Estrategia de detección y localización de fallas para el esquema de protección distancia en redes con alta penetración de energía renovable de tipo eólica

Because of the increase in renewable sources participation in power systems globally, conventional protection schemes may lose reliability, security, and sensitivity to different failure events. Due to protection performance weakening, it is necessary to analyze the impact of Inverter-Based generati...

Full description

Autores:
Sánchez Muñoz, David Alejandro
Tipo de recurso:
Work document
Fecha de publicación:
2020
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/78976
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/78976
Palabra clave:
620 - Ingeniería y operaciones afines
Generación Basada en Inversores
Sistema de Protección
Corrientes de Falla
Protección Adaptativa
Teleprotección
Inverter Based Generation
Protection System
Fault Currents
Adaptative Protection
Teleprootection
Wind Farm Type IV
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_5d4b3e8f75007539ebcafdaa0425716e
oai_identifier_str oai:repositorio.unal.edu.co:unal/78976
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Estrategia de detección y localización de fallas para el esquema de protección distancia en redes con alta penetración de energía renovable de tipo eólica
dc.title.alternative.spa.fl_str_mv Short circuit detection and localization strategy for distance protection with high wind power penetration
title Estrategia de detección y localización de fallas para el esquema de protección distancia en redes con alta penetración de energía renovable de tipo eólica
spellingShingle Estrategia de detección y localización de fallas para el esquema de protección distancia en redes con alta penetración de energía renovable de tipo eólica
620 - Ingeniería y operaciones afines
Generación Basada en Inversores
Sistema de Protección
Corrientes de Falla
Protección Adaptativa
Teleprotección
Inverter Based Generation
Protection System
Fault Currents
Adaptative Protection
Teleprootection
Wind Farm Type IV
title_short Estrategia de detección y localización de fallas para el esquema de protección distancia en redes con alta penetración de energía renovable de tipo eólica
title_full Estrategia de detección y localización de fallas para el esquema de protección distancia en redes con alta penetración de energía renovable de tipo eólica
title_fullStr Estrategia de detección y localización de fallas para el esquema de protección distancia en redes con alta penetración de energía renovable de tipo eólica
title_full_unstemmed Estrategia de detección y localización de fallas para el esquema de protección distancia en redes con alta penetración de energía renovable de tipo eólica
title_sort Estrategia de detección y localización de fallas para el esquema de protección distancia en redes con alta penetración de energía renovable de tipo eólica
dc.creator.fl_str_mv Sánchez Muñoz, David Alejandro
dc.contributor.advisor.spa.fl_str_mv Pérez González, Ernesto
dc.contributor.author.spa.fl_str_mv Sánchez Muñoz, David Alejandro
dc.contributor.corporatename.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
dc.contributor.researchgroup.spa.fl_str_mv PROGRAMA DE INVESTIGACION SOBRE ADQUISICION Y ANALISIS DE SEÑALES PAAS-UN
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines
topic 620 - Ingeniería y operaciones afines
Generación Basada en Inversores
Sistema de Protección
Corrientes de Falla
Protección Adaptativa
Teleprotección
Inverter Based Generation
Protection System
Fault Currents
Adaptative Protection
Teleprootection
Wind Farm Type IV
dc.subject.proposal.spa.fl_str_mv Generación Basada en Inversores
Sistema de Protección
Corrientes de Falla
Protección Adaptativa
Teleprotección
dc.subject.proposal.eng.fl_str_mv Inverter Based Generation
Protection System
Fault Currents
Adaptative Protection
Teleprootection
Wind Farm Type IV
description Because of the increase in renewable sources participation in power systems globally, conventional protection schemes may lose reliability, security, and sensitivity to different failure events. Due to protection performance weakening, it is necessary to analyze the impact of Inverter-Based generation proliferation on protection schemes, identifying weak points, and proposing new schemes that meet new power systems’ needs. In this thesis’s particular, the distance protection scheme (21/21N) performance is evaluated, which is popular and effective in transmission networks due to its robustness to the operational scenario changes and the support it provides for adjacent elements failures. However, multiple studies indicate its loss of performance in scenarios with high penetration of renewable generation. Due to the harmful consequences of this protection’s failure on the system’s stability, the search for alternatives that mitigate the impact of new generation sources on this protection scheme has become a topic of great interest in the academic and industrial community. In this thesis, an algorithm is presented to increase the distance protection performance based on the correction of the apparent impedance seen by the protection relay using position and fault resistance estimations. Achieving notable increases in protection scheme safety and sensitivity for failures in adjacent elements failures improving its performance as backup protection. Also, a generic EMT model of a type IV renewable generator is presented as a controlled current source, which evaluates the impact of different inverter control strategies on the protection scheme’s operation.
