S. (2017). Valorización De Un Mineral De Hierro Colombiano Como Catalizador Para La Síntesis Fischer-Tropsch. Universidad de Antioquia.
Quadrado, R. F. N., & Fajardo, A. R. (2017). Fast decolorization of azo methyl orange via heterogeneous Fenton and Fenton-like reactions using alginate-Fe2+/Fe3+ films as catalysts. Carbohydrate Polymers, 177(June), 443–450. https://doi.org/10.1016/j.carbpol.2017.08.083
Quattrocchi, O. A., Abelaira de Andrizzi, S. I., & Laba, R. F. (1992). Introducción a la HPLC. Aplicación y Práctica (1st ed.). Gráficas Farro S.A.
Rai, P., Gautam, R. K., Banerjee, S., Rawat, V., & Chattopadhyaya, M. C. (2015). Synthesis and characterization of a novel SnFe2O4@activated carbon magnetic nanocomposite and its effectiveness in the removal of crystal violet from aqueous solution. Journal of Environmental Chemical Engineering, 3(4), 2281–2291. https://doi.org/10.1016/j.jece.2015.08.017
Ramos, M. D. N., Santana, C. S., Velloso, C. C. V., da Silva, A. H. M., Magalhães, F., & Aguiar, A. (2021). A review on the treatment of textile industry effluents through Fenton processes. Process Safety and Environmental Protection, 155, 366–386. https://doi.org/10.1016/j.psep.2021.09.029
Rodriguez Férnandez-Alba, A., Letón García, P., Rosal García, R., Dorado Valiño, M., Villar Fernández, S., & Sanz García, J. M. (2006). Tratamientos Avanzados De Aguas Residuales Industriales. Citme, 6,8. 13, 30, 34.
Rouquerol, F., Rouquerol, J., & Sing, K. (1999). Adsorption by Powders and Porous Solids (2nd ed., Vol. 1). Elsevier Ltd. https://doi.org/10.1016/B978-0-12-598920-6.X5000-3
Ryder, G. (2017). Informe mundial de las Naciones Unidas sobre el desarrollo de los recursos hídricos, 2017: Aguas residuales: el recurso no explotado. In Paris : UNESCO, 2017 (Vol. 3, p. 202). http://cidta.usal.es/cursos/EDAR/modulos/Edar/unidades/LIBROS/logo/pdf/Aguas_Residuales_composicion.pdf
Sahoo, C., Gupta, A. K., & Pal, A. (2005). Photocatalytic degradation of Crystal Violet (C.I. Basic Violet 3) on silver ion doped TiO2. Dyes and Pigments, 66(3), 189–196. https://doi.org/10.1016/j.dyepig.2004.09.003
Saini, B., & Dey, A. (2022). Synthesis and characterization of copolymer adsorbent for crystal violet dye removal from water. Materials Today: Proceedings, 61, 342–350. https://doi.org/10.1016/j.matpr.2021.10.060
Sánchez, A. (2013). Síntesis y caracterización de catalizadores para la oxidación húmeda catalítica de colorantes y aguas residuales. 223. https://eprints.ucm.es/21676/1/T34519.pdf
Sanz Tejedor, A. (2020). Química Orgánica Industrial. Retrieved December 3, 2020, from https://www.eii.uva.es/organica/qoi/tema-11.php
Saravan, R. S., Muthukumaran, M., Mubashera, S. M., Abinaya, M., Prasath, P. V., Parthiban, R., Mohammad, F., Oh, W. C., & Sagadevan, S. (2020). Evaluation of the photocatalytic efficiency of cobalt oxide nanoparticles towards the degradation of crystal violet and methylene violet dyes. Optik, 207(December 2019), 164428. https://doi.org/10.1016/j.ijleo.2020.164428
Segura Triana, L. E. (2007). Estudio de Antecedentes sobre la contaminación del recurso hidrico en Colombia. In Escuela Superior de Administración Pública (ESAP).
