A VoIP call classifier for carrier grade based on Support Vector Machines

Currently, VoIP company technicians conduct tests to classify call quality as good or bad. Even though, there are automatic platforms that make test VoIP calls to classify them, they do not perform audio processing to detect False Answer Supervision (FAS), which is a common and undesirable feature o...

Full description

Autores:
Wilches-Cortina, Juan Ricardo
Cardona-Peña, Jairo Alberto
Tello-Portillo, Juan Pablo
Tipo de recurso:
Article of journal
Fecha de publicación:
2017
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/60355
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/60355
http://bdigital.unal.edu.co/58687/
Palabra clave:
62 Ingeniería y operaciones afines / Engineering
Audio analysis
pattern recognition
SVM
VoIP
Análisis de audio
reconocimiento de patrones
SVM, VoIP
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_5cc70af7107bafeaeeec06d342a9e988
oai_identifier_str oai:repositorio.unal.edu.co:unal/60355
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Wilches-Cortina, Juan Ricardo13779824-c82b-4c45-a334-b9f58e270e3b300Cardona-Peña, Jairo Alberto50a036a5-8ced-4edb-b8e9-64cd1167b8ca300Tello-Portillo, Juan Pabloe79adcbb-73c4-4c53-ab09-44de46a2b7693002019-07-02T18:07:45Z2019-07-02T18:07:45Z2017-07-01ISSN: 2346-2183https://repositorio.unal.edu.co/handle/unal/60355http://bdigital.unal.edu.co/58687/Currently, VoIP company technicians conduct tests to classify call quality as good or bad. Even though, there are automatic platforms that make test VoIP calls to classify them, they do not perform audio processing to detect False Answer Supervision (FAS), which is a common and undesirable feature of VoIP calls. In this paper, a Vector Support Machine (SVM) along with several functions used in voice recognition were implemented to emulate the human decision procedure (the task of audio classification and analysis performed by technicians). The experiments were based on the comparison between the results obtained from the current classification methods and those derived from the SVM. A 10-fold cross-validation was used to evaluate the system performance. The tests results from the proposed methodology show a better percentage of successful classification compared to a selected automatic platform called CheckMyRoutes.Actualmente, los técnicos de compañías de VoIP realizan pruebas y clasifican las llamadas como buenas o malas. Asimismo, existen plataformas automáticas que realizan llamadas VoIP para clasificarlas, sin realizar procesamiento de audio; proceso necesario cuando se pretende detectar el False Answer Supervision (FAS), una característica común e indeseable de las llamadas VoIP. Se implementó una Máquina de Vectores de Soporte (SVM) junto con varias funciones utilizadas en el reconocimiento de voz para emular la toma de decisiones de los humanos (tarea de clasificación y análisis de audio realizada por los técnicos). Los experimentos se basaron en la comparación entre los resultados obtenidos de los métodos de clasificación actuales y los derivados de la SVM. Se utilizó una validación cruzada de diez veces para evaluar el rendimiento del sistema. Derivado de los resultados, la metodología propuesta muestra un mejor porcentaje de clasificación exitosa comparado con una plataforma automática llamada CheckMyRoutes.application/pdfspaUniversidad Nacional de Colombia (Sede Medellín). Facultad de Minas.https://revistas.unal.edu.co/index.php/dyna/article/view/60975Universidad Nacional de Colombia Revistas electrónicas UN DynaDynaWilches-Cortina, Juan Ricardo and Cardona-Peña, Jairo Alberto and Tello-Portillo, Juan Pablo (2017) A VoIP call classifier for carrier grade based on Support Vector Machines. DYNA, 84 (202). pp. 75-83. ISSN 2346-218362 Ingeniería y operaciones afines / EngineeringAudio analysispattern recognitionSVMVoIPAnálisis de audioreconocimiento de patronesSVM, VoIPA VoIP call classifier for carrier grade based on Support Vector MachinesArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTORIGINAL60975-349734-1-PB.pdfapplication/pdf1088499https://repositorio.unal.edu.co/bitstream/unal/60355/1/60975-349734-1-PB.pdf57f51fce13b22a9e1ab6f42e0567ac96MD51THUMBNAIL60975-349734-1-PB.pdf.jpg60975-349734-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg9182https://repositorio.unal.edu.co/bitstream/unal/60355/2/60975-349734-1-PB.pdf.jpg70feea52904d6de2696349afc4b19f22MD52unal/60355oai:repositorio.unal.edu.co:unal/603552023-04-06 23:05:36.785Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co