publishDate 2020
dc.date.issued.spa.fl_str_mv 2020-11-23
dc.date.accessioned.spa.fl_str_mv 2021-01-28T21:12:41Z
dc.date.available.spa.fl_str_mv 2021-01-28T21:12:41Z
dc.type.spa.fl_str_mv Documento de trabajo
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/workingPaper
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_8042
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/WP
format http://purl.org/coar/resource_type/c_8042
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/78976
url https://repositorio.unal.edu.co/handle/unal/78976
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv R. Dubey, S. R. Samantaray, and B. K. Panigrahi, “Adaptive distance protection scheme for shunt-FACTS compensated line connecting wind farm,” IET Generation, Transmission and Distribution, vol. 10, no. 1, pp. 247–256, 2016.
A. Hooshyar, M. A. Azzouz, and E. F. El-Saadany, “Distance Protection of Lines Emanating from Full-Scale Converter-Interfaced Renewable Energy Power Plants-Part II: Solution Description and Evaluation,” IEEE Transactions on Power Delivery, vol. 30, no. 4, pp. 1781–1791, 2015.
A. M. Tsimtsios, G. N. Korres, and V. C. Nikolaidis, “A pilot-based distance protection scheme for meshed distribution systems with distributed generation,” International Journal of Electrical Power and Energy Systems, vol. 105, no. August 2018, pp. 454–469, 2019. [Online]. Available: https://doi.org/10.1016/j.ijepes.2018.08.022
A. M. Tsimtsios, G. N. Korres, and V. C. Nikolaidis, “A pilot-based distance protection scheme for meshed distribution systems with distributed generation,” International s, vol. 105, no. August 2018, pp. 454–469, 2019. [Online]. Available: https://doi.org/10.1016/j.ijepes.2018.08.022
I. E. AGENCY, “World Energy Outlook 2016,” International Energy Agency, Tech.Rep., 2016.
BBC, “Electricity blackouts would cause ’severe economic consequences’,” 2014. [Online]. Available: https://www.bbc.com/news/business-30221520
H. Hui, Y. Shiwen, M. Shuai, W. Chengzhi, G. Hao, and Y. Jufang, “Review on Economic Loss Assessment of Power Outages,” in Procedia Computer Science, vol. 130. Elsevier B.V., 2018, pp. 1158–1163. [Online]. vailable:https://doi.org/10.1016/j.procs.2018.04.151
S. Tamronglak, S. E. Horowitz, and U. Consultant, “Anatomy of Power System Blackouts: Preventive Relaying Strategies,” IEEE Transactions on Power Delivery, vol. 11,no. 2, pp. 708–715, 1996.
Y. Fang, K. Jia, Z. Yang, T. Bi, and Y. Li, “Impact of Inverter-Interfaced Renewable Energy Generators on Distance Protection and an Improved Scheme,” IEEE Transactions on Industrial Electronics, vol. 0046, no. c, pp. 1–1, 2018. [Online]. Available: https://ieeexplore.ieee.org/document/8506376/
V. Telukunta, J. Pradhan, A. Agrawal, M. Singh, and S. G. Srivani, “Protection challenges under bulk penetration of renewable energy resources in power systems: A review,” CSEE Journal of Power and Energy Systems, vol. 3, no. 4, pp. 365–379, 2017. [Online]. Available: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8233582
E. Farantatos, U. Karaagac, H. Saad, and J. Mahseredjian, “Short-circuit current contribution of converter interfaced wind turbines and the impact on system protection,”Proceedings of IREP Symposium: Bulk Power System Dynamics and Control - IX Optimization, Security and Control of the Emerging Power Grid, IREP 2013, 2013
K. Jia, Y. Li, Y. Fang, L. Zheng, T. Bi, and Q. Yang, “Transient current similarity based protection for wind farm transmission lines,” Applied Energy, vol. 225, no. December 2017, pp. 42–51, 2018. [Online]. Available: https://doi.org/10.1016/j.apenergy.2018.05.012
V. Hari, D. S. Kumar, and J. S. Savier, “Phasor Measurement Based Fault Detection And Blocking / De-blocking of Distance Relay Under Power Swing,” in 2018 International CET Conference on Control, Communication, and Computing (IC4). IEEE, 2018, pp. 134–139.