Singh, K. P., Gupta, S., Singh, A. K., & Sinha, S. (2011). Optimizing adsorption of crystal violet dye from water by magnetic nanocomposite using response surface modeling approach. Journal of Hazardous Materials, 186(2–3), 1462–1473. https://doi.org/10.1016/j.jhazmat.2010.12.032
Tackling global water pollution | UNEP - UN Environment Programme. (n.d.). Retrieved September 16, 2020, from https://www.unenvironment.org/explore-topics/water/what-we-do/tackling-global-water-pollution
Tamburini, D., Shimada, C. M., & McCarthy, B. (2021). The molecular characterization of early synthetic dyes in E. Knecht et al’s textile sample book “A Manual of Dyeing” (1893) by high performance liquid chromatography - Diode array detector - Mass spectrometry (HPLC-DAD-MS). Dyes and Pigments, 190(March), 109286. https://doi.org/10.1016/j.dyepig.2021.109286
Tan, X. fei, Liu, Y. guo, Gu, Y. ling, Liu, S. bo, Zeng, G. ming, Cai, X., Hu, X. jiang, Wang, H., Liu, S. mian, & Jiang, L. hua. (2016). Biochar pyrolyzed from MgAl-layered double hydroxides pre-coated ramie biomass (Boehmeria nivea (L.) Gaud.): Characterization and application for crystal violet removal. Journal of Environmental Management, 184, 85–93. https://doi.org/10.1016/j.jenvman.2016.08.070
Testolin, R. C., Mater, L., Sanches-Simões, E., Dal Conti-Lampert, A., Corrêa, A. X. R., Groth, M. L., Oliveira-Carneiro, M., & Radetski, C. M. (2020). Comparison of the mineralization and biodegradation efficiency of the Fenton reaction and Ozone in the treatment of crude petroleum-contaminated water. Journal of Environmental Chemical Engineering, 8(5), 104265. https://doi.org/10.1016/j.jece.2020.104265
Thiam, A., Salazar, R., Brillas, E., & Sirés, I. (2020). In-situ dosage of Fe2+ catalyst using natural pyrite for thiamphenicol mineralization by photoelectro-Fenton process. Journal of Environmental Management, 270(May). https://doi.org/10.1016/j.jenvman.2020.110835
Thomas, N., Dionysiou, D. D., & Pillai, S. C. (2021). Heterogeneous Fenton catalysts: A review of recent advances. Journal of Hazardous Materials, 404(PB), 124082. https://doi.org/10.1016/j.jhazmat.2020.124082
UNESCO. (2019). Informe Mundial de las Naciones Unidas sobre el Desarrollo de los Recursos Hídricos 2019. No dejar a nadie atrás. In Organización de las Naciones Unidas para la Educación, la Ciencia y la Cultura (p. 215). http://www.unwater.org/publications/world-water-development-report-2019/
Vega Mora, L. (2015). PROGRAMA INTEGRAL DE GESTIÓN AMBIENTAL SECTORIAL-PGAS SUBSECTOR TEXTIL.
Villegas- Guzman, P., Giannakis, S., Rtimi, S., Grandjean, D., Bensimon, M., de Alencastro, L. F., Torres-Palma, R., & Pulgarin, C. (2017). A green solar photo-Fenton process for the elimination of bacteria and micropollutants in municipal wastewater treatment using mineral iron and natural organic acids. In Applied Catalysis B: Environmental (Vol. 219, pp. 538–549). https://doi.org/10.1016/j.apcatb.2017.07.066
Wahi, N., Joseph, C., Tawie, R., & Ikau, R. (2016). Critical Review on Construction Waste Control Practices: Legislative and Waste Management Perspective. Procedia - Social and Behavioral Sciences, 224(August 2015), 276–283. https://doi.org/10.1016/j.sbspro.2016.05.460
Wang, A., Wang, Y., Walter, E. D., Kukkadapu, R. K., Guo, Y., Lu, G., Weber, R. S., Wang, Y., Peden, C. H. F., & Gao, F. (2018). Catalytic N2O decomposition and reduction by NH3 over Fe/Beta and Fe/SSZ-13 catalysts. Journal of Catalysis, 358, 199–210. https://doi.org/10.1016/j.jcat.2017.12.011
Wang, N., Zheng, T., Zhang, G., & Wang, P. (2016). A review on Fenton-like processes for organic wastewater treatment. Journal of Environmental Chemical Engineering, 4(1), 762–787. https://doi.org/10.1016/j.jece.2015.12.016
Weissermel, K., & Arpe, H.-J. (1997). Industrial Organic Chemistry (Third). VCH A Wiley company.
Xu, Y., Chen, X. Y., Li, Y., Ge, F., & Zhu, R. L. (2016). Quantitative structure-property relationship (QSPR) study for the degradation of dye wastewater by Mo-Zn-Al-O catalyst. Journal of Molecular Liquids, 215, 461–466. https://doi.org/10.1016/j.molliq.2016.01.029
Yao, G., Wei, Y., Gui, K., & Ling, X. (2022). Catalytic performance and reaction mechanisms of NO removal with NH3 at low and medium temperatures on Mn-W-Sb modified siderite catalysts. Journal of Environmental Sciences (China), 115(x), 126–139. https://doi.org/10.1016/j.jes.2021.06.029
Yin, J., Cai, J., Yin, C., Gao, L., & Zhou, J. (2016). Degradation performance of crystal violet over CuO@AC and CeO2-CuO@AC catalysts using microwave catalytic oxidation degradation method. Journal of Environmental Chemical Engineering, 4(1), 958–964. https://doi.org/10.1016/j.jece.2016.01.001
Yu, J., Zou, J., Xu, P., & He, Q. (2020). Three-dimensional photoelectrocatalytic degradation of the opaque dye acid fuchsin by Pr and Co co-doped TiO2 particle electrodes. In Journal of Cleaner Production (Vol. 251). https://doi.org/10.1016/j.jclepro.2019.119744