dc.title.spa.fl_str_mv A VoIP call classifier for carrier grade based on Support Vector Machines
title A VoIP call classifier for carrier grade based on Support Vector Machines
spellingShingle A VoIP call classifier for carrier grade based on Support Vector Machines
62 Ingeniería y operaciones afines / Engineering
Audio analysis
pattern recognition
SVM
VoIP
Análisis de audio
reconocimiento de patrones
SVM, VoIP
title_short A VoIP call classifier for carrier grade based on Support Vector Machines
title_full A VoIP call classifier for carrier grade based on Support Vector Machines
title_fullStr A VoIP call classifier for carrier grade based on Support Vector Machines
title_full_unstemmed A VoIP call classifier for carrier grade based on Support Vector Machines
title_sort A VoIP call classifier for carrier grade based on Support Vector Machines
dc.creator.fl_str_mv Wilches-Cortina, Juan Ricardo
Cardona-Peña, Jairo Alberto
Tello-Portillo, Juan Pablo
dc.contributor.author.spa.fl_str_mv Wilches-Cortina, Juan Ricardo
Cardona-Peña, Jairo Alberto
Tello-Portillo, Juan Pablo
dc.subject.ddc.spa.fl_str_mv 62 Ingeniería y operaciones afines / Engineering
topic 62 Ingeniería y operaciones afines / Engineering
Audio analysis
pattern recognition
SVM
VoIP
Análisis de audio
reconocimiento de patrones
SVM, VoIP
dc.subject.proposal.spa.fl_str_mv Audio analysis
pattern recognition
SVM
VoIP
Análisis de audio
reconocimiento de patrones
SVM, VoIP
description Currently, VoIP company technicians conduct tests to classify call quality as good or bad. Even though, there are automatic platforms that make test VoIP calls to classify them, they do not perform audio processing to detect False Answer Supervision (FAS), which is a common and undesirable feature of VoIP calls. In this paper, a Vector Support Machine (SVM) along with several functions used in voice recognition were implemented to emulate the human decision procedure (the task of audio classification and analysis performed by technicians). The experiments were based on the comparison between the results obtained from the current classification methods and those derived from the SVM. A 10-fold cross-validation was used to evaluate the system performance. The tests results from the proposed methodology show a better percentage of successful classification compared to a selected automatic platform called CheckMyRoutes.
publishDate 2017
dc.date.issued.spa.fl_str_mv 2017-07-01
dc.date.accessioned.spa.fl_str_mv 2019-07-02T18:07:45Z
dc.date.available.spa.fl_str_mv 2019-07-02T18:07:45Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv ISSN: 2346-2183
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/60355
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/58687/
identifier_str_mv ISSN: 2346-2183
url https://repositorio.unal.edu.co/handle/unal/60355
http://bdigital.unal.edu.co/58687/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.spa.fl_str_mv https://revistas.unal.edu.co/index.php/dyna/article/view/60975
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Revistas electrónicas UN Dyna
Dyna
dc.relation.references.spa.fl_str_mv Wilches-Cortina, Juan Ricardo and Cardona-Peña, Jairo Alberto and Tello-Portillo, Juan Pablo (2017) A VoIP call classifier for carrier grade based on Support Vector Machines. DYNA, 84 (202). pp. 75-83. ISSN 2346-2183
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia (Sede Medellín). Facultad de Minas.
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/60355/1/60975-349734-1-PB.pdf
https://repositorio.unal.edu.co/bitstream/unal/60355/2/60975-349734-1-PB.pdf.jpg
bitstream.checksum.fl_str_mv 57f51fce13b22a9e1ab6f42e0567ac96
70feea52904d6de2696349afc4b19f22
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089217991507968