H. Sadeghi, “A novel method for adaptive distance protection of transmission line connected to wind farms,” International Journal of Electrical Power and Energy Systems, vol. 43, pp. 1376 – 1382, 2012.
M. Nagpal and C. Henville, “Impact of Power-Electronic Sources on Transmission Line Ground Fault Protection,” IEEE Transactions on Power Delivery, vol. 33, no. 1, pp. 62–70, 2018.
H. Lin, C. Liu, J. Vasquez, Z.-H. Tan, J. Guerrero, and K. Sun, “Adaptive Protection Combined with Machine Learning for Microgrids,” IET Generation, Transmission & Distribution, no. February, 2019.
U. Karaagac, J. Mahseredjian, R. Gagnon, H. Gras, H. Saad, L. Cai, I. Kocar, A. Haddadi, E. Farantatos, S. Bu, K. W. Chan, and L. Wang, “A Generic EMT-Type Model for Wind Parks With Permanent Magnet Synchronous Generator Full Size Converter Wind Turbines,” IEEE Power and Energy Technology Systems Journal, vol. 6, no. 3, pp. 131–141, 2019.
F. Wang, J. L. Duarte, and M. A. Hendrix, “Pliant active and reactive power control for grid-interactive converters under unbalanced voltage dips,” IEEE Transactions on Power Electronics, vol. 26, no. 5, pp. 1511–1521, 2011.
D. Bowes, T. Hall, and D. Gray, “Comparing the performance of fault prediction models which report multiple performance measures: Recomputing the confusion matrix,” ACM International Conference Proceeding Series, pp. 109–118, 2012.
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
Reconocimiento 4.0 Internacional
dc.rights.spa.spa.fl_str_mv Acceso abierto
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
Acceso abierto
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 200
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.program.spa.fl_str_mv Medellín - Minas - Maestría en Ingeniería - Ingeniería Eléctrica
dc.publisher.department.spa.fl_str_mv Departamento de Ingeniería Eléctrica y Automática
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/78976/4/1.128.458.026.pdf
https://repositorio.unal.edu.co/bitstream/unal/78976/5/license.txt
https://repositorio.unal.edu.co/bitstream/unal/78976/6/license_rdf
https://repositorio.unal.edu.co/bitstream/unal/78976/7/1.128.458.026.pdf.jpg
bitstream.checksum.fl_str_mv 8477e9d362d2014d1ae741ba631c5e6f
cccfe52f796b7c63423298c2d3365fc6
1608e658af296c3febc577e957e919bf
aa4b0d53b6df2d7e7a57fae53a048a31
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089470314545152
spelling Reconocimiento 4.0 InternacionalReconocimiento 4.0 InternacionalDerechos reservados - Universidad Nacional de ColombiaAcceso abiertohttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Pérez González, Ernesto240f65e5-e00b-40c3-b524-a9c08bdf20f8-1Sánchez Muñoz, David Alejandro71ccfa3d-e347-44dd-98d7-f3119b63e905Universidad Nacional de Colombia - Sede MedellínPROGRAMA DE INVESTIGACION SOBRE ADQUISICION Y ANALISIS DE SEÑALES PAAS-UN2021-01-28T21:12:41Z2021-01-28T21:12:41Z2020-11-23https://repositorio.unal.edu.co/handle/unal/78976Because of the increase in renewable sources participation in power systems globally, conventional protection schemes may lose reliability, security, and sensitivity to different failure events. Due to protection performance weakening, it is necessary to analyze the impact of Inverter-Based generation proliferation on protection schemes, identifying weak points, and proposing new schemes that meet new power systems’ needs. In this thesis’s particular, the distance protection scheme (21/21N) performance is evaluated, which is popular and effective in transmission networks due to its robustness to the operational scenario changes and the support it provides for adjacent elements failures. However, multiple studies indicate its loss of performance in scenarios with high penetration of renewable generation. Due to the harmful consequences of this protection’s failure on the system’s stability, the search for alternatives that mitigate the impact of new generation sources on this protection scheme has become a topic of great interest in the academic and industrial community. In this thesis, an algorithm is presented to increase the distance protection performance based on the correction of the apparent impedance seen by the protection relay using position and fault resistance estimations. Achieving notable increases in protection scheme safety and