Zhang, M., Dong, H., Zhao, L., Wang, D. xi, & Meng, D. (2019). A review on Fenton process for organic wastewater treatment based on optimization perspective. Science of the Total Environment, 670, 110–121. https://doi.org/10.1016/j.scitotenv.2019.03.180
Zhang, Y., Zhang, Z., Yan, Q., & Wang, Q. (2016). Synthesis, characterization, and catalytic activity of alkali metal molybdate/α-MoO3 hybrids as highly efficient catalytic wet air oxidation catalysts. Applied Catalysis A: General, 511, 47–58. https://doi.org/10.1016/j.apcata.2015.11.035
Zhu, Y., Zhu, R., Xi, Y., Zhu, J., Zhu, G., & He, H. (2019). Strategies for enhancing the heterogeneous fenton catalytic reactivity: A review. Applied Catalysis B: Environmental, 255(January). https://doi.org/10.1016/j.apcatb.2019.05.041
Zollinger, H. (2004). Color Chemistry. Synthesis, Properties and Applications of Organic Dyes and Pigments. 3rd revised edition. By Heinrich Zollinger. Angewandte Chemie International Edition, 43(40), 5291–5292. https://doi.org/10.1002/anie.200385122
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xix, 109 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Química
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/83915/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/83915/2/1026266515.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/83915/3/1026266515.2023.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
86f0e94ae608355e2eb808e61d25a7f2
80ea3b27c83e8ecb239e5d14889d1559
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090231135076352
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Hincapie Triviño, Gina Marcela8e0d076fafc1331017e95475e2924210Pérez Flórez, Alejandro882e42a7e5df421016ee67b45b9affcdContreras Patiño, Julián Esteban248ca381869e504d3df8fcd5e5d725f4Estado Sólido y Catálisis Ambiental2023-05-30T18:56:26Z2023-05-30T18:56:26Z2022https://repositorio.unal.edu.co/handle/unal/83915Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustracionesUna de las principales problemáticas de la industria textil, es la alta cantidad de colorantes depositados en los cuerpos de agua, los cuales pueden tener efectos carcinogénicos, causan eutrofización y perturbaciones en la vida acuática. El proceso Fenton, es un proceso avanzado de oxidación que utiliza sales de hierro (Fe2+) solubles como catalizadores en presencia de H2O2 a pH ácido. En la presente investigación, con el objetivo de valorizar un material natural basado en óxidos de hierro proveniente de Acerías de Paz del Río en el departamento de Boyacá, Colombia, se llevó a reacción dicho material como catalizador en el proceso tipo Fenton frente a dos colorantes usados como modelo en reacciones de degradación: Cristal Violeta (CV) y Fucsina Ácida (FA). El material se caracterizó a través de diferentes técnicas, encontrándose una baja área superficial (27 m2/g), diferentes fases de hierro, dentro de las cuales predominan la siderita, goethita y hematita y una composición elemental mayoritaria para hierro y oxígeno. La evaluación de la actividad catalítica mostró que este material es capaz de reducir la cantidad de Cristal Violeta (CV) hasta el 90% y de Fucsina Ácida (FA) hasta un 80% en 8 h, partiendo en ambos casos de una concentración de contaminante de 50 mg/L, así mismo el valor de carbono orgánico total (TOC) se redujo hasta 34% en CV y 36% en FA, y en los ciclos de reúso el TOC se redujo al 46% y 51% luego del primer ciclo para el CV y la FA respectivamente. Se encontró que la cantidad de hierro lixiviado en la solución es de 6 mg/L, lo cual indica que el proceso catalítico es heterogéneo. (Texto tomado de la fuente).One of the main problems of the textile industry is the high number of dyes deposited in water bodies, which can have carcinogenic effects, cause eutrophication, and disturb aquatic life. The Fenton process is an advanced oxidation process that uses soluble iron salts (Fe2+) as catalysts in the presence of H2O2 at acid pH. In this investigation, with the aim of valorize a natural material based on iron oxides, coming from Acerías de Paz del Río in Boyacá, Colombia, this material was used as a catalyst in the Fenton process against two dyes used as a model in degradation reactions: Crystal Violet (CV) and Acid Fuchsin (FA). The material was characterized through different techniques, finding a low specific surface area (27 m2/g), different iron crystalline phases, predominantly siderite, goethite and hematite, and a majority elemental composition for iron and oxygen. The evaluation of the catalytic activity showed that this material can reduce the amount of Crystal Violet (CV) up to 90% and of Acid Fuchsin (AF) up to 80% in 8 h, starting in both cases from a contaminant concentration of 50 mg/L, likewise, the Total Organic Carbon (TOC) value