sensitivity for failures in adjacent elements failures improving its performance as backup protection. Also, a generic EMT model of a type IV renewable generator is presented as a controlled current source, which evaluates the impact of different inverter control strategies on the protection scheme’s operation.Debido al incremento en la participación de fuentes renovables en los sistemas de potencia a nivel global, los esquemas de protección convencionales pueden perder confiabilidad, seguridad y sensibilidad ante diferentes eventos de falla, es por esto que, es necesario analizar el impacto de la proliferación de generación basada en inversores sobre los esquemas de protección, identificando puntos débiles y proponiendo nuevos esquemas que atiendan a las necesidades de los nuevos sistemas de potencia. En el caso particular de esta tesis, se evalúa el desempeño de la función de protección distancia (ANSI 21/21N) el cual es popular y efectivo en redes de transmisión debido a su robustez ante cambios de escenario operativo y al respaldo que provee para fallas en elementos adyacentes. Sin embargo, en múltiples estudios se señala su pérdida de desempeño en escenarios con alta penetración de generación renovable y debido a las consecuencias nocivas de la maloperación de esta protección sobre la estabilidad del sistema, la búsqueda de alternativas que mitiguen el impacto de las nuevas fuentes de generación sobre esta función de protección se ha convertido en un tema de gran interés en la comunidad académica e industrial. Debido a esto, en esta tesis se presenta un algoritmo para incrementar el rendimiento de la protección distancia basado en la corrección de la impedancia aparente vista por el relé de protección utilizando estimaciones de posición y resistencia de falla, logrando incrementos notables en la seguridad y sensibilidad de la función de protección para fallas en elementos adyacentes, mejorando su desempeño como protección de respaldo. Adicionalmente, se presenta un modelo EMT genérico de generador renovable tipo IV como fuente de corriente controlada, lo cual permite evaluar el impacto de las estrategias de diferentes estrategias de control de inversores sobre el funcionamiento de la función de protección.Energética 2030Línea de investigación: Electrical power systems protectionMaestría200application/pdfspa620 - Ingeniería y operaciones afinesGeneración Basada en InversoresSistema de ProtecciónCorrientes de FallaProtección AdaptativaTeleprotecciónInverter Based GenerationProtection SystemFault CurrentsAdaptative ProtectionTeleprootectionWind Farm Type IVEstrategia de detección y localización de fallas para el esquema de protección distancia en redes con alta penetración de energía renovable de tipo eólicaShort circuit detection and localization strategy for distance protection with high wind power penetrationDocumento de trabajoinfo:eu-repo/semantics/workingPaperinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_8042Texthttp://purl.org/redcol/resource_type/WPMedellín - Minas - Maestría en Ingeniería - Ingeniería EléctricaDepartamento de Ingeniería Eléctrica y AutomáticaUniversidad Nacional de Colombia - Sede MedellínR. Dubey, S. R. Samantaray, and B. K. Panigrahi, “Adaptive distance protection scheme for shunt-FACTS compensated line connecting wind farm,” IET Generation, Transmission and Distribution, vol. 10, no. 1, pp. 247–256, 2016.A. Hooshyar, M. A. Azzouz, and E. F. El-Saadany, “Distance Protection of Lines Emanating from Full-Scale Converter-Interfaced Renewable Energy Power Plants-Part II: Solution Description and Evaluation,” IEEE Transactions on Power Delivery, vol. 30, no. 4, pp. 1781–1791, 2015.A. M. Tsimtsios, G. N. Korres, and V. C. Nikolaidis, “A pilot-based distance protection scheme for meshed distribution systems with distributed generation,” International Journal of Electrical Power and Energy Systems, vol. 105, no. August 2018, pp. 454–469, 2019. [Online]. Available: https://doi.org/10.1016/j.ijepes.2018.08.022A. M. Tsimtsios, G. N. Korres, and V. C. Nikolaidis, “A pilot-based distance protection scheme for meshed distribution systems with distributed generation,” International s, vol. 105, no. August 2018, pp. 454–469, 2019. [Online]. Available: https://doi.org/10.1016/j.ijepes.2018.08.022I. E. AGENCY, “World Energy Outlook 2016,” International Energy Agency, Tech.Rep., 2016.BBC, “Electricity blackouts would cause ’severe economic consequences’,” 2014. [Online]. Available: https://www.bbc.com/news/business-30221520H. Hui, Y. Shiwen, M. Shuai, W. Chengzhi, G. Hao, and Y. Jufang, “Review on Economic Loss Assessment of Power Outages,” in Procedia Computer Science, vol. 130. Elsevier B.V., 2018, pp. 1158–1163. [Online]. vailable:https://doi.org/10.1016/j.procs.2018.04.151S. Tamronglak, S. E. Horowitz, and U. Consultant, “Anatomy of Power System Blackouts: Preventive Relaying Strategies,” IEEE Transactions on Power Delivery, vol. 11,no. 2, pp. 708–715, 1996.Y. Fang, K. Jia, Z. Yang, T. Bi, and Y. Li, “Impact of Inverter-Interfaced Renewable Energy Generators on Distance Protection and an Improved Scheme,” IEEE Transactions on Industrial Electronics, vol. 0046, no. c, pp. 1–1, 2018. [Online]. Available: https://ieeexplore.ieee.org/document/8506376/V. Telukunta, J. Pradhan, A. Agrawal, M. Singh, and S. G. Srivani, “Protection challenges under bulk penetration of renewable energy resources in power systems: A review,” CSEE Journal of Power and Energy Systems, vol. 3, no. 4, pp. 365–379, 2017. [Online]. Available: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8233582E. Farantatos, U. Karaagac, H. Saad, and J. Mahseredjian, “Short-circuit current contribution of converter interfaced wind turbines and the impact on system protection,”Proceedings of IREP Symposium: Bulk Power System Dynamics and Control - IX Optimization, Security and Control of the Emerging Power Grid, IREP 2013, 2013K. Jia, Y. Li, Y. Fang, L. Zheng, T. Bi, and Q. Yang, “Transient current similarity based protection for wind farm transmission lines,” Applied Energy, vol. 225, no. December 2017, pp. 42–51, 2018. [Online]. Available: https://doi.org/10.1016/j.apenergy.2018.05.012V. Hari, D. S. Kumar, and J. S. Savier, “Phasor Measurement Based Fault Detection And Blocking / De-blocking of Distance Relay Under Power Swing,” in 2018 International CET Conference on Control, Communication, and Computing (IC4). IEEE, 2018, pp. 134–139.H. Sadeghi, “A novel method for adaptive distance protection of transmission line connected to wind farms,” International Journal of Electrical Power and Energy Systems, vol. 43, pp. 1376 – 1382, 2012.M. Nagpal and C. Henville, “Impact of Power-Electronic Sources on Transmission Line Ground Fault Protection,” IEEE Transactions on Power Delivery, vol. 33, no. 1, pp. 62–70, 2018.H. Lin, C. Liu, J. Vasquez, Z.-H. Tan, J. Guerrero, and K. Sun, “Adaptive Protection Combined with Machine Learning for Microgrids,” IET Generation, Transmission & Distribution, no. February, 2019.U. Karaagac, J. Mahseredjian, R. Gagnon, H. Gras, H. Saad, L. Cai, I. Kocar, A. Haddadi, E. Farantatos, S. Bu, K. W. Chan, and L. Wang, “A Generic EMT-Type Model for Wind Parks With Permanent Magnet Synchronous Generator Full Size Converter Wind Turbines,” IEEE Power and Energy Technology Systems Journal, vol. 6, no. 3, pp. 131–141, 2019.F. Wang, J. L. Duarte, and M. A. Hendrix, “Pliant active and reactive power control for grid-interactive converters under unbalanced voltage dips,” IEEE Transactions on Power Electronics, vol. 26, no. 5, pp. 1511–1521, 2011.D. Bowes, T. Hall, and D. Gray, “Comparing the performance of fault prediction models which report multiple performance measures: Recomputing the confusion matrix,” ACM International Conference Proceeding Series, pp. 109–118, 2012.ORIGINAL1.128.458.026.pdf1.128.458.026.pdfTesis de Maestría en Ingeniería - Ingeniería Eléctricaapplication/pdf19082151https://repositorio.unal.edu.co/bitstream/unal/78976/4/1.128.458.026.pdf8477e9d362d2014d1ae741ba631c5e6fMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/78976/5/license.txtcccfe52f796b7c63423298c2d3365fc6MD55CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.unal.edu.co/bitstream/unal/78976/6/license_rdf1608e658af296c3febc577e957e919bfMD56THUMBNAIL1.128.458.026.pdf.jpg1.128.458.026.pdf.jpgGenerated Thumbnailimage/jpeg4641https://repositorio.unal.edu.co/bitstream/unal/78976/7/1.128.458.026.pdf.jpgaa4b0d53b6df2d7e7a57fae53a048a31MD57unal/78976oai:repositorio.unal.edu.co:unal/789762023-08-09 07:26:13.157Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==