was reduced up to 34% in CV and 36% in AF, and in the reuse cycles, the TOC was reduced to 46% and 51% after the first cycle for CV and AF respectively. The amount of iron leached was found to be 5 mg/L, indicating that the catalytic process is heterogeneous.Incluye anexosMaestríaMagíster en Ciencias - QuímicaCatálisis ambientalxix, 109 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - QuímicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá540 - Química y ciencias afines::543 - Química analíticaColoring matterCatalystswater pollutantsColorantesCatalizadoresContaminantes del aguaProceso FentonProcesos Avanzados de Oxidación (AOP´s)Cristal violetaFucsina ácidaMaterial de hierroAdvanced Oxidation Processes (AOP)Crystal violetFenton processAcid fuchsineIron oreDegradación de colorantes presentes en aguas residuales usando un mineral natural basado en óxidos de hierro como catalizadorDegradation of dyes present in wastewater using a natural material based on iron oxides as catalystTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMÁngel, M., José, H., Velasco, A., Rojas, F., Hugo, V., Alicia, M., Víctor, S., Mesoporos, E. D. E., & Arcillas, Y. C. D. E. (2003). Revista Internacional de Contaminación Ambiental DEL ESTADO DE PUEBLA , MÉXICO Departamento de Investigación en Zeolitas , Instituto de Ciencias de la Universidad Autónoma de Puebla . Edif . 76 , Complejo de Ciencias , C . U ., San Manuel , Puebla 72570 P. 19, 183–190.Arias, A., Bernal, L., González, H., López, J., Primelles, R. F. L., Arenas, D. M. M., Moreno, G., Rodríguez, Á. M., & Melo, C. U. (2019). Recursos minerales de Colombia. In Servicio Geológico Colombiano (Vol. 2).Augusto, T. D. M., Chagas, P., Sangiorge, D. L., Mac Leod, T. C. D. O., Oliveira, L. C. A., & Castro, C. S. De. (2018). Iron ore tailings as catalysts for oxidation of the drug paracetamol and dyes by heterogeneous Fenton. Journal of Environmental Chemical Engineering, 6(5), 6545–6553. https://doi.org/10.1016/j.jece.2018.09.052Bello, M. M., Abdul Raman, A. A., & Asghar, A. (2019). A review on approaches for addressing the limitations of Fenton oxidation for recalcitrant wastewater treatment. Process Safety and Environmental Protection, 126, 119–140. https://doi.org/10.1016/j.psep.2019.03.028Benavides, V., & Vasquez Sarria, N. (2015). Diseño del plan de gestión ambiental para la industria textil Aritex de Colombia S.A.Biń, A. K., & Sobera-Madej, S. (2012). Comparison of the Advanced Oxidation Processes (UV, UV/H 2O 2 and O 3) for the Removal of Antibiotic Substances during Wastewater Treatment. Ozone: Science and Engineering, 34(2), 136–139. https://doi.org/10.1080/01919512.2012.650130Bokare, A. D., & Choi, W. (2014). Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. Journal of Hazardous Materials, 275, 121–135. https://doi.org/10.1016/j.jhazmat.2014.04.054Botero Camacho, L. A. (2020). La Paradoja de la Disponibilidad de Agua de Mala Calidad en el Sector Rural Colombiano. Revista de Ingeniera. Universidad de Los Andes, 49, 38–51. https://doi.org/10.16924/revinge.49.6Carvalho, S. S. F., & Carvalho, N. M. F. (2017). Dye degradation by green heterogeneous Fenton catalysts prepared in presence of Camellia sinensis. Journal of Environmental Management, 187, 82–88. https://doi.org/10.1016/j.jenvman.2016.11.032Chaibakhsh, N., Ahmadi, N., & Zanjanchi, M. A. (2014). Use of Plantago major L. as a natural coagulant for optimized decolorization of dye-containing wastewater. Industrial Crops and Products, 61, 169–175. https://doi.org/10.1016/j.indcrop.2014.06.056Clarizia, L., Russo, D., Di Somma, I., Marotta, R., & Andreozzi, R. (2017). Homogeneous photo-Fenton processes at near neutral pH: A review. Applied Catalysis B: Environmental, 209, 358–371. https://doi.org/10.1016/j.apcatb.2017.03.011de Freitas, V. A. A., Breder, S. M., Silvas, F. P. C., Radino Rouse, P., & de Oliveira, L. C. A. (2019). Use of iron ore tailing from tailing dam as catalyst in a fenton-like process for methylene blue oxidation in continuous flow mode. Chemosphere, 219, 328–334. https://doi.org/10.1016/j.chemosphere.2018.12.052Dil, E. A., Ghaedi, M., Ghaedi, A., Asfaram, A., Jamshidi, M., & Purkait, M. K. (2016). Application of artificial neural network and response surface methodology for the removal of crystal violet by zinc oxide nanorods loaded on activate carbon: Kinetics and equilibrium study. Journal of the Taiwan Institute of Chemical Engineers, 59, 210–220. https://doi.org/10.1016/j.jtice.2015.07.023Donado, R. (2013). Plan de gestión para lodos generados en las PTAR-D de los municipios de Cumaral y San Martín de los Llanos en departamento del Meta. Pontificia Universidad Javeriana.Ertl, G., Knözinger, H., Schüth, F., & Weitkamp, J. (Eds.). (2008). Handbook of Heterogeneous Catalysis (1st ed.). Wiley-VCH. https://doi.org/10.1002/9783527610044Fida, H., Zhang, G., Guo, S., & Naeem, A. (2017). Heterogeneous Fenton degradation of organic dyes in batch and fixed bed using La-Fe montmorillonite as catalyst. Journal of Colloid and Interface Science, 490, 859–868. https://doi.org/10.1016/j.jcis.2016.11.085Fónagy, O., Szabó-Bárdos, E., & Horváth, O. (2021). 1,4-Benzoquinone and 1,4-hydroquinone based determination of electron and superoxide radical formed in heterogeneous photocatalytic systems. Journal of Photochemistry and Photobiology A: Chemistry, 407. https://doi.org/10.1016/j.jphotochem.2020.113057Fraume Restrepo, N. J. (2006). Diccionario Ambiental. ECOE Ediciones.Garcia Herrera, J. C. (2014). Procesos fenton y foto-fenton para el tratamiento de aguas residuales de laboratorio microbiológico empleando Fe2O3 soportado en nanotubos de carbono. Repositorio Ujaveriana, 65. https://repository.javeriana.edu.co/bitstream/handle/10554/11853/GarciaHerreraJulianCamilo2014.pdf?sequence=1Garrido-Ramírez, E. G., Theng, B. K. G., & Mora, M. L. (2010). Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions - A review. Applied Clay Science, 47(3–4), 182–192. https://doi.org/10.1016/j.clay.2009.11.044Global Environment Outlook – GEO-6: Summary for Policymakers. (2019). Global Environment Outlook – GEO-6: Summary for Policymakers. https://doi.org/10.1017/9781108639217Gosetti, F., Gianotti, V., Angioi, S., Polati, S., Marengo, E., & Gennaro, M. C. (2004). Oxidative degradation of food dye E133 Brilliant Blue FCF: Liquid chromatography-electrospray mass spectrometry identification of the degradation pathway. Journal of Chromatography A, 1054(1–2), 379–387. https://doi.org/10.1016/j.chroma.2004.07.106Guimaraes, I. R., Giroto, A., Oliveira, L. C. A., Guerreiro, M. C., Lima, D. Q., & Fabris, J. D. (2009). Synthesis and thermal treatment of cu-doped goethite: Oxidation of quinoline through heterogeneous fenton process. Applied Catalysis B: Environmental, 91(3–4), 581–586. https://doi.org/10.1016/j.apcatb.2009.06.030Guo, S., Yuan, N., Zhang, G., & Yu, J. C. (2017). Graphene modified iron sludge derived from homogeneous Fenton process as an efficient heterogeneous Fenton catalyst for degradation of organic pollutants. Microporous and Mesoporous Materials, 238, 62–68. https://doi.org/10.1016/j.micromeso.2016.02.033Hadjltaief, H. B., Sdiri, A., Gálvez, M. E., Zidi, H., Costa, P. Da, & Zina, M. Ben. (2018). Natural hematite and siderite as heterogeneous catalysts for an effective degradation of 4-chlorophenol via photo-fenton process. ChemEngineering, 2(3), 1–14. https://doi.org/10.3390/chemengineering2030029Hitam, C. N. C., & Jalil, A. A. (2020). A review on exploration of Fe2O3 photocatalyst towards degradation of dyes and organic contaminants. Journal of Environmental Management, 258(January). https://doi.org/10.1016/j.jenvman.2019.110050Hussain, T., & Wahab, A. (2018). A critical review of the current water conservation practices in textile wet processing. Journal of Cleaner Production, 198, 806–819. https://doi.org/10.1016/j.jclepro.2018.07.051Hwang, S., Huling, S. G., & Ko, S. (2010). Fenton-like degradation of MTBE: Effects of iron counter anion and radical scavengers. Chemosphere, 78(5), 563–568. https://doi.org/10.1016/j.chemosphere.2009.11.005IDEAM. (2019). Estudio Nacional del Agua 2018. http://www.andi.com.co/Uploads/ENA_2018-comprimido.pdfIPCC. (2015). Cambio climático 2014: Mitigación del cambio climático. Resumen para responsables de políticas y Resumen técnico. Contribución del Grupo de Trabajo III al Quinto Informe de Evaluación del Grupo Intergubernamental de Expertos sobre Cambio Climático. In Ipcc.Jaén, J., & de Araque, L. (2014). Carbono En El Clima Tropical Marino De Sherman (Provincia De Colón, Panama). Tecnociencia, 8(February).Kanagaraj, T., Thiripuranthagan, S., Paskalis, S. M. K., & Abe, H. (2017). Visible light photocatalytic activities of template free porous graphitic carbon nitride—BiOBr composite catalysts towards the mineralization of reactive dyes. Applied Surface Science, 426, 1030–1045. https://doi.org/10.1016/j.apsusc.2017.07.255Kashyap, S. J., Sankannavar, R., & Madhu, G. M. (2022). Iron oxide (Fe2O3) synthesized via solution-combustion technique with varying fuel-to-oxidizer ratio: FT-IR, XRD, optical and dielectric characterization. Materials Chemistry and Physics, 286(April), 126118. https://doi.org/10.1016/j.matchemphys.2022.126118Kassem, K. O., Hussein, M. A. T., Motawea, M. M., Gomaa, H., Alrowaili, Z. A., & Ezzeldien, M. (2021). Design of mesoporous ZnO @ silica fume-derived SiO2 nanocomposite as photocatalyst for efficient crystal violet removal: Effective route to recycle industrial waste. Journal of Cleaner Production, 326(February), 129416. https://doi.org/10.1016/j.jclepro.2021.129416Khataee, A., Gholami, P., & Vahid, B. (2017). Catalytic performance of hematite nanostructures prepared by N2 glow discharge plasma in heterogeneous Fenton-like process for acid red 17 degradation. Journal of Industrial and Engineering Chemistry, 50, 86–95. https://doi.org/10.1016/j.jiec.2017.01.035Kim, K. H., & Ihm, S. K. (2011). Heterogeneous catalytic wet air oxidation of refractory organic pollutants in industrial wastewaters: A review. Journal of Hazardous Materials, 186(1), 16–34. https://doi.org/10.1016/j.jhazmat.2010.11.011Kong, L., Zhu, Y., Liu, M., Chang, X., Xiong, Y., & Chen, D. (2016). Conversion of Fe-rich waste sludge into nano-flake Fe-SC hybrid Fenton-like catalyst for degradation of AOII. Environmental Pollution, 216, 568–574. https://doi.org/10.1016/j.envpol.2016.06.012Liu, Y., Zhang, G., Chong, S., Zhang, N., Chang, H., Huang, T., & Fang, S. (2017). NiFe(C2O4)x as a heterogeneous Fenton catalyst for removal of methyl orange. Journal of Environmental Management, 192, 150–155. https://doi.org/10.1016/j.jenvman.2017.01.064Mazilu, I., Ciotonea, C., Chirieac, A., Dragoi, B., Catrinescu, C., Ungureanu, A., Petit, S., Royer, S., & Dumitriu, E. (2017). Synthesis of highly dispersed iron species within mesoporous (Al-)SBA-15 silica as efficient heterogeneous Fenton-type catalysts. Microporous and Mesoporous Materials, 241, 326–337. https://doi.org/10.1016/j.micromeso.2016.12.024Meneses Madroñero, P. S. (2022). Remoción de colorantes presentes en aguas reales provenientes de un laboratorio de microbiología mediante el proceso CWAO con un catalizador Mn, Cu, y/o Fe soportado en carbón activado a partir de caucho de llanta. Universidad Nacional de Colombia.Ministerio de Ambiente y Desarrollo Sostenible. (2004a). Plan de manejo de aguas residuales municipales lineamientos para tasa retributiva y plan de saneamiento y manejo de vertimientos. 1–19.Ministerio de Ambiente y Desarrollo Sostenible. (2004b). Plan nacional de manejo de aguas residuales en Colombia. Vasa, 1–36. http://medcontent.metapress.com/index/A65RM03P4874243N.pdfMinisterio de Ambiente y Desarrollo Sostenible. (2015). Resolución 615 de 2015 Vertimientos. 62.Monge, S., Torres, A., Ribeiro, R., Silva, A., & Bengoa, C. (2018). Manual técnico sobre procesos de oxidación avanzada aplicados al tratamiento de aguas residuales industriles. http://triton-cyted.com/wp-content/uploads/2019/04/Manual-sobre-oxidaciones-avanzadas.pdfMorató, J., Carneiro, A. P., Subirana, A., Vidal, G., Jarpa, M., Plaza de los Reyes, C., Belmonte, M., Mariangel, L., & Peñuela, G. (2016). Manual de Tecnologías Sostenibles en Tratamiento de Aguas (Red ALFA TECSPAR (Ed.); Vol. 4, Issue 1).Nguyen, L. H., Nguyen, X. H., Van Thai, N., Le, H. N., Thi, T. T. B., Thi, K. T. B., Nguyen, H. M., Le, M. T., Van, H. T., & Nguyet, D. T. A. (2022). Promoted degradation of ofloxacin by ozone integrated with Fenton-like process using iron-containing waste mineral enriched by magnetic composite as heterogeneous catalyst. Journal of Water Process Engineering, 49(June), 103000. https://doi.org/10.1016/j.jwpe.2022.103000Nie, X., Li, G., Li, S., Luo, Y., Luo, W., Wan, Q., & An, T. (2022). Highly efficient adsorption and catalytic degradation of ciprofloxacin by a novel heterogeneous Fenton catalyst of hexapod-like pyrite nanosheets mineral clusters. Applied Catalysis B: Environmental, 300(June 2021), 120734. https://doi.org/10.1016/j.apcatb.2021.120734Nosaka, Y., & Nosaka, A. Y. (2017). Generation and Detection of Reactive Oxygen Species in Photocatalysis. Chemical Reviews, 117(17), 11302–11336. https://doi.org/10.1021/acs.chemrev.7b00161Noyola, A., Morgan, J., & Guereca, L. (2013). Selección de Tecnologías para el Tratamiento de Aguas Residuales Municipales. Guía de apoyo para ciudades pequeñas y medianas. In UNAM (Ed.), Selección de tecnologías para el tratamiento de aguas residuales municipales. http://es.slideshare.net/EdwinMamaniVilcapaza/seleccion-de-tecnologias-para-el-tratamiento-de-aguas-residuales-municipalesOzdemir, S., Cirik, K., Akman, D., Sahinkaya, E., & Cinar, O. (2013). Treatment of azo dye-containing synthetic textile dye effluent using sulfidogenic anaerobic baffled reactor. Bioresource Technology, 146, 135–143. https://doi.org/10.1016/j.biortech.2013.07.066P, K. (2016). Degradation of Toxic Dyes- A Review. International Journal of Pure & Applied Bioscience, 4(5), 81–89. https://doi.org/10.18782/2320-7051.2400Payá, J. mateo. (2020). Tratamiento de emisiones de COVs en la industria química farmacéutica mediante oxidación térmica regenerativa [Universidad de Murcia]. http://nadir.uc3m.es/alejandro/phd/thesisFinal.pdf%5Cnhttp://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Universidad+de+murcia#0PBL Netherlands Environmental Assessment Agency. (2018). The geography of future water challenges. PBL Netherlands Environmental Assessment Agency, 47(3 Pt 1), 699–702. https://doi.org/10.2466/pr0.1980.47.3.699Pérez Bedoya, J. S. (2017). Valorización De Un Mineral De Hierro Colombiano Como Catalizador Para La Síntesis Fischer-Tropsch. Universidad de Antioquia.Quadrado, R. F. N., & Fajardo, A. R. (2017). Fast decolorization of azo methyl orange via heterogeneous Fenton and Fenton-like reactions using alginate-Fe2+/Fe3+ films as catalysts. Carbohydrate Polymers, 177(June), 443–450. https://doi.org/10.1016/j.carbpol.2017.08.083Quattrocchi, O. A., Abelaira de Andrizzi, S. I., & Laba, R. F. (1992). Introducción a la HPLC. Aplicación y Práctica (1st ed.). Gráficas Farro S.A.Rai, P., Gautam, R. K., Banerjee, S., Rawat, V., & Chattopadhyaya, M. C. (2015). Synthesis and characterization of a novel SnFe2O4@activated carbon magnetic nanocomposite and its effectiveness in the removal of crystal violet from aqueous solution. Journal of Environmental Chemical Engineering, 3(4), 2281–2291. https://doi.org/10.1016/j.jece.2015.08.017Ramos, M. D. N., Santana, C. S., Velloso, C. C. V., da Silva, A. H. M., Magalhães, F., & Aguiar, A. (2021). A review on the treatment of textile industry effluents through Fenton processes. Process Safety and Environmental Protection, 155, 366–386. https://doi.org/10.1016/j.psep.2021.09.029Rodriguez Férnandez-Alba, A., Letón García, P., Rosal García, R., Dorado Valiño, M., Villar Fernández, S., & Sanz García, J. M. (2006). Tratamientos Avanzados De Aguas Residuales Industriales. Citme, 6,8. 13, 30, 34.Rouquerol, F., Rouquerol, J., & Sing, K. (1999). Adsorption by Powders and Porous Solids (2nd ed., Vol. 1). Elsevier Ltd. https://doi.org/10.1016/B978-0-12-598920-6.X5000-3Ryder, G. (2017). Informe mundial de las Naciones Unidas sobre el desarrollo de los recursos hídricos, 2017: Aguas residuales: el recurso no explotado. In Paris : UNESCO, 2017 (Vol. 3, p. 202). http://cidta.usal.es/cursos/EDAR/modulos/Edar/unidades/LIBROS/logo/pdf/Aguas_Residuales_composicion.pdfSahoo, C., Gupta, A. K., & Pal, A. (2005). Photocatalytic degradation of Crystal Violet (C.I. Basic Violet 3) on silver ion doped TiO2. Dyes and Pigments, 66(3), 189–196. https://doi.org/10.1016/j.dyepig.2004.09.003Saini, B., & Dey, A. (2022). Synthesis and characterization of copolymer adsorbent for crystal violet dye removal from water. Materials Today: Proceedings, 61, 342–350. https://doi.org/10.1016/j.matpr.2021.10.060Sánchez, A. (2013). Síntesis y caracterización de catalizadores para la oxidación húmeda catalítica de colorantes y aguas residuales. 223. https://eprints.ucm.es/21676/1/T34519.pdfSanz Tejedor, A. (2020). Química Orgánica Industrial. Retrieved December 3, 2020, from https://www.eii.uva.es/organica/qoi/tema-11.phpSaravan, R. S., Muthukumaran, M., Mubashera, S. M., Abinaya, M., Prasath, P. V., Parthiban, R., Mohammad, F., Oh, W. C., & Sagadevan, S. (2020). Evaluation of the photocatalytic efficiency of cobalt oxide nanoparticles towards the degradation of crystal violet and methylene violet dyes. Optik, 207(December 2019), 164428. https://doi.org/10.1016/j.ijleo.2020.164428Segura Triana, L. E. (2007). Estudio de Antecedentes sobre la contaminación del recurso hidrico en Colombia. In Escuela Superior de Administración Pública (ESAP).Singh, K. P., Gupta, S., Singh, A. K., & Sinha, S. (2011). Optimizing adsorption of crystal violet dye from water by magnetic nanocomposite using response surface modeling approach. Journal of Hazardous Materials, 186(2–3), 1462–1473. https://doi.org/10.1016/j.jhazmat.2010.12.032Tackling global water pollution | UNEP - UN Environment Programme. (n.d.). Retrieved September 16, 2020, from https://www.unenvironment.org/explore-topics/water/what-we-do/tackling-global-water-pollutionTamburini, D., Shimada, C. M., & McCarthy, B. (2021). The molecular characterization of early synthetic dyes in E. Knecht et al’s textile sample book “A Manual of Dyeing” (1893) by high performance liquid chromatography - Diode array detector - Mass spectrometry (HPLC-DAD-MS). Dyes and Pigments, 190(March), 109286. https://doi.org/10.1016/j.dyepig.2021.109286Tan, X. fei, Liu, Y. guo, Gu, Y. ling, Liu, S. bo, Zeng, G. ming, Cai, X., Hu, X. jiang, Wang, H., Liu, S. mian, & Jiang, L. hua. (2016). Biochar pyrolyzed from MgAl-layered double hydroxides pre-coated ramie biomass (Boehmeria nivea (L.) Gaud.): Characterization and application for crystal violet removal. Journal of Environmental Management, 184, 85–93. https://doi.org/10.1016/j.jenvman.2016.08.070Testolin, R. C., Mater, L., Sanches-Simões, E., Dal Conti-Lampert, A., Corrêa, A. X. R., Groth, M. L., Oliveira-Carneiro, M., & Radetski, C. M. (2020). Comparison of the mineralization and biodegradation efficiency of the Fenton reaction and Ozone in the treatment of crude petroleum-contaminated water. Journal of Environmental Chemical Engineering, 8(5), 104265. https://doi.org/10.1016/j.jece.2020.104265Thiam, A., Salazar, R., Brillas, E., & Sirés, I. (2020). In-situ dosage of Fe2+ catalyst using natural pyrite for thiamphenicol mineralization by photoelectro-Fenton process. Journal of Environmental Management, 270(May). https://doi.org/10.1016/j.jenvman.2020.110835Thomas, N., Dionysiou, D. D., & Pillai, S. C. (2021). Heterogeneous Fenton catalysts: A review of recent advances. Journal of Hazardous Materials, 404(PB), 124082. https://doi.org/10.1016/j.jhazmat.2020.124082UNESCO. (2019). Informe Mundial de las Naciones Unidas sobre el Desarrollo de los Recursos Hídricos 2019. No dejar a nadie atrás. In Organización de las Naciones Unidas para la Educación, la Ciencia y la Cultura (p. 215). http://www.unwater.org/publications/world-water-development-report-2019/Vega Mora, L. (2015). PROGRAMA INTEGRAL DE GESTIÓN AMBIENTAL SECTORIAL-PGAS SUBSECTOR TEXTIL.Villegas- Guzman, P., Giannakis, S., Rtimi, S., Grandjean, D., Bensimon, M., de Alencastro, L. F., Torres-Palma, R., & Pulgarin, C. (2017). A green solar photo-Fenton process for the elimination of bacteria and micropollutants in municipal wastewater treatment using mineral iron and natural organic acids. In Applied Catalysis B: Environmental (Vol. 219, pp. 538–549). https://doi.org/10.1016/j.apcatb.2017.07.066Wahi, N., Joseph, C., Tawie, R., & Ikau, R. (2016). Critical Review on Construction Waste Control Practices: Legislative and Waste Management Perspective. Procedia - Social and Behavioral Sciences, 224(August 2015), 276–283. https://doi.org/10.1016/j.sbspro.2016.05.460Wang, A., Wang, Y., Walter, E. D., Kukkadapu, R. K., Guo, Y., Lu, G., Weber, R. S., Wang, Y., Peden, C. H. F., & Gao, F. (2018). Catalytic N2O decomposition and reduction by NH3 over Fe/Beta and Fe/SSZ-13 catalysts. Journal of Catalysis, 358, 199–210. https://doi.org/10.1016/j.jcat.2017.12.011Wang, N., Zheng, T., Zhang, G., & Wang, P. (2016). A review on Fenton-like processes for organic wastewater treatment. Journal of Environmental Chemical Engineering, 4(1), 762–787. https://doi.org/10.1016/j.jece.2015.12.016Weissermel, K., & Arpe, H.-J. (1997). Industrial Organic Chemistry (Third). VCH A Wiley company.Xu, Y., Chen, X. Y., Li, Y., Ge, F., & Zhu, R. L. (2016). Quantitative structure-property relationship (QSPR) study for the degradation of dye wastewater by Mo-Zn-Al-O catalyst. Journal of Molecular Liquids, 215, 461–466. https://doi.org/10.1016/j.molliq.2016.01.029Yao, G., Wei, Y., Gui, K., & Ling, X. (2022). Catalytic performance and reaction mechanisms of NO removal with NH3 at low and medium temperatures on Mn-W-Sb modified siderite catalysts. Journal of Environmental Sciences (China), 115(x), 126–139. https://doi.org/10.1016/j.jes.2021.06.029Yin, J., Cai, J., Yin, C., Gao, L., & Zhou, J. (2016). Degradation performance of crystal violet over CuO@AC and CeO2-CuO@AC catalysts using microwave catalytic oxidation degradation method. Journal of Environmental Chemical Engineering, 4(1), 958–964. https://doi.org/10.1016/j.jece.2016.01.001Yu, J., Zou, J., Xu, P., & He, Q. (2020). Three-dimensional photoelectrocatalytic degradation of the opaque dye acid fuchsin by Pr and Co co-doped TiO2 particle electrodes. In Journal of Cleaner Production (Vol. 251). https://doi.org/10.1016/j.jclepro.2019.119744Zhang, M., Dong, H., Zhao, L., Wang, D. xi, & Meng, D. (2019). A review on Fenton process for organic wastewater treatment based on optimization perspective. Science of the Total Environment, 670, 110–121. https://doi.org/10.1016/j.scitotenv.2019.03.180Zhang, Y., Zhang, Z., Yan, Q., & Wang, Q. (2016). Synthesis, characterization, and catalytic activity of alkali metal molybdate/α-MoO3 hybrids as highly efficient catalytic wet air oxidation catalysts. Applied Catalysis A: General, 511, 47–58. https://doi.org/10.1016/j.apcata.2015.11.035Zhu, Y., Zhu, R., Xi, Y., Zhu, J., Zhu, G., & He, H. (2019). Strategies for enhancing the heterogeneous fenton catalytic reactivity: A review. Applied Catalysis B: Environmental, 255(January). https://doi.org/10.1016/j.apcatb.2019.05.041Zollinger, H. (2004). Color Chemistry. Synthesis, Properties and Applications of Organic Dyes and Pigments. 3rd revised edition. By Heinrich Zollinger. Angewandte Chemie International Edition, 43(40), 5291–5292. https://doi.org/10.1002/anie.200385122EstudiantesInvestigadoresMaestrosLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/83915/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1026266515.2023.pdf1026266515.2023.pdfTesis de Maestría en Ciencias - Químicaapplication/pdf4087939https://repositorio.unal.edu.co/bitstream/unal/83915/2/1026266515.2023.pdf86f0e94ae608355e2eb808e61d25a7f2MD52THUMBNAIL1026266515.2023.pdf.jpg1026266515.2023.pdf.jpgGenerated Thumbnailimage/jpeg5083https://repositorio.unal.edu.co/bitstream/unal/83915/3/1026266515.2023.pdf.jpg80ea3b27c83e8ecb239e5d14889d1559MD53unal/83915oai:repositorio.unal.edu.co:unal/839152024-08-09 23:19:49.